Convex and non-convex worlds in machine learning

Anna Choromanska

Courant Institute of Mathematical Sciences New York University

Convex and non-convex worlds

Machine learning and optimization - many machine learning problems are formulated as minimization of some loss function on a training set of examples. Loss functions expresses the discrepancy between the predictions of the model being trained and the actual problem instances. Optimization algorithms can then minimize this loss. (*Wikipedia*)

Convex and non-convex worlds

Machine learning and optimization - many machine learning problems are formulated as minimization of some loss function on a training set of examples. Loss functions expresses the discrepancy between the predictions of the model being trained and the actual problem instances. Optimization algorithms can then minimize this loss. (*Wikipedia*)

Convex world

local min = global min strictly convex: unique min efficient solvers strong theoretical guarantees nvex) objective: multi-classification Non-convexity: deep learning Summary

Convex and non-convex worlds

Machine learning and optimization - many machine learning problems are formulated as minimization of some loss function on a training set of examples. Loss functions expresses the discrepancy between the predictions of the model being trained and the actual problem instances. Optimization algorithms can then minimize this loss. (*Wikipedia*)

Convex world

local min = global min strictly convex: unique min efficient solvers strong theoretical guarantees

Non-convex world

multiple local min ≠ global min many solvers come from convex world weak theoretical guarantees if any

Convex) objective: multi-classification Non-convexity: deep learning Summary

Layout of the talk

Optimization solvers: generic optimization vs bound majorization partition function-based objectives Design (convex) solver: quadratic bound majorization [JC12, CKJ12, ACJK14] Intro Convex solver: bound majorization

(Convex) objective: multi-classification Non-convexity: deep learning Summary

Layout of the talk

Optimization solvers: generic optimization vs bound majorization partition function-based objectives Design (convex) solver: quadratic bound majorization [JC12, CKJ12, ACJK14]

Challenging problems: multi-class classification Design objective: statistical and computational constraints online multi-class partition trees for logarithmic time predictions [CL14, CAL13, CCB15, CCJM15, CCJM13, CJKMM13, BCCL15, CM12] Intro Convex solver: bound majorization

(Convex) objective: multi-classification Non-convexity: deep learning Summary

Layout of the talk

Optimization solvers: generic optimization vs bound majorization partition function-based objectives Design (convex) solver: quadratic bound majorization [JC12, CKJ12, ACJK14]

Challenging problems: multi-class classification Design objective: statistical and computational constraints online multi-class partition trees for logarithmic time predictions [CL14, CAL13, CCB15, CCJM15, CCJM13, CJKMM13, BCCL15, CM12]

> Non-convex problems: deep learning highly non-convex objective Build understanding: new theoretical results [CHMCL15, CLB15, ZCL15]

onvex) objective: multi-classification Non-convexity: deep learning Summary

How to build good efficient convex solver?

Optimization solvers

Generic optimization techniques and majorization methods

- Batch
 - steepest descent
 - conjugate gradient
 - Newton
 - (L)BFGS [B70]
- Stochastic
 - SGD [RB51]
 - ASGD [PJ92]
 - SAG [LRSB12]
 - SDCA [SSZ13]
 - SVRG [JZ13]
- Semi-stochastic
 - hybrid deterministic-stochastic methods [FS12]
- Majorization methods
 - MISO [M13]
 - iterative scaling [DR72]
 - EM [DLR77]
 - Quadratic lower bound principle [BL88]

Intro	Convex solver: bound majorization	(Convex) objective: multi-classification	Non-convexity: deep learning	Summary
	00000000000			

Majorization

Bound majorization

If cost function $\theta^* = \arg \min_{\theta} C(\theta)$ has no closed form solution Majorization uses a surrogate Q with closed form solution Monotonically improves from initial θ_0

- Find bound $Q(\theta, \theta_i) \ge C(\theta)$ where $Q(\theta_i, \theta_i) = C(\theta_i)$
- Update $\theta_{i+1} = \arg \min_{\theta} Q(\theta, \theta_i)$

Repeat until converged

Intro	Convex solver: bound majorization	(Convex) objective: multi-classification	Non-convexity: deep learning	Summary
	00000000000			

Majorization

Bound majorization

If cost function $\theta^* = \arg \min_{\theta} C(\theta)$ has no closed form solution Majorization uses a surrogate Q with closed form solution Monotonically improves from initial θ_0

- Find bound $Q(\theta, \theta_i) \ge C(\theta)$ where $Q(\theta_i, \theta_i) = C(\theta_i)$
- Update $\theta_{i+1} = \arg \min_{\theta} Q(\theta, \theta_i)$

Repeat until converged

Intro	Convex solver: bound majorization	(Convex) objective: multi-classification	Non-convexity: deep learning	Summary
	00000000000			

Majorization

Bound majorization

If cost function $\theta^* = \arg \min_{\theta} C(\theta)$ has no closed form solution Majorization uses a surrogate Q with closed form solution Monotonically improves from initial θ_0

- Find bound $Q(\theta, \theta_i) \ge C(\theta)$ where $Q(\theta_i, \theta_i) = C(\theta_i)$
- Update $\theta_{i+1} = \arg \min_{\theta} Q(\theta, \theta_i)$

Repeat until converged

Convex) objective: multi-classification Non-convexity: deep learning Summary

Majorization

Generic optimization techniques vs majorization methods

Majorization methods preferred until [W03, AG07].

...Why? Slower than other optimizers, because of loose & complicated bounds.

Let's fix this!!!

	Convex solver: bound majorization	(Convex) objective: multi-classification	Non-convexity: deep learning 00000000000000000000000000000000000	Summary 00
Partit	ion Bound			
Pa	rtition Function			

Log-linear model partition functions

$$Z(\boldsymbol{\theta}) = \sum_{y} h(y) \exp(\boldsymbol{\theta}^{\top} \mathbf{f}(y))$$

Partition function ensures that $p(y|\theta)$ normalizes.

It is a central quantity to optimize in

- maximum likelihood and e-family [P36]
- maximum entropy [J57]
- conditional random fields [LMP01]
- log-linear models [DR72]
- graphical models, HMMs [JGJS99].

Problem: it's ugly to minimize, we much prefer quadratics

onvex) objective: multi-classification Non-convexity: deep learning Summary

Partition Bound

Partition Function Bound

The bound $\ln Z(\theta) \leq \ln z + \frac{1}{2}(\theta - \tilde{\theta})^{\top} \Sigma(\theta - \tilde{\theta}) + (\theta - \tilde{\theta})^{\top} \mu$ is tight at $\tilde{\theta}$ and holds for parameters given by

onvex) objective: multi-classification Non-convexity: deep learning Summary

Partition Bound

Partition Function Bound

The bound $\ln Z(\theta) \leq \ln z + \frac{1}{2}(\theta - \tilde{\theta})^{\top} \Sigma(\theta - \tilde{\theta}) + (\theta - \tilde{\theta})^{\top} \mu$ is tight at $\tilde{\theta}$ and holds for parameters given by

onvex) objective: multi-classification Non-convexity: deep learning Summary

Bound applications

Conditional Random Fields (CRFs)

- Trained on *iid* data $\{(x_1, y_1), ..., (x_t, y_t)\}$
- Each CRF is a log-linear model

$$p(y|x_j, \theta) = \frac{1}{Z_{x_j}(\theta)} h_{x_j}(y) \exp(\theta^{\top} \mathbf{f}_{x_j}(y))$$

Regularized maximum likelihood objective is

$$J(\boldsymbol{\theta}) = \sum_{j=1}^{t} \log \frac{h_{x_j}(y_j)}{Z_{x_j}(\boldsymbol{\theta})} + \boldsymbol{\theta}^{\top} \mathbf{f}_{x_j}(y_j) - \frac{t\lambda}{2} \|\boldsymbol{\theta}\|^2$$

(Convex) objective: multi-classification Non-convexity: deep learning Summary

Bound applications

Maximum Likelihood Algorithm for CRFs

While not converged For j = 1, ..., tCompute bound for μ_j, Σ_j from $h_{x_j}, \mathbf{f}_{x_j}, \tilde{\boldsymbol{\theta}}$ Set $\tilde{\boldsymbol{\theta}} = \arg \min_{\boldsymbol{\theta} \in \Lambda} \sum_j \frac{1}{2} (\boldsymbol{\theta} - \tilde{\boldsymbol{\theta}})^\top (\Sigma_j + \lambda \mathbf{I}) (\boldsymbol{\theta} - \tilde{\boldsymbol{\theta}})$ $+ \sum_j \boldsymbol{\theta}^\top (\mu_j - \mathbf{f}_{x_j}(y_j) + \lambda \tilde{\boldsymbol{\theta}})$

onvex) objective: multi-classification Non-convexity: deep learning Summary

Bound applications

Maximum Likelihood Algorithm for CRFs

While not converged
For
$$j = 1, ..., t$$

Compute bound for μ_j, Σ_j from $h_{x_j}, \mathbf{f}_{x_j}, \tilde{\boldsymbol{\theta}}$
Set $\tilde{\boldsymbol{\theta}} = \arg \min_{\boldsymbol{\theta} \in \Lambda} \sum_j \frac{1}{2} (\boldsymbol{\theta} - \tilde{\boldsymbol{\theta}})^\top (\Sigma_j + \lambda \mathbf{I}) (\boldsymbol{\theta} - \tilde{\boldsymbol{\theta}})$
 $+ \sum_j \boldsymbol{\theta}^\top (\mu_j - \mathbf{f}_{x_j}(y_j) + \lambda \tilde{\boldsymbol{\theta}})$

Theorem

The algorithm outputs a $\hat{ heta}$ such that

$$J(\hat{\theta}) - J(\theta_0) \ge (1 - \epsilon) \max_{\theta \in \Lambda} (J(\theta) - J(\theta_0))$$

within $\left\lceil \log\left(\frac{1}{\epsilon}\right) / \log\left(1 + \frac{\lambda \log n}{2r^2n}\right) \right
ight
ceil$ steps.

onvex) objective: multi-classification Non-convexity: deep learning Summary

Experiments

Experiments - Markov CRFs

- Bound admits low-rank version $(\mathcal{O}(tnd))$
 - As in LBFGS, use rank-k storage $\boldsymbol{\Sigma} = \boldsymbol{\mathsf{VSV}}^\top + \boldsymbol{\mathsf{D}}$
 - $\bullet\,$ Absorb residual into diagonal $\textbf{D}\Rightarrow$ Low-rank is still a bound

onvex) objective: multi-classification Non-convexity: deep learning Summary

Experiments

Experiments - Markov CRFs

- Bound admits low-rank version $(\mathcal{O}(tnd))$
 - As in LBFGS, use rank- k storage $\boldsymbol{\Sigma} = \boldsymbol{\mathsf{VSV}}^\top + \boldsymbol{\mathsf{D}}$
 - $\bullet\,$ Absorb residual into diagonal $\textbf{D}\Rightarrow$ Low-rank is still a bound
- Graphical models, e.g. Markov CRFs
 - Build junction tree and run a Collect algorithm
 - Only needs $\mathcal{O}(td^2\sum_c |Y_c|)$ rather than $\mathcal{O}(td^2n)$

onvex) objective: multi-classification Non-convexity: deep learning Summary

Experiments

Experiments - Markov CRFs

- Bound admits low-rank version $(\mathcal{O}(tnd))$
 - As in LBFGS, use rank-k storage $\boldsymbol{\Sigma} = \boldsymbol{\mathsf{VSV}}^\top + \boldsymbol{\mathsf{D}}$
 - $\bullet\,$ Absorb residual into diagonal $\textbf{D}\Rightarrow$ Low-rank is still a bound
- Graphical models, e.g. Markov CRFs
 - Build junction tree and run a Collect algorithm
 - Only needs $\mathcal{O}(td^2\sum_c |Y_c|)$ rather than $\mathcal{O}(td^2n)$

CONLL dataset

time	passes
1.00t	17
3.47t	23
0.64t	4
	time 1.00t 3.47t 0.64t

Bound

Algorithm	time	passes
L-BFGS	1.00t	22
CG	5.94t	27
IIS	\geq 6.35t	≥ 150
[W03]		

Convex) objective: multi-classification Non-convexity: deep learning Summary

Experiments

Experiments - Markov CRFs

- Bound admits low-rank version $(\mathcal{O}(tnd))$
 - As in LBFGS, use rank-k storage $\boldsymbol{\Sigma} = \boldsymbol{\mathsf{VSV}}^\top + \boldsymbol{\mathsf{D}}$
 - $\bullet\,$ Absorb residual into diagonal $\textbf{D}\Rightarrow$ Low-rank is still a bound
- Graphical models, e.g. Markov CRFs
 - Build junction tree and run a Collect algorithm
 - Only needs $\mathcal{O}(td^2\sum_c |Y_c|)$ rather than $\mathcal{O}(td^2n)$

CONLL dataset

ume	passes
1.00t	17
3.47t	23
0.64t	4
	1.00t 3.47t 0.64t

AlgorithmtimepassesL-BFGS1.00t22CG5.94t27IIS $\geq 6.35t$ ≥ 150 [W03]

Bound

- Latent models
 - Objective function is non-concave: ratio of partition functions
 - Apply Jensen to numerator and our bound to denominator
 - Often better solution than BFGS, Newton, CG, SD, ...

onvex) objective: multi-classification Non-convexity: deep learning Summary

Experiments

Experiments - Latent models

- Bounding also simplifies mixture models with hidden variables (mixtures of Gaussians, HMMs, latent graphical models)
- Assume exponential family mixture components (Gaussian, multinomial, Poisson, Laplace)
- Latent CRF or log-linear model [Quattoni et al. '07]

$$L(\boldsymbol{\theta}) = \prod_{j=1}^{t} \frac{\sum_{m} \exp\left(\boldsymbol{\theta}^{\top} \mathbf{f}_{j, y_{j}, m}\right)}{\sum_{y, m} \exp\left(\boldsymbol{\theta}^{\top} \mathbf{f}_{j, y, m}\right)} \geq Q(\boldsymbol{\theta}, \tilde{\boldsymbol{\theta}})$$

• Apply Jensen to numerator and our bound to denominator

Experiments

Experiments - (Semi-)Stochastic Bound Majorization

- Computing the bound is $\mathcal{O}(t)
 ightarrow$ intractable for large t
- Semi-stochastic: compute bound on data mini-batches
 - convergence to a stationary point under weak assumptions (in particular convexity is not required)
 - **linear** convergence rate for logistic regression problem when batch size grows sufficiently fast

Experiments

Experiments - (Semi-)Stochastic Bound Majorization

- Computing the bound is $\mathcal{O}(t)
 ightarrow$ intractable for large t
- Semi-stochastic: compute bound on data mini-batches
 - convergence to a stationary point under weak assumptions (in particular convexity is not required)
 - **linear** convergence rate for logistic regression problem when batch size grows sufficiently fast

Theorem

For each iteration we have (for any $\epsilon > 0$)

$$J(\boldsymbol{ heta}_k) - J(\boldsymbol{ heta}^*) \leq \left(1 - rac{
ho}{L}
ight)^k \left[J(\boldsymbol{ heta}_0) - J(\boldsymbol{ heta}^*)
ight] + \mathcal{O}(C_k)$$

with $C_k = \max\{B_k, (1 - \frac{\rho}{L} + \epsilon)^k\}$ and $B_k = \|\nabla J(\theta)|_{\theta = \theta_k} - \mathbf{g}_{\mathcal{T}}^k\|^2$, where \mathcal{T} is the mini-batch.

Intro Convex solver: bound majorization

Convex) objective: multi-classification Non-convexity: deep learning Summary

Experiments

Experiments - (Semi-)Stochastic Bound Majorization

Intro Convex solver: bound majorization

How to design good objective function?

Multi-class classification problem

eXtreme multi-class classification problem

Problem setting

- classification with large number of classes
- data is accessed online

Goal:

- good predictor with logarithmic training and testing time
- reduction to tree-structured binary classification
- top-down approach for class partitioning allowing gradient descent style optimization

Multi-class classification problem

What was already done...

Intractable

- one-against-all [RK04]
- variants of ECOC [DB95], e.g. PECOC [LB05]
- clustering-based approaches [BWG10, WMY13]
- Choice of partition not addressed
 - Filter Tree and error-correcting tournaments [BLR09]
- Choice of partition addressed, but dedicated to conditional probability estimation
 - conditional probability tree [BLLSS09]
- Splitting criteria not well-suited to large class setting
 - decision trees [KM95]

• . . .

(Convex) objective: multi-classification Non-convexity: deep learning Summary

Splitting criterion

How do you learn the structure?

Not all partitions are equally difficult, e.g. if you do {1,7} vs {3,8}, the next problem is hard; if you do {1,8} vs {3,7}, the next problem is easy; if you do {1,3} vs {7,8}, the next problem is easy.

(Convex) objective: multi-classification Non-convexity: deep learning Summary

Splitting criterion

How do you learn the structure?

- Not all partitions are equally difficult, e.g. if you do {1,7} vs {3,8}, the next problem is hard; if you do {1,8} vs {3,7}, the next problem is easy; if you do {1,3} vs {7,8}, the next problem is easy.
- [BWG10]: Better to confuse near leaves than near root. <u>Intuition</u>: The root predictor tends to be overconstrained while the leafwards predictors are less constrained.

Splitting criterion

How do you learn the structure?

Our approach:

- top-down approach for class partitioning
- splitting criterion guaranteeing
 balanced tree ⇒ logarithmic training and testing time and small classification error

small classification error

(Convex) objective: multi-classification Non-convexity: deep learning Summary

Splitting criterion

Pure split and balanced split

- $k_r(x)$: number of data points in the same class as x on the right side of the partitioning
- k(x): total number of data points in the same class as x
- n_r : number of data points on the right side of the partitioning
- n: total number of data points

(Convex) objective: multi-classification Non-convexity: deep learning Summary

Splitting criterion

Pure split and balanced split

- $k_r(x)$: number of data points in the same class as x on the right side of the partitioning
- k(x): total number of data points in the same class as x
- *n_r*: number of data points on the right side of the partitioning
- n: total number of data points

Measure of balanceness: $\frac{n_r}{n}$

Splitting criterion

Pure split and balanced split

- $k_r(x)$: number of data points in the same class as x on the right side of the partitioning
- k(x): total number of data points in the same class as x
- n_r: number of data points on the right side of the partitioning
- *n*: total number of data points

Measure of balanceness: $\frac{n_r}{n}$
Splitting criterion

Pure split and balanced split

- $k_r(x)$: number of data points in the same class as x on the right side of the partitioning
- k(x): total number of data points in the same class as x
- n_r: number of data points on the right side of the partitioning
- n: total number of data points

Measure of balanceness: $\frac{n_r}{n}$ Measure of purity: $\frac{k_r(x)}{k(x)}$

Non-convexity: deep learning Summary

Splitting criterion

Pure split and balanced split

- k: number of classes
- \mathcal{H} : hypothesis class (typically: linear classifiers)
- $\pi_{v} = \frac{|\mathcal{X}_{v}|}{r}$
- balance = Pr(h(x) > 0)• purity = $\sum_{v=1}^{k} \pi_{y} \min(Pr(h(x) > 0|y), Pr(h(x) < 0|y))$

Non-convexity: deep learning Summary

Splitting criterion

Pure split and balanced split

- k: number of classes
- \mathcal{H} : hypothesis class (typically: linear classifiers)

•
$$\pi_y = \frac{|\mathcal{X}_y|}{n}$$

- balance = Pr(h(x) > 0)• purity = $\sum_{v=1}^{k} \pi_{y} \min(Pr(h(x) > 0|y), Pr(h(x) < 0|y))$

Definition (Balanced split)

The hypothesis $h \in \mathcal{H}$ induces a balanced split iff

 $\exists_{c \in (0,0,5]} c \leq \text{balance} \leq 1 - c.$

Non-convexity: deep learning Summary

Splitting criterion

Pure split and balanced split

- k: number of classes
- \mathcal{H} : hypothesis class (typically: linear classifiers)

•
$$\pi_y = \frac{|\mathcal{X}_y|}{n}$$

- balance = Pr(h(x) > 0)• purity = $\sum_{v=1}^{k} \pi_{y} \min(Pr(h(x) > 0|y), Pr(h(x) < 0|y))$

Definition (Balanced split)

The hypothesis $h \in \mathcal{H}$ induces a balanced split iff

$$\exists_{c \in (0,0.5]} c \leq balance \leq 1 - c.$$

Definition (Pure split)

The hypothesis $h \in \mathcal{H}$ induces a pure split iff

 $\exists_{\delta \in [0,0,5)}$ purity $\leq \delta$.

Intro Convex solver: bound majorization

(Convex) objective: multi-classification Non-convexity: deep learning Summary

Splitting criterion

Objective function

$$J(h) = 2\sum_{y=1}^{k} \pi_{y} |P(h(x) > 0) - P(h(x) > 0|y)|$$
$$= 2\mathbb{E}_{x,y} [|P(h(x) > 0) - P(h(x) > 0|y)|]$$

$\mathsf{J}(\mathsf{h}) \Rightarrow$ Splitting criterion (objective function)

Given a set of n examples each with one of k labels, find a **partitioner** h that maximizes the objective.

Lemma

For any hypothesis $h : \mathcal{X} \mapsto \{-1, 1\}$, the objective J(h) satisfies $J(h) \in [0, 1]$. Furthermore, h induces a maximally pure and balanced partition iff J(h) = 1.

(Convex) objective: multi-classification Non-convexity: deep learning Summary

Splitting criterion

Balancing and purity factors

• Balacing factor

Splitting criterion

Balancing and purity factors

• Purity factor

Boosting statement

What is the quality of obtained tree?

- $\bullet\,$ In each node of the tree ${\cal T}$ optimize the splitting criterion
- Apply recursively to construct a tree structure
- Measure the quality of the tree using entropy

$$G_{\mathcal{T}} = \sum_{l \in \text{leafs of } \mathcal{T}} w_l \sum_{y=1}^k \pi_{l,y} \ln \left(\frac{1}{\pi_{l,y}} \right)$$

Why?

Small entropy of leafs \Rightarrow pure leafs

Goal: maximizing the objective reduces the entropy

Boosting statement

What is the quality of obtained tree?

Definition (Weak Hypothesis Assumption)

Let *m* denotes any node of the tree \mathcal{T} , and let $\beta_m = P(h_m(x) > 0)$ and $P_{m,i} = P(h_m(x) > 0|i)$. Furthermore, let $\gamma \in \mathbb{R}^+$ be such that for all *m*, $\gamma \in (0, \min(\beta_m, 1 - \beta_m)]$. We say that the *weak hypothesis assumption* is satisfied when for any distribution \mathcal{P} over \mathcal{X} at each node *m* of the tree \mathcal{T} there exists a hypothesis $h_m \in \mathcal{H}$ such that $J(h_m)/2 = \sum_{i=1}^k \pi_{m,i} |P_{m,i} - \beta_m| \ge \gamma$.

Theorem

Under the Weak Hypothesis Assumption, for any $\epsilon \in [0, 1]$, to obtain $G_{\mathcal{T}} \leq \epsilon$ it suffices to make $\left(\frac{1}{\epsilon}\right)^{\frac{4(1-\gamma)^2 \ln k}{\gamma^2}}$ splits.

Boosting statement

What is the quality of obtained tree?

Definition (Weak Hypothesis Assumption)

Let *m* denotes any node of the tree \mathcal{T} , and let $\beta_m = P(h_m(x) > 0)$ and $P_{m,i} = P(h_m(x) > 0|i)$. Furthermore, let $\gamma \in \mathbb{R}^+$ be such that for all *m*, $\gamma \in (0, \min(\beta_m, 1 - \beta_m)]$. We say that the *weak hypothesis assumption* is satisfied when for any distribution \mathcal{P} over \mathcal{X} at each node *m* of the tree \mathcal{T} there exists a hypothesis $h_m \in \mathcal{H}$ such that $J(h_m)/2 = \sum_{i=1}^k \pi_{m,i} |P_{m,i} - \beta_m| \ge \gamma$.

Theorem

Under the Weak Hypothesis Assumption, for any $\epsilon \in [0, 1]$, to obtain $G_{\mathcal{T}} \leq \epsilon$ it suffices to make $\left(\frac{1}{\epsilon}\right)^{\frac{4(1-\gamma)^2 \ln k}{\gamma^2}}$ splits.

• Tree depth $\approx \log \left[\left(\frac{1}{\epsilon}\right)^{\frac{4(1-\gamma)^{2\ln k}}{\gamma^{2}}} \right] = \mathcal{O}(\ln k) \Rightarrow$ \Rightarrow logarithmic training and testing time Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Online partitioning

LOMtree algorithm

• Recall the objective function we consider at every tree node:

 $J(h) = 2\mathbb{E}_{y}[|\mathbb{E}_{x}[\mathbb{1}(h(x) > 0)] - \mathbb{E}_{x}[\mathbb{1}(h(x) > 0|y)]|].$

<u>Problem:</u> discrete optimization <u>Relaxation:</u> drop the indicator operator and look at margins Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Online partitioning

LOMtree algorithm

• Recall the objective function we consider at every tree node:

 $J(h) = 2\mathbb{E}_{y}[|\mathbb{E}_{x}[\mathbb{1}(h(x) > 0)] - \mathbb{E}_{x}[\mathbb{1}(h(x) > 0|y)]|].$

<u>Problem:</u> discrete optimization <u>Relaxation:</u> drop the indicator operator and look at margins Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Online partitioning

LOMtree algorithm

• Recall the objective function we consider at every tree node:

$$J(h) = 2\mathbb{E}_{y}[|\mathbb{E}_{x}[\mathbb{1}(h(x) > 0)] - \mathbb{E}_{x}[\mathbb{1}(h(x) > 0|y)]|].$$

<u>Problem:</u> discrete optimization <u>Relaxation:</u> drop the indicator operator and look at margins

• The objective function becomes

$$J(h) = 2\mathbb{E}_{y}[|\mathbb{E}_{x}[h(x)] - \mathbb{E}_{x}[h(x)|y]|]$$

- Keep the online empirical estimates of these expectations.
- The sign of the difference of two expectations decides whether to send an example to the left or right child node.

(Convex) objective: multi-classification Non-convexity: deep learning Summary

Online partitioning

LOMtree algorithm

- if $e_y < e$ then b = -1 else b = 1
- Update w using (x, b)
- $n_y \leftarrow n_y + 1$ • $e_y \leftarrow \frac{(n_y - 1)e_y}{n_y} + \frac{w.x}{n_y}$ • $e \leftarrow \frac{(n - 1)e}{n} + \frac{w.x}{n}$

(Convex) objective: multi-classification Non-convexity: deep learning Summary

Online partitioning

LOMtree algorithm

- if $e_y < e$ then b = -1 else b = 1
- Update w using (x, b)

(Convex) objective: multi-classification Non-convexity: deep learning Summary

Online partitioning

LOMtree algorithm

- if $e_y < e$ then b = -1 else b = 1
- Update w using (x, b)
- $n_y \leftarrow n_y + 1$ • $e_y \leftarrow \frac{(n_y - 1)e_y}{n_y} + \frac{w.x}{n_y}$ • $e \leftarrow \frac{(n - 1)e}{n} + \frac{w.x}{n}$

(Convex) objective: multi-classification Non-convexity: deep learning Summary

Online partitioning

LOMtree algorithm

- if $e_y < e$ then b = -1 else b = 1
- Update w using (x, b)

(Convex) objective: multi-classification Non-convexity: deep learning Summary

Online partitioning

LOMtree algorithm

- if $e_y < e$ then b = -1 else b = 1
- Update w using (x, b)
- $n_y \leftarrow n_y + 1$ • $e_y \leftarrow \frac{(n_y - 1)e_y}{n_y} + \frac{w.x}{n_y}$ • $e \leftarrow \frac{(n - 1)e}{n} + \frac{w.x}{n}$

(Convex) objective: multi-classification Non-convexity: deep learning Summary

Online partitioning

LOMtree algorithm

- if $e_y < e$ then b = -1 else b = 1
- Update w using (x, b)

(Convex) objective: multi-classification Non-convexity: deep learning Summary

Online partitioning

LOMtree algorithm

- if $e_y < e$ then b = -1 else b = 1
- Update w using (x, b)
- $n_y \leftarrow n_y + 1$ • $e_y \leftarrow \frac{(n_y - 1)e_y}{n_y} + \frac{w.x}{n_y}$ • $e \leftarrow \frac{(n - 1)e}{n} + \frac{w.x}{n}$

(Convex) objective: multi-classification Non-convexity: deep learning Summary

Online partitioning

LOMtree algorithm

- if $e_y < e$ then b = -1 else b = 1
- Update w using (x, b)

(Convex) objective: multi-classification Non-convexity: deep learning Summary

Online partitioning

LOMtree algorithm

- if $e_y < e$ then b = -1 else b = 1
- Update w using (x, b)
- $n_y \leftarrow n_y + 1$ • $e_y \leftarrow \frac{(n_y - 1)e_y}{n_y} + \frac{w.x}{n_y}$ • $e \leftarrow \frac{(n - 1)e}{n} + \frac{w.x}{n}$

Online partitioning

LOMtree algorithm

- if $e_y < e$ then b = -1 else b = 1
- Update w using (x, b)

(Convex) objective: multi-classification Non-convexity: deep learning Summary

Online partitioning

LOMtree algorithm

- if $e_y < e$ then b = -1 else b = 1
- Update w using (x, b)
- $n_y \leftarrow n_y + 1$ • $e_y \leftarrow \frac{(n_y - 1)e_y}{n_y} + \frac{w.x}{n_y}$ • $e \leftarrow \frac{(n - 1)e}{n} + \frac{w.x}{n}$

(Convex) objective: multi-classification Non-convexity: deep learning Summary

Online partitioning

LOMtree algorithm

Let e = 0 and for all y, $e_y = 0$, $n_y = 0$ For each example (x, y)

- if $e_v < e$ then b = -1 else b = 1
- Update w using (x, b)
- $n_y \leftarrow n_y + 1$ • $e_y \leftarrow \frac{(n_y - 1)e_y}{n_y} + \frac{w.x}{n_y}$ • $e \leftarrow \frac{(n-1)e}{n_y} + \frac{w.x}{n_y}$

Apply recursively to construct a tree structure.

(Convex) objective: multi-classification Non-convexity: deep learning Summary

Online partitioning

LOMtree algorithm

Let e = 0 and for all y, $e_y = 0$, $n_y = 0$ For each example (x, y)

- if $e_v < e$ then b = -1 else b = 1
- Update w using (x, b)
- $n_y \leftarrow n_y + 1$ • $e_y \leftarrow \frac{(n_y - 1)e_y}{n_y} + \frac{w.x}{n_y}$ • $e \leftarrow \frac{(n - 1)e}{n_y} + \frac{w.x}{n_y}$

Apply recursively to construct a tree structure.

Intro Convex solver: bound majorization

(Convex) objective: multi-classification Non-convexity: deep learning Summary

Online partitioning

LOMtree algorithm

Let e = 0 and for all y, $e_y = 0$, $n_y = 0$ For each example (x, y)

- if $e_y < e$ then b = -1 else b = 1
- Update w using (x, b)
- $n_y \leftarrow n_y + 1$ • $e_y \leftarrow \frac{(n_y - 1)e_y}{n_y} + \frac{w.x}{n_y}$ • $e \leftarrow \frac{(n-1)e}{r_y} + \frac{w.x}{r_y}$

Apply recursively to construct a tree structure.

Convex	solver:	bound	majorization

(Convex) objective: multi-classification Non-convexity: deep learning Sur

Experiments

Experiments

Table :	Training tin	ne on selected	problems.
---------	--------------	----------------	-----------

	Isolet	Sector	Aloi		
LOMtree	16.27s	12.77s	51.86s		
OAA	19.58s	18.37s	11m2.43s		

Table : Per-example test time on all problems.

	lsolet	Sector	Aloi	ImNet	ODP
LOMtree	0.14ms	0.13ms	0.06ms	0.52ms	0.26ms
OAA	0.16 ms	0.24ms	0.33ms	0.21s	1.05s

Table : Test error (%) and confidence interval on all problems.

	()				
	LOMtree	Rtree	Filter tree		
Isolet (26)	6.36 ±1.71	$16.92{\pm}2.63$	$15.10{\pm}2.51$		
Sector (105)	$16.19{\pm}2.33$	15.77±2.30	$17.70{\pm}2.41$		
Aloi (1000)	$16.50{\pm}0.70$	$83.74{\pm}0.70$	80.50±0.75		
ImNet (22K)	90.17 ±0.05	$96.99{\pm}0.03$	$92.12{\pm}0.04$		
ODP (105K)	93.46 ±0.12	93.85±0.12	93.76±0.12		

Intro	Convex	solver:	bound	majorization

(Convex) objective: multi-classification

Non-convexity: deep learning

Experiments

Experiments

 Intro
 Convex solver: bound majorization
 Convex) objective: multi-classification
 Non-convexity: deep learning
 Summary

How to understand non-convex optimization?

Non-convexity: deep learning Summarv

Deep learning: motivation and challenges

Why non-convex optimization and deep learning?

State-of-the art results on number of problems:

- image recognition [KSH12, CMGS10]
- speech recognition [HDYDMJSVNSK12, GMH13]
- natural language processing [WCA14]
- video recognition [KTSLSF-F14, SZ14]

Deep learning: motivation and challenges

Why non-convex optimization and deep learning?

ImageNet 2014 Challenge: mostly convolutional networks

Classification+localization with provided training data: Ordered by localization error

Team	name	Entry de	scriptio	on				Localiz error	ation Clas	ssifica vr	tion			
VGG VGG	Classific	a combination of multiple ConvNets (by averaging) le combination of multiple ConvNets (fusion weights learnt on Classification+localization with provided training data: Ordered by classificatio						0.25323	31 0.07	7405				
VAA	Team name Entry description					Classification Localizati error error		Localization error						
	GoogL	eNet	No loca	alizati	on. Top5 va	I score is 6.66% error.			0.06656		0.606257			
	<u>VGG</u>	Object	a comh detectio	oinatic on with	on of multiple additional tra	e ConvNets including a net aining data: Ordered by number	of categ	on ories <mark>wo</mark> n				1		
	VGG	Tean	Team name Entry description GoogLeNet Ensemble of det 44.5% mAP		/ description	Descript used		Description of outside data used		Number of object categories von	mear	AP		
		Goog			mble of dete % mAP	ection models. Validation is	Pretraining on ILS classification data		LSVRC12 1 Ita.	142	<mark>0.439329</mark>			
		CUH	K MD-	Co (Ordered by me	ean average precision							_	
					Team name	Entry description			Descri used	iption	of outside da	ata	mean AP	Number of object categorie won
					GoogLeNet	Ensemble of detection mod 44.5% mAP	lels. Val	idation is	Pretrai classif	ining o	on ILSVRC1 1 data.	2	0.439329	142
					CUHK	Combine multiple models a	escribe modelii	d in the	Image	Net cl	assification	and	0 406008	

Machine Learning Competitions Won (Yoshua Bengio)

- Winning the ICMI 2013 Grand Challenge on Emotion Recognition in the Wild! The challenge baseline accuracy was 27.5% our approach vielded 41.0%) Kahou, S. E., Pal, C., Bouthiller, X., Froumenty, P., Gulcehre, C., *', Memisevic, R., Vincent, P., Courville, A. and Bengio, Y. (2013) Combining Modulty Specific Deen Narral Networks for Emotion Recognition in Videa (ICMI '13)
- Combining Modelin's Specific Deep Neural Networks for Emotion Recommition in Video, *dCMI* ¹3) • <u>Unsupervised and Transfer Learning Challenge</u>, presented at an ICML 2011 and IJCNN 2011 workshops of the same name, was won by LISA members using unsupervised Lever wise pre-training
- We also won the Transfer Learning Challenge at NIPS 2011's Challenges in Learning Hierarchical Models Workshop, using spike-and-slab sparse coding (ICML 2012 paper)

Recent related works: Choromanska et al., 2015, Goodfellow et al., 2015, Dauphin et al., 2014, Saxe et al., 2014.

Recent related works: Choromanska et al., 2015, Goodfellow et al., 2015, Dauphin et al., 2014, Saxe et al., 2014.

Questions:

• Why the result of multiple experiments with multilayer networks consistently give very similar performance despite the presence of many local minima?

Recent related works: Choromanska et al., 2015, Goodfellow et al., 2015, Dauphin et al., 2014, Saxe et al., 2014.

Questions:

- Why the result of multiple experiments with multilayer networks consistently give very similar performance despite the presence of many local minima?
- What is the role of saddle points in the optimization problem?

Recent related works: Choromanska et al., 2015, Goodfellow et al., 2015, Dauphin et al., 2014, Saxe et al., 2014.

Questions:

- Why the result of multiple experiments with multilayer networks consistently give very similar performance despite the presence of many local minima?
- What is the role of saddle points in the optimization problem?
- Is the surface of the loss function of multilayer networks structured?
(Convex) objective: multi-classification Non-convexity: deep learning Summary

Deep learning: motivation and challenges

Multilayer network and spin-glass model

Can we use the spin-glass theory to explain the optimization paradigm with large multilayer networks?

(Convex) objective: multi-classification Non-convexity: deep learning Summary

Deep learning: motivation and challenges

Multilayer network and spin-glass model

Can we use the spin-glass theory to explain the optimization paradigm with large multilayer networks?

What assumptions need to be made?

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summarv

Non-convex loss function in deep learning

Loss function in deep learning and assumptions

- Ψ number of input-output paths, $\Lambda = \sqrt[H]{\Psi}$ (assume $\Lambda \in \mathbb{Z}^+$) • H - 1 - number of hidden layers • $w_i^{(k)}$ - the weight of the k^{th} segment of the i^{th} path
- A_i Bernoulli r.v. denoting path activation (0/1)

(Convex) objective: multi-classification Non-convexity: deep learning Summary

Non-convex loss function in deep learning

Loss function in deep learning and assumptions

Consider hinge loss

$$L(\mathbf{w}) = \max(0, 1 - Y_t Y),$$

where Y_t corresponds to the true data labeling (1/-1), and **w** denotes all network weights.

• max operator is often modeled as Bernoulli r.v. (0/1). Denote it as M and its expectation as ρ' . Therefore

$$L(\mathbf{w}) = M(1 - Y_t Y) = M + \frac{1}{\Lambda^{(H-1)/2}} \sum_{i=1}^{\Psi} Z_i I_i \prod_{k=1}^{H} w_i^{(k)}, \quad (1)$$

where $Z_i = -Y_t X_i$, and $I_i = MA_i$ is a Bernoulli r.v. (0/1).

- assume $I_1, I_2, \ldots, I_{\Psi}$ are identically distributed (A1p)
- assume each X_i is a standard Gaussian r.v. (A2p)

Non-convex loss function in deep learning

Loss function in deep learning and assumptions

- assume network parametrization is redundant (A3p)
- assume unique parameters are uniformly distributed on the graph of connections of the network (A4p), i.e. every H-length product of unique weights appears in Equation 1 (the set of all products is {w_{i1}w_{i2}...w_{iH}}^A_{j1,j2,...,jH=1}).

$$L(\mathbf{w}) = M + \frac{1}{\Lambda^{(H-1)/2}} \sum_{i_1, i_2, \dots, i_H=1}^{\Lambda} Z_{i_1, i_2, \dots, i_H} I_{i_1, i_2, \dots, i_H} w_{i_1} w_{i_2} \dots w_{i_H}.$$

(Convex) objective: multi-classification Non-convexity: deep learning Summary

Non-convex loss function in deep learning

Loss function in deep learning and assumptions

Definition

A network \mathcal{M} which has the same graph of connections as network \mathcal{N} , whose size is N, and s unique weights satisfying $s \leq N$ is called a (s, ϵ) -reduction image of \mathcal{N} for some $\epsilon \in [0, 1]$ if the prediction accuracy of \mathcal{N} and \mathcal{M} differ by no more than ϵ (thus they classify at most ϵ fraction of data points differently).

Theorem

Let \mathcal{N} be a neural network giving the output whose expectation wrt. A's is Y_N . Let \mathcal{M} be its (s, ϵ) -reduction image for some $s \leq N$ and $\epsilon \in [0, 0.5]$. By analogy, let Y_s be the expected output of network \mathcal{M} . Then the following holds $corr(sign(Y_s), sign(Y_N)) \geq \frac{1-2\epsilon}{1+2\epsilon}$,

where $corr(A, B) = \frac{\mathbb{E}[(A - \mathbb{E}[A]])(B - \mathbb{E}[B]])}{std(A)std(B)}$, std is the standard deviation and $sign(\cdot)$ denotes the sign of prediction.

Non-convex loss function in deep learning

Loss function in deep learning and assumptions

• assume the independence of $Z_{i_1,i_2,...,i_H}$ and $I_{i_1,i_2,...,i_H}$ (A5u)

$$\mathbb{E}_{M, l_1, l_2, \dots, l_{\Psi}}[L(\mathbf{w})] = \rho' + \rho \underbrace{\frac{1}{\Lambda^{(H-1)/2}} \sum_{i_1, i_2, \dots, i_H=1}^{\Lambda} Z_{i_1, i_2, \dots, i_H} w_{i_1} w_{i_2} \dots w_{i_H}}_{\mathcal{L}_{\Lambda, H}}.$$

• assume that Z's are independent $(A \delta u)$

• impose spherical constraint (A7p)

$$\frac{1}{\Lambda}\sum_{i=1}^{\Lambda}w_i^2=1.$$

We obtain the Hamiltonian of the spherical spin-glass model!!!

Question: What happens when $\Lambda \to \infty$?

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Spherical spin-glass model

Important quantities

Definition

Let the following quantity be called an energy barrier

$$E_{\infty} = E_{\infty}(H) = 2\sqrt{\frac{H-1}{H}}.$$

Definition

Let the normalized minimum of the Hamiltonian $\mathcal{L}_{\Lambda,H}$ be called a ground state and be defined as

$$E_0 = rac{1}{\Lambda} \inf_{\sigma \in \mathcal{S}^{N-1}(\sqrt{\Lambda})} \mathcal{L}_{\Lambda,H}(\sigma).$$

Let $(E_k(H))_{k\in\mathbb{N}}$ be a strictly decreasing sequence, that is converging to E_{∞} as $k \to \infty$.

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Spherical spin-glass model

Hamiltonian of the spherical spin-glass model: properties

- All critical values of the Hamiltonian of fixed index¹ (non diverging with Λ) must lie in the band (-ΛE₀(H), -ΛE_∞(H)).
- Finding a critical value with index larger or equal to k (for any fixed integer k) below energy level $-\Lambda E_k(H)$ is improbable.
- With overwhelming probability the critical values just above the global minimum (ground state) are local minima exclusively. Above the band $(-\Lambda E_0(H), -\Lambda E_1(H))$ containing only local minima (critical points of index 0), there is another one, $(-\Lambda E_1(H), -\Lambda E_2(H))$, where one can only find local minima and saddle points of index 1, and above this band there exists another one, $(-\Lambda E_2(H), -\Lambda E_3(H))$, where one can only find local minima and saddle points of index 1 and 2, and so on.

¹Index of $\nabla^2 \mathcal{L}$ at **w** is the number of negative eigenvalues of the Hessian $\nabla^2 \mathcal{L}$ at **w**. Local minima have index 0.

Convex) objective: multi-classification Non-convexity: deep learning Summar

Spherical spin-glass model

Hamiltonian of the spherical spin-glass model: properties

(Convex) objective: multi-classification Non-convexity: deep learning Summary

Deep networks versus spherical spin-glass models

Comparison of deep network and spherical spin-glass model

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summarv

Deep networks versus spherical spin-glass models

Deep network: correlation between train and test loss

Table : Pearson correlation between training and test loss.

Deep networks versus spherical spin-glass models

Deep network: index of recovered solutions

Figure : Distribution of normalized index of solutions for $n_1 = \{a\}10, b\}25, c\}50, d\}100$ hidden units.

Understanding non-convex deep learning optimization

Spherical spin-glass versus deep network

Conjecture (Deep learning)

For large-size networks, most local minima are equivalent and yield similar performance on a test set.

Spherical spin-glass

Critical points form an ordered structure such that there exists an energy barrier $\Lambda E_{-\infty}$ (a certain value of the Hamiltonian) below which with overwhelming probability one can find only low-index critical points, most of which are concentrated close to the barrier.

Understanding non-convex deep learning optimization

Spherical spin-glass versus deep network

Conjecture (Deep learning)

The probability of finding a "bad" (high value) local minimum is non-zero for small-size networks and decreases quickly with network size.

Spherical spin-glass

Low-index critical points are 'geometrically' lying closer to the ground state than high-index critical points.

Understanding non-convex deep learning optimization

Spherical spin-glass versus deep network

Conjecture (Deep learning)

Saddle points play a key-role in the optimization problem in deep learning.

Spherical spin-glass

With overwhelming probability one can find only high-index saddle points above energy $\Lambda E_{-\infty}$ and there are exponentially many of those.

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Understanding non-convex deep learning optimization

Spherical spin-glass versus deep network

Conjecture (Deep learning)

Struggling to find the global minimum on the training set (as opposed to one of the many good local ones) is not useful in practice and may lead to overfitting.

<i>n</i> ₁	25	50	100	250	500
ρ	0.7616	0.6861	0.5983	0.5302	0.4081

Table : Pearson correlation between training and test loss for different numbers of hidden units of a network with one hidden layer. MNIST dataset.

Spherical spin-glass

Recovering the ground state, i.e. global minimum, takes exponentially long time.

Understanding non-convex deep learning optimization

Take-home message

- For large-size networks, most local minima are equivalent and yield similar performance on a test set.
- The probability of finding a "bad" (high value) local minimum is non-zero for small-size networks and decreases quickly with network size.
- Struggling to find the global minimum on the training set (as opposed to one of the many good local ones) is not useful in practice and may lead to overfitting.

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Understanding non-convex deep learning optimization

Open problem

Can we establish a stronger connection between the loss function of the deep model and the spherical spin-glass model by dropping the unrealistic assumptions?

Conclusions

Convexity and non-convexity: challenges

Convex and non-convex world

- Building solvers, i.e. bound majorization
 - New and tight quadratic bound on the partition function
 - Linear convergence of the batch/semi-stochastic variants
 - Competetive/better than state-of-the-art methods
 - Admits multiple extensions
- Designing problem-specific, i.e. multi-classification, objectives
 - Logarithmic training and testing time
 - Reduction from multi-class to binary classification
 - New splitting criterion with desirable properties
 - allows gradient descent style optimization
 - makes decision trees applicable to multi-class classification

Non-convex world

- Understading why non-convex approaches work
 - Deep learning: state-of-the-art in numerous problems
 - Possible connection between **spin-glass theory** and **deep learning**
 - Landscape is highly non-convex but most likely structured

Intro	Convex solver: bound majorization	(Convex) objective: multi-classification	Non-convexity: deep learning Summary
			000000000000000000000000000000000000000

Conclusions

Acknowledgments

Courant Institute of Mathematical Sciences: Yann LeCun, Gérard Ben Arous Columbia University: Tony Jebara, Shih-Fu Chang George Washington University: Claire Monteleoni NYU Polytechnic School of Engineering: Mariusz Bojarski Microsoft Research: John Langford, Alekh Agarwal Google Research: Krzysztof Choromanski, Dimitri Kanevsky IBM T. J.Watson Research Center: Aleksandr Aravkin ATT Shannon Research Laboratories: Phyllis Weiss, Alice Chen LEAR team of Inria: Zaid Harchaoui

PostDocs: Pablo Sprechmann **PhD students**: Michael Mathieu, Mikael Bruce Henaff, Sixin Zhang, Ross Goroshin, Rahul Krishnan, Wojciech Zaremba, Hyungtae Kim