
Tutorial and Additional
Problems partly with
solutions

1. Consider optimizing a function f : <n → < that is bounded in <n and
that is continuously diffirentiable in an open set R containing the sub-
level set S =

{
x|f(x) ≤ f(x0)

}
. Also assume that that the gradient ∇f

is Lipschitz continuous on R.

Consider applying a quasi-newton descent algorithm for optimizing f using
x0 as the initial point, with the update rule

x(k+1) = xk + αkd
k

such that αk satisfy the Wolfe conditions for each k.

While studying the convergence analysis of the class of steepest descent
methods, we stated that under the Wolfe line-search conditions, for Newton-
like methods that are characterized by a sequence of positive definite ma-
trices Bk, convergence is assured if ||Bk||||B−1k || ≤ M for all k. This
condition is called the “uniformly bounded condition number” criterion.
Prove this statement of convergence from scratch. You may reproduce
steps from your class notes, as and when required.

You can also assume the following, wherever required:

(a) ||Ax|| ≤ ||A||||x||.

(b) For a symmetric and positive definite matrix A, ||A 1
2 || = ||A|| 12 .

2. Convergence of Cutting Plane algorithm: We present a generalized
cutting plane algorithm for the optimization problem

maximize f(x)

subject to x ∈ D
(1)
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for some closed and convex set D and concave f . Let g(x) be a sub-
gradient1 at some point x for the function f . A version of the general
cutting plane algorithm consists of solving the following problem in the
kth iteration to get xk.

xk = maximize fk(x)

subject to x ∈ D
(2)

where the function f is replaced by a polyhedral approximation fk con-
structed using the points xi generated so far, along with their subgradients
g(xi) ≡ gi. More specifically,

fk(x) = min
{
f(x0) + (x− x0)Tg0), . . . , f(x(k−1)) + (x− x(k−1))Tg(k−1)

}
Assume that the maximum of fk is attained for all k. Prove that the
cutting plane algorithm, with the updates presented as above, converges
finitely for the dual of a linear program, with atleast one strategy for
choosing the subgradient (in fact, it converges for any choice of the sub-
gradients). Also state the choice of the subgradients.

You can assume that the dual function for a linear progran is of the form

min
i∈I

{
aTi x + bi

}
where I is a finite index set and ai ∈ <n and bi are given vectors respec-
tively.

3. Solve the minimization problem

minimize f(x) = cTx

subject to Ax = 0

||x||2 ≤ 1

(3)

4. Suppose that f̃(z) = f(x), where x = Sz + s for some S ∈ <n×m and
s ∈ <n. Show that

∇f̃(z) = ST∇f(x)

and
∇2f̃(z) = ST∇2f(x)S

1g is a subgradient at x for a concave function f if and only if −g is a subgradient at x
for the convex function −f .
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5. Consider the general form of constrained convex optimization problem:

minimize f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m

Ax = b

(4)

where f(x) and gi(x) are convex functions.

Now consider the modified problem

minimize Bµ(x) = f(x) + µ
∑m
i=1 h(−gi(x))

subject to Ax = b
(5)

with domain {x|gi(x) ≤ 0, i = 1, . . . ,m}. Assume that h(v) : <+ → <
is an increasing and a differentiable convex function of v and µ > 0 is a
parameter.

Let x̂(µ) be the solution to (5) and consider it as an approximation to the
solution of (4). Show how to construct a dual (for (4)) feasible λ from
x̂(µ). Find the associated duality gap. Derive the general form of the
function h under which the duality gap obtained thus, depends only on µ
and m and no other data from the problem.

Show that the form must be:

h(z) = −a log (−z) + b

with some constraints on a and b. What are the constraints?

6. Consider the problem

minimize 1
2x

TAx− bTx (6)

where A is a symmetric positive definite matrix. Let {d0,d1, . . . ,d(n−1)}
be a set of nonzero vectors that are mutually conjugate with respect to A.

The algorithm is iterative (like the conjugate gradient method outlined in
notes). The kth iteration consists of the following step:

• x(k+1) = xk + αkd
k where αk is the one dimensional minimizer of

φ(α) = f(xk + αdk) and is given as αk = −∇
T f(xk)dk

(dk)TAdk
.
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Let x0 ∈ <n be the initial point. We will prove that the sequence{
xk
}

generated by the repeated application of the conjugate gradient
step above, for increasing values of k, converges to the solution x∗ of
the problem (6) in at most n steps (for step (b) onwards, provide brief
justification):

(a) Prove that the directions {d0,d1, . . . ,d(n−1)} are linearly indepen-
dent.

(b) Since the directions {d0,d1, . . . ,d(n−1)} are linearly independent, we
can write the following for some choice of scalars γ0, γ1, . . . , γn−1.

x∗ − x0 = . . . . . . . . .

(c) By premultiplying both sides of this inequality by
(
dk
)T
A and using

properties determined so far, we obtain the following expression for
γk:

γk = . . . . . . . . .

(d) xk can be expressed in terms of x0,d0,d1, . . . ,d(k−1), etc. as:

xk = . . . . . . . . .

(e) By premultiplying the expression by
(
dk
)T
A and using the proper-

ties determined so far, we have:(
dk
)T
A(xk − x0) = . . . . . . . . .

(f) And therefore (
dk
)T
A(x∗ − x0) = . . . . . . . . .

(g) Thus γk = . . . . . . . . ., which establishes the result.

7. Consider the half space defined by H =
{
x ∈ <n|aTx + α ≥ 0

}
where

a ∈ <n and α ∈ <n are given. Formulate and solve the optimization
problem for finding the point x in H that has the smallest Euclidean
norm.

8. Let the feasible region D be given as

D : gi(x) ≤ 0 for i = 1 . . .m

hj(x) = 0 for j = 1 . . . k

At some feasible point x, let I(x) be the active index set for the inequality
constraints at x, and define the sets F(x) and F (x) as

F(x) =

{
s :

gi(x + s) ≤ 0 for i ∈ I(x)

hj(x + s) = 0 for j = 1 . . . k

}



5

and

F (x) =

{
s :

sT∇gi(x) ≤ 0 for i ∈ I(x)

sT∇hj(x) = 0 for j = 1 . . . k

}

(a) Show that if the constraints that are active at x are all linear, F (x) =
F(x). This condition is called the constraint qualificiation of x.

(b) Suppose the only constraints are given by

• g1(x1, x2) = x2 − x31
• g2(x1, x2) = −x2.

Then, does the constraint qualification assumption hold at x = 0?
Prove your statement.

9. Let I(x∗) = {i1, i2, . . . , im} be the active index set at x∗ for the constraints
gi’s in the primal problem discussed in class (I guess equation (4.85) in
the notes, but please confirm). Show that the set

S =
{
s | sT∇f(x∗) < 0, sT∇hj(x∗) = 0 for j = 1 . . . k, and sT∇gi(x∗) ≤ 0 for i ∈ I(x∗)

}
is empty if and only if there exist multipliers λ∗j for 1 ≤ j ≤ k and µ∗j ≥ 0,
such that

∇f(x∗) =

k∑
j=1

λ∗j∇hj(x∗)−
∑

i∈I(x∗)

µ∗i∇gi(x∗)

This lemma is known as the Extension of Farkas lemma.

10. Consider the objective function

f(x) = (x1 + 10x2)2 + 5(x3 − x4)2 + (x2 − 2x3)4 + 100(x1 − x4)4

(a) Assume throughout that, for the algorithm in Figure 1, ρ = 0.1,
σ = 0.1, τ = 0.1 and ξ = 0.75. Is the line seach in Figure 1, (i) exact
(ii) approximate (iii) inexact using Wolfe conditions (iv) inexact using
Goldstein conditions or (v) none of these? Reason it out.

(b) Solve the problem using the steepest-descent method with stopping
criterion ||αkdk|| < ε where ε = 10−6, using the line search in
Figure 1. Report using both initial points [−2 − 1 1 2]T and
[200 − 200 100 − 100]T .

(c) Solve the problem using the modified Newton method:

Ĥk =
∇2f(xk) + βI

1 + β

where
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β =

{
0 if λmin

(
∇2f(xk)

)
> 0

0.25− λmin
(
∇2f(xk)

)
if λmin

(
∇2f(xk)

)
≤ 0

(7)

with the same termination tolerance and initial points as in (b). You
should use the line search in Figure 1 where needed.

(d) Solve the problem using the Gauss-Newton method with the same
termination tolerance and initial points as in (b). You should use the
line search in Figure 1 where needed.

(e) Based on the results of (b)-(d), compare the computational efficiency
and solution accuracy of the three methods.

11. By applying quadratic primal active-set algorithm, solve the following QP
problem:

minimize f(x) = x21 − x1x2 + x22 − 3x1

subject to −x1 − x2 ≥ −2

x ≥ 0

(8)

You can use x0 = [0 0]T .

12. Find and classify (as local or global maximum or minimum or as a saddle
point) the stationary points for the following function.

f(x) = x21x
2
2 − 4x21x2 + 4x21 + 2x1x

2
2 + x22 − 8x1x2 + 8x1 − 4x2

ANS: [x1, 2] and [−1, x2] for arbitrary x1 and x2 are global minimisers.

13. Find and classify (as local or global maximum or minimum or as a saddle
point) the stationary points for the following function.

(a)
f(x) = x21 − x22 + x23 − 2x1x3 − x2x3 + 4x1 + 12

(b)

f(x) = x21x
2
2 − 4x21x2 + 4x21 + 2x1x

2
2 + x22 − 8x1x2 + 8x1 − 4x2

14. Find β, θ ∈ < for which the function f(x, y) = β(x2 + y2) + θxy + x+ y

(a) has no stationary points

(b) has exactly one stationary point and it is a global strict minimum

(c) has infinite stationary points, and all of them are global minimizers
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15. Prove that if f(x) is a convex function on a convex set C, then the set

S = {x |x ∈ C, f(x) ≤ K }

is convex for every real number K.

16. What is the distance between two parallel hyperplanes
{
x ∈ <n

∣∣aTx = b
}

and
{
x ∈ <n

∣∣cTx = d
}

?

17. Let f : D → < where D ⊆ <n. Let f(x) have continuous partial deriva-
tives and continuous mixed partial derivatives in an open regionR contain-
ing a point x∗ where ∇f(x∗) = 0. State and prove necessary condition(s)
for x∗ to be a point of local minimum/maximum. You can prove any one
of the conditions.

18. If f : D → < where D ⊆ <n. Let x∗ be a local minimizer of f . Let f(x)
have continuous partial derivatives in an open ball R containing a point
x∗. Then for every feasible direction d at x∗

∇T f(x∗)d ≥ 0

19. Prove/disprove mathematically: The complement of a non-convex set is
convex.

20. Let S ⊆ <n be defined as,

S =
{
x ∈ <n

∣∣xTAx + bTx + c ≤ 0
}

;

withA being an n×n symmetric matrix, b ∈ <n, and c ∈ <. Prove/disprove:
S is convex if and only if A � 0.

21. Give an explicit description of the positive semidefinite cone Sn+, in terms
of the matrix coefficients and ordinary inequalities, for n = 3. To describe
a general element of Sn+, for n = 3, use the following notation for any cone
S ∈ S3+

S =

 x1 x2 x3

x2 x4 x5

x3 x5 x6


22. Let f1(x) and f2(x) be two convex functions such that f1(−8) = 7.2,

f1(12) = 51.2, f2(−8) = 73.2, and f2(20) = 40 and define the function
f(x) = max {f1(x), f2(x)}.

(a) Is f(x) convex?
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(b) Identify the smallest interval in which the minimizer of f(x) is guar-
anteed to exist. The explanation will carry most of the weightage.

ANS: [−8, 12].

23. A convex quadratic function φ(x) : < → < assumes the values φ1, φ2, and
φ3 at x0−α, x0, and x0 +α, respectively for some α > 0 and x0 ∈ <. Find
an expression for the minimum of the function in terms of φ1, φ2 and φ3.

ANS:

fmin = f2 −
(f1 − f3)2

8(f1 − 2f2 + f3)

24. Suppose that f̃(z) = f(x), where x = Sz + s for some S ∈ <n×m and
s ∈ <n. Show that

∇f̃(z) = ST∇f(x)

and

∇2f̃(z) = ST∇2f(x)S

25. Suppose three industries are interrelated so that parts of their outputs are
used as inputs by themselves, according to the 3× 3 consumption matrix

C = [cij ] =

 0.2 0.3 0.1

0.4 0.1 0.2

0.4 0.6 0.7


where, cij is the fraction of the output of industry j consumed by industry
i. Let pi be the price charged by industry i for its total output. Find the
vector of charges p = [pi] so that for each industry, total expenditure
equals total income.

C = [cij ] =

 0.1 0.25 0

0.3 0 0.15

0.1 0.25 α


where, cij is the fraction of the output of industry j consumed by industry
i. Let pi be the price charged by industry i for its total output. For each
industry, its total expenditure equals half its total income.

(a) Find the value of α.

(b) Find the vector of charges p = [pi].
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26. Prove that if C is a convex set of joint probabilities for (x, y), then the
associated set of conditional probabilities of x given y is also convex.

27. Prove that the hyperbolic cone H, specified below is convex:

H =
{
x
∣∣xTAx ≤ (bTx)2,bTx ≥ 0

}
where A ∈ Sn+ (a positive semi-definite cone) and b ∈ <n.

ANS: You can make use of covexity preserving operations discussed in the
class. The hyperbolic cone is the inverse image of the second-order cone{

(z, t)
∣∣zT z ≤ t2, t ≥ 0

}
under the affine function f(x) = (A1/2x,bTx).
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Step 1
Input xk, dk.
Initialize algorithm parameters ρ, σ, τ , and ξ.
Set αL = 0 and αU = 1099.
Step 2
Compute fL = f(xk + αLd

k).
Compute f ′L = ∇T f(xk + αLd

k)dk.
Step 3
Estimate α0 by exact line search on the quadratic approximation for g(α) =
f(xk + αdk), as was discussed in class.
Step 4
Compute f0 = f(xk + α0d

k).
Step 5 (Interpolation)
if f0 > fL + ρ(α0 − αL)f

′

L then
If α0 < αU , then set αU = α0.

α̂0 = αL +
(α0−αL)2f

′
L

2[fL−f0+(α0−αL)f
′
L]

.

If α̂0 < αL + τ(αU − αL) then set α̂0 = αL + τ(αU − αL).
If α̂0 > αU − τ(αU − αL) then set α̂0 = αU − τ(αU − αL).
Set α0 = α̂0 and go to Step 4.

end if
Step 6
Compute f

′

0 = ∇T f(xk + α0d
k)dk.

Step 7 (Extrapolation)
if f

′

0 < σf
′

L then

Compute ∆α0 =
(α0−αL)f

′
0

(f
′
L−f

′
0)

.

If ∆α0 < τ(α0 − αL), then set ∆α0 = τ(α0 − αL).
If ∆α0 > ξ(α0 − αL), then set ∆α0 = ξ(α0 − αL).
Compute α̂0 = α0 + ∆α0.
Set αL = α0, α0 = α̂0, fL = f0, f

′

L = f
′

0, and go to Step 4.
end if
Step 8
Output α0 and f0 = f(xk + α0d

k), and stop.

Figure 1: Line search.


