# Convex and non-convex worlds in machine learning 

## Anna Choromanska

Courant Institute of Mathematical Sciences
New York University

## Convex and non-convex worlds

Machine learning and optimization - many machine learning problems are formulated as minimization of some loss function on a training set of examples. Loss functions expresses the discrepancy between the predictions of the model being trained and the actual problem instances. Optimization algorithms can then minimize this loss. (Wikipedia)

## Convex and non-convex worlds

Machine learning and optimization - many machine learning problems are formulated as minimization of some loss function on a training set of examples. Loss functions expresses the discrepancy between the predictions of the model being trained and the actual problem instances. Optimization algorithms can then minimize this loss. (Wikipedia)

## Convex world

local $\min =$ global min strictly convex: unique min efficient solvers
strong theoretical guarantees

## Convex and non-convex worlds

Machine learning and optimization - many machine learning problems are formulated as minimization of some loss function on a training set of examples. Loss functions expresses the discrepancy between the predictions of the model being trained and the actual problem instances. Optimization algorithms can then minimize this loss. (Wikipedia)

## Convex world

local min $=$ global min strictly convex: unique min efficient solvers strong theoretical guarantees

## Non-convex world

multiple local $\mathbf{m i n} \neq$ global min many solvers come from convex world weak theoretical guarantees if any

## Layout of the talk

Optimization solvers: generic optimization vs bound majorization partition function-based objectives
Design (convex) solver: quadratic bound majorization [JC12, CKJ12, ACJK14]

## Layout of the talk

Optimization solvers: generic optimization vs bound majorization partition function-based objectives
Design (convex) solver: quadratic bound majorization [JC12, CKJ12, ACJK14]

Challenging problems: multi-class classification
Design objective: statistical and computational constraints online multi-class partition trees for logarithmic time predictions [CL14, CAL13, CCB15, CCJM15, CCJM13, CJKMM13, BCCL15, CM12]

## Layout of the talk

Optimization solvers: generic optimization vs bound majorization partition function-based objectives
Design (convex) solver: quadratic bound majorization [JC12, CKJ12, ACJK14]

Challenging problems: multi-class classification
Design objective: statistical and computational constraints online multi-class partition trees for logarithmic time predictions [CL14, CAL13, CCB15, CCJM15, CCJM13, CJKMM13, BCCL15, CM12]

Non-convex problems: deep learning highly non-convex objective
Build understanding: new theoretical results [CHMCL15, CLB15, ZCL15]

## How to build good efficient convex solver?

## Optimization solvers

## Generic optimization techniques and majorization methods

- Batch
- steepest descent
- conjugate gradient
- Newton
- (L)BFGS [B70]
- Stochastic
- SGD [RB51]
- ASGD [PJ92]
- SAG [LRSB12]
- SDCA [SSZ13]
- SVRG [JZ13]
- Semi-stochastic
- hybrid deterministic-stochastic methods [FS12]
- Majorization methods
- MISO [M13]
- iterative scaling [DR72]
- EM [DLR77]
- Quadratic lower bound principle [BL88]


## Majorization

## Bound majorization

If cost function $\boldsymbol{\theta}^{*}=\arg \min _{\boldsymbol{\theta}} C(\boldsymbol{\theta})$ has no closed form solution Majorization uses a surrogate $Q$ with closed form solution Monotonically improves from initial $\boldsymbol{\theta}_{0}$

- Find bound $Q\left(\boldsymbol{\theta}, \boldsymbol{\theta}_{i}\right) \geq C(\boldsymbol{\theta})$ where $Q\left(\boldsymbol{\theta}_{i}, \boldsymbol{\theta}_{i}\right)=C\left(\boldsymbol{\theta}_{\boldsymbol{i}}\right)$
- Update $\boldsymbol{\theta}_{i+1}=\arg \min _{\boldsymbol{\theta}} Q\left(\boldsymbol{\theta}, \boldsymbol{\theta}_{i}\right)$
- Repeat until converged



## Majorization

## Bound majorization

If cost function $\boldsymbol{\theta}^{*}=\arg \min _{\boldsymbol{\theta}} C(\boldsymbol{\theta})$ has no closed form solution Majorization uses a surrogate $Q$ with closed form solution Monotonically improves from initial $\boldsymbol{\theta}_{0}$

- Find bound $Q\left(\boldsymbol{\theta}, \boldsymbol{\theta}_{i}\right) \geq C(\boldsymbol{\theta})$ where $Q\left(\boldsymbol{\theta}_{i}, \boldsymbol{\theta}_{i}\right)=C\left(\boldsymbol{\theta}_{i}\right)$
- Update $\boldsymbol{\theta}_{i+1}=\arg \min _{\boldsymbol{\theta}} Q\left(\boldsymbol{\theta}, \boldsymbol{\theta}_{i}\right)$
- Repeat until converged



## Majorization

## Bound majorization

If cost function $\boldsymbol{\theta}^{*}=\arg \min _{\boldsymbol{\theta}} C(\boldsymbol{\theta})$ has no closed form solution Majorization uses a surrogate $Q$ with closed form solution Monotonically improves from initial $\boldsymbol{\theta}_{0}$

- Find bound $Q\left(\boldsymbol{\theta}, \boldsymbol{\theta}_{i}\right) \geq C(\boldsymbol{\theta})$ where $Q\left(\boldsymbol{\theta}_{i}, \boldsymbol{\theta}_{i}\right)=C\left(\boldsymbol{\theta}_{i}\right)$
- Update $\boldsymbol{\theta}_{i+1}=\arg \min _{\boldsymbol{\theta}} Q\left(\boldsymbol{\theta}, \boldsymbol{\theta}_{i}\right)$
- Repeat until converged



# Generic optimization techniques vs majorization methods 

Majorization methods preferred until [W03, AG07].
...Why? Slower than other optimizers, because of loose \& complicated bounds.

Let's fix this!!!

## Partition Function

Log-linear model partition functions

$$
z(\boldsymbol{\theta})=\sum_{y} h(y) \exp \left(\boldsymbol{\theta}^{\top} \mathbf{f}(y)\right)
$$

Partition function ensures that $p(y \mid \boldsymbol{\theta})$ normalizes.
It is a central quantity to optimize in

- maximum likelihood and e-family [P36]
- maximum entropy [J57]
- conditional random fields [LMP01]
- log-linear models [DR72]
- graphical models, HMMs [JGJS99].

Problem: it's ugly to minimize, we much prefer quadratics

## Partition Function Bound

The bound $\ln Z(\boldsymbol{\theta}) \leq \ln z+\frac{1}{2}(\boldsymbol{\theta}-\tilde{\boldsymbol{\theta}})^{\top} \boldsymbol{\Sigma}(\boldsymbol{\theta}-\tilde{\boldsymbol{\theta}})+(\boldsymbol{\theta}-\tilde{\boldsymbol{\theta}})^{\top} \boldsymbol{\mu}$ is tight at $\tilde{\boldsymbol{\theta}}$ and holds for parameters given by

| Input $\tilde{\boldsymbol{\theta}}, \mathbf{f}(y), h(y) \forall y \in \Omega$ |
| :--- |
| nnit $z \rightarrow 0^{+}, \boldsymbol{\mu}=\mathbf{0}, \boldsymbol{\Sigma}=\boldsymbol{z}$ |
| For each $y \in \Omega\{$ |
| $\alpha=h(y) \exp \left(\tilde{\boldsymbol{\theta}}^{\top} \mathbf{f}(y)\right)$ |
| $\mathbf{r}=\mathbf{f}(y)-\boldsymbol{\mu}$ |
| $\boldsymbol{\Sigma}+=\frac{\tanh \left(\frac{1}{2} \ln (\alpha / z)\right)}{2 \ln (\alpha / z)} \mathbf{r r}^{\top}$ |
| $\boldsymbol{\mu}+=\frac{\alpha}{z+\alpha} \mathbf{r}$ |
| $\boldsymbol{z}+=\alpha \quad\}$ |
| Output $\boldsymbol{z}, \boldsymbol{\mu}, \boldsymbol{\Sigma}$ |



## Partition Function Bound

The bound $\ln Z(\boldsymbol{\theta}) \leq \ln z+\frac{1}{2}(\boldsymbol{\theta}-\tilde{\boldsymbol{\theta}})^{\top} \boldsymbol{\Sigma}(\boldsymbol{\theta}-\tilde{\boldsymbol{\theta}})+(\boldsymbol{\theta}-\tilde{\boldsymbol{\theta}})^{\top} \boldsymbol{\mu}$ is tight at $\tilde{\boldsymbol{\theta}}$ and holds for parameters given by

$$
\begin{array}{|l|l|}
\hline \text { Input } \tilde{\boldsymbol{\theta}}, \mathbf{f}(y), h(y) \forall y \in \Omega & \\
\left.\hline \begin{array}{l}
\text { Init } \boldsymbol{z} \rightarrow 0^{+}, \boldsymbol{\mu}=\mathbf{0}, \boldsymbol{\Sigma}=\boldsymbol{\mathbf { l }} \\
\text { For each } \boldsymbol{y} \in \Omega\{ \\
\alpha=h(y) \exp \left(\tilde{\boldsymbol{\theta}}^{\top} \mathbf{f}(y)\right) \\
\mathbf{r}=\mathbf{f}(y)-\boldsymbol{\mu} \\
\boldsymbol{\Sigma}+=\frac{\tanh \left(\frac{1}{2} \ln (\alpha / z)\right)}{2 \ln (\alpha / z)} \mathbf{r r}^{\top} \\
\boldsymbol{\mu}+=\frac{\alpha}{z+\alpha} \mathbf{r} \\
\boldsymbol{z}+=\alpha
\end{array}\right\} \\
\hline \text { Output } \boldsymbol{z}, \boldsymbol{\mu}, \boldsymbol{\Sigma} \\
\mathcal{O}\left(n d^{2}\right) \text { and update via } \boldsymbol{\theta} \leftarrow \tilde{\boldsymbol{\theta}}-\boldsymbol{\Sigma}^{-1} \boldsymbol{\mu} \text { in } \mathcal{O}\left(d^{3}\right) \text {. }
\end{array}
$$

## Bound applications

## Conditional Random Fields (CRFs)

- Trained on iid data $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{t}, y_{t}\right)\right\}$
- Each CRF is a log-linear model

$$
p\left(y \mid x_{j}, \boldsymbol{\theta}\right)=\frac{1}{Z_{x_{j}}(\boldsymbol{\theta})} h_{x_{j}}(y) \exp \left(\boldsymbol{\theta}^{\top} \mathbf{f}_{x_{j}}(y)\right)
$$

- Regularized maximum likelihood objective is

$$
J(\boldsymbol{\theta})=\sum_{j=1}^{t} \log \frac{h_{x_{j}}\left(y_{j}\right)}{Z_{x_{j}}(\boldsymbol{\theta})}+\boldsymbol{\theta}^{\top} \mathbf{f}_{x_{j}}\left(y_{j}\right)-\frac{t \lambda}{2}\|\boldsymbol{\theta}\|^{2}
$$

## Bound applications

## Maximum Likelihood Algorithm for CRFs

## While not converged

$$
\text { For } j=1, \ldots, t
$$

Compute bound for $\boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}$ from $h_{x_{j}}, \mathbf{f}_{x_{j}}, \tilde{\boldsymbol{\theta}}$
Set $\tilde{\boldsymbol{\theta}}=\arg \min _{\boldsymbol{\theta} \in \boldsymbol{\Lambda}} \sum_{j} \frac{1}{2}(\boldsymbol{\theta}-\tilde{\boldsymbol{\theta}})^{\top}\left(\boldsymbol{\Sigma}_{j}+\lambda \mathbf{I}\right)(\boldsymbol{\theta}-\tilde{\boldsymbol{\theta}})$ $+\sum_{j} \boldsymbol{\theta}^{\top}\left(\boldsymbol{\mu}_{j}-\mathbf{f}_{\chi_{j}}\left(y_{j}\right)+\lambda \tilde{\boldsymbol{\theta}}\right)$

## Bound applications

## Maximum Likelihood Algorithm for CRFs

## While not converged

$$
\text { For } j=1, \ldots, t
$$

Compute bound for $\boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}$ from $h_{x_{j}}, \mathbf{f}_{x_{j}}, \tilde{\boldsymbol{\theta}}$

$$
\text { Set } \begin{aligned}
\tilde{\boldsymbol{\theta}}=\arg \min _{\boldsymbol{\theta} \in \boldsymbol{\Lambda}} & \sum_{j} \frac{1}{2}(\boldsymbol{\theta}-\tilde{\boldsymbol{\theta}})^{\top}\left(\boldsymbol{\Sigma}_{j}+\lambda \mathbf{I}\right)(\boldsymbol{\theta}-\tilde{\boldsymbol{\theta}}) \\
& +\sum_{j} \boldsymbol{\theta}^{\top}\left(\boldsymbol{\mu}_{j}-\mathbf{f}_{x_{j}}\left(y_{j}\right)+\lambda \tilde{\boldsymbol{\theta}}\right)
\end{aligned}
$$

## Theorem

The algorithm outputs a $\hat{\boldsymbol{\theta}}$ such that

$$
J(\hat{\boldsymbol{\theta}})-J\left(\boldsymbol{\theta}_{0}\right) \geq(1-\epsilon) \max _{\boldsymbol{\theta} \in \boldsymbol{\Lambda}}\left(J(\boldsymbol{\theta})-J\left(\boldsymbol{\theta}_{0}\right)\right)
$$

within $\left.\left[\log \left(\frac{1}{\epsilon}\right) / \log \left(1+\frac{\lambda \log n}{2 r^{2} n}\right)\right)\right]$ steps.

## Experiments - Markov CRFs

- Bound admits low-rank version $(\mathcal{O}($ tnd $)$ )
- As in LBFGS, use rank-k storage $\boldsymbol{\Sigma}=\mathbf{V S V}^{\top}+\mathbf{D}$
- Absorb residual into diagonal $\mathbf{D} \Rightarrow$ Low-rank is still a bound


## Experiments

## Experiments - Markov CRFs

- Bound admits low-rank version $(\mathcal{O}($ tnd $)$ )
- As in LBFGS, use rank-k storage $\boldsymbol{\Sigma}=\mathbf{V S V}^{\top}+\mathbf{D}$
- Absorb residual into diagonal $\mathbf{D} \Rightarrow$ Low-rank is still a bound
- Graphical models, e.g. Markov CRFs
- Build junction tree and run a Collect algorithm
- Only needs $\mathcal{O}\left(t d^{2} \sum_{c}\left|Y_{c}\right|\right)$ rather than $\mathcal{O}\left(t d^{2} n\right)$


## Experiments

## Experiments - Markov CRFs

- Bound admits low-rank version $(\mathcal{O}($ tnd $)$ )
- As in LBFGS, use rank-k storage $\boldsymbol{\Sigma}=\mathbf{V S V}^{\top}+\mathbf{D}$
- Absorb residual into diagonal $\mathbf{D} \Rightarrow$ Low-rank is still a bound
- Graphical models, e.g. Markov CRFs
- Build junction tree and run a Collect algorithm
- Only needs $\mathcal{O}\left(t d^{2} \sum_{c}\left|Y_{c}\right|\right)$ rather than $\mathcal{O}\left(t d^{2} n\right)$

CONLL dataset

| Algorithm | time | passes |
| :---: | :---: | :---: |
| L-BFGS | 1.00 t | 17 |
| CG | 3.47 t | 23 |
| Bound | $\mathbf{0 . 6 4 t}$ | $\mathbf{4}$ |

Bound

| Algorithm | time | passes |
| :---: | :---: | :---: |
| L-BFGS | 1.00 t | 22 |
| CG | 5.94 t | 27 |
| IIS | $\geq 6.35 \mathrm{t}$ | $\geq 150$ |
| [W03] |  |  |

## Experiments - Markov CRFs

- Bound admits low-rank version $(\mathcal{O}($ tnd $)$ )
- As in LBFGS, use rank- $k$ storage $\boldsymbol{\Sigma}=\mathbf{V S V}^{\top}+\mathbf{D}$
- Absorb residual into diagonal $\mathbf{D} \Rightarrow$ Low-rank is still a bound
- Graphical models, e.g. Markov CRFs
- Build junction tree and run a Collect algorithm
- Only needs $\mathcal{O}\left(t d^{2} \sum_{c}\left|Y_{c}\right|\right)$ rather than $\mathcal{O}\left(t d^{2} n\right)$

CONLL dataset

| Algorithm | time | passes |
| :---: | :---: | :---: |
| L-BFGS | 1.00 t | 17 |
| CG | 3.47 t | 23 |
| Bound | $\mathbf{0 . 6 4 t}$ | $\mathbf{4}$ |

Bound

| Algorithm | time | passes |
| :---: | :---: | :---: |
| L-BFGS | 1.00 t | 22 |
| CG | 5.94 t | 27 |
| IIS | $\geq 6.35 \mathrm{t}$ | $\geq 150$ |
| [W03] |  |  |

- Latent models
- Objective function is non-concave: ratio of partition functions
- Apply Jensen to numerator and our bound to denominator
- Often better solution than BFGS, Newton, CG, SD, ...


## Experiments

## Experiments - Latent models

- Bounding also simplifies mixture models with hidden variables (mixtures of Gaussians, HMMs, latent graphical models)
- Assume exponential family mixture components (Gaussian, multinomial, Poisson, Laplace)
- Latent CRF or log-linear model [Quattoni et al. '07]

$$
L(\boldsymbol{\theta})=\prod_{j=1}^{t} \frac{\sum_{m} \exp \left(\boldsymbol{\theta}^{\top} \mathbf{f}_{j, y_{j}, m}\right)}{\sum_{y, m} \exp \left(\boldsymbol{\theta}^{\top} \mathbf{f}_{j, y, m}\right)} \geq Q(\boldsymbol{\theta}, \tilde{\boldsymbol{\theta}})
$$

- Apply Jensen to numerator and our bound to denominator





## Experiments - (Semi-)Stochastic Bound Majorization

- Computing the bound is $\mathcal{O}(t) \rightarrow$ intractable for large $t$
- Semi-stochastic: compute bound on data mini-batches
- convergence to a stationary point under weak assumptions (in particular convexity is not required)
- linear convergence rate for logistic regression problem when batch size grows sufficiently fast


## Experiments - (Semi-)Stochastic Bound Majorization

- Computing the bound is $\mathcal{O}(t) \rightarrow$ intractable for large $t$
- Semi-stochastic: compute bound on data mini-batches
- convergence to a stationary point under weak assumptions (in particular convexity is not required)
- linear convergence rate for logistic regression problem when batch size grows sufficiently fast


## Theorem

For each iteration we have (for any $\epsilon>0$ )

$$
J\left(\boldsymbol{\theta}_{k}\right)-J\left(\boldsymbol{\theta}^{*}\right) \leq\left(1-\frac{\rho}{L}\right)^{k}\left[J\left(\boldsymbol{\theta}_{0}\right)-J\left(\boldsymbol{\theta}^{*}\right)\right]+\mathcal{O}\left(C_{k}\right)
$$

with $C_{k}=\max \left\{B_{k},\left(1-\frac{\rho}{L}+\epsilon\right)^{k}\right\}$ and $B_{k}=\left\|\nabla J(\boldsymbol{\theta})_{\mid \boldsymbol{\theta}=\boldsymbol{\theta}_{k}}-\mathbf{g}_{\mathcal{T}}^{k}\right\|^{2}$, where $\mathcal{T}$ is the mini-batch.

## Experiments - (Semi-)Stochastic Bound Majorization

Datasets: rcv1, adult, protein










## How to design good objective function?

## eXtreme multi-class classification problem

Problem setting

- classification with large number of classes
- data is accessed online

Goal:

- good predictor with logarithmic training and testing time
- reduction to tree-structured binary classification
- top-down approach for class partitioning allowing gradient descent style optimization


## Multi-class classification problem

## What was already done...

- Intractable
- one-against-all [RK04]
- variants of ECOC [DB95], e.g. PECOC [LB05]
- clustering-based approaches [BWG10, WMY13]
- Choice of partition not addressed
- Filter Tree and error-correcting tournaments [BLR09]
- Choice of partition addressed, but dedicated to conditional probability estimation
- conditional probability tree [BLLSS09]
- Splitting criteria not well-suited to large class setting
- decision trees [KM95]


## How do you learn the structure?

- Not all partitions are equally difficult, e.g. if you do $\{1,7\}$ vs $\{3,8\}$, the next problem is hard; if you do $\{1,8\}$ vs $\{3,7\}$, the next problem is easy; if you do $\{1,3\}$ vs $\{7,8\}$, the next problem is easy.


## Splitting criterion

## How do you learn the structure?

- Not all partitions are equally difficult, e.g. if you do $\{1,7\}$ vs $\{3,8\}$, the next problem is hard; if you do $\{1,8\}$ vs $\{3,7\}$, the next problem is easy; if you do $\{1,3\}$ vs $\{7,8\}$, the next problem is easy.
- [BWG10]: Better to confuse near leaves than near root. Intuition: The root predictor tends to be overconstrained while the leafwards predictors are less constrained.


## How do you learn the structure?

Our approach:

- top-down approach for class partitioning
- splitting criterion guaranteeing balanced tree $\Rightarrow$ logarithmic training and testing time and
small classification error


## Splitting criterion

## Pure split and balanced split



- $k_{r}(x)$ : number of data points in the same class as $x$ on the right side of the partitioning
- $k(x)$ : total number of data points in the same class as $x$
- $n_{r}$ : number of data points on the right side of the partitioning
- $n$ : total number of data points


## Pure split and balanced split



- $k_{r}(x)$ : number of data points in the same class as $x$ on the right side of the partitioning
- $k(x)$ : total number of data points in the same class as $x$
- $n_{r}$ : number of data points on the right side of the partitioning
- $n$ : total number of data points

Measure of balanceness: $\frac{n_{r}}{n}$

## Splitting criterion

## Pure split and balanced split



- $k_{r}(x)$ : number of data points in the same class as $x$ on the right side of the partitioning
- $k(x)$ : total number of data points in the same class as $x$
- $n_{r}$ : number of data points on the right side of the partitioning
- $n$ : total number of data points

Measure of balanceness: $\frac{n_{r}}{n}$

## Splitting criterion

## Pure split and balanced split



- $k_{r}(x)$ : number of data points in the same class as $x$ on the right side of the partitioning
- $k(x)$ : total number of data points in the same class as $x$
- $n_{r}$ : number of data points on the right side of the partitioning
- $n$ : total number of data points

Measure of balanceness: $\frac{n_{r}}{n}$
Measure of purity: $\frac{k_{r}(x)}{k(x)}$

## Splitting criterion

## Pure split and balanced split

- $k$ : number of classes
- $\mathcal{H}$ : hypothesis class (typically: linear classifiers)
- $\pi_{y}=\frac{\mid \mathcal{X} y}{n}$
- balance $=\operatorname{Pr}(h(x)>0)$
- purity $=\sum_{y=1}^{k} \pi_{y} \min (\operatorname{Pr}(h(x)>0 \mid y), \operatorname{Pr}(h(x)<0 \mid y))$


## Pure split and balanced split

- $k$ : number of classes
- $\mathcal{H}$ : hypothesis class (typically: linear classifiers)
- $\pi_{y}=\frac{\left|\mathcal{X}_{y}\right|}{n}$
- balance $=\operatorname{Pr}(h(x)>0)$
- purity $=\sum_{y=1}^{k} \pi_{y} \min (\operatorname{Pr}(h(x)>0 \mid y), \operatorname{Pr}(h(x)<0 \mid y))$


## Definition (Balanced split)

The hypothesis $h \in \mathcal{H}$ induces a balanced split iff

$$
\exists_{c \in(0,0.5]} c \leq \text { balance } \leq 1-c
$$

## Pure split and balanced split

- $k$ : number of classes
- $\mathcal{H}$ : hypothesis class (typically: linear classifiers)
- $\pi_{y}=\frac{\left|\mathcal{X}_{y}\right|}{n}$
- balance $=\operatorname{Pr}(h(x)>0)$
- purity $=\sum_{y=1}^{k} \pi_{y} \min (\operatorname{Pr}(h(x)>0 \mid y), \operatorname{Pr}(h(x)<0 \mid y))$


## Definition (Balanced split)

The hypothesis $h \in \mathcal{H}$ induces a balanced split iff

$$
\exists_{c \in(0,0.5]} c \leq \text { balance } \leq 1-c .
$$

## Definition (Pure split)

The hypothesis $h \in \mathcal{H}$ induces a pure split iff

$$
\exists_{\delta \in[0,0.5)} \text { purity } \leq \delta
$$

## Objective function

$$
\begin{aligned}
J(h) & =2 \sum_{y=1}^{k} \pi_{y}|P(h(x)>0)-P(h(x)>0 \mid y)| \\
& =2 \mathbb{E}_{x, y}[|P(h(x)>0)-P(h(x)>0 \mid y)|]
\end{aligned}
$$

## $\mathbf{J}(\mathbf{h}) \Rightarrow$ Splitting criterion (objective function)

Given a set of $n$ examples each with one of $k$ labels, find a partitioner $h$ that maximizes the objective.

## Lemma

For any hypothesis $h: \mathcal{X} \mapsto\{-1,1\}$, the objective $J(h)$ satisfies $J(h) \in[0,1]$. Furthermore, $h$ induces a maximally pure and balanced partition iff $J(h)=1$.

## Splitting criterion

## Balancing and purity factors

## - Balacing factor

balance $\in\left[\frac{1-\sqrt{1-J(h)}}{2}, \frac{1+\sqrt{1-J(h)}}{2}\right]$


## Splitting criterion

## Balancing and purity factors

- Purity factor

$$
\text { purity } \leq \frac{2-J(h)}{4 \cdot \text { balance }}-\text { balance }
$$



## Boosting statement

## What is the quality of obtained tree?

- In each node of the tree $\mathcal{T}$ optimize the splitting criterion
- Apply recursively to construct a tree structure
- Measure the quality of the tree using entropy

$$
G_{\mathcal{T}}=\sum_{I \in \text { leafs of } \mathcal{T}} w_{l} \sum_{y=1}^{k} \pi_{I, y} \ln \left(\frac{1}{\pi_{I, y}}\right)
$$

Why?
Small entropy of leafs $\Rightarrow$ pure leafs

Goal: maximizing the objective reduces the entropy

## What is the quality of obtained tree?

## Definition (Weak Hypothesis Assumption)

Let $m$ denotes any node of the tree $\mathcal{T}$, and let $\beta_{m}=P\left(h_{m}(x)>0\right)$ and $P_{m, i}=P\left(h_{m}(x)>0 \mid i\right)$. Furthermore, let $\gamma \in \mathbb{R}^{+}$be such that for all $m, \gamma \in\left(0, \min \left(\beta_{m}, 1-\beta_{m}\right)\right]$. We say that the weak hypothesis assumption is satisfied when for any distribution $\mathcal{P}$ over $\mathcal{X}$ at each node $m$ of the tree $\mathcal{T}$ there exists a hypothesis $h_{m} \in \mathcal{H}$ such that $J\left(h_{m}\right) / 2=\sum_{i=1}^{k} \pi_{m, i}\left|P_{m, i}-\beta_{m}\right| \geq \gamma$.

## Theorem

Under the Weak Hypothesis Assumption, for any $\epsilon \in[0,1]$, to obtain $G_{\mathcal{T}} \leq \epsilon$ it suffices to make $\left(\frac{1}{\epsilon}\right)^{\frac{4(1-\gamma)^{2} \ln k}{\gamma^{2}}}$ splits.

## What is the quality of obtained tree?

## Definition (Weak Hypothesis Assumption)

Let $m$ denotes any node of the tree $\mathcal{T}$, and let $\beta_{m}=P\left(h_{m}(x)>0\right)$ and $P_{m, i}=P\left(h_{m}(x)>0 \mid i\right)$. Furthermore, let $\gamma \in \mathbb{R}^{+}$be such that for all $m, \gamma \in\left(0, \min \left(\beta_{m}, 1-\beta_{m}\right)\right]$. We say that the weak hypothesis assumption is satisfied when for any distribution $\mathcal{P}$ over $\mathcal{X}$ at each node $m$ of the tree $\mathcal{T}$ there exists a hypothesis $h_{m} \in \mathcal{H}$ such that $J\left(h_{m}\right) / 2=\sum_{i=1}^{k} \pi_{m, i}\left|P_{m, i}-\beta_{m}\right| \geq \gamma$.

## Theorem

Under the Weak Hypothesis Assumption, for any $\epsilon \in[0,1]$, to obtain $G_{\mathcal{T}} \leq \epsilon$ it suffices to make $\left(\frac{1}{\epsilon}\right)^{\frac{4(1-\gamma)^{2} \ln k}{\gamma^{2}}}$ splits.

- Tree depth $\approx \log \left[\left(\frac{1}{\epsilon}\right)^{\frac{4(1-\gamma)^{2} \ln k}{\gamma^{2}}}\right]=\mathcal{O}(\ln k) \Rightarrow$


## $\Rightarrow$ logarithmic training and testing time

## Online partitioning

## LOMtree algorithm

- Recall the objective function we consider at every tree node:

$$
J(h)=2 \mathbb{E}_{y}\left[\left|\mathbb{E}_{x}[\mathbb{1}(h(x)>0)]-\mathbb{E}_{x}[\mathbb{1}(h(x)>0 \mid y)]\right|\right] .
$$

Problem: discrete optimization
Relaxation: drop the indicator operator and look at margins

## Online partitioning

## LOMtree algorithm

- Recall the objective function we consider at every tree node:

$$
J(h)=2 \mathbb{E}_{y}\left[\left|\mathbb{E}_{x}[\mathbb{1}(h(x)>0)]-\mathbb{E}_{x}[\mathbb{1}(h(x)>0 \mid y)]\right|\right] .
$$

Problem: discrete optimization
Relaxation: drop the indicator operator and look at margins

## Online partitioning

## LOMtree algorithm

- Recall the objective function we consider at every tree node:

$$
J(h)=2 \mathbb{E}_{y}\left[\left|\mathbb{E}_{x}[\mathbb{1}(h(x)>0)]-\mathbb{E}_{x}[\mathbb{1}(h(x)>0 \mid y)]\right|\right] .
$$

Problem: discrete optimization
Relaxation: drop the indicator operator and look at margins

- The objective function becomes

$$
J(h)=2 \mathbb{E}_{y}\left[\left|\mathbb{E}_{x}[h(x)]-\mathbb{E}_{x}[h(x) \mid y]\right|\right]
$$

- Keep the online empirical estimates of these expectations.
- The sign of the difference of two expectations decides whether to send an example to the left or right child node.


## Online partitioning

## LOMtree algorithm

Let $e=0$ and for all $y, e_{y}=0, n_{y}=0$
For each example $(x, y)$

- if $e_{y}<e$ then $b=-1$ else $b=1$
- Update w using $(x, b)$
- $n_{y} \leftarrow n_{y}+1$
- $e_{y} \leftarrow \frac{\left(n_{y}-1\right) e_{y}}{n_{y}}+\frac{w \cdot x}{n_{y}}$
- $e \leftarrow \frac{(n-1) e}{n}+\frac{w \cdot x}{n}$



## Online partitioning

## LOMtree algorithm

Let $e=0$ and for all $y, e_{y}=0, n_{y}=0$
For each example $(x, y)$

- if $e_{y}<e$ then $b=-1$ else $b=1$
- Update w using $(x, b)$
- $n_{y} \leftarrow n_{y}+1$
- $e_{y} \leftarrow \frac{\left(n_{y}-1\right) e_{y}}{n_{y}}+\frac{w \cdot x}{n_{y}}$
- $e \leftarrow \frac{(n-1) e}{n}+\frac{w \cdot x}{n}$


## (x1,1)



## Online partitioning

## LOMtree algorithm

Let $e=0$ and for all $y, e_{y}=0, n_{y}=0$
For each example $(x, y)$

- if $e_{y}<e$ then $b=-1$ else $b=1$
- Update w using $(x, b)$
- $n_{y} \leftarrow n_{y}+1$
- $e_{y} \leftarrow \frac{\left(n_{y}-1\right) e_{y}}{n_{y}}+\frac{w \cdot x}{n_{y}}$
- $e \leftarrow \frac{(n-1) e}{n}+\frac{w \cdot x}{n}$



## Online partitioning

## LOMtree algorithm

Let $e=0$ and for all $y, e_{y}=0, n_{y}=0$
For each example $(x, y)$

- if $e_{y}<e$ then $b=-1$ else $b=1$
- Update w using $(x, b)$
- $n_{y} \leftarrow n_{y}+1$
- $e_{y} \leftarrow \frac{\left(n_{y}-1\right) e_{y}}{n_{y}}+\frac{w \cdot x}{n_{y}}$
- $e \leftarrow \frac{(n-1) e}{n}+\frac{w \cdot x}{n}$



## Online partitioning

## LOMtree algorithm

Let $e=0$ and for all $y, e_{y}=0, n_{y}=0$
For each example $(x, y)$

- if $e_{y}<e$ then $b=-1$ else $b=1$
- Update w using $(x, b)$
- $n_{y} \leftarrow n_{y}+1$
- $e_{y} \leftarrow \frac{\left(n_{y}-1\right) e_{y}}{n_{y}}+\frac{w \cdot x}{n_{y}}$
- $e \leftarrow \frac{(n-1) e}{n}+\frac{w \cdot x}{n}$



## Online partitioning

## LOMtree algorithm

Let $e=0$ and for all $y, e_{y}=0, n_{y}=0$
For each example $(x, y)$

- if $e_{y}<e$ then $b=-1$ else $b=1$
- Update w using $(x, b)$
- $n_{y} \leftarrow n_{y}+1$
- $e_{y} \leftarrow \frac{\left(n_{y}-1\right) e_{y}}{n_{y}}+\frac{w \cdot x}{n_{y}}$
- $e \leftarrow \frac{(n-1) e}{n}+\frac{w \cdot x}{n}$



## Online partitioning

## LOMtree algorithm

Let $e=0$ and for all $y, e_{y}=0, n_{y}=0$
For each example $(x, y)$

- if $e_{y}<e$ then $b=-1$ else $b=1$
- Update w using $(x, b)$
- $n_{y} \leftarrow n_{y}+1$
- $e_{y} \leftarrow \frac{\left(n_{y}-1\right) e_{y}}{n_{y}}+\frac{w \cdot x}{n_{y}}$
- $e \leftarrow \frac{(n-1) e}{n}+\frac{w \cdot x}{n}$



## Online partitioning

## LOMtree algorithm

Let $e=0$ and for all $y, e_{y}=0, n_{y}=0$
For each example $(x, y)$

- if $e_{y}<e$ then $b=-1$ else $b=1$
- Update w using $(x, b)$
- $n_{y} \leftarrow n_{y}+1$
- $e_{y} \leftarrow \frac{\left(n_{y}-1\right) e_{y}}{n_{y}}+\frac{w \cdot x}{n_{y}}$
- $e \leftarrow \frac{(n-1) e}{n}+\frac{w . x}{n}$



## Online partitioning

## LOMtree algorithm

Let $e=0$ and for all $y, e_{y}=0, n_{y}=0$
For each example $(x, y)$

- if $e_{y}<e$ then $b=-1$ else $b=1$
- Update w using $(x, b)$
- $n_{y} \leftarrow n_{y}+1$
- $e_{y} \leftarrow \frac{\left(n_{y}-1\right) e_{y}}{n_{y}}+\frac{w \cdot x}{n_{y}}$
- $e \leftarrow \frac{(n-1) e}{n}+\frac{w . x}{n}$



## Online partitioning

## LOMtree algorithm

Let $e=0$ and for all $y, e_{y}=0, n_{y}=0$
For each example $(x, y)$

- if $e_{y}<e$ then $b=-1$ else $b=1$
- Update w using $(x, b)$
- $n_{y} \leftarrow n_{y}+1$
- $e_{y} \leftarrow \frac{\left(n_{y}-1\right) e_{y}}{n_{y}}+\frac{w \cdot x}{n_{y}}$
- $e \leftarrow \frac{(n-1) e}{n}+\frac{w \cdot x}{n}$



## Online partitioning

## LOMtree algorithm

Let $e=0$ and for all $y, e_{y}=0, n_{y}=0$
For each example $(x, y)$

- if $e_{y}<e$ then $b=-1$ else $b=1$
- Update w using $(x, b)$
- $n_{y} \leftarrow n_{y}+1$
- $e_{y} \leftarrow \frac{\left(n_{y}-1\right) e_{y}}{n_{y}}+\frac{w \cdot x}{n_{y}}$
- $e \leftarrow \frac{(n-1) e}{n}+\frac{w \cdot x}{n}$



## Online partitioning

## LOMtree algorithm

Let $e=0$ and for all $y, e_{y}=0, n_{y}=0$
For each example $(x, y)$

- if $e_{y}<e$ then $b=-1$ else $b=1$
- Update w using $(x, b)$
- $n_{y} \leftarrow n_{y}+1$
- $e_{y} \leftarrow \frac{\left(n_{y}-1\right) e_{y}}{n_{y}}+\frac{w \cdot x}{n_{y}}$
- $e \leftarrow \frac{(n-1) e}{n}+\frac{w \cdot x}{n}$

Apply recursively to construct a tree structure.


## Online partitioning

## LOMtree algorithm

Let $e=0$ and for all $y, e_{y}=0, n_{y}=0$
For each example $(x, y)$

- if $e_{y}<e$ then $b=-1$ else $b=1$
- Update w using $(x, b)$
- $n_{y} \leftarrow n_{y}+1$
- $e_{y} \leftarrow \frac{\left(n_{y}-1\right) e_{y}}{n_{y}}+\frac{w \cdot x}{n_{y}}$
- $e \leftarrow \frac{(n-1) e}{n}+\frac{w \cdot x}{n}$

Apply recursively to construct a tree structure.


## Online partitioning

## LOMtree algorithm

Let $e=0$ and for all $y, e_{y}=0, n_{y}=0$
For each example $(x, y)$

- if $e_{y}<e$ then $b=-1$ else $b=1$
- Update w using $(x, b)$
- $n_{y} \leftarrow n_{y}+1$
- $e_{y} \leftarrow \frac{\left(n_{y}-1\right) e_{y}}{n_{y}}+\frac{w \cdot x}{n_{y}}$
- $e \leftarrow \frac{(n-1) e}{n}+\frac{w \cdot x}{n}$

Apply recursively to construct a tree structure.


## Experiments

## Experiments

Table: Training time on selected problems.

|  | Isolet | Sector | Aloi |
| :---: | :---: | :---: | :---: |
| LOMtree | $\mathbf{1 6 . 2 7 s}$ | $\mathbf{1 2 . 7 7 s}$ | $\mathbf{5 1 . 8 6 s}$ |
| OAA | 19.58s | 18.37 s | 11 m 2.43 s |

Table : Per-example test time on all problems.

|  | Isolet | Sector | Aloi | ImNet | ODP |
| :---: | :---: | :---: | :---: | :---: | :---: |
| LOMtree | $\mathbf{0 . 1 4 m s}$ | $\mathbf{0 . 1 3 m s}$ | $\mathbf{0 . 0 6 m s}$ | $\mathbf{0 . 5 2 m s}$ | $\mathbf{0 . 2 6 m s}$ |
| OAA | $0.16 \mathbf{m s}$ | 0.24 ms | 0.33 ms | 0.21 s | 1.05 s |

Table: Test error (\%) and confidence interval on all problems.
LOMtree $\quad$ Rtree $\quad$ Filter tree

| Isolet (26) | $\mathbf{6 . 3 6} \pm 1.71$ | $16.92 \pm 2.63$ | $15.10 \pm 2.51$ |
| :---: | :---: | :---: | :---: |
| Sector (105) | $16.19 \pm 2.33$ | $\mathbf{1 5 . 7 7} \pm 2.30$ | $17.70 \pm 2.41$ |
| Aloi (1000) | $\mathbf{1 6 . 5 0} \pm 0.70$ | $83.74 \pm 0.70$ | $80.50 \pm 0.75$ |
| ImNet (22K) | $\mathbf{9 0 . 1 7} \pm 0.05$ | $96.99 \pm 0.03$ | $92.12 \pm 0.04$ |
| ODP (105K) | $\mathbf{9 3 . 4 6} \pm 0.12$ | $93.85 \pm 0.12$ | $93.76 \pm 0.12$ |

## Experiments

## Experiments

LOMtree vs one-against-all


LOMtree vs one-against-all


## How to understand non-convex optimization?

## Why non-convex optimization and deep learning?

State-of-the art results on number of problems:

- image recognition [KSH12, CMGS10]
- speech recognition [HDYDMJSVNSK12, GMH13]
- natural language processing [WCA14]
- video recognition [KTSLSF-F14, SZ14]


## Why non-convex optimization and deep learning?

## ImageNet 2014 Challenge: mostly convolutional networks

Classification+localization with provided training data: Ordered by localization error


VGG Object detection with additional training data: Ordered by number of categories won

| \|VGG | Team name | Entry description | Description of outside data used | Number of object categories won | mean AP |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | GoogleNet | Ensemble of detection models. Validation is $44.5 \% \mathrm{mAP}$ | Pretraining on ILSVRC12 classification data. | 142 | 0.439329 |

DeeplD- Co
Ordered by mean average precision

| Team name | Entry description | Description of outside data used | mean AP | Number of object categories won |
| :---: | :---: | :---: | :---: | :---: |
| GoogLeNet | Ensemble of detection models. Validation is $44.5 \% \mathrm{mAP}$ | Pretraining on ILSVRC12 classification data | 0.439329 | 142 |
| $\frac{\text { CUHK }}{n \sin \ln }$ | Combine multiple models described in the ahofrant incitlonit nonitnvtiral mindinfing. Then | ImageNet classification and | - Anamoall |  |

## Machine Learning Competitions Won (Yoshua Bengio)

- Winning the ICMI 2013 Grand Challenge on Emotion Recognition in the Wild! The challenge baseline accuracy was $27.5 \%$-our approach vielded $41.0 \%$ ) Kahou, S. E., Pal, C., Bouthillier, X., Froumenty, P., Gulcehre, C.. *, Memisevic, R., Vincent, P., Courville, A. and Bengio, Y. (2013) Combining Modality Specific Deep Neural Networks for Emotion Recognition in Video (ICMI'13)
- Unsupervised and Iransfer Learning Challenge, presented at an ICML 2011 and IJCNN 2011 workshops of the same name, was won by LISA members using unsupervised layer-wise pre-training
- We also won the Iransfer Learning Challenge at NIPS 2011's Challenges in Learning Hierarchical Models Workshop, using spike-and-slab sparse coding (ICMI 2012 paper)


## Challenge

Goal: Understanding loss function in deep learning.
Recent related works: Choromanska et al., 2015, Goodfellow et al., 2015, Dauphin et al., 2014, Saxe et al., 2014.

## Challenge

Goal: Understanding loss function in deep learning.
Recent related works: Choromanska et al., 2015, Goodfellow et al., 2015, Dauphin et al., 2014, Saxe et al., 2014.

## Questions:

- Why the result of multiple experiments with multilayer networks consistently give very similar performance despite the presence of many local minima?


## Challenge

Goal: Understanding loss function in deep learning.
Recent related works: Choromanska et al., 2015, Goodfellow et al., 2015, Dauphin et al., 2014, Saxe et al., 2014.

## Questions:

- Why the result of multiple experiments with multilayer networks consistently give very similar performance despite the presence of many local minima?
- What is the role of saddle points in the optimization problem?


## Challenge

Goal: Understanding loss function in deep learning.
Recent related works: Choromanska et al., 2015, Goodfellow et al., 2015, Dauphin et al., 2014, Saxe et al., 2014.

## Questions:

- Why the result of multiple experiments with multilayer networks consistently give very similar performance despite the presence of many local minima?
- What is the role of saddle points in the optimization problem?
- Is the surface of the loss function of multilayer networks structured?


## Multilayer network and spin-glass model

Can we use the spin-glass theory to explain the optimization paradigm with large multilayer networks?

## Multilayer network and spin-glass model

Can we use the spin-glass theory to explain the optimization paradigm with large multilayer networks?

What assumptions need to be made?

## Loss function in deep learning and assumptions



- $\Psi$ - number of input-output paths, $\Lambda=\sqrt[H]{\Psi}$ (assume $\Lambda \in \mathbb{Z}^{+}$)
- H-1 - number of hidden layers
- $w_{i}^{(k)}$ - the weight of the $k^{\text {th }}$ segment of the $i^{\text {th }}$ path
- $A_{i}$ - Bernoulli r.v. denoting path activation (0/1)


## Non-convex loss function in deep learning

## Loss function in deep learning and assumptions

Consider hinge loss

$$
L(\mathbf{w})=\max \left(0,1-Y_{t} Y\right)
$$

where $Y_{t}$ corresponds to the true data labeling $(1 /-1)$, and $\mathbf{w}$ denotes all network weights.

- max operator is often modeled as Bernoulli r.v. (0/1). Denote it as $M$ and its expectation as $\rho^{\prime}$. Therefore

$$
\begin{equation*}
L(\mathbf{w})=M\left(1-Y_{t} Y\right)=M+\frac{1}{\Lambda^{(H-1) / 2}} \sum_{i=1}^{\psi} Z_{i} I_{i} \prod_{k=1}^{H} w_{i}^{(k)} \tag{1}
\end{equation*}
$$

where $Z_{i}=-Y_{t} X_{i}$, and $I_{i}=M A_{i}$ is a Bernoulli r.v. (0/1).

- assume $I_{1}, I_{2}, \ldots, I_{\Psi}$ are identically distributed (A1p)
- assume each $X_{i}$ is a standard Gaussian r.v. (A2p)


## Loss function in deep learning and assumptions

- assume network parametrization is redundant (A3p)
- assume unique parameters are uniformly distributed on the graph of connections of the network ( $A 4 p$ ), i.e. every $H$-length product of unique weights appears in Equation 1 (the set of all products is $\left.\left.\left\{w_{i_{1}} w_{i_{2}} \ldots w_{i_{H}}\right\}\right\}_{i_{1}, i_{2}, \ldots, i_{H}=1}\right)$.

$$
L(\mathbf{w})=M+\frac{1}{\Lambda(H-1) / 2} \sum_{i_{1}, i_{2}, \ldots, i_{H}=1}^{\Lambda} Z_{i_{1}, i_{2}, \ldots, i_{H}} I_{i_{1}, i_{2}, \ldots, i_{H}} w_{i_{1}} w_{i_{2}} \ldots w_{i_{H}} .
$$

## Loss function in deep learning and assumptions

## Definition

A network $\mathcal{M}$ which has the same graph of connections as network $\mathcal{N}$, whose size is $N$, and $s$ unique weights satisfying $s \leq N$ is called a $(s, \epsilon)$-reduction image of $\mathcal{N}$ for some $\epsilon \in[0,1]$ if the prediction accuracy of $\mathcal{N}$ and $\mathcal{M}$ differ by no more than $\epsilon$ (thus they classify at most $\epsilon$ fraction of data points differently).

## Theorem

Let $\mathcal{N}$ be a neural network giving the output whose expectation wrt. A's is $Y_{N}$. Let $\mathcal{M}$ be its $(s, \epsilon)$-reduction image for some $s \leq N$ and $\epsilon \in[0,0.5]$. By analogy, let $Y_{s}$ be the expected output of network $\mathcal{M}$. Then the following holds

$$
\operatorname{corr}\left(\operatorname{sign}\left(Y_{s}\right), \operatorname{sign}\left(Y_{N}\right)\right) \geq \frac{1-2 \epsilon}{1+2 \epsilon}
$$

where $\operatorname{corr}(A, B)=\frac{\mathbb{E}[(A-\mathbb{E}[A]])(B-\mathbb{E}[B]])}{\operatorname{std}(A) \operatorname{std}(B)}$, std is the standard deviation and sign $(\cdot)$ denotes the sign of prediction.

## Non-convex loss function in deep learning

## Loss function in deep learning and assumptions

- assume the independence of $Z_{i_{1}, i_{2}, \ldots, i_{H}}$ and $I_{i_{1}, i_{2}, \ldots, i_{H}}(A 5 u)$

$$
\mathbb{E}_{M, l_{1}, l_{2}, \ldots, l_{\psi}}[L(\mathbf{w})]=\rho^{\prime}+\rho \underbrace{\frac{1}{\Lambda^{(H-1) / 2}} \sum_{i_{1}, i_{2}, \ldots, i_{H}=1}^{\Lambda} Z_{i_{1}, i_{2}, \ldots, i_{H}} w_{i_{1}} w_{i_{2}} \ldots w_{i_{H}}}_{\mathcal{L}_{\Lambda, H}} .
$$

- assume that $Z$ 's are independent ( $A 6 u$ )
- impose spherical constraint (A7p)

$$
\frac{1}{\Lambda} \sum_{i=1}^{\wedge} w_{i}^{2}=1
$$

We obtain the Hamiltonian of the spherical spin-glass model!!!

Question: What happens when $\Lambda \rightarrow \infty$ ?

## Important quantities

## Definition

Let the following quantity be called an energy barrier

$$
E_{\infty}=E_{\infty}(H)=2 \sqrt{\frac{H-1}{H}} .
$$

## Definition

Let the normalized minimum of the Hamiltonian $\mathcal{L}_{\Lambda, H}$ be called a ground state and be defined as

$$
E_{0}=\frac{1}{\Lambda} \inf _{\boldsymbol{\sigma} \in S^{N-1}(\sqrt{\Lambda})} \mathcal{L}_{\Lambda, H}(\boldsymbol{\sigma})
$$

Let $\left(E_{k}(H)\right)_{k \in \mathbb{N}}$ be a strictly decreasing sequence, that is converging to $E_{\infty}$ as $k \rightarrow \infty$.

## Hamiltonian of the spherical spin-glass model: properties

- All critical values of the Hamiltonian of fixed index ${ }^{1}$ (non diverging with $\Lambda$ ) must lie in the band $\left(-\Lambda E_{0}(H),-\Lambda E_{\infty}(H)\right)$.
- Finding a critical value with index larger or equal to $k$ (for any fixed integer $k$ ) below energy level $-\Lambda E_{k}(H)$ is improbable.
- With overwhelming probability the critical values just above the global minimum (ground state) are local minima exclusively. Above the band $\left(-\Lambda E_{0}(H),-\Lambda E_{1}(H)\right)$ containing only local minima (critical points of index 0 ), there is another one, $\left(-\Lambda E_{1}(H),-\Lambda E_{2}(H)\right)$, where one can only find local minima and saddle points of index 1 , and above this band there exists another one, $\left(-\Lambda E_{2}(H),-\wedge E_{3}(H)\right)$, where one can only find local minima and saddle points of index 1 and 2 , and so on.
${ }^{1}$ Index of $\nabla^{2} \mathcal{L}$ at $\mathbf{w}$ is the number of negative eigenvalues of the Hessian $\nabla^{2} \mathcal{L}$ at $\mathbf{w}$. Local minima have index 0.


## Hamiltonian of the spherical spin-glass model: properties



Figure : $H=3$ and $\Lambda=1000$. Black line: $u=-\Lambda E_{0}(H)$, red line: $u=-\Lambda E_{\infty}(H)$.

Deep networks versus spherical spin-glass models

## Comparison of deep network and spherical spin-glass model








## Deep network: correlation between train and test loss

a) $n_{1}=2$

e) $n_{1}=50$

f) $n_{1}=100$
b) $n_{1}=5$


d) $n_{1}=25$

h) $n_{1}=500$


| $n_{1}$ | 25 | 50 | 100 | 250 | 500 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\rho$ | 0.7616 | 0.6861 | 0.5983 | 0.5302 | 0.4081 |

Table : Pearson correlation between training and test loss.

## Deep network: index of recovered solutions



Figure: Distribution of normalized index of solutions for $\left.\left.\left.\left.n_{1}=\{a) 10, b\right) 25, c\right) 50, d\right) 100\right\}$ hidden units.

## Spherical spin-glass versus deep network

## Conjecture (Deep learning)

For large-size networks, most local minima are equivalent and yield similar performance on a test set.

Spherical spin-glass
Critical points form an ordered structure such that there exists an energy barrier $\Lambda E_{-\infty}$ (a certain value of the Hamiltonian) below which with overwhelming probability one can find only low-index critical points, most of which are concentrated close to the barrier.

# Spherical spin-glass versus deep network 

## Conjecture (Deep learning)

The probability of finding a "bad" (high value) local minimum is non-zero for small-size networks and decreases quickly with network size.

Spherical spin-glass
Low-index critical points are 'geometrically' lying closer to the ground state than high-index critical points.

## Understanding non-convex deep learning optimization

## Spherical spin-glass versus deep network

## Conjecture (Deep learning)

Saddle points play a key-role in the optimization problem in deep learning.

Spherical spin-glass
With overwhelming probability one can find only high-index saddle points above energy $\Lambda E_{-\infty}$ and there are exponentially many of those.


Figure : $H=3$ and $\Lambda \stackrel{\Lambda u}{=} 1000$. Black line: $u=-\Lambda E_{0}^{\wedge}(H)$ (ground state), red line: $u=-\Lambda E_{\infty}(H)$ (energy barrier).

## Spherical spin-glass versus deep network

## Conjecture (Deep learning)

Struggling to find the global minimum on the training set (as opposed to one of the many good local ones) is not useful in practice and may lead to overfitting.

| $n_{1}$ | 25 | 50 | 100 | 250 | 500 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\rho$ | 0.7616 | 0.6861 | 0.5983 | 0.5302 | 0.4081 |

Table: Pearson correlation between training and test loss for different numbers of hidden units of a network with one hidden layer. MNIST dataset.

Spherical spin-glass
Recovering the ground state, i.e. global minimum, takes exponentially long time.

## Understanding non-convex deep learning optimization

## Take-home message

- For large-size networks, most local minima are equivalent and yield similar performance on a test set.
- The probability of finding a "bad" (high value) local minimum is non-zero for small-size networks and decreases quickly with network size.
- Struggling to find the global minimum on the training set (as opposed to one of the many good local ones) is not useful in practice and may lead to overfitting.


## Open problem

Can we establish a stronger connection between the loss function of the deep model and the spherical spin-glass model by dropping the unrealistic assumptions?

## Convexity and non-convexity: challenges

Convex and non-convex world

- Building solvers, i.e. bound majorization
- New and tight quadratic bound on the partition function
- Linear convergence of the batch/semi-stochastic variants
- Competetive/better than state-of-the-art methods
- Admits multiple extensions
- Designing problem-specific, i.e. multi-classification, objectives
- Logarithmic training and testing time
- Reduction from multi-class to binary classification
- New splitting criterion with desirable properties
- allows gradient descent style optimization
- makes decision trees applicable to multi-class classification

Non-convex world

- Understading why non-convex approaches work
- Deep learning: state-of-the-art in numerous problems
- Possible connection between spin-glass theory and deep learning
- Landscape is highly non-convex but most likely structured


## Acknowledgments

Courant Institute of Mathematical Sciences: Yann LeCun, Gérard Ben Arous
Columbia University: Tony Jebara, Shih-Fu Chang George Washington University: Claire Monteleoni NYU Polytechnic School of Engineering: Mariusz Bojarski Microsoft Research: John Langford, Alekh Agarwal Google Research: Krzysztof Choromanski, Dimitri Kanevsky IBM T. J.Watson Research Center: Aleksandr Aravkin ATT Shannon Research Laboratories: Phyllis Weiss, Alice Chen LEAR team of Inria: Zaid Harchaoui

PostDocs: Pablo Sprechmann
PhD students: Michael Mathieu, Mikael Bruce Henaff, Sixin Zhang, Ross Goroshin, Rahul Krishnan, Wojciech Zaremba, Hyungtae Kim

