Convex and non-convex worlds in machine learning

Anna Choromanska

Courant Institute of Mathematical Sciences
New York University



Convex and non-convex worlds

Machine learning and optimization - many machine learning
problems are formulated as minimization of some loss function on
a training set of examples. Loss functions expresses the
discrepancy between the predictions of the model being trained
and the actual problem instances. Optimization algorithms can
then minimize this loss. (Wikipedia)



Convex and non-convex worlds

Machine learning and optimization - many machine learning
problems are formulated as minimization of some loss function on
a training set of examples. Loss functions expresses the
discrepancy between the predictions of the model being trained
and the actual problem instances. Optimization algorithms can
then minimize this loss. (Wikipedia)

Convex world

local min = global min
strictly convex: unique min
efficient solvers
strong theoretical guarantees



Convex and non-convex worlds

Machine learning and optimization - many machine learning
problems are formulated as minimization of some loss function on
a training set of examples. Loss functions expresses the
discrepancy between the predictions of the model being trained
and the actual problem instances. Optimization algorithms can
then minimize this loss. (Wikipedia)

Convex world
Non-convex world

local min = global min
strictly convex: unique min
efficient solvers
strong theoretical guarantees

multiple local min # global min
many solvers come from convex world
weak theoretical guarantees if any



Layout of the talk

Optimization solvers: generic optimization vs bound majorization
partition function-based objectives
Design (convex) solver: quadratic bound majorization
[JC12, CKJ12, ACJK14]



Layout of the talk

Optimization solvers: generic optimization vs bound majorization
partition function-based objectives
Design (convex) solver: quadratic bound majorization
[JC12, CKJ12, ACJK14]
\
Challenging problems: multi-class classification
Design objective: statistical and computational constraints
online multi-class partition trees for logarithmic time predictions
[CL14, CAL13, CCB15, CCJM15, CCJM13, CJKMM13, BCCL15, CM12]



Layout of the talk

Optimization solvers: generic optimization vs bound majorization
partition function-based objectives
Design (convex) solver: quadratic bound majorization
[JC12, CKJ12, ACJK14]
\
Challenging problems: multi-class classification
Design objective: statistical and computational constraints
online multi-class partition trees for logarithmic time predictions
[CL14, CAL13, CCB15, CCJM15, CCIM13, CJKMM13, BCCL15, CM12]
\
Non-convex problems: deep learning
highly non-convex objective
Build understanding: new theoretical results
[CHMCL15, CLB15, ZCL15]



How to build good efficient
convex solver?



Convex solver: bound majorization
.

Optimization solvers

Generic optimization techniques and majorization methods

e Batch
o steepest descent
e conjugate gradient
o Newton
o (L)BFGS [B70]
@ Stochastic
o SGD [RB5]]
o ASGD [PJ92]
o SAG [LRSB12]
o SDCA [SSZ13]
o SVRG [JZ13]
@ Semi-stochastic
o hybrid deterministic-stochastic methods [FS12]
@ Majorization methods
o MISO [M13]
o iterative scaling [DR72]
o EM [DLR77]
o Quadratic lower bound principle [BL88]



Convex solver: bound majorization
®000

Majorization

Bound majorization

If cost function 8* = arg ming C(0) has no closed form solution
Majorization uses a surrogate @ with closed form solution
Monotonically improves from initial g

e Find bound Q(6,8;) > C(0) where Q(6;,60;) = C(6))
e Update 0;11 = argming Q(6,6;)

@ Repeat until converged




Convex solver: bound majorization
0®00

Majorization

Bound majorization

If cost function 8* = arg ming C(0) has no closed form solution
Majorization uses a surrogate @ with closed form solution
Monotonically improves from initial g

e Find bound Q(6,8;) > C(0) where Q(6;,60;) = C(6))
e Update 0;11 = argming Q(6,6;)

@ Repeat until converged




Convex solver: bound majorization
fe1eX Yol

Majorization

Bound majorization

If cost function 8* = arg ming C(0) has no closed form solution
Majorization uses a surrogate @ with closed form solution
Monotonically improves from initial g

e Find bound Q(6,8;) > C(0) where Q(6;,60;) = C(6))
e Update 0;11 = argming Q(6,6;)

@ Repeat until converged




Convex solver: bound majorization
oooe

Majorization

Generic optimization techniques vs majorization methods

Majorization methods preferred until [W03, AGO07].

...Why? Slower than other optimizers, because of loose &
complicated bounds.

Let’s fix this!!!



Convex solver: bound majorization
L Ie]

Partition Bound

Partition Function

Log-linear model partition functions

Zh y)exp(8"f(y))

Partition function ensures that p(y|@) normalizes.

It is a central quantity to optimize in

e maximum likelihood and e-family [P36]
maximum entropy [J57]
conditional random fields [LMPO1]
log-linear models [DR72]
graphical models, HMMs [JGJS99].

Problem: it's ugly to minimize, we much prefer quadratics



Convex solver: bound majorization
oe

Partition Bound

Partition Function Bound

The bound InZ(0) < Inz+1(6-0)"2(0—-6)+(0-0)"n
is tight at @ and holds for parameters given by

Input 8,f(y), h(y) Vy € Q
Init z—= 0", u=0,% =zl
For each y € Q {

o
w

o
N
3]

a =h(y)ep(67F(y)) | I,

r =f(y) M £
__tanh(5In(a/2)) T %

S T T B ® o1\

M +: ziar 0.05

z+=a }
Output z, p, X




Convex solver: bound majorization
oe

Partition Bound

Partition Function Bound

The bound InZ(0) < Inz+1(6-0)"2(0—-6)+(0-0)"n
is tight at @ and holds for parameters given by

Input 8, f(y), h(y) Vy € Q
Init z—= 0", u=0,% =zl
For each y € Q {
a = h(y)exp(8'f(y))
ro =fy)—np

tanh(2 In(a/2))
D T ) e’

M + = ziar 0.05
z+=a }
Output z, p, X

O(nd?) and update via 8 «+ § — X1 in O(d?).

o o
i o N o
3 N 3] w

log(Z) and Bounds

o
o




Convex solver: bound majorization
L 1]

Bound applications

Conditional Random Fields (CRFs)

e Trained on iid data {(x1,y1), .-, (Xt, ¥t)}
@ Each CRF is a log-linear model

plylx;, 0) = hy(y) exp(6 " (y))

1
Z;(0)

@ Regularized maximum likelihood objective is

Z lo

tA
+9fo,(yj) - lel®



Convex solver: bound majorization
oe

Bound applications

Maximum Likelihood Algorithm for CRFs

While not converged
Forj=1,...,t
Compute bound for pj, 3; from hy, £, 60
Set @=argmingep > _; (0 —0)'(Z;+A1)(6 —6)
+2; 07 (uj — f(yj) +A0)




Convex solver: bound majorization
oe

Bound applications

Maximum Likelihood Algorithm for CRFs

While not converged
Forj=1,...,t
Compute bound for pj, 3; from hy, £, 60
Set @=argmingep > _; (0 —0)'(Z;+A1)(6 —6)
+2; 07 (uj — f(yj) +A0)

The algorithm outputs a 0 such that

J(B)—J(B0) = (1~ €) max(J(8)—J(60))

within {Iog( )/ log (1 + ’\k’g"))-‘ steps.




Convex solver: bound majorization
®000

Experiments

Experiments - Markov CRFs

@ Bound admits low-rank version (O(tnd))
o As in LBFGS, use rank-k storage ¥ = VSV' +D
o Absorb residual into diagonal D = Low-rank is still a bound



Convex solver: bound majorization
®000

Experiments

Experiments - Markov CRFs

@ Bound admits low-rank version (O(tnd))

o As in LBFGS, use rank-k storage ¥ = VSV' +D

o Absorb residual into diagonal D = Low-rank is still a bound
@ Graphical models, e.g. Markov CRFs

e Build junction tree and run a Collect algorithm

o Only needs O(td? 3" _|Yc|) rather than O(td?n)



Convex solver: bound majorization
®000

Experiments

Experiments - Markov CRFs

@ Bound admits low-rank version (O(tnd))

o As in LBFGS, use rank-k storage ¥ = VSV' +D

o Absorb residual into diagonal D = Low-rank is still a bound
@ Graphical models, e.g. Markov CRFs

e Build junction tree and run a Collect algorithm

o Only needs O(td? 3" _|Yc|) rather than O(td?n)

CONLL dataset

] Algorithm H time \ passes ‘ ] Algorithm H time \ passes ‘
L-BFGS 1.00t 17 L-BFGS 1.00t 22
CG 3.47t 23 CG 5.94t 27
Bound 0.64t 4 1S > 6.35t | > 150

Bound [W03]



Convex solver: bound majorization
®000

Experiments

Experiments - Markov CRFs

@ Bound admits low-rank version (O(tnd))
o As in LBFGS, use rank-k storage ¥ = VSV' +D
o Absorb residual into diagonal D = Low-rank is still a bound

@ Graphical models, e.g. Markov CRFs
e Build junction tree and run a Collect algorithm

o Only needs O(td? 3" _|Yc|) rather than O(td?n)
CONLL dataset

] Algorithm H time \ passes ‘

] Algorithm H time \ passes ‘

L-BFGS 1.00t 17 L-BFGS 1.00t 22
CG 3.47t 23 CG 5.94t 27
Bound 0.64t 4 1S > 6.35t | > 150
Bound [W03]

@ Latent models
e Objective function is non-concave: ratio of partition functions

e Apply Jensen to numerator and our bound to denominator
o Often better solution than BFGS, Newton, CG, SD, ...



Convex solver: bound majorization
0®00

Experiments

Experiments - Latent models

@ Bounding also simplifies mixture models with hidden variables
(mixtures of Gaussians, HMMs, latent graphical models)

@ Assume exponential family mixture components (Gaussian,
multinomial, Poisson, Laplace)

e Latent CRF or Iog—linear model [Quattoni et al. '07]

exp 0 fiy )
DT> Q6,6
szmexp 0 fj>yu ) ( )

o Apply Jensen to numerator and our bound to denominator

ion SRBCT bupa

* J h -20
-4
g g 52
3 2 -6 3
g L 5
T -15 : i 3
=+ Bound -8 /
~+=Newton i
20 —-BFGS /
-10 -23| )
===Conjugate gradient . / /.
Steepest descent P ¢ A
-25 ) 5 10 —1_‘4 - 0 B P 24 )
log(Time) [sec] log(Time) [sec] =5 [ 10

5
log(Time) [sec]



Convex solver: bound majorization
00®0

Experiments

Experiments - (Semi-)Stochastic Bound Majorization

e Computing the bound is O(t) — intractable for large t
@ Semi-stochastic: compute bound on data mini-batches

e convergence to a stationary point under weak assumptions (in
particular convexity is not required)

o linear convergence rate for logistic regression problem when
batch size grows sufficiently fast



Convex solver: bound majorization
00®0

Experiments

Experiments - (Semi-)Stochastic Bound Majorization

e Computing the bound is O(t) — intractable for large t
@ Semi-stochastic: compute bound on data mini-batches

e convergence to a stationary point under weak assumptions (in
particular convexity is not required)

o linear convergence rate for logistic regression problem when
batch size grows sufficiently fast

Theorem

For each iteration we have (for any e > 0)
" 2% "
J(O) = (67 < (1= 1) [4(80) = (6] + O(Ci) .

with Cx = max{By, (1 — % aF E)k} and By = HVJ(0)|9:9k = gf‘r|
where T is the mini-batch.

2




Convex solver: bound majorization
oooe

Experiments

Experiments - (Semi-)Stochastic Bound Majorization
Datasets: rcvl, adult, protein

210" ~-LBFGS

£ SGD . 4.2]

£ -4-ASGD @010 = 4

£ --SAG 8 g

g ->-SAGls 2 S 3.8)

= . o X £

8 1o Q8 g S 3.6

2 10 8 2

2 g 2 3.4

E = g \
2 3.2]

8 b 107

= 10 15 20

o 25 Effective Passes »

Effle%ﬂve Plassses 2

5 10 15 2
Effective Passes




How to design good objective
function?



(Convex) objective: multi-classification
®0

Multi-class classification problem

eXtreme multi-class classification problem

Problem setting

@ classification with large number of classes

@ data is accessed online

Goal:

@ good predictor with logarithmic training and testing time
@ reduction to tree-structured binary classification

@ top-down approach for class partitioning allowing gradient
descent style optimization



(Convex) objective: multi-classification
oe

Multi-class classification problem

What was already done...

Intractable
o one-against-all [RK04]
e variants of ECOC [DB95], e.g. PECOC [LBO05]
o clustering-based approaches [BWG10, WMY13]

Choice of partition not addressed
o Filter Tree and error-correcting tournaments [BLR09]

Choice of partition addressed, but dedicated to conditional
probability estimation

o conditional probability tree [BLLSS09]
Splitting criteria not well-suited to large class setting
o decision trees [KM95]



(Convex) objective: multi-classification
©0000000

Splitting criterion

How do you learn the structure?

@ Not all partitions are equally difficult, e.g.
if you do {1,7} vs {3,8}, the next problem is hard;
if you do {1,8} vs {3,7}, the next problem is easy;
if you do {1,3} vs {7,8}, the next problem is easy.



(Convex) objective: multi-classification
©0000000

Splitting criterion

How do you learn the structure?

@ Not all partitions are equally difficult, e.g.
if you do {1,7} vs {3,8}, the next problem is hard;
if you do {1,8} vs {3,7}, the next problem is easy;
if you do {1,3} vs {7,8}, the next problem is easy.

e [BWG10]: Better to confuse near leaves than near root.
Intuition: The root predictor tends to be overconstrained while
the leafwards predictors are less constrained.



(Convex) objective: multi-classification
08000000

Splitting criterion

How do you learn the structure?

Our approach:
@ top-down approach for class partitioning

@ splitting criterion guaranteeing
balanced tree = logarithmic training and testing time
and
small classification error



(Convex) objective: multi-classification
00®00000

Splitting criterion

Pure split and balanced split

@ kr(x): number of data points in the same class as x on the
right side of the partitioning

@ k(x): total number of data points in the same class as x
@ n,: number of data points on the right side of the partitioning

@ n: total number of data points



(Convex) objective: multi-classification
00®00000

Splitting criterion

Pure split and balanced split

@ kr(x): number of data points in the same class as x on the
right side of the partitioning

@ k(x): total number of data points in the same class as x
@ n,: number of data points on the right side of the partitioning

@ n: total number of data points

nr
n

Measure of balanceness:



(Convex) objective: multi-classification
00080000

Splitting criterion

Pure split and balanced split

@ k.(x): number of data points in the same class as x on the
right side of the partitioning

@ k(x): total number of data points in the same class as x
@ n,: number of data points on the right side of the partitioning

@ n: total number of data points

n

Measure of balanceness: -



(Convex) objective: multi-classification
00080000

Splitting criterion

Pure split and balanced split

@ k.(x): number of data points in the same class as x on the
right side of the partitioning

@ k(x): total number of data points in the same class as x
@ n,: number of data points on the right side of the partitioning

@ n: total number of data points

kr(x)

- Measure of purity: 6

ar
n

Measure of balanceness:



(Convex) objective: multi-classification
00000000

Splitting criterion

Pure split and balanced split

k: number of classes

‘H: hypothesis class (typically: linear classifiers)

Ty = @

balance = Pr(h(x) > 0)

purity = 25:1 my, min(Pr(h(x) > 0ly), Pr(h(x) < 0|y))



(Convex) objective: multi-classification
00000000

Splitting criterion

Pure split and balanced split

@ k: number of classes
@ H: hypothesis class (typically: linear classifiers)

@ balance = Pr(h(x) > 0)
@ purity = 25:1 my, min(Pr(h(x) > 0ly), Pr(h(x) < 0|y))

Definition (Balanced split)

The hypothesis h € H induces a balanced split iff

Jee(0,0.51¢ < balance <1 —c.




(Convex) objective: multi-classification
00000000

Splitting criterion

Pure split and balanced split

@ k: number of classes
@ H: hypothesis class (typically: linear classifiers)
o m,— 81

Y = n

@ balance = Pr(h(x) > 0)
@ purity = 25:1 my, min(Pr(h(x) > 0ly), Pr(h(x) < 0|y))

Definition (Balanced split)

The hypothesis h € H induces a balanced split iff

Jee(0,0.51¢ < balance <1 —c.

Definition (Pure split)

The hypothesis h € H induces a pure split iff

Jsef0,0.5)purity < 4.

N




(Convex) objective: multi-classification
00000000

Splitting criterion

Objective function

k
J(h) =2 my |P(h(x) > 0) — P(h(x) > 0ly)|
y=1
= 2By [|P(h(x) > 0) = P(h(x) > Oy)I]
J(h) = Splitting criterion (objective function)

Given a set of n examples each with one of k labels, find a
partitioner h that maximizes the objective.

For any hypothesis h : X — {—1,1}, the objective J(h) satisfies
J(h) € [0,1]. Furthermore, h induces a maximally pure and
balanced partition iff J(h) = 1.




(Convex) objective: multi-classification
00000000

Splitting criterion

Balancing and purity factors

e Balacing factor

balance €

1—/T—J(h) 14 +/1—J(h)
2 ’ 2

4
J(h)



(Convex) objective: multi-classification
©0000000®

Splitting criterion

Balancing and purity factors

@ Purity factor

2 — J(h)

purity < 7 balance balance
- ba

ance

balance = 1/2

0.5

0.4r

_o2Jh)
Y = Thafanee — balance

0.3r

0.2

0.1

4 0.6
J(h)



(Convex) objective: multi-classification
®0

Boosting statement

What is the quality of obtained tree?

@ In each node of the tree T optimize the splitting criterion
@ Apply recursively to construct a tree structure

@ Measure the quality of the tree using entropy

k
GT = Z W/Zﬂ'hym (;)
Y

I€leafs of T y=1
Why?

Small entropy of leafs = pure leafs

Goal: maximizing the objective reduces the entropy



(Convex) objective: multi-classification
oce

Boosting statement

What is the quality of obtained tree?

Definition (Weak Hypothesis Assumption)

Let m denotes any node of the tree T, and let 8, = P(hm(x) > 0)
and P, ; = P(hm(x) > 0]7). Furthermore, let v € R™ be such that
for all m, v € (0, min(Bm, 1 — Bm)]. We say that the weak
hypothesis assumption is satisfied when for any distribution PP over
X at each node m of the tree 7 there exists a hypothesis h,, € H
such that J(hn)/2 = S5 Tm i|Pmi — Bm| > 7.

Theorem
Under the Weak Hypothesis Assumption, for any € € [0, 1], to

_ 4(1—7)2In k
obtain Gy < € it suffices to make (%) 2

| A\

splits.




(Convex) objective: multi-classification
oce

Boosting statement

What is the quality of obtained tree?

Definition (Weak Hypothesis Assumption)

Let m denotes any node of the tree T, and let 8, = P(hm(x) > 0)
and P, ; = P(hm(x) > 0]7). Furthermore, let v € R™ be such that
for all m, v € (0, min(Bm, 1 — Bm)]. We say that the weak
hypothesis assumption is satisfied when for any distribution PP over
X at each node m of the tree 7 there exists a hypothesis h,, € H
such that J(hn)/2 = S5 Tm i|Pmi — Bm| > 7.

Theorem
Under the Weak Hypothesis Assumption, for any € € [0, 1], to

_ 4(1—7)2In k
obtain Gy < € it suffices to make (%) 2

splits.

4(1—7)2In k

(
e Tree depth = log [(i) 72 } =O(Ink) =

= logarithmic training and testing time



(Convex) objective: multi-classification
®00000000000000

Online partitioning

LOMtree algorithm

@ Recall the objective function we consider at every tree node:
J(h) = 2E, [|Ex[1(h(x) > 0)] = Ex[1(h(x) > O[y)][].

Problem: discrete optimization
Relaxation: drop the indicator operator and look at margins



(Convex) objective: multi-classification
®00000000000000

Online partitioning

LOMtree algorithm

@ Recall the objective function we consider at every tree node:
J(h) = 2E, [|Ex[1(h(x) > 0)] = Ex[1(h(x) > O[y)][].

Problem: discrete optimization
Relaxation: drop the indicator operator and look at margins



(Convex) objective: multi-classification
®00000000000000

Online partitioning

LOMtree algorithm

@ Recall the objective function we consider at every tree node:
J(h) = 2E, [|Ex[1(h(x) > 0)] = Ex[1(h(x) > O[y)][].

Problem: discrete optimization
Relaxation: drop the indicator operator and look at margins

@ The objective function becomes

J(h) = 2B, [|Ex[h(x)] — Ex[h(x)|y]]]

e Keep the online empirical estimates of these expectations.
o The sign of the difference of two expectations decides whether
to send an example to the left or right child node.



(Convex) objective: multi-classification
O®0000000000000

Online partitioning

LOMtree algorithm

Let e =0 and forall y, e, =0, n, =0
For each example (x, y)

o ife, <ethenb= —lelse b=1

Update w using (x, b)

@ n, < n,+1

(ny—1)ey W.X
o Ot B

(ﬂ*l)e w.Xx
@ e+




(Convex) objective: multi-classification
0O®000000000000

Online partitioning

LOMtree algorithm

Let e =0 and forall y, e, =0, n, =0
For each example (x, y)

o ife, <ethenb= —lelse b=1

Update w using (x, b)

@ n, < n,+1 (x1,1)

(ny—1)ey W.X
ey — T, + T,

(ﬂ*l)e w.X
T T Th

@ €<

el 0



(Convex) objective: multi-classification
000®00000000000

Online partitioning

LOMtree algorithm

Let e =0 and forall y, e, =0, n, =0
For each example (x, y)

o ife, <ethenb= —lelse b=1

Update w using (x, b)

@ n, < n,+1

® &< (nyny)ey s {1} e 1
o e (nole | wx el 1




(Convex) objective: multi-classification
0000000000000

Online partitioning

LOMtree algorithm

Let e =0 and forall y, e, =0, n, =0
For each example (x, y)

o ife, <ethenb= —lelse b=1
e Update w using (x, b)

@ n, < n,+1

s (x2,2)
ny—1)e .

° & - y”y -+ V’V7yX {1}
0 e (n-le | wx

el 1
e2 0



(Convex) objective: multi-classification
00000@000000000

Online partitioning

LOMtree algorithm

Let e =0 and forall y, e, =0, n, =0
For each example (x, y)

o ife, <ethenb= —lelse b=1
e Update w using (x, b)

@ n, < n,+1

(ny—1)ey W.X
9 ¢ T, + n,

(ﬂ*l)e w.Xx
@ e+

el 1
e2 -1



(Convex) objective: multi-classification
000000e00000000

Online partitioning

LOMtree algorithm

Let e =0 and forall y, e, =0, n, =0
For each example (x, y)

o ife, <ethenb= —lelse b=1
e Update w using (x, b)

@ n, < n,+1

(1) (x3,1)
ny,—1)e .

CHC TR T {1,2}
e

el 1
e2 -1



(Convex) objective: multi-classification
0000000e0000000

Online partitioning

LOMtree algorithm

Let e =0 and forall y, e, =0, n, =0
For each example (x, y)

o ife, <ethenb= —lelse b=1
e Update w using (x, b)

@ n, < n,+1

(ny—1)ey W.X
9 ¢ T, + n,

(ﬂ*l)e w.Xx
@ e+

e 1/3
el 1
e2 -1



(Convex) objective: multi-classification
0000000080000

Online partitioning

LOMtree algorithm

Let e =0 and forall y, e, =0, n, =0
For each example (x, y)

o ife, <ethenb= —lelse b=1
e Update w using (x, b)

@ n, < n,+1

- (x4,3)
ny,—1)e .

CHC TR T {1,2}
e

e |13
el 1
e2 -1
e3 0



(Convex) objective: multi-classification
0000000008000

Online partitioning

LOMtree algorithm

Let e =0 and forall y, e, =0, n, =0
For each example (x, y)

o ife, <ethenb= —lelse b=1
e Update w using (x, b)

@ n, < n,+1

(ny—1)ey W.X
9 ¢ T, + n,

@ e+ 7("711)6

el 1
e2 -1
e3 -1



(Convex) objective: multi-classification
0000000000000

Online partitioning

LOMtree algorithm

Let e =0 and forall y, e, =0, n, =0
For each example (x, y)

o ife, <ethenb= —lelse b=1
e Update w using (x, b)

@ n, < n,+1

(ny—1)ey W.X
9 ¢ T, + n,

@ e+ 7("711)6

el 1
e2 -1
e3 -1
ed 0



(Convex) objective: multi-classification
0000000000000

Online partitioning

LOMtree algorithm

Let e =0 and forall y, e, =0, n, =0
For each example (x, y)

o ife, <ethenb= —lelse b=1
e Update w using (x, b)

@ n, < n,+1

(ny—1)ey W.X
9 ¢ T, + n,

@ e+ 7("711)6




(Convex) objective: multi-classification
000000000000e00

Online partitioning

LOMtree algorithm

Let e=0and forall y, e, =0, n, =0
For each example (x, y)
if e, <ethen b= —lelse b=1
Update w using (x, b)
ny < n, +1

— M + w.X

ey ny ny

(n—l)e wW.X
® e+

Apply recursively to

construct a tree structure. ./ ‘ ‘ \‘



(Convex) objective: multi-classification
0000000000000e0

Online partitioning

LOMtree algorithm

Let e=0and forall y, e, =0, n, =0
For each example (x, y)
if e, <ethen b= —lelse b=1
Update w using (x, b)
ny < n, +1
(ny=1)ey | w.x

ny ny

(n—1)e .
ot

€y <

@ €<

Apply recursively to
construct a tree structure.




(Convex) objective: multi-classification
00000000000000e

Online partitioning

LOMtree algorithm

Let e=0and forall y, e, =0, n, =0
For each example (x, y)

if e, <ethen b= —lelse b=1
Update w using (x, b)

ny < n, +1

(ny=1)ey | w.x

ny ny

(n—l)e wW.X
® e+

€y <

Apply recursively to
construct a tree structure.




Experiments

(Convex) objective: multi-classification

Experiments

L Je}

Table : Training time on selected problems.

] Isolet \ Sector \ Aloi ‘
LOMtree || 16.27s | 12.77s| 51.86s
OAA 19.58s | 18.37s | 11m2.43s

Table : Per-example test time on all problems.

] Isolet \Sector\ Aloi \ImNet\ ODP ‘

LOMtree

0.14ms|0.13ms|0.06ms

0.52ms|0.26ms

OAA |0.16

ms|0.24ms

0.33ms

0.21s

1.05s

Table : Test error (%) and confidence interval on all problems.

| LOMtree |

Rtree

| Filter tree |

Isolet (26)

6.36+1.71

16.92+2.63

15.10+2.51

Sector (105)

16.19+2.33

15.77+2.30

17.70+£2.41

Aloi (1000)

16.50+0.70

83.74+0.70

80.50+0.75

ImNet (22K)

90.17+0.05

96.99+0.03

92.12+0.04

ODP (105K)

93.46+0.12

93.85+0.12

93.76+0.12




(Convex) objective: multi-classification

oe

Experiments

Experiments

LOMtree vs one—against-all LOMtree vs one-against-all
1
EOAA 12
LOMtree
0.8 ] 10
o
= 8
506 18
©
s £ 6
8 04 =
oo > 4
o
0.2 1 2
0 i _=x 6 8 10 12 14 16

26 105

100 21841 105033
number of classes log 2(number of classes)



How to understand non-convex
optimization?



Non-convexity: deep learning
®000

Deep learning: motivation and challenges

Why non-convex optimization and deep learning?

State-of-the art results on number of problems:
@ image recognition [KSH12, CMGS10]
@ speech recognition [HDYDMJSVNSK12, GMH13]
@ natural language processing [WCA14]
@ video recognition [KTSLSF-F14, SZ14]



Non-convexity: deep learning
0®00

Deep learning: motivation and challenges

Why non-convex optimization and deep learning?

ImageNet 2014 Challenge: mostly convolutional networks

Classification+localization with provided training data: Ordered by localization error

L
‘Team name |[Entry description lerror lorror
VGG la combination of multiple ConvNets (by averaging) 0253231 |[0.07405

ing data: Ordered by clas:

VGG Ciassificationsloc:
e

provided tr

S
[Team name ‘Emry description e e
[GoogLeNet  |[No localization. Top5 val score is 6.66% error. [0:06656 [0.606257
Ila cemhinatian of milfinie ConvNets inclidina a net frainad an
GG Object detection with additional training data: Ordered by number of categories won
[Number of
Veg  [Team Description of outside data  |object
hame Entry description lused lcategories mean AP
won
of detection models. Validation is n ILSVRC12
(GoogLeNetlyy go, map c\asslfcaﬂon data i e
CUHK Co Ordered by mean average precision
Deepl K
Number
[Team Description of outside data  |mean  |lof object
1o [Entry description b e
won

[Ensemble of detection models Validation is _|[Pretraining on ILSVRC12
(GoogleNetlyy 5o, map [classification data PEREEE

\CUHK \Combine multiple models described in the

Nanntl lahetrant withart anntvinal modaline. Tha

titions Won (Yoshua Bengio)

ImageNet classification and ||, 4nzaadl

Machine Learning C:

© Winning the ICMI 2013 Grand Challenge on Emotion Recognition in the Wild! The challenge baseline accuracy was 27.5% - our approach vielded 41.0%)
Kahou. S.E__ Pal. C.. Bouthillier. X . Froumenty, P Gulcehre. C.. * Memisevic. R.. Vincent P. me ille. A and Bengio. Y. (2013)
Combinmng Modality Specific Deep Neural Networks for Emotion Recognition in Video. (ICMI 1.

o Unsupervised and Transfer Leaming Challenge. presented at an ICML 2011 and IJICNN 2011 w mkshcps of the same name. was
won by LISA members using layer-wise pre-training

© We also won the Transfer Leamning Challenge at NIPS 2011's Challenges in Leaming Hierarchical Models Workshop. using spike-and-slab sparse coding (ICML 2012 paper)




Non-convexity: deep learning
[eleY 1]

Deep learning: motivation and challenges

Challenge

Goal: Understanding loss function in deep learning.

Recent related works: Choromanska et al., 2015, Goodfellow et
al., 2015, Dauphin et al., 2014, Saxe et al., 2014.



Non-convexity: deep learning
[eleY 1]

Deep learning: motivation and challenges

Challenge

Goal: Understanding loss function in deep learning.

Recent related works: Choromanska et al., 2015, Goodfellow et
al., 2015, Dauphin et al., 2014, Saxe et al., 2014.

Questions:

@ Why the result of multiple experiments with multilayer
networks consistently give very similar performance despite
the presence of many local minima?



Non-convexity: deep learning
[eleY 1]

Deep learning: motivation and challenges

Challenge

Goal: Understanding loss function in deep learning.

Recent related works: Choromanska et al., 2015, Goodfellow et
al., 2015, Dauphin et al., 2014, Saxe et al., 2014.

Questions:

@ Why the result of multiple experiments with multilayer
networks consistently give very similar performance despite
the presence of many local minima?

@ What is the role of saddle points in the optimization problem?



Non-convexity: deep learning
[eleY 1]
Deep learning: motivation and challenges

Challenge

Goal: Understanding loss function in deep learning.

Recent related works: Choromanska et al., 2015, Goodfellow et
al., 2015, Dauphin et al., 2014, Saxe et al., 2014.

Questions:

@ Why the result of multiple experiments with multilayer
networks consistently give very similar performance despite
the presence of many local minima?

@ What is the role of saddle points in the optimization problem?

@ Is the surface of the loss function of multilayer networks
structured?



Non-convexity: deep learning
oooe

Deep learning: motivation and challenges

Multilayer network and spin-glass model

Can we use the spin-glass theory to explain the optimization
paradigm with large multilayer networks?



Non-convexity: deep learning
oooe

Deep learning: motivation and challenges

Multilayer network and spin-glass model

Can we use the spin-glass theory to explain the optimization
paradigm with large multilayer networks?

What assumptions need to be made?



Non-convexity: deep learning
©0000

Non-convex loss function in deep learning

Loss function in deep learning and assumptions

) v H 0
Y= AA-1)/2 ZX’A" H Wi %
i—1 k=1

V - number of input-output paths, A = Y/ (assume A € ZT)
H — 1 - number of hidden layers

W,-(k) - the weight of the k™" segment of the /™" path

A; - Bernoulli r.v. denoting path activation (0/1)



Non-convexity: deep learning
0®000

Non-convex loss function in deep learning

Loss function in deep learning and assumptions

Consider hinge loss
L(w) = max(0,1 — Y;Y),
where Y; corresponds to the true data labeling (1/ — 1), and w

denotes all network weights.

@ max operator is often modeled as Bernoulli r.v. (0/1). Denote
it as M and its expectation as p . Therefore

v H
1 (k)
Lw)=M(1-Y;Y)=M+ A(Hl)/z;z,-/,-knlw, , (1)
where Z; = —Y:X;, and I; = MA; is a Bernoulli r.v. (0/1).
@ assume I, b, ..., ly are identically distributed (Alp)

@ assume each X; is a standard Gaussian r.v. (A2p)



Non-convexity: deep learning
00®00

Non-convex loss function in deep learning

Loss function in deep learning and assumptions

@ assume network parametrization is redundant (A3p)

@ assume unique parameters are uniformly distributed on the
graph of connections of the network (A4p), i.e. every
H-length product of unique weights appears in Equation 1
(the set of all products is {wj,wj, ... wi, }n 1)

A
1
L(w) =M + AH-1)]2 Z Zit ipyeeesipy it ity Wi Wi - - - Wiy

i1,02500ig=1



Non-convexity: deep learning
00080

Non-convex loss function in deep learning

Loss function in deep learning and assumptions

Definition

A network M which has the same graph of connections as network
N, whose size is N, and s unique weights satisfying s < N is called
a (s, €)-reduction image of N for some € € [0, 1] if the prediction
accuracy of A and M differ by no more than ¢ (thus they classify
at most € fraction of data points differently).

Theorem

Let N be a neural network giving the output whose expectation
wrt. A's is Yy. Let M be its (s, €)-reduction image for some

s < N and e € [0,0.5]. By analogy, let Ys be the expected output
of network M. Then the following holds

1-2
corr(sign(Ys), sign(Yn)) > T 22,

where corr(A, B) = HA_ZIINE-ZBI) st is the standard

deviation and sign(-) denotes the sign of prediction.




Non-convexity: deep learning
ooo0e

Non-convex loss function in deep learning

Loss function in deep learning and assumptions

@ assume the independence of Z; ;, . i, and [; ;, i, (Abu)

/ 1
EMJl,’z,me[L(W)] =p + pm N Z Zit iy iy Wi Wi - - - Wiy,

@ assume that Z's are independent (A6u)
@ impose spherical constraint (A7p)

1 A
7§ jg:: VV? =1.
i=1

We obtain the Hamiltonian of the spherical spin-glass
model!!!

Question: What happens when A — o0?



Non-convexity: deep learning
®00

Spherical spin-glass model

Important quantities

Let the following quantity be called an energy barrier
H-1

Ew =Ex(H)=24/——.
(H) y

| \

Definition
Let the normalized minimum of the Hamiltonian Lx 4 be called a
ground state and be defined as

1 .
Fo = K Uesl\llrlf(ﬁ) ‘CA’H(U)‘

A\

Let (Ex(H))ken be a strictly decreasing sequence, that is
converging to E,, as k — oo.



Non-convexity: deep learning
oeo

Spherical spin-glass model

Hamiltonian of the spherical spin-glass model: properties

o All critical values of the Hamiltonian of fixed index! (non
diverging with A) must lie in the band (—=AEy(H), —AEx(H)).

e Finding a critical value with index larger or equal to k (for any
fixed integer k) below energy level —AE,(H) is improbable.

@ With overwhelming probability the critical values just above
the global minimum (ground state) are local minima
exclusively. Above the band (—AEg(H), —AEi(H)) containing
only local minima (critical points of index 0), there is another
one, (—AE1(H), —N\Ey(H)), where one can only find local
minima and saddle points of index 1, and above this band
there exists another one, (—AEx(H), —AE3(H)), where one
can only find local minima and saddle points of index 1 and 2,
and so on.

!Index of V2L at w is the number of negative eigenvalues of the Hessian
V2L at w. Local minima have index 0.



Non-convexity: deep learning
ocoe

Spherical spin-glass model

Hamiltonian of the spherical spin-glass model: properties

10" % x 10°
3_A E, T 25 —E:o
— ] H =1
gﬁ — N By H " 21 —k=2
g8%) SELs)] k=3
S® | 53 ! k=4
co 2w 1 —k=5
S E 1y ES i
3] H cE H ----NE
= ! c 505 0
H ] H —-NE,
o ' g 0 ' inf|
-1500 -1000 -500 -1655-1650-1645-1640-1635
, Au Au
5. x10 >< x 10°
27g25 8525
£ eg
29 S
S8 88 °
Sal5 5 g 1.5
o= o £
28 1 €8 1
23 S
c 205 c£05
85 §5
= =

-1650 -1645 -1640 —1%35 -1634 -1633 -1632
Au Au

Figure : H =3 and A = 1000. Black line: u = —AEy(H), red line:
u=—NE(H).



Non-convexity: deep learning
®00

Deep networks versus spherical spin-glass models

Comparison of deep network and spherical spin-glass model

100-
Lambda nhidden
o 75- 25 | 25
5 50 5 50
8 | l W0 8 B 200
] 2% 250
‘ {500 1 {500
25- w ‘
o) I | ”H lm. L ‘ ol whiv
-1.6 -15 -1.4 -1.3 5 E ;
loss loss
w0
{ N
N i
sT — S
o
] —+ 5]
= 79
gc 23
o
) o
° 3
10 10 25 50 100
nhidden nhidden
I
8 8]
§° §
£ 5w
83 23]
AR 88
Fal N B\
s .
< \'\." 8] ~— . .
0 100 200 300 400 500 8 0 100 200 300 400 500

nhidden nhidden



Deep networks versus spherical spin-glass models

Non-convexity: deep learning

(o] lo}

Deep network: correlation between train and test loss

¢
10 11 12 13 14 15 15

o100 0105 om0 S

0085

0120 0125 0130 0135 0140 0145

038 020 042 044 045 048 050

020 o021 o022

0115 0120 015 013 0%

h) ny = 500

0082

0080

0078

0075 0076 0077 0078 0079 0080

0,085

0,090
rain loss

0,005

0100 0074,

0076 0078
wain loss

0.080

0065 0066

0067 0068 0069
wain loss

00615 00620 00625 00630 00635
ain loss

m

25

50

100

250

500

p

0.7616

0.6861

0.5983

0.5302 | 0.4081

Table : Pearson correlation between training and test loss.




Non-convexity: deep learning
ooe

Deep networks versus spherical spin-glass models

Deep network: index of recovered solutions

s
8 8
3 s
z 8 >3
H] H]
) )
g S g <
s s
E o
| &
o — =}
T T T T T ] r T T 1
00000 00005 00010 00015 00020  0.0025 0.000 0.005 0.010 0.015
a ) normalized index b) normalized index
)
3
&
°
8 8
&
o
2> o 2> 9
§ - g "
2 g g o
8
g e £ s
°
& 3
° °
; T T T T ] ; T T T ]
0.000 0.001 0.002 0.003 0.004 0.005 0e+00 le-04 2e-04 3e-04 4e-04
C) normalized index d ) normalized index

Figure : Distribution of normalized index of solutions for
ny = {a)10, b)25, ¢)50, d)100} hidden units.



Non-convexity: deep learning
©00000

Understanding non-convex deep learning optimization

Spherical spin-glass versus deep network

Conjecture (Deep learning)

For large-size networks, most local minima are equivalent and yield
similar performance on a test set.

Spherical spin-glass

Critical points form an ordered structure such that there exists an
energy barrier NE_, (a certain value of the Hamiltonian) below
which with overwhelming probability one can find only low-index
critical points, most of which are concentrated close to the barrier.



Non-convexity: deep learning
0®0000

Understanding non-convex deep learning optimization

Spherical spin-glass versus deep network

Conjecture (Deep learning)

The probability of finding a “bad” (high value) local minimum is
non-zero for small-size networks and decreases quickly with
network size.

Spherical spin-glass
Low-index critical points are 'geometrically’ lying closer to the
ground state than high-index critical points.



Non-convexity: deep learning
00®000

Understanding non-convex deep learning optimization

Spherical spin-glass versus deep network

Conjecture (Deep learning)

Saddle points play a key-role in the optimization problem in deep
learning.

Spherical spin-glass
With overwhelming probability one can find only high-index saddle
points above energy AE_,, and there are exponentially many of

those. e 5 10
[ v
3l..-nE, T 25 —k=0
“— T : k=1
gﬁ f—/\ Einf E " 2 —k=2
£87 BE1s k=3
28 | g2 0 L
S Bl ES : =
go 32 | =N E,
= : g G 0.5 : AE
0 i 5] 0 | — inf
-1500 -1000 -500 0 = —1655-1650-1645-1640-1635

A A
Figure : H=3 and A = 1000. Black line: u = f/\Eo(,L’J-I) (ground state),

red line: u = —AE.(H) (energy barrier).



Understanding non-convex deep learning optimization

Spherical spin-glass versus deep network

Conjecture (Deep learning)

Non-convexity: deep learning

000e00

Struggling to find the global minimum on the training set (as
opposed to one of the many good local ones) is not useful in
practice and may lead to overfitting.

n

25

50

100

250

500

p

0.7616

0.6861

0.5983

0.5302

0.4081

Table : Pearson correlation between training and test loss for different
numbers of hidden units of a network with one hidden layer. MNIST

dataset.

Spherical spin-glass
Recovering the ground state, i.e. global minimum, takes
exponentially long time.



Non-convexity: deep learning
0000®0

Understanding non-convex deep learning optimization

Take-home message

o For large-size networks, most local minima are equivalent and
yield similar performance on a test set.

@ The probability of finding a “bad” (high value) local minimum
is non-zero for small-size networks and decreases quickly with
network size.

@ Struggling to find the global minimum on the training set (as
opposed to one of the many good local ones) is not useful in
practice and may lead to overfitting.



Non-convexity: deep learning
00000e

Understanding non-convex deep learning optimization

Open problem

Can we establish a stronger connection between the loss
function of the deep model and the spherical spin-glass
model by dropping the unrealistic assumptions?



Summary
0

Conclusions

Convexity and non-convexity: challenges

Convex and non-convex world
@ Building solvers, i.e. bound majorization
e New and tight quadratic bound on the partition function
o Linear convergence of the batch/semi-stochastic variants
o Competetive/better than state-of-the-art methods
e Admits multiple extensions
@ Designing problem-specific, i.e. multi-classification, objectives
e Logarithmic training and testing time
e Reduction from multi-class to binary classification
o New splitting criterion with desirable properties
o allows gradient descent style optimization
@ makes decision trees applicable to multi-class classification
Non-convex world
@ Understading why non-convex approaches work
o Deep learning: state-of-the-art in numerous problems
e Possible connection between spin-glass theory and deep
learning
e Landscape is highly non-convex but most likely structured



Summary
oce

Conclusions

Acknowledgments

Courant Institute of Mathematical Sciences: Yann LeCun,
Gérard Ben Arous

Columbia University: Tony Jebara, Shih-Fu Chang

George Washington University: Claire Monteleoni

NYU Polytechnic School of Engineering: Mariusz Bojarski
Microsoft Research: John Langford, Alekh Agarwal

Google Research: Krzysztof Choromanski, Dimitri Kanevsky
IBM T. J.Watson Research Center: Aleksandr Aravkin

ATT Shannon Research Laboratories: Phyllis Weiss, Alice Chen
LEAR team of Inria: Zaid Harchaoui

PostDocs: Pablo Sprechmann

PhD students: Michael Mathieu, Mikael Bruce Henaff, Sixin
Zhang, Ross Goroshin, Rahul Krishnan, Wojciech Zaremba,
Hyungtae Kim



	Intro
	Convex solver: bound majorization
	Optimization solvers
	Majorization
	Partition Bound
	Bound applications
	Experiments

	(Convex) objective: multi-classification
	Multi-class classification problem
	Splitting criterion
	Boosting statement
	Online partitioning
	Experiments

	Non-convexity: deep learning
	Deep learning: motivation and challenges
	Non-convex loss function in deep learning
	Spherical spin-glass model
	Deep networks versus spherical spin-glass models
	Understanding non-convex deep learning optimization

	Summary
	Conclusions


