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Recap: Some Interesting Connections in ℜn

1 The closure of a set is the smallest closed set containing the set. The closure of a closed
set is the set itself.

2 S is closed if and only if closure(S) = S.
3 A bounded set can be defined in terms of a closed set; A set S is bounded if and only if it

is contained strictly inside a closed set.
4 A relationship between the interior, boundary and closure of a set S is

closure(S) = int(S) ∪ ∂(S).
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Extending Open, Closed sets, Boundary, Interior, etc to Topological Sets
This is for Optinal Reading

1 Recap: Open Set follows from Defintion 1 of Topology. Neighborhood follows from
Definition 2 of Topology.

2 Limit Point: Let S be a subset of a topological set X. A point x ∈ X is a limit point of S
if every neighborhood of x contains atleast one point of S different from x itself.

▶ If X has an associated metric d and S ⊆ X then x ∈ S is a limit point of S iff ∀ ϵ > 0,
{y ∈ S s.t. 0 < d(y, x) < ϵ} ̸= ∅}.

3 Closure of S = closure(S) = S ∪ {limit points of S}.
4 Boundary ∂S of S: Is the subset of S such that every neighborhood of a point from ∂S

contains atleast one point in S and one point not in S.
▶ If S has a metric d then:

∂S = {x ∈ S|∀ ϵ > 0, ∃ y s.t. d(x, y) < ϵ and y ∈ S and∃ z s.t. d(x, z) < ϵ and z /∈ S}
5 Open set S: Does not contain any of its boundary points

▶ If X has an associated metric d and S ⊆ X is called open if for any x ∈ S, ∃ ϵ > 0 such that
given any y ∈ S with d(y, x) < ϵ, y ∈ S.

6 Closed set S: Has an open complement SC
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By this definition, can point in interior be limit point?



Revisiting Example for Local Extrema
Figure below shows the plot of f(x1, x2) = 3x21 − x31 − 2x22 + x42. As can be seen in the plot, the
function has several local maxima and minima.

Figure 1:
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Convexity and Global Minimum

Fundamental chracteristics: Let us now prove them
1 Any point of local minimum point is also a point of global minimum.
2 For any stricly convex function, the point corresponding to the gobal minimum is also

unique.
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Convexity: Local and Global Minimum

Theorem
Let f : D → ℜ be a convex function on a convex domain D. Any point of locally minimum
solution for f is also a point of its globally minimum solution.

Proof: Suppose x ∈ D is a point of local minimum and let y ∈ D be a point of global
minimum. Thus,
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We are trying to prove by contradiction that a y different from
x cannot exist

f(y) < f(x)



Convexity: Local and Global Minimum

Theorem
Let f : D → ℜ be a convex function on a convex domain D. Any point of locally minimum
solution for f is also a point of its globally minimum solution.

Proof: Suppose x ∈ D is a point of local minimum and let y ∈ D be a point of global
minimum. Thus, f(y) < f(x). Since x corresponds to a local minimum, there exists an ϵ > 0
such that
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Convexity: Local and Global Minimum

Theorem
Let f : D → ℜ be a convex function on a convex domain D. Any point of locally minimum
solution for f is also a point of its globally minimum solution.

Proof: Suppose x ∈ D is a point of local minimum and let y ∈ D be a point of global
minimum. Thus, f(y) < f(x). Since x corresponds to a local minimum, there exists an ϵ > 0
such that

∀ z ∈ D, ||z− x|| < ϵ⇒ f(z) ≥ f(x)

Consider a point z
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lying on the line segment joining x and y
but lying inside the epsilon disc.
We show that f(z) < f(x) contradicting the 
assumption that x was a local min in the 
epsilon disc



Convexity: Local and Global Minimum

Theorem
Let f : D → ℜ be a convex function on a convex domain D. Any point of locally minimum
solution for f is also a point of its globally minimum solution.

Proof: Suppose x ∈ D is a point of local minimum and let y ∈ D be a point of global
minimum. Thus, f(y) < f(x). Since x corresponds to a local minimum, there exists an ϵ > 0
such that

∀ z ∈ D, ||z− x|| < ϵ⇒ f(z) ≥ f(x)

Consider a point z = θy + (1− θ)x with θ = ϵ
2||y−x|| . Since x is a point of local minimum (in

a ball of radius ϵ), and since f(y) < f(x), it must be that
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We have shown a specific value for theta when
we assume a norm



Convexity: Local and Global Minimum

Theorem
Let f : D → ℜ be a convex function on a convex domain D. Any point of locally minimum
solution for f is also a point of its globally minimum solution.

Proof: Suppose x ∈ D is a point of local minimum and let y ∈ D be a point of global
minimum. Thus, f(y) < f(x). Since x corresponds to a local minimum, there exists an ϵ > 0
such that

∀ z ∈ D, ||z− x|| < ϵ⇒ f(z) ≥ f(x)

Consider a point z = θy + (1− θ)x with θ = ϵ
2||y−x|| . Since x is a point of local minimum (in

a ball of radius ϵ), and since f(y) < f(x), it must be that ||y− x|| > ϵ. Thus, 0 < θ < 1
2 and

z ∈ D. Furthermore, ||z− x|| = ϵ
2 .
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Convexity: Local and Global Minimum (contd.)

Since f is a convex function
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Convexity: Local and Global Minimum (contd.)

Since f is a convex function
f(z) ≤ θf(x) + (1− θ)f(y)

Since f(y) < f(x), we also have
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Convexity: Local and Global Minimum (contd.)

Since f is a convex function
f(z) ≤ θf(x) + (1− θ)f(y)

Since f(y) < f(x), we also have

θf(x) + (1− θ)f(y) < f(x)

The two equations imply that
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Convexity: Local and Global Minimum (contd.)

Since f is a convex function
f(z) ≤ θf(x) + (1− θ)f(y)

Since f(y) < f(x), we also have

θf(x) + (1− θ)f(y) < f(x)

The two equations imply that f(z) < f(x), which contradicts our assumption that x
corresponds to a point of local minimum. That is f cannot have a point of local minimum,
which does not coincide with the point y of global minimum.
Since any locally minimum point for a convex function also corresponds to its global minimum,
we will drop the qualifiers ‘locally’ as well as ‘globally’ while referring to the points
corresponding to minimum values of a convex function.
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Strict Convexity and Uniqueness of Global Minimum
For any stricly convex function, the point corresponding to the gobal minimum is also unique,
as stated in the following theorem.

Theorem
Let f : D → ℜ be a strictly convex function on a convex domain D. Then f has a unique point
corresponding to its global minimum.

Proof: Suppose x ∈ D and y ∈ D with y ̸= x are two points of global minimum. That is
f(x) = f(y) for y ̸= x. The point x+y

2 also
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Strict Convexity and Uniqueness of Global Minimum
For any stricly convex function, the point corresponding to the gobal minimum is also unique,
as stated in the following theorem.

Theorem
Let f : D → ℜ be a strictly convex function on a convex domain D. Then f has a unique point
corresponding to its global minimum.

Proof: Suppose x ∈ D and y ∈ D with y ̸= x are two points of global minimum. That is
f(x) = f(y) for y ̸= x. The point x+y

2 also belongs to the convex set D and since f is strictly
convex, we must have

f
(

x + y
2

)
<

1

2
f(x) + 1

2
f(y) = f(x)

which is a contradiction. Thus, the point corresponding to the minimum of f must be
unique.
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|x| when generalized to ||x||_1
continues to
have a unique
global min

x^2

x^4

It is possible that a convex function is NOT strictly convex and yet
it has a unique global minimum



Convexity and Differentiability

1 Recap for differentiable f : ℜ → ℜ the equivalent definition of convexity
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A nondecreasing f'



Convexity and Differentiability

1 Recap for differentiable f : ℜ → ℜ the equivalent definition of convexity
2 What would be an equivalent notion of diffentiability and convexity for f : ℜn → ℜ?
3 What will be critical points? First and second order necessary (and sufficient) conditions

for local and global optimality?
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3x^2 - x + y^2



View from x-axis

View from y-axis

In both views, I find that the convexity
of the function is reflected in the
non-decreasing nature of the 
derivatives along the respective axis
(directions)



How about convexity
in an arbitrary 
direction? 

Expect the directional
derivative of the 
convex function
to be non-decreasing
along EVERY direction

Is there a more compact mathematical expression for this? 



Optimization Principles for Multivariate Functions
In the following, we state some important properties of convex functions, some of which
require knowledge of ‘derivatives’ in ℜn. These also include relationships between convex

functions and convex sets, and first and second order conditions for convexity.
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The Direction Vector

Consider a function f(x), with x ∈ ℜn.
We start with the concept of the direction at a point x ∈ ℜn.
We will represent a vector by x and the kth component of x by xk.
Let uk be a unit vector pointing along the kth coordinate axis in ℜn;
ukk = 1 and ukj = 0, ∀j ̸= k
An arbitrary direction vector v at x is a vector in ℜn with unit norm (i.e., ||v|| = 1) and
component vk in the direction of uk.
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Directional derivative and the gradient vector

Let f : D → ℜ, D ⊆ ℜn be a function.

Definition
[Directional derivative]: The directional derivative of f(x) at x in the direction of the unit

vector v is
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Directional derivative and the gradient vector

Let f : D → ℜ, D ⊆ ℜn be a function.

Definition
[Directional derivative]: The directional derivative of f(x) at x in the direction of the unit

vector v is

Dvf(x) = lim
h→0

f(x + hv)− f(x)
h (1)

provided the limit exists.
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Directional Derivative

As a special case, when v = uk the directional derivative reduces to the partial derivative of f
with respect to xk.

Dukf(x) =
∂f(x)
∂xk

Claim
If f(x) is a differentiable function of x ∈ ℜn, then f has a directional derivative in the direction
of any unit vector v, and

Dvf(x) =
n∑

k=1

∂f(x)
∂xk

vk (2)
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Directional Derivative: Simplified Expression

Define g(h) = f(x + vh). Now:
g′(0) =
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A more formal derivation
of Directional derivative
as dot product of gradient
with vector v

f'(x+vh) evaluated at h=0



Directional Derivative: Simplified Expression

Define g(h) = f(x + vh). Now:
g′(0) = lim

h→0

g(0+h)−g(0)
h = lim

h→0

f(x+hv)−f(x)
h , which is the expression for the directional

derivative defined in equation 1. Thus, g′(0) = Dvf(x).
By definition of the chain rule for partial differentiation, we get another expression for
g′(0) as

g′(0) =
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Directional Derivative: Simplified Expression

Define g(h) = f(x + vh). Now:
g′(0) = lim

h→0

g(0+h)−g(0)
h = lim

h→0

f(x+hv)−f(x)
h , which is the expression for the directional

derivative defined in equation 1. Thus, g′(0) = Dvf(x).
By definition of the chain rule for partial differentiation, we get another expression for
g′(0) as

g′(0) =
n∑

k=1

∂f(x)
∂xk

vk

Therefore, g′(0) = Dvf(x) =
n∑

k=1

∂f(x)
∂xk

vk
Homeworks:

1 Consider the polynomial f(x, y, z) = x2y + z sin xy and the unit vector vT = 1√
3
[1, 1, 1]T. Consider the point p0 = (0, 1, 3). Compute the

directional derivative of f at p0 in the direction of v.
2 Compute the rate of change of f(x, y, z) = exyz at p0 = (1, 2, 3) in the direction from p1 = (1, 2, 3) to p2 = (−4, 6,−1).
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Illustrating Computation of Directional Derivative

Consider the polynomial f(x, y, z) = x2y+ z sin xy and the unit vector vT = 1√
3
[1, 1, 1]T.

Consider the point p0 = (0, 1, 3). We will compute the directional derivative of f at p0 in
the direction of v.
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Illustrating Computation of Directional Derivative

Consider the polynomial f(x, y, z) = x2y+ z sin xy and the unit vector vT = 1√
3
[1, 1, 1]T.

Consider the point p0 = (0, 1, 3). We will compute the directional derivative of f at p0 in
the direction of v.
To do this, we first compute the gradient of f in general:
∇f =

[
2xy+ yz cos xy, x2 + xz cos xy, sin xy

]T.
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Illustrating Computation of Directional Derivative

Consider the polynomial f(x, y, z) = x2y+ z sin xy and the unit vector vT = 1√
3
[1, 1, 1]T.

Consider the point p0 = (0, 1, 3). We will compute the directional derivative of f at p0 in
the direction of v.
To do this, we first compute the gradient of f in general:
∇f =

[
2xy+ yz cos xy, x2 + xz cos xy, sin xy

]T.
Evaluating the gradient at a specific point p0, ∇f(0, 1, 3) = [3, 0, 0]T. The directional
derivative at p0 in the direction v is Dvf(0, 1, 3) = [3, 0, 0]. 1√

3
[1, 1, 1]T =

√
3.

This directional derivative is the rate of change of f at p0 in the direction v; it is positive
indicating that the function f increases at p0 in the direction v.
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More on the Gradient Vector

All our ideas about first and second derivative in the case of a single variable carry over to
the directional derivative.
What does the gradient ∇f(x) tell you about the function f(x)? While there exist
infinitely many direction vectors v at any point x, there is a unique gradient vector ∇f(x).
Since we expressed Dvf(x) as the dot product of ∇f(x) with v, we can study ∇f(x)
independently.
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The gradient vector as a canonical representation of 
the directional derivative but expressed independent 
of any direction needs some insight (geometrical as well)



More on the Gradient Vector

All our ideas about first and second derivative in the case of a single variable carry over to
the directional derivative.
What does the gradient ∇f(x) tell you about the function f(x)? While there exist
infinitely many direction vectors v at any point x, there is a unique gradient vector ∇f(x).
Since we expressed Dvf(x) as the dot product of ∇f(x) with v, we can study ∇f(x)
independently.

Claim
Suppose f is a differentiable function of x ∈ ℜn. The maximum value of the directional
derivative Dvf(x) is
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Will depend in general on the norm under which v has a unit value
Steepest descent algorithm translates to a different direction for 

each different choice of the norm

||gradient of f(x) || assuming v has unit L2 norm. Proof?



More on the Gradient Vector

All our ideas about first and second derivative in the case of a single variable carry over to
the directional derivative.
What does the gradient ∇f(x) tell you about the function f(x)? While there exist
infinitely many direction vectors v at any point x, there is a unique gradient vector ∇f(x).
Since we expressed Dvf(x) as the dot product of ∇f(x) with v, we can study ∇f(x)
independently.

Claim
Suppose f is a differentiable function of x ∈ ℜn. The maximum value of the directional
derivative Dvf(x) is ||∇f(x|| and it is so when v has the same direction as the gradient vector
∇f(x).
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More on the Gradient Vector (contd.)

Proof:
The cauchy schwartz inequality when applied in the eucledian space gives us
|xTy| ≤ ||x||||y|| for any x,y ∈ ℜn, with equality holding iff
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x and y are in
the same direction



More on the Gradient Vector (contd.)

Proof:
The cauchy schwartz inequality when applied in the eucledian space gives us
|xTy| ≤ ||x||||y|| for any x,y ∈ ℜn, with equality holding iff x and y are linearly
dependent.
The inequality gives upper and lower bounds on the dot product between two vectors;
−||x||||y|| ≤ xTy ≤ ||x||||y||.
Applying these bounds to the right hand side of (??) and using the fact that ||v|| = 1, we
get
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More on the Gradient Vector (contd.)

Proof:
The cauchy schwartz inequality when applied in the eucledian space gives us
|xTy| ≤ ||x||||y|| for any x,y ∈ ℜn, with equality holding iff x and y are linearly
dependent.
The inequality gives upper and lower bounds on the dot product between two vectors;
−||x||||y|| ≤ xTy ≤ ||x||||y||.
Applying these bounds to the right hand side of (??) and using the fact that ||v|| = 1, we
get

−||∇f(x)|| ≤ Dvf(x) = ∇Tf(x).v ≤ ||∇f(x)||
with equality holding iff v = k∇f(x) for some k ≥ 0.
Since ||v|| = 1, equality can hold iff v = ∇f(x)

||∇f(x)|| .
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This is L2 norm. H/w: How do you prove the other cases discussed
in the class for other choices of norms



More on the Gradient Vector (contd.)

Thus, the maximum rate of change of f at a point x is given by the norm ||∇f(x|| of the
gradient vector at x.
And the direction in which the rate of change of f is maximum is given by the unit vector
∇f(x

||∇f(x|| .
An associated fact is that the minimum value of the directional derivative Dvf(x) is
−||∇f(x)|| and it is attained when v has the opposite direction of the gradient vector,
i.e., − ∇f(x

||∇f(x|| .
The method of steepest descent uses this result to iteratively choose a new value of x by
traversing in the direction of −∇f(x), especially while minimizing the value of some
complex function.

August 14, 2018 18 / 394

using L2 norm



Visualizing the Gradient Vector
Consider the function f(x1, x2) = x1ex2 . The Figure below shows 10 level curves for this
function, corresponding to f(x1, x2) = c for c = 1, 2, . . . , 10.

The idea behind a level curve is that as you change x along any level curve, the function value
remains unchanged, but as you move x across level curves, the function value changes.
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Vanishing of the Directional Derivative
What if Dvf(x) turns out to be 0?
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Level curves for x^2 + y^2
Either gradient of f is 0
OR
v is orthogonal to the gradient

(1,1)

Gradient at (1,1) = (2,2)

this vector (leading
to 0 directional
derivative) is
tangent to the 
level curve



Vanishing of the Directional Derivative
What if Dvf(x) turns out to be 0?
We then expect that ∇f(x) and v are othogonal.

Definition
Level Surface/Set: The level surface/set of f(x) at x∗ is

{x|f(x) = f(x∗)} (3)
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Vanishing of the Directional Derivative
What if Dvf(x) turns out to be 0?
We then expect that ∇f(x) and v are othogonal.

Definition
Level Surface/Set: The level surface/set of f(x) at x∗ is

{x|f(x) = f(x∗)} (3)

There is a useful result in this regard.

Claim
Let f : D → ℜ with D ∈ ℜn be a differentiable function. The gradient ∇f evaluated at x∗ is
orthogonal to the tangent hyperplane (tangent line in case n = 2) to the level surface of f
passing through x∗.
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Vanishing of the Directional Derivative & Level Surfaces: Proof
Proof: Let K be the range of f and let k ∈ K such that f(x∗) = k.

Consider the level surface f(x) = k. Let r(t) = [x1(t), x2(t), . . . , xn(t)] be a curve on the
level surface, parametrized by t ∈ ℜ, with r(0) = x∗.
Then, f(x(t), y(t), z(t)) = k. Applying the chain rule

df(r(t))
dt =

n∑

i=1

∂f
∂xi

dxi(t)
dt = ∇Tf(x(t))dr(t)

dt = 0

For t = 0, the equations become

∇Tf(x∗)
dr(0)
dt = 0

Now, dr(t)
dt represents any tangent vector to the curve through r(t) which lies completely

on the level surface.
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Vanishing of the Directional Derivative & Level Surfaces: Proof

∇Tf(x∗)
dr(0)
dt = 0

That is, the tangent line to any curve at x∗ on the level surface containing x∗, is
orthogonal to ∇f(x∗).
Since the tangent hyperplane to a surface at any point is the hyperplane containing all
tangent vectors to curves on the surface passing through the point, the gradient ∇f(x∗) is
perpendicular to the tangent hyperplane to the level surface passing through that point
x∗.
The equation of the tangent hyperplane is given by
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Vanishing of the Directional Derivative & Level Surfaces: Proof

∇Tf(x∗)
dr(0)
dt = 0

That is, the tangent line to any curve at x∗ on the level surface containing x∗, is
orthogonal to ∇f(x∗).
Since the tangent hyperplane to a surface at any point is the hyperplane containing all
tangent vectors to curves on the surface passing through the point, the gradient ∇f(x∗) is
perpendicular to the tangent hyperplane to the level surface passing through that point
x∗.
The equation of the tangent hyperplane is given by (x− x∗)T∇f(x∗) = 0
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This dot product will appear in definition of
convexity, quasi-convexity, ....





Level Surface based Interpretation of Gradient

Recall that the normal to a plane can be found by taking the cross product of any two
vectors lying within the plane. Thus, the gradient vector ∇f(x∗) at any point x∗ on the
level surface of a function f(.) is normal to the tangent hyperplane (or tangent line
in the case of two variables) to the surface at the same point.
The same gradient vector ∇f(x∗) at a point x∗ can also be conveniently computed as the
vector of partial derivatives of the function at that point.
We will illustrate this geometric understanding through some examples.
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Level Surface based Interpretation of Gradient: Examples
Consider the same plot as earlier with a gradient vector at (2, 0) as shown below. The
gradient vector [1, 2]T is perpendicular to the tangent hyperplane to the level curve
x1ex2 = 2 at (2, 0). The equation of the tangent hyperplane is (x1 − 2) + 2(x2 − 0) = 0
and it turns out to be a tangent line.
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Level Surface based Interpretation of Gradient: Examples
The level surfaces for f(x1, x2, x3) = x21 + x22 + x23 are shown in the Figure below. The gradient
at (1, 1, 1) is orthogonal to the tangent hyperplane to the level surface
f(x1, x2, x3) = x21 + x22 + x23 = 3 at (1, 1, 1). The gradient vector at (1, 1, 1) is [2, 2, 2]T and
the tanget hyperplane has the equation 2(x1 − 1) + 2(x2 − 1) + 2(x3 − 1) = 0, which is a plane
in 3D.
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Level Surface based Interpretation of Gradient: Examples
On the other hand, the dotted line in the Figure below is not orthogonal to the level surface,
since it does not coincide with the gradient.
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Level Surface based Interpretation of Gradient: Examples

Determine the equations of
(a) the tangent plane to the paraboloid P : x1 = x22 + x23 + 2 at (−1, 1, 0) and
(b) the normal line to the tangent plane.
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Gradient and Convex Functions?

How do we understand the behaviour of gradients for convex functions?
While we have a lot to see in the coming sessions, here is a small peek through sub-level
sets of a convex function

Definition
[Sublevel Sets]: Let D ⊆ ℜn be a nonempty set and f : D → ℜ. The set

Lα(f) =
{

x|x ∈ D, f(x) ≤ α
}

is called the α−sub-level set of f.

Now if a function f is convex,
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Gradient and Convex Functions?

How do we understand the behaviour of gradients for convex functions?
While we have a lot to see in the coming sessions, here is a small peek through sub-level
sets of a convex function

Definition
[Sublevel Sets]: Let D ⊆ ℜn be a nonempty set and f : D → ℜ. The set

Lα(f) =
{

x|x ∈ D, f(x) ≤ α
}

is called the α−sub-level set of f.

Now if a function f is convex, its α−sub-level set is a convex set.
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Convex Function ⇒ Convex Sub-level sets
Theorem
Let D ⊆ ℜn be a nonempty convex set, and f : D → ℜ be a convex function. Then Lα(f) is a
convex set for any α ∈ ℜ.

Proof: Consider x1,x2 ∈ Lα(f). Then by definition of the level set, x1,x2 ∈ D, f(x1) ≤ α and
f(x2) ≤ α. From convexity of D it follows that for all θ ∈ (0, 1), x = θx1 + (1− θ)x2 ∈ D.
Moreover, since f is also convex,

f(x) ≤ θf(x1) + (1− θ)f(x2) ≤ θα+ (1− θ)α = α

which implies that x ∈ Lα(f). Thus, Lα(f) is a convex set.
The converse of this theorem does not hold. To illustrate this, consider the function
f(x) = x2

1+2x21
. The 0-sublevel set of this function is

{
(x1, x2) | x2 ≤ 0

}
, which is convex.

However, the function f(x) itself is not convex.
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