
Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Convex and non-convex worlds in machine learning

Anna Choromanska

Courant Institute of Mathematical Sciences
New York University

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Convex and non-convex worlds

Machine learning and optimization - many machine learning
problems are formulated as minimization of some loss function on
a training set of examples. Loss functions expresses the
discrepancy between the predictions of the model being trained
and the actual problem instances. Optimization algorithms can
then minimize this loss. (Wikipedia)

Convex world

local min = global min
strictly convex: unique min

efficient solvers
strong theoretical guarantees

Non-convex world

multiple local min 6= global min
many solvers come from convex world

weak theoretical guarantees if any

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Convex and non-convex worlds

Machine learning and optimization - many machine learning
problems are formulated as minimization of some loss function on
a training set of examples. Loss functions expresses the
discrepancy between the predictions of the model being trained
and the actual problem instances. Optimization algorithms can
then minimize this loss. (Wikipedia)

Convex world

local min = global min
strictly convex: unique min

efficient solvers
strong theoretical guarantees

Non-convex world

multiple local min 6= global min
many solvers come from convex world

weak theoretical guarantees if any

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Convex and non-convex worlds

Machine learning and optimization - many machine learning
problems are formulated as minimization of some loss function on
a training set of examples. Loss functions expresses the
discrepancy between the predictions of the model being trained
and the actual problem instances. Optimization algorithms can
then minimize this loss. (Wikipedia)

Convex world

local min = global min
strictly convex: unique min

efficient solvers
strong theoretical guarantees

Non-convex world

multiple local min 6= global min
many solvers come from convex world

weak theoretical guarantees if any

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Layout of the talk

Optimization solvers: generic optimization vs bound majorization
partition function-based objectives

Design (convex) solver: quadratic bound majorization
[JC12, CKJ12, ACJK14]

Challenging problems: multi-class classification
Design objective: statistical and computational constraints

online multi-class partition trees for logarithmic time predictions
[CL14, CAL13, CCB15, CCJM15, CCJM13, CJKMM13, BCCL15, CM12]

Non-convex problems: deep learning
highly non-convex objective

Build understanding: new theoretical results
[CHMCL15, CLB15, ZCL15]

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Layout of the talk

Optimization solvers: generic optimization vs bound majorization
partition function-based objectives

Design (convex) solver: quadratic bound majorization
[JC12, CKJ12, ACJK14]

Challenging problems: multi-class classification
Design objective: statistical and computational constraints

online multi-class partition trees for logarithmic time predictions
[CL14, CAL13, CCB15, CCJM15, CCJM13, CJKMM13, BCCL15, CM12]

Non-convex problems: deep learning
highly non-convex objective

Build understanding: new theoretical results
[CHMCL15, CLB15, ZCL15]

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Layout of the talk

Optimization solvers: generic optimization vs bound majorization
partition function-based objectives

Design (convex) solver: quadratic bound majorization
[JC12, CKJ12, ACJK14]

Challenging problems: multi-class classification
Design objective: statistical and computational constraints

online multi-class partition trees for logarithmic time predictions
[CL14, CAL13, CCB15, CCJM15, CCJM13, CJKMM13, BCCL15, CM12]

Non-convex problems: deep learning
highly non-convex objective

Build understanding: new theoretical results
[CHMCL15, CLB15, ZCL15]

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

How to build good efficient
convex solver?

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Optimization solvers

Generic optimization techniques and majorization methods

Batch
steepest descent
conjugate gradient
Newton
(L)BFGS [B70]

Stochastic
SGD [RB51]
ASGD [PJ92]
SAG [LRSB12]
SDCA [SSZ13]
SVRG [JZ13]

Semi-stochastic
hybrid deterministic-stochastic methods [FS12]

Majorization methods
MISO [M13]
iterative scaling [DR72]
EM [DLR77]
Quadratic lower bound principle [BL88]

. . .

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Majorization

Bound majorization

If cost function θ∗ = arg minθ C (θ) has no closed form solution
Majorization uses a surrogate Q with closed form solution
Monotonically improves from initial θ0

Find bound Q(θ,θi) ≥ C (θ) where Q(θi ,θi) = C (θi)

Update θi+1 = arg minθ Q(θ,θi)

Repeat until converged

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Majorization

Bound majorization

If cost function θ∗ = arg minθ C (θ) has no closed form solution
Majorization uses a surrogate Q with closed form solution
Monotonically improves from initial θ0

Find bound Q(θ,θi) ≥ C (θ) where Q(θi ,θi) = C (θi)

Update θi+1 = arg minθ Q(θ,θi)

Repeat until converged

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Majorization

Bound majorization

If cost function θ∗ = arg minθ C (θ) has no closed form solution
Majorization uses a surrogate Q with closed form solution
Monotonically improves from initial θ0

Find bound Q(θ,θi) ≥ C (θ) where Q(θi ,θi) = C (θi)

Update θi+1 = arg minθ Q(θ,θi)

Repeat until converged

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Majorization

Generic optimization techniques vs majorization methods

Majorization methods preferred until [W03, AG07].

...Why? Slower than other optimizers, because of loose &
complicated bounds.

Let’s fix this!!!

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Partition Bound

Partition Function

Log-linear model partition functions

Z (θ) =
∑
y

h(y) exp(θ>f(y))

Partition function ensures that p(y |θ) normalizes.

It is a central quantity to optimize in

maximum likelihood and e-family [P36]

maximum entropy [J57]

conditional random fields [LMP01]

log-linear models [DR72]

graphical models, HMMs [JGJS99].

Problem: it’s ugly to minimize, we much prefer quadratics

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Partition Bound

Partition Function Bound

The bound ln Z (θ) ≤ ln z + 1
2 (θ − θ̃)>Σ(θ − θ̃) + (θ − θ̃)>µ

is tight at θ̃ and holds for parameters given by

Input θ̃, f(y), h(y) ∀y ∈ Ω

Init z → 0+,µ = 0,Σ = zI
For each y ∈ Ω {
α = h(y) exp(θ̃>f(y))
r = f(y)− µ

Σ+=
tanh(1

2
ln(α/z))

2 ln(α/z) rr>

µ += α
z+αr

z += α }
Output z ,µ,Σ

−5 0 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

θ

lo
g(

Z
)

an
d

B
ou

nd
s

O(nd2) and update via θ ← θ̃ −Σ−1µ in O(d3).

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Partition Bound

Partition Function Bound

The bound ln Z (θ) ≤ ln z + 1
2 (θ − θ̃)>Σ(θ − θ̃) + (θ − θ̃)>µ

is tight at θ̃ and holds for parameters given by

Input θ̃, f(y), h(y) ∀y ∈ Ω

Init z → 0+,µ = 0,Σ = zI
For each y ∈ Ω {
α = h(y) exp(θ̃>f(y))
r = f(y)− µ

Σ+=
tanh(1

2
ln(α/z))

2 ln(α/z) rr>

µ += α
z+αr

z += α }
Output z ,µ,Σ

−5 0 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

θ

lo
g(

Z
)

an
d

B
ou

nd
s

O(nd2) and update via θ ← θ̃ −Σ−1µ in O(d3).

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Bound applications

Conditional Random Fields (CRFs)

Trained on iid data {(x1, y1), ..., (xt , yt)}
Each CRF is a log-linear model

p(y |xj ,θ) =
1

Zxj (θ)
hxj (y) exp(θ>fxj (y))

Regularized maximum likelihood objective is

J(θ) =
t∑

j=1

log
hxj (yj)

Zxj (θ)
+ θ>fxj (yj)−

tλ

2
‖θ‖2

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Bound applications

Maximum Likelihood Algorithm for CRFs

While not converged
For j = 1, . . . , t

Compute bound for µj ,Σj from hxj , fxj , θ̃

Set θ̃=arg minθ∈Λ
∑

j
1
2 (θ − θ̃)>(Σj +λI)(θ − θ̃)

+
∑

j θ
>(µj − fxj (yj) + λθ̃)

Theorem

The algorithm outputs a θ̂ such that

J(θ̂)−J(θ0) ≥ (1− ε) max
θ∈Λ

(J(θ)−J(θ0))

within
⌈

log
(

1
ε

)
/ log

(
1 + λ log n

2r2n
)
)⌉

steps.

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Bound applications

Maximum Likelihood Algorithm for CRFs

While not converged
For j = 1, . . . , t

Compute bound for µj ,Σj from hxj , fxj , θ̃

Set θ̃=arg minθ∈Λ
∑

j
1
2 (θ − θ̃)>(Σj +λI)(θ − θ̃)

+
∑

j θ
>(µj − fxj (yj) + λθ̃)

Theorem

The algorithm outputs a θ̂ such that

J(θ̂)−J(θ0) ≥ (1− ε) max
θ∈Λ

(J(θ)−J(θ0))

within
⌈

log
(

1
ε

)
/ log

(
1 + λ log n

2r2n
)
)⌉

steps.

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Experiments

Experiments - Markov CRFs

Bound admits low-rank version (O(tnd))
As in LBFGS, use rank-k storage Σ = VSV> + D
Absorb residual into diagonal D⇒ Low-rank is still a bound

Graphical models, e.g. Markov CRFs
Build junction tree and run a Collect algorithm
Only needs O(td2

∑
c |Yc |) rather than O(td2n)

CONLL dataset

Algorithm time passes

L-BFGS 1.00t 17

CG 3.47t 23

Bound 0.64t 4

Algorithm time passes

L-BFGS 1.00t 22

CG 5.94t 27

IIS ≥ 6.35t ≥ 150
Bound [W03]

Latent models
Objective function is non-concave: ratio of partition functions
Apply Jensen to numerator and our bound to denominator
Often better solution than BFGS, Newton, CG, SD, ...

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Experiments

Experiments - Markov CRFs

Bound admits low-rank version (O(tnd))
As in LBFGS, use rank-k storage Σ = VSV> + D
Absorb residual into diagonal D⇒ Low-rank is still a bound

Graphical models, e.g. Markov CRFs
Build junction tree and run a Collect algorithm
Only needs O(td2

∑
c |Yc |) rather than O(td2n)

CONLL dataset

Algorithm time passes

L-BFGS 1.00t 17

CG 3.47t 23

Bound 0.64t 4

Algorithm time passes

L-BFGS 1.00t 22

CG 5.94t 27

IIS ≥ 6.35t ≥ 150
Bound [W03]

Latent models
Objective function is non-concave: ratio of partition functions
Apply Jensen to numerator and our bound to denominator
Often better solution than BFGS, Newton, CG, SD, ...

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Experiments

Experiments - Markov CRFs

Bound admits low-rank version (O(tnd))
As in LBFGS, use rank-k storage Σ = VSV> + D
Absorb residual into diagonal D⇒ Low-rank is still a bound

Graphical models, e.g. Markov CRFs
Build junction tree and run a Collect algorithm
Only needs O(td2

∑
c |Yc |) rather than O(td2n)

CONLL dataset

Algorithm time passes

L-BFGS 1.00t 17

CG 3.47t 23

Bound 0.64t 4

Algorithm time passes

L-BFGS 1.00t 22

CG 5.94t 27

IIS ≥ 6.35t ≥ 150
Bound [W03]

Latent models
Objective function is non-concave: ratio of partition functions
Apply Jensen to numerator and our bound to denominator
Often better solution than BFGS, Newton, CG, SD, ...

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Experiments

Experiments - Markov CRFs

Bound admits low-rank version (O(tnd))
As in LBFGS, use rank-k storage Σ = VSV> + D
Absorb residual into diagonal D⇒ Low-rank is still a bound

Graphical models, e.g. Markov CRFs
Build junction tree and run a Collect algorithm
Only needs O(td2

∑
c |Yc |) rather than O(td2n)

CONLL dataset

Algorithm time passes

L-BFGS 1.00t 17

CG 3.47t 23

Bound 0.64t 4

Algorithm time passes

L-BFGS 1.00t 22

CG 5.94t 27

IIS ≥ 6.35t ≥ 150
Bound [W03]

Latent models
Objective function is non-concave: ratio of partition functions
Apply Jensen to numerator and our bound to denominator
Often better solution than BFGS, Newton, CG, SD, ...

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Experiments

Experiments - Latent models

Bounding also simplifies mixture models with hidden variables
(mixtures of Gaussians, HMMs, latent graphical models)
Assume exponential family mixture components (Gaussian,
multinomial, Poisson, Laplace)
Latent CRF or log-linear model [Quattoni et al. ’07]

L(θ) =
t∏

j=1

∑
m exp

(
θ>fj ,yj ,m

)∑
y ,m exp (θ>fj ,y ,m)

≥ Q(θ, θ̃)

Apply Jensen to numerator and our bound to denominator

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Experiments

Experiments - (Semi-)Stochastic Bound Majorization

Computing the bound is O(t)→ intractable for large t

Semi-stochastic: compute bound on data mini-batches

convergence to a stationary point under weak assumptions (in
particular convexity is not required)
linear convergence rate for logistic regression problem when
batch size grows sufficiently fast

Theorem

For each iteration we have (for any ε > 0)

J(θk)− J(θ∗) ≤
(

1− ρ

L

)k
[J(θ0)− J(θ∗)] +O(Ck) ,

with Ck = max{Bk , (1− ρ
L + ε)k} and Bk = ‖∇J(θ)|θ=θk − gk

T ‖2,
where T is the mini-batch.

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Experiments

Experiments - (Semi-)Stochastic Bound Majorization

Computing the bound is O(t)→ intractable for large t

Semi-stochastic: compute bound on data mini-batches

convergence to a stationary point under weak assumptions (in
particular convexity is not required)
linear convergence rate for logistic regression problem when
batch size grows sufficiently fast

Theorem

For each iteration we have (for any ε > 0)

J(θk)− J(θ∗) ≤
(

1− ρ

L

)k
[J(θ0)− J(θ∗)] +O(Ck) ,

with Ck = max{Bk , (1− ρ
L + ε)k} and Bk = ‖∇J(θ)|θ=θk − gk

T ‖2,
where T is the mini-batch.

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Experiments

Experiments - (Semi-)Stochastic Bound Majorization
Datasets: rcv1, adult, protein

5 10 15 20 25

10
−2

10
−1

Effective PassesO
bj

ec
tiv

e
m

in
us

 o
pt

im
um

 (
tr

ai
ni

ng
)

LBFGS
SGD
ASGD
SAG
SAGls
SQB

5 10 15 20
10

−1.8

10
−1.7

T
es

t l
og

is
tic

 lo
ss

Effective Passes

5 10 15 20 25
3

3.2

3.4

3.6

3.8

4

4.2

T
es

t
er

ro
r

[%
]

Effective Passes

5 10 15 20 25

10
−2

5 10 15 20 25

10
−1.433

10
−1.43

10
−1.427

10
−1.424

5 10 15 20 25
15.4

15.5

15.6

15.7

15.8

15.9

5 10 15 20 25
10

−4

10
−3

10
−2

5 10 15 20

10
−1.8

10
−1.7

5 10 15 20 25
0.26

0.28

0.3

0.32

0.34

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

How to design good objective
function?

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Multi-class classification problem

eXtreme multi-class classification problem

Problem setting

classification with large number of classes

data is accessed online

Goal:

good predictor with logarithmic training and testing time

reduction to tree-structured binary classification

top-down approach for class partitioning allowing gradient
descent style optimization

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Multi-class classification problem

What was already done...

Intractable

one-against-all [RK04]
variants of ECOC [DB95], e.g. PECOC [LB05]
clustering-based approaches [BWG10, WMY13]

Choice of partition not addressed

Filter Tree and error-correcting tournaments [BLR09]

Choice of partition addressed, but dedicated to conditional
probability estimation

conditional probability tree [BLLSS09]

Splitting criteria not well-suited to large class setting

decision trees [KM95]

. . .

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Splitting criterion

How do you learn the structure?

Not all partitions are equally difficult, e.g.
if you do {1, 7} vs {3, 8}, the next problem is hard;
if you do {1, 8} vs {3, 7}, the next problem is easy;
if you do {1, 3} vs {7, 8}, the next problem is easy.

[BWG10]: Better to confuse near leaves than near root.
Intuition: The root predictor tends to be overconstrained while
the leafwards predictors are less constrained.

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Splitting criterion

How do you learn the structure?

Not all partitions are equally difficult, e.g.
if you do {1, 7} vs {3, 8}, the next problem is hard;
if you do {1, 8} vs {3, 7}, the next problem is easy;
if you do {1, 3} vs {7, 8}, the next problem is easy.

[BWG10]: Better to confuse near leaves than near root.
Intuition: The root predictor tends to be overconstrained while
the leafwards predictors are less constrained.

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Splitting criterion

How do you learn the structure?

Our approach:

top-down approach for class partitioning

splitting criterion guaranteeing
balanced tree ⇒ logarithmic training and testing time
and
small classification error

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Splitting criterion

Pure split and balanced split

kr (x): number of data points in the same class as x on the
right side of the partitioning

k(x): total number of data points in the same class as x

nr : number of data points on the right side of the partitioning

n: total number of data points

Measure of balanceness: nr
n

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Splitting criterion

Pure split and balanced split

kr (x): number of data points in the same class as x on the
right side of the partitioning

k(x): total number of data points in the same class as x

nr : number of data points on the right side of the partitioning

n: total number of data points

Measure of balanceness: nr
n

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Splitting criterion

Pure split and balanced split

kr (x): number of data points in the same class as x on the
right side of the partitioning

k(x): total number of data points in the same class as x

nr : number of data points on the right side of the partitioning

n: total number of data points

Measure of balanceness: nr
n

Measure of purity: kr(x)
k(x)

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Splitting criterion

Pure split and balanced split

kr (x): number of data points in the same class as x on the
right side of the partitioning

k(x): total number of data points in the same class as x

nr : number of data points on the right side of the partitioning

n: total number of data points

Measure of balanceness: nr
n Measure of purity: kr(x)

k(x)

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Splitting criterion

Pure split and balanced split

k: number of classes
H: hypothesis class (typically: linear classifiers)

πy =
|Xy |
n

balance = Pr(h(x) > 0)
purity =

∑k
y=1 πy min(Pr(h(x) > 0|y),Pr(h(x) < 0|y))

Definition (Balanced split)

The hypothesis h ∈ H induces a balanced split iff

∃c∈(0,0.5]c ≤ balance ≤ 1− c .

Definition (Pure split)

The hypothesis h ∈ H induces a pure split iff

∃δ∈[0,0.5)purity ≤ δ.

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Splitting criterion

Pure split and balanced split

k: number of classes
H: hypothesis class (typically: linear classifiers)

πy =
|Xy |
n

balance = Pr(h(x) > 0)
purity =

∑k
y=1 πy min(Pr(h(x) > 0|y),Pr(h(x) < 0|y))

Definition (Balanced split)

The hypothesis h ∈ H induces a balanced split iff

∃c∈(0,0.5]c ≤ balance ≤ 1− c .

Definition (Pure split)

The hypothesis h ∈ H induces a pure split iff

∃δ∈[0,0.5)purity ≤ δ.

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Splitting criterion

Pure split and balanced split

k: number of classes
H: hypothesis class (typically: linear classifiers)

πy =
|Xy |
n

balance = Pr(h(x) > 0)
purity =

∑k
y=1 πy min(Pr(h(x) > 0|y),Pr(h(x) < 0|y))

Definition (Balanced split)

The hypothesis h ∈ H induces a balanced split iff

∃c∈(0,0.5]c ≤ balance ≤ 1− c .

Definition (Pure split)

The hypothesis h ∈ H induces a pure split iff

∃δ∈[0,0.5)purity ≤ δ.

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Splitting criterion

Objective function

J(h) = 2
k∑

y=1

πy |P(h(x) > 0)− P(h(x) > 0|y)|

= 2Ex ,y [|P(h(x) > 0)− P(h(x) > 0|y)|]

J(h) ⇒ Splitting criterion (objective function)

Given a set of n examples each with one of k labels, find a
partitioner h that maximizes the objective.

Lemma

For any hypothesis h : X 7→ {−1, 1}, the objective J(h) satisfies
J(h) ∈ [0, 1]. Furthermore, h induces a maximally pure and
balanced partition iff J(h) = 1.

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Splitting criterion

Balancing and purity factors

Balacing factor

balance ∈

[
1−

√
1− J(h)

2
,

1 +
√

1− J(h)

2

]

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

J(h)

y

y =
1−
√

1−J(h)

2

y =
1+
√

1−J(h)

2

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Splitting criterion

Balancing and purity factors

Purity factor

purity ≤ 2− J(h)

4 · balance
− balance

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

J(h)

y

balance = 1/2

y = 2−J (h)
4·balance − balance

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Boosting statement

What is the quality of obtained tree?

In each node of the tree T optimize the splitting criterion

Apply recursively to construct a tree structure

Measure the quality of the tree using entropy

GT =
∑

l∈leafs of T
wl

k∑
y=1

πl ,y ln

(
1

πl ,y

)
Why?

Small entropy of leafs ⇒ pure leafs

Goal: maximizing the objective reduces the entropy

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Boosting statement

What is the quality of obtained tree?

Definition (Weak Hypothesis Assumption)

Let m denotes any node of the tree T , and let βm = P(hm(x) > 0)
and Pm,i = P(hm(x) > 0|i). Furthermore, let γ ∈ R+ be such that
for all m, γ ∈ (0,min(βm, 1− βm)]. We say that the weak
hypothesis assumption is satisfied when for any distribution P over
X at each node m of the tree T there exists a hypothesis hm ∈ H
such that J(hm)/2 =

∑k
i=1 πm,i |Pm,i − βm| ≥ γ.

Theorem

Under the Weak Hypothesis Assumption, for any ε ∈ [0, 1], to

obtain GT ≤ ε it suffices to make
(

1
ε

) 4(1−γ)2ln k

γ2 splits.

Tree depth ≈ log

[(
1
ε

) 4(1−γ)2ln k

γ2

]
= O(ln k) ⇒

⇒ logarithmic training and testing time

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Boosting statement

What is the quality of obtained tree?

Definition (Weak Hypothesis Assumption)

Let m denotes any node of the tree T , and let βm = P(hm(x) > 0)
and Pm,i = P(hm(x) > 0|i). Furthermore, let γ ∈ R+ be such that
for all m, γ ∈ (0,min(βm, 1− βm)]. We say that the weak
hypothesis assumption is satisfied when for any distribution P over
X at each node m of the tree T there exists a hypothesis hm ∈ H
such that J(hm)/2 =

∑k
i=1 πm,i |Pm,i − βm| ≥ γ.

Theorem

Under the Weak Hypothesis Assumption, for any ε ∈ [0, 1], to

obtain GT ≤ ε it suffices to make
(

1
ε

) 4(1−γ)2ln k

γ2 splits.

Tree depth ≈ log

[(
1
ε

) 4(1−γ)2ln k

γ2

]
= O(ln k) ⇒

⇒ logarithmic training and testing time

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Online partitioning

LOMtree algorithm

Recall the objective function we consider at every tree node:

J(h) = 2Ey [|Ex [1(h(x) > 0)]− Ex [1(h(x) > 0|y)]|].

Problem: discrete optimization
Relaxation: drop the indicator operator and look at margins

The objective function becomes

J(h) = 2Ey [|Ex [h(x)]− Ex [h(x)|y]|]

Keep the online empirical estimates of these expectations.
The sign of the difference of two expectations decides whether
to send an example to the left or right child node.

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Online partitioning

LOMtree algorithm

Recall the objective function we consider at every tree node:

J(h) = 2Ey [|Ex [1(h(x) > 0)]− Ex [1(h(x) > 0|y)]|].

Problem: discrete optimization
Relaxation: drop the indicator operator and look at margins

The objective function becomes

J(h) = 2Ey [|Ex [h(x)]− Ex [h(x)|y]|]

Keep the online empirical estimates of these expectations.
The sign of the difference of two expectations decides whether
to send an example to the left or right child node.

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Online partitioning

LOMtree algorithm

Recall the objective function we consider at every tree node:

J(h) = 2Ey [|Ex [1(h(x) > 0)]− Ex [1(h(x) > 0|y)]|].

Problem: discrete optimization
Relaxation: drop the indicator operator and look at margins

The objective function becomes

J(h) = 2Ey [|Ex [h(x)]− Ex [h(x)|y]|]

Keep the online empirical estimates of these expectations.
The sign of the difference of two expectations decides whether
to send an example to the left or right child node.

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Online partitioning

LOMtree algorithm

Let e = 0 and for all y , ey = 0, ny = 0
For each example (x , y)

if ey < e then b = −1 else b = 1

Update w using (x , b)

ny ← ny + 1

ey ← (ny−1)ey
ny

+ w .x
ny

e ← (n−1)e
n + w .x

n

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Online partitioning

LOMtree algorithm

Let e = 0 and for all y , ey = 0, ny = 0
For each example (x , y)

if ey < e then b = −1 else b = 1

Update w using (x , b)

ny ← ny + 1

ey ← (ny−1)ey
ny

+ w .x
ny

e ← (n−1)e
n + w .x

n

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Online partitioning

LOMtree algorithm

Let e = 0 and for all y , ey = 0, ny = 0
For each example (x , y)

if ey < e then b = −1 else b = 1

Update w using (x , b)

ny ← ny + 1

ey ← (ny−1)ey
ny

+ w .x
ny

e ← (n−1)e
n + w .x

n

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Online partitioning

LOMtree algorithm

Let e = 0 and for all y , ey = 0, ny = 0
For each example (x , y)

if ey < e then b = −1 else b = 1

Update w using (x , b)

ny ← ny + 1

ey ← (ny−1)ey
ny

+ w .x
ny

e ← (n−1)e
n + w .x

n

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Online partitioning

LOMtree algorithm

Let e = 0 and for all y , ey = 0, ny = 0
For each example (x , y)

if ey < e then b = −1 else b = 1

Update w using (x , b)

ny ← ny + 1

ey ← (ny−1)ey
ny

+ w .x
ny

e ← (n−1)e
n + w .x

n

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Online partitioning

LOMtree algorithm

Let e = 0 and for all y , ey = 0, ny = 0
For each example (x , y)

if ey < e then b = −1 else b = 1

Update w using (x , b)

ny ← ny + 1

ey ← (ny−1)ey
ny

+ w .x
ny

e ← (n−1)e
n + w .x

n

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Online partitioning

LOMtree algorithm

Let e = 0 and for all y , ey = 0, ny = 0
For each example (x , y)

if ey < e then b = −1 else b = 1

Update w using (x , b)

ny ← ny + 1

ey ← (ny−1)ey
ny

+ w .x
ny

e ← (n−1)e
n + w .x

n

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Online partitioning

LOMtree algorithm

Let e = 0 and for all y , ey = 0, ny = 0
For each example (x , y)

if ey < e then b = −1 else b = 1

Update w using (x , b)

ny ← ny + 1

ey ← (ny−1)ey
ny

+ w .x
ny

e ← (n−1)e
n + w .x

n

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Online partitioning

LOMtree algorithm

Let e = 0 and for all y , ey = 0, ny = 0
For each example (x , y)

if ey < e then b = −1 else b = 1

Update w using (x , b)

ny ← ny + 1

ey ← (ny−1)ey
ny

+ w .x
ny

e ← (n−1)e
n + w .x

n

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Online partitioning

LOMtree algorithm

Let e = 0 and for all y , ey = 0, ny = 0
For each example (x , y)

if ey < e then b = −1 else b = 1

Update w using (x , b)

ny ← ny + 1

ey ← (ny−1)ey
ny

+ w .x
ny

e ← (n−1)e
n + w .x

n

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Online partitioning

LOMtree algorithm

Let e = 0 and for all y , ey = 0, ny = 0
For each example (x , y)

if ey < e then b = −1 else b = 1

Update w using (x , b)

ny ← ny + 1

ey ← (ny−1)ey
ny

+ w .x
ny

e ← (n−1)e
n + w .x

n

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Online partitioning

LOMtree algorithm

Let e = 0 and for all y , ey = 0, ny = 0
For each example (x , y)

if ey < e then b = −1 else b = 1

Update w using (x , b)

ny ← ny + 1

ey ← (ny−1)ey
ny

+ w .x
ny

e ← (n−1)e
n + w .x

n

Apply recursively to
construct a tree structure.

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Online partitioning

LOMtree algorithm

Let e = 0 and for all y , ey = 0, ny = 0
For each example (x , y)

if ey < e then b = −1 else b = 1

Update w using (x , b)

ny ← ny + 1

ey ← (ny−1)ey
ny

+ w .x
ny

e ← (n−1)e
n + w .x

n

Apply recursively to
construct a tree structure.

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Online partitioning

LOMtree algorithm

Let e = 0 and for all y , ey = 0, ny = 0
For each example (x , y)

if ey < e then b = −1 else b = 1

Update w using (x , b)

ny ← ny + 1

ey ← (ny−1)ey
ny

+ w .x
ny

e ← (n−1)e
n + w .x

n

Apply recursively to
construct a tree structure.

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Experiments

Experiments

Table : Training time on selected problems.
Isolet Sector Aloi

LOMtree 16.27s 12.77s 51.86s
OAA 19.58s 18.37s 11m2.43s

Table : Per-example test time on all problems.
Isolet Sector Aloi ImNet ODP

LOMtree 0.14ms 0.13ms 0.06ms 0.52ms 0.26ms
OAA 0.16 ms 0.24ms 0.33ms 0.21s 1.05s

Table : Test error (%) and confidence interval on all problems.

LOMtree Rtree Filter tree

Isolet (26) 6.36±1.71 16.92±2.63 15.10±2.51

Sector (105) 16.19±2.33 15.77±2.30 17.70±2.41

Aloi (1000) 16.50±0.70 83.74±0.70 80.50±0.75

ImNet (22K) 90.17±0.05 96.99±0.03 92.12±0.04

ODP (105K) 93.46±0.12 93.85±0.12 93.76±0.12

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Experiments

Experiments

26 105 1000 21841 105033
0

0.2

0.4

0.6

0.8

1

number of classes

ac
cu

ra
cy

LOMtree vs one−against−all

OAA
LOMtree

6 8 10 12 14 16

2

4

6

8

10

12

log
2
(number of classes)

lo
g

2(t
im

e
ra

tio
)

LOMtree vs one−against−all

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

How to understand non-convex
optimization?

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Deep learning: motivation and challenges

Why non-convex optimization and deep learning?

State-of-the art results on number of problems:

image recognition [KSH12, CMGS10]

speech recognition [HDYDMJSVNSK12, GMH13]

natural language processing [WCA14]

video recognition [KTSLSF-F14, SZ14]

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Deep learning: motivation and challenges

Why non-convex optimization and deep learning?

ImageNet 2014 Challenge: mostly convolutional networks

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Deep learning: motivation and challenges

Challenge

Goal: Understanding loss function in deep learning.

Recent related works: Choromanska et al., 2015, Goodfellow et
al., 2015, Dauphin et al., 2014, Saxe et al., 2014.

Questions:

Why the result of multiple experiments with multilayer
networks consistently give very similar performance despite
the presence of many local minima?

What is the role of saddle points in the optimization problem?

Is the surface of the loss function of multilayer networks
structured?

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Deep learning: motivation and challenges

Challenge

Goal: Understanding loss function in deep learning.

Recent related works: Choromanska et al., 2015, Goodfellow et
al., 2015, Dauphin et al., 2014, Saxe et al., 2014.

Questions:

Why the result of multiple experiments with multilayer
networks consistently give very similar performance despite
the presence of many local minima?

What is the role of saddle points in the optimization problem?

Is the surface of the loss function of multilayer networks
structured?

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Deep learning: motivation and challenges

Challenge

Goal: Understanding loss function in deep learning.

Recent related works: Choromanska et al., 2015, Goodfellow et
al., 2015, Dauphin et al., 2014, Saxe et al., 2014.

Questions:

Why the result of multiple experiments with multilayer
networks consistently give very similar performance despite
the presence of many local minima?

What is the role of saddle points in the optimization problem?

Is the surface of the loss function of multilayer networks
structured?

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Deep learning: motivation and challenges

Challenge

Goal: Understanding loss function in deep learning.

Recent related works: Choromanska et al., 2015, Goodfellow et
al., 2015, Dauphin et al., 2014, Saxe et al., 2014.

Questions:

Why the result of multiple experiments with multilayer
networks consistently give very similar performance despite
the presence of many local minima?

What is the role of saddle points in the optimization problem?

Is the surface of the loss function of multilayer networks
structured?

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Deep learning: motivation and challenges

Multilayer network and spin-glass model

Can we use the spin-glass theory to explain the optimization
paradigm with large multilayer networks?

What assumptions need to be made?

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Deep learning: motivation and challenges

Multilayer network and spin-glass model

Can we use the spin-glass theory to explain the optimization
paradigm with large multilayer networks?

What assumptions need to be made?

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Non-convex loss function in deep learning

Loss function in deep learning and assumptions

X1

X2

.

Xd

1

2

. . .

n1

1

2

. . .

n2

. . .

1

2

. . .

nH

Y

Y =
1

Λ(H−1)/2

Ψ∑
i=1

XiAi

H∏
k=1

w
(k)
i ,

Ψ - number of input-output paths, Λ = H
√

Ψ (assume Λ ∈ Z+)

H − 1 - number of hidden layers

w
(k)
i - the weight of the kth segment of the i th path

Ai - Bernoulli r.v. denoting path activation (0/1)

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Non-convex loss function in deep learning

Loss function in deep learning and assumptions

Consider hinge loss

L(w) = max(0, 1− YtY),

where Yt corresponds to the true data labeling (1/− 1), and w
denotes all network weights.

max operator is often modeled as Bernoulli r.v. (0/1). Denote
it as M and its expectation as ρ

′
. Therefore

L(w) = M(1− YtY) = M +
1

Λ(H−1)/2

Ψ∑
i=1

Zi Ii

H∏
k=1

w
(k)
i , (1)

where Zi = −YtXi , and Ii = MAi is a Bernoulli r.v. (0/1).

assume I1, I2, . . . , IΨ are identically distributed (A1p)

assume each Xi is a standard Gaussian r.v. (A2p)

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Non-convex loss function in deep learning

Loss function in deep learning and assumptions

assume network parametrization is redundant (A3p)

assume unique parameters are uniformly distributed on the
graph of connections of the network (A4p), i.e. every
H-length product of unique weights appears in Equation 1
(the set of all products is {wi1wi2 . . .wiH}Λ

i1,i2,...,iH=1).

L(w) = M +
1

Λ(H−1)/2

Λ∑
i1,i2,...,iH=1

Zi1,i2,...,iH Ii1,i2,...,iH wi1wi2 . . .wiH .

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Non-convex loss function in deep learning

Loss function in deep learning and assumptions

Definition

A network M which has the same graph of connections as network
N , whose size is N, and s unique weights satisfying s ≤ N is called
a (s, ε)-reduction image of N for some ε ∈ [0, 1] if the prediction
accuracy of N and M differ by no more than ε (thus they classify
at most ε fraction of data points differently).

Theorem

Let N be a neural network giving the output whose expectation
wrt. A’s is YN . Let M be its (s, ε)-reduction image for some
s ≤ N and ε ∈ [0, 0.5]. By analogy, let Ys be the expected output
of network M. Then the following holds

corr(sign(Ys), sign(YN)) ≥ 1− 2ε

1 + 2ε
,

where corr(A,B) = E[(A−E[A]])(B−E[B]])
std(A)std(B) , std is the standard

deviation and sign(·) denotes the sign of prediction.

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Non-convex loss function in deep learning

Loss function in deep learning and assumptions

assume the independence of Zi1,i2,...,iH and Ii1,i2,...,iH (A5u)

EM,I1,I2,...,IΨ [L(w)] = ρ
′

+ ρ
1

Λ(H−1)/2

Λ∑
i1,i2,...,iH=1

Zi1,i2,...,iH wi1wi2 . . .wiH︸ ︷︷ ︸
LΛ,H

.

assume that Z ’s are independent (A6u)
impose spherical constraint (A7p)

1

Λ

Λ∑
i=1

w 2
i = 1.

We obtain the Hamiltonian of the spherical spin-glass
model!!!

Question: What happens when Λ→∞?

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Spherical spin-glass model

Important quantities

Definition

Let the following quantity be called an energy barrier

E∞ = E∞(H) = 2

√
H − 1

H
.

Definition

Let the normalized minimum of the Hamiltonian LΛ,H be called a
ground state and be defined as

E0 =
1

Λ
inf

σ∈SN−1(
√

Λ)
LΛ,H(σ).

Let (Ek(H))k∈N be a strictly decreasing sequence, that is
converging to E∞ as k →∞.

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Spherical spin-glass model

Hamiltonian of the spherical spin-glass model: properties

All critical values of the Hamiltonian of fixed index1 (non
diverging with Λ) must lie in the band (−ΛE0(H),−ΛE∞(H)).

Finding a critical value with index larger or equal to k (for any
fixed integer k) below energy level −ΛEk(H) is improbable.

With overwhelming probability the critical values just above
the global minimum (ground state) are local minima
exclusively. Above the band (−ΛE0(H),−ΛE1(H)) containing
only local minima (critical points of index 0), there is another
one, (−ΛE1(H),−ΛE2(H)), where one can only find local
minima and saddle points of index 1, and above this band
there exists another one, (−ΛE2(H),−ΛE3(H)), where one
can only find local minima and saddle points of index 1 and 2,
and so on.

1Index of ∇2L at w is the number of negative eigenvalues of the Hessian
∇2L at w. Local minima have index 0.

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Spherical spin-glass model

Hamiltonian of the spherical spin-glass model: properties

−1500 −1000 −500 0
0

1

2

3
x 10

151

Λ u

M
ea

n
nu

m
be

r
of

 c

rit
ic

al
 p

oi
nt

s

−Λ E
0

−Λ E
inf

−1655−1650−1645−1640−1635
0

0.5

1

1.5

2

2.5
x 10

8

Λ u

M
ea

n
nu

m
be

r
of

 lo
w

−
in

de
x

 c
rit

ic
al

 p
oi

nt
s

k=0
k=1
k=2
k=3
k=4
k=5
−Λ E

0

−Λ E
inf

−1650 −1645 −1640

0.5

1

1.5

2

2.5
x 10

7

Λ u

M
ea

n
nu

m
be

r
of

 lo
w

−
in

de
x

 c
rit

ic
al

 p
oi

nt
s

(z
oo

m
ed

)

−1635 −1634 −1633 −1632
0

0.5

1

1.5

2

2.5
x 10

8

Λ u

M
ea

n
nu

m
be

r
of

 lo
w

−
in

de
x

 c
rit

ic
al

 p
oi

nt
s

(z
oo

m
ed

)

Figure : H = 3 and Λ = 1000. Black line: u = −ΛE0(H), red line:
u = −ΛE∞(H).

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Deep networks versus spherical spin-glass models

Comparison of deep network and spherical spin-glass model

0

25

50

75

100

125

−1.6 −1.5 −1.4 −1.3
loss

co
un

t

Lambda
25
50
100
250
500

0

20

40

60

0.08 0.09 0.10

loss

co
un

t

nhidden
25
50
100
250
500

10 25 50 100 250 500

0.
10

0.
15

0.
20

0.
25

nhidden

te
st

 lo
ss

10 25 50 100

0.
10

0.
15

0.
20

0.
25

nhidden

te
st

 lo
ss

0 100 200 300 400 500

0.
10

0.
15

0.
20

nhidden

te
st

 lo
ss

 m
ea

n

0 100 200 300 400 5000e
+

00
3e

−
05

6e
−

05

nhidden

te
st

 lo
ss

 v
ar

ia
nc

e

Figure : H = 3 and Λ = 1000. Black line: u = −ΛE0(H), red line:
u = −ΛE∞(H).

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Deep networks versus spherical spin-glass models

Deep network: correlation between train and test loss

a) n1 = 2 b) n1 = 5 c) n1 = 10 d) n1 = 25

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●
●

●

●
●
●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●●●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

● ●

●

●●●

●

●

●

● ●

●

●●
●

●

●

●

●
●

●

●

●
●

●
●

●
●●

●
●

●

●
●

●

●

●●●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●
●

●
●●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

● ●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●
●

●

●

●

●●
●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●
●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●
●

●
●

●●

●
●

● ●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●● ●

●

●
●

●

●●

●

●

●
●

●

●●
●

●

●

●

●

●●
●

●

●

●

●●●

●
●●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●●●

● ●

●

●

●●

●

●

●

●

●

●●

1.0 1.1 1.2 1.3 1.4 1.5 1.6

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

train loss

te
st

 lo
ss

●

●

●

●

●
●●

●

●
●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

● ●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●
●

●

●

● ●
●●

●

●
●

●

●

●

●

●
●

●●●

●

●

●

●
●

●

●

●●
●● ●● ●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●
●

●

●

●

●

●

● ●

●
●

●
● ●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●●

●
●

●
●●

●
●●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●● ●

●

●

●

●

●

●●

● ●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
● ●

●

●

●

●

●
●

●
●

●
●

●

●

●● ●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●● ●
●

●

●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●
●●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●
●

●●

●

0.38 0.40 0.42 0.44 0.46 0.48 0.50

0.
40

0.
45

0.
50

train loss

te
st

 lo
ss

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

● ●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

0.21 0.22 0.23 0.24 0.25

0.
20

0.
21

0.
22

0.
23

0.
24

0.
25

train loss

te
st

 lo
ss

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

● ●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.115 0.120 0.125 0.130 0.135

0.
12

0
0.

12
5

0.
13

0
0.

13
5

0.
14

0
0.

14
5

train loss

te
st

 lo
ss

e) n1 = 50 f) n1 = 100 g) n1 = 250 h) n1 = 500

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

0.085 0.090 0.095 0.100

0.
09

5
0.

10
0

0.
10

5
0.

11
0

train loss

te
st

 lo
ss

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

0.074 0.076 0.078 0.0800.
08

2
0.

08
6

0.
09

0
0.

09
4

train loss

te
st

 lo
ss

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

● ●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

0.065 0.066 0.067 0.068 0.069

0.
07

8
0.

08
0

0.
08

2
0.

08
4

train loss

te
st

 lo
ss

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●
● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

● ●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

0.0615 0.0620 0.0625 0.0630 0.0635

0.
07

5
0.

07
6

0.
07

7
0.

07
8

0.
07

9
0.

08
0

train loss

te
st

 lo
ss

n1 25 50 100 250 500

ρ 0.7616 0.6861 0.5983 0.5302 0.4081

Table : Pearson correlation between training and test loss.

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Deep networks versus spherical spin-glass models

Deep network: index of recovered solutions

a)

nhidden=10

normalized index

F
re

qu
en

cy

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025

0
20

0
40

0
60

0
80

0

b)

nhidden=25

normalized index

F
re

qu
en

cy

0.000 0.005 0.010 0.015

0
20

0
40

0
60

0
80

0

c)

nhidden=50

normalized index

F
re

qu
en

cy

0.000 0.001 0.002 0.003 0.004 0.005

0
20

0
40

0
60

0
80

0

d)

nhidden=100

normalized index

F
re

qu
en

cy

0e+00 1e−04 2e−04 3e−04 4e−04
0

50
10

0
15

0
20

0
25

0

Figure : Distribution of normalized index of solutions for
n1 = {a)10, b)25, c)50, d)100} hidden units.

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Understanding non-convex deep learning optimization

Spherical spin-glass versus deep network

Conjecture (Deep learning)

For large-size networks, most local minima are equivalent and yield
similar performance on a test set.

Spherical spin-glass
Critical points form an ordered structure such that there exists an
energy barrier ΛE−∞ (a certain value of the Hamiltonian) below
which with overwhelming probability one can find only low-index
critical points, most of which are concentrated close to the barrier.

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Understanding non-convex deep learning optimization

Spherical spin-glass versus deep network

Conjecture (Deep learning)

The probability of finding a “bad” (high value) local minimum is
non-zero for small-size networks and decreases quickly with
network size.

Spherical spin-glass
Low-index critical points are ’geometrically’ lying closer to the
ground state than high-index critical points.

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Understanding non-convex deep learning optimization

Spherical spin-glass versus deep network

Conjecture (Deep learning)

Saddle points play a key-role in the optimization problem in deep
learning.

Spherical spin-glass
With overwhelming probability one can find only high-index saddle
points above energy ΛE−∞ and there are exponentially many of
those.

−1500 −1000 −500 0
0

1

2

3
x 10

151

Λ u

M
ea

n
nu

m
be

r
of

 c

rit
ic

al
 p

oi
nt

s

−Λ E
0

−Λ E
inf

−1655−1650−1645−1640−1635
0

0.5

1

1.5

2

2.5
x 10

8

Λ u

M
ea

n
nu

m
be

r
of

 lo
w

−
in

de
x

 c
rit

ic
al

 p
oi

nt
s

k=0
k=1
k=2
k=3
k=4
k=5
−Λ E

0

−Λ E
inf

Figure : H = 3 and Λ = 1000. Black line: u = −ΛE0(H) (ground state),
red line: u = −ΛE∞(H) (energy barrier).

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Understanding non-convex deep learning optimization

Spherical spin-glass versus deep network

Conjecture (Deep learning)

Struggling to find the global minimum on the training set (as
opposed to one of the many good local ones) is not useful in
practice and may lead to overfitting.

n1 25 50 100 250 500

ρ 0.7616 0.6861 0.5983 0.5302 0.4081

Table : Pearson correlation between training and test loss for different
numbers of hidden units of a network with one hidden layer. MNIST
dataset.

Spherical spin-glass
Recovering the ground state, i.e. global minimum, takes
exponentially long time.

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Understanding non-convex deep learning optimization

Take-home message

For large-size networks, most local minima are equivalent and
yield similar performance on a test set.

The probability of finding a “bad” (high value) local minimum
is non-zero for small-size networks and decreases quickly with
network size.

Struggling to find the global minimum on the training set (as
opposed to one of the many good local ones) is not useful in
practice and may lead to overfitting.

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Understanding non-convex deep learning optimization

Open problem

Can we establish a stronger connection between the loss
function of the deep model and the spherical spin-glass

model by dropping the unrealistic assumptions?

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Conclusions

Convexity and non-convexity: challenges

Convex and non-convex world
Building solvers, i.e. bound majorization

New and tight quadratic bound on the partition function
Linear convergence of the batch/semi-stochastic variants
Competetive/better than state-of-the-art methods
Admits multiple extensions

Designing problem-specific, i.e. multi-classification, objectives
Logarithmic training and testing time
Reduction from multi-class to binary classification
New splitting criterion with desirable properties

allows gradient descent style optimization
makes decision trees applicable to multi-class classification

Non-convex world
Understading why non-convex approaches work

Deep learning: state-of-the-art in numerous problems
Possible connection between spin-glass theory and deep
learning
Landscape is highly non-convex but most likely structured

Intro Convex solver: bound majorization (Convex) objective: multi-classification Non-convexity: deep learning Summary

Conclusions

Acknowledgments

Courant Institute of Mathematical Sciences: Yann LeCun,
Gérard Ben Arous
Columbia University: Tony Jebara, Shih-Fu Chang
George Washington University: Claire Monteleoni
NYU Polytechnic School of Engineering: Mariusz Bojarski
Microsoft Research: John Langford, Alekh Agarwal
Google Research: Krzysztof Choromanski, Dimitri Kanevsky
IBM T. J.Watson Research Center: Aleksandr Aravkin
ATT Shannon Research Laboratories: Phyllis Weiss, Alice Chen
LEAR team of Inria: Zaid Harchaoui

PostDocs: Pablo Sprechmann
PhD students: Michael Mathieu, Mikael Bruce Henaff, Sixin
Zhang, Ross Goroshin, Rahul Krishnan, Wojciech Zaremba,
Hyungtae Kim

	Intro
	Convex solver: bound majorization
	Optimization solvers
	Majorization
	Partition Bound
	Bound applications
	Experiments

	(Convex) objective: multi-classification
	Multi-class classification problem
	Splitting criterion
	Boosting statement
	Online partitioning
	Experiments

	Non-convexity: deep learning
	Deep learning: motivation and challenges
	Non-convex loss function in deep learning
	Spherical spin-glass model
	Deep networks versus spherical spin-glass models
	Understanding non-convex deep learning optimization

	Summary
	Conclusions

