Optimization for Machine Learning
 Lecture: Introduction to Convexity

S.V. N. (vishy) Vishwanathan
UCSC
vishy@ucsc.edu
June 10, 2015

Regularized Risk Minimization

Machine Learning

- We want to build a model which predicts well on data
- A model's performance is quantified by a loss function - a sophisticated discrepancy score
- Our model must generalize to unseen data
- Avoid over-fitting by penalizing complex models (Regularization)

More Formally

Regularized Risk Minimization

Machine Learning

- We want to build a model which predicts well on data
- A model's performance is quantified by a loss function
- a sophisticated discrepancy score
- Our model must generalize to unseen data
- Avoid over-fitting by penalizing complex models (Regularization)

More Formally

- Labels: \{y
- Learn a vector: W

Regularized Risk Minimization

Machine Learning

- We want to build a model which predicts well on data
- A model's performance is quantified by a loss function
- a sophisticated discrepancy score
- Our model must generalize to unseen data
- Avoid over-fitting by penalizing complex models (Regularization)

More Formally

\square

- Learn a vector: w

Regularized Risk Minimization

Machine Learning

- We want to build a model which predicts well on data
- A model's performance is quantified by a loss function
- a sophisticated discrepancy score
- Our model must generalize to unseen data
- Avoid over-fitting by penalizing complex models (Regularization)

More Formally

\square
\square

- Learn a vector: W

Regularized Risk Minimization

Machine Learning

- We want to build a model which predicts well on data
- A model's performance is quantified by a loss function
- a sophisticated discrepancy score
- Our model must generalize to unseen data
- Avoid over-fitting by penalizing complex models (Regularization)

More Formally

- Training data: $\left\{x_{1}, \ldots, x_{m}\right\}$
- Labels: $\left\{y_{1}, \ldots, y_{m}\right\}$
- Learn a vector: w

$$
\underset{w}{\operatorname{minimize}} J(w):=\underbrace{\lambda \Omega(w)}_{\text {Regularizer }}+\underbrace{\frac{1}{m} \sum_{i=1}^{m} I\left(x_{i}, y_{i}, w\right)}_{\text {Risk } R_{\text {emp }}}
$$

Outline

(1) Convex Functions and Sets

(2) Operations Which Preserve Convexity
(3) First Order Properties
(4) Subgradients
(5) Constraints
(6) Warmup: Minimizing a 1-d Convex Function
(7) Warmup: Coordinate Descent

Focus of my Lectures

Focus of my Lectures

Focus of my Lectures

Disclaimer

- My focus is on showing connections between various methods
- I will sacrifice mathematical rigor and focus on intuition

Convex Function

A function f is convex if, and only if, for all x, x^{\prime} and $\lambda \in(0,1)$

$$
f\left(\lambda x+(1-\lambda) x^{\prime}\right) \leq \lambda f(x)+(1-\lambda) f\left(x^{\prime}\right)
$$

Convex Function

A function f is strictly convex if, and only if, for all x, x^{\prime} and $\lambda \in(0,1)$

$$
f\left(\lambda x+(1-\lambda) x^{\prime}\right)<\lambda f(x)+(1-\lambda) f\left(x^{\prime}\right)
$$

Convex Function

A function f is σ-strongly convex if, and only if, $f(\cdot)-\frac{\sigma}{2}\|\cdot\|^{2}$ is convex. That is, for all x, x^{\prime} and $\lambda \in(0,1)$

$$
f\left(\lambda x+(1-\lambda) x^{\prime}\right) \leq \lambda f(x)+(1-\lambda) f\left(x^{\prime}\right)-\frac{\sigma}{2} \lambda(1-\lambda)\left\|x-x^{\prime}\right\|^{2}
$$

Exercise: Jensen's Inequality

- Extend the definition of convexity to show that if f is convex, then for all $\lambda_{i} \geq 0$ such that $\sum_{i} \lambda_{i}=1$ we have

$$
f\left(\sum_{i} \lambda_{i} x_{i}\right) \leq \sum_{i} \lambda_{i} f\left(x_{i}\right)
$$

Some Familiar Examples

Some Familiar Examples

$$
f(x, y)=\frac{1}{2}[x, y]\left[\begin{array}{c}
10,1 \\
2,1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Some Familiar Examples

Some Familiar Examples

$f(x, y)=x \log x+y \log y-x-y$ (Un-normalized negative entropy)

Some Familiar Examples

Some Other Important Examples

- Linear functions: $f(x)=a x+b$
- Softmax: $f(x)=\log \sum_{i} \exp \left(x_{i}\right)$
- Norms: For example the 2 -norm $f(x)=\sqrt{\sum_{i} x_{i}^{2}}$

Convex Sets

A set C is convex if, and only if, for all $x, x^{\prime} \in C$ and $\lambda \in(0,1)$ we have

$$
\lambda x+(1-\lambda) x^{\prime} \in C
$$

Convex Sets and Convex Functions

A function f is convex if, and only if, its epigraph is a convex set

Convex Sets and Convex Functions

- Indicator functions of convex sets are convex

$$
I_{C}(x)= \begin{cases}0 & \text { if } x \in C \\ \infty & \text { otherwise }\end{cases}
$$

Below sets of Convex Functions

Below sets of Convex Functions

- If f is convex, then all its level sets are convex
- Is the converse true? (Exercise: construct a counter-example)

Minima on Convex Sets

- Set of minima of a convex function is a convex set
- Proof: Consider the set $\left\{x: f(x) \leq f^{*}\right\}$

Minima on Convex Sets

- Set of minima of a strictly convex function is a singleton - Proof: try this at home!

Outline

(1) Convex Functions and Sets

(2) Operations Which Preserve Convexity

(3) First Order Properties
(4) Subgradients
(5) Constraints
(6) Warmup: Minimizing a 1-d Convex Function
(7) Warmup: Coordinate Descent

Set Operations

- Intersection of convex sets is convex
- Image of a convex set under a linear transformation is convex
- Inverse image of a convex set under a linear transformation is convex

Function Operations

- Linear Combination with non-negative weights: $f(x)=\sum_{i} w_{i} f_{i}(x)$ s.t. $w_{i} \geq 0$
- Pointwise maximum: $f(x)=\max _{i} f_{i}(x)$
- Composition with affine function: $f(x)=g(A x+b)$
- Projection along a direction: $f(\eta)=g\left(x_{0}+\eta d\right)$
- Restricting the domain on a convex set: $f(x)$ s.t. $x \in \mathcal{C}$

One Quick Example

The piecewise linear function $f(x):=\max _{i}\left\langle u_{i}, x\right\rangle$ is convex

Outline

(1) Convex Functions and Sets
(2) Operations Which Preserve Convexity
(3) First Order Properties
(4) Subgradients
(5) Constraints
(6) Warmup: Minimizing a 1-d Convex Function
(7) Warmup: Coordinate Descent

First Order Taylor Expansion

The First Order Taylor approximation globally lower bounds the function

For any x and x^{\prime} we have

$$
f(x) \geq f\left(x^{\prime}\right)+\left\langle x-x^{\prime}, \nabla f\left(x^{\prime}\right)\right\rangle
$$

Bregman Divergence

- For any x and x^{\prime} the Bregman divergence defined by f is given by

$$
\Delta_{f}\left(x, x^{\prime}\right)=f(x)-f\left(x^{\prime}\right)-\left\langle x-x^{\prime}, \nabla f\left(x^{\prime}\right)\right\rangle .
$$

Euclidean Distance Squared

Bregman Divergence

- For any x and x^{\prime} the Bregman divergence defined by f is given by

$$
\Delta_{f}\left(x, x^{\prime}\right)=f(x)-f\left(x^{\prime}\right)-\left\langle x-x^{\prime}, \nabla f\left(x^{\prime}\right)\right\rangle .
$$

- Use $f(x)=\frac{1}{2}\|x\|^{2}$ and verify that

$$
\Delta_{f}\left(x, x^{\prime}\right)=\frac{1}{2}\left\|x-x^{\prime}\right\|^{2}
$$

Unnormalized Relative Entropy

Bregman Divergence

- For any x and x^{\prime} the Bregman divergence defined by f is given by

$$
\Delta_{f}\left(x, x^{\prime}\right)=f(x)-f\left(x^{\prime}\right)-\left\langle x-x^{\prime}, \nabla f\left(x^{\prime}\right)\right\rangle .
$$

- Use $f(x)=\sum_{i} x_{i} \log x_{i}-x_{i}$ and verify that

$$
\Delta_{f}\left(x, x^{\prime}\right)=\sum_{i} x_{i} \log x_{i}-x_{i}-x_{i} \log x_{i}^{\prime}+x_{i}^{\prime}
$$

Identifying the Minimum

- Let $f: X \rightarrow \mathbb{R}$ be a differentiable convex function. Then x is a minimizer of f, if, and only if,

$$
\left\langle x^{\prime}-x, \nabla f(x)\right\rangle \geq 0 \text { for all } x^{\prime}
$$

- One way to ensure this is to set $\nabla f(x)=0$
- Minimizing a smooth convex function is the same as finding an x such that $\nabla f(x)=0$

Outline

(1) Convex Functions and Sets
(2) Operations Which Preserve Convexity
(3) First Order Properties

4 Subgradients
(5) Constraints
(6) Warmup: Minimizing a 1-d Convex Function
(7) Warmup: Coordinate Descent

What if the Function is NonSmooth?

The piecewise linear function

$$
f(x):=\max _{i}\left\langle u_{i}, x\right\rangle
$$

is convex but not differentiable at the kinks!

Subgradients to the Rescue

A subgradient at x^{\prime} is any vector s which satisfies

$$
f(x) \geq f\left(x^{\prime}\right)+\left\langle x-x^{\prime}, s\right\rangle \text { for all } x
$$

Set of all subgradients is denoted as $\partial f(w)$

Subgradients to the Rescue

A subgradient at x^{\prime} is any vector s which satisfies

$$
f(x) \geq f\left(x^{\prime}\right)+\left\langle x-x^{\prime}, s\right\rangle \text { for all } x
$$

Set of all subgradients is denoted as $\partial f(w)$

Subgradients to the Rescue

A subgradient at x^{\prime} is any vector s which satisfies

$$
f(x) \geq f\left(x^{\prime}\right)+\left\langle x-x^{\prime}, s\right\rangle \text { for all } x
$$

Set of all subgradients is denoted as $\partial f(w)$

Example

- $f(x)=|x|$ and $\partial f(0)=[-1,1]$

Identifying the Minimum

- Let $f: X \rightarrow \mathbb{R}$ be a convex function. Then x is a minimizer of f, if, and only if, there exists a $\mu \in \partial f(x)$ such that

$$
\left\langle x^{\prime}-x, \mu\right\rangle \geq 0 \text { for all } x^{\prime}
$$

- One way to ensure this is to ensure that $0 \in \partial f(x)$

Outline

(1) Convex Functions and Sets
(2) Operations Which Preserve Convexity
(3) First Order Properties
(4) Subgradients
(5) Constraints
(6) Warmup: Minimizing a 1-d Convex Function
(7) Warmup: Coordinate Descent

A Simple Example

- Minimize $\frac{1}{2} x^{2}$ s.t. $1 \leq w \leq 2$

Projection

$$
\begin{aligned}
& P_{\mathrm{C}}\left(x^{\prime}\right):=\min _{x \in \mathbb{C}}\left\|x-x^{\prime}\right\|^{2}
\end{aligned}
$$

First Order Conditions For Constrained Problems

$$
x=P_{\mathrm{C}}(x-\nabla f(x))
$$

- If $x-\nabla f(x) \in \mathcal{C}$ then $P_{\mathcal{C}}(x-\nabla f(x))=x$ implies that $\nabla f(x)=0$
- Otherwise, it shows that the constraints are preventing further progress in the direction of descent

Outline

(1) Convex Functions and Sets
(2) Operations Which Preserve Convexity
(3) First Order Properties
(4) Subgradients
(5) Constraints
(6) Warmup: Minimizing a 1-d Convex Function
(7) Warmup: Coordinate Descent

Problem Statement

- Given a black-box which can compute $J: \mathbb{R} \rightarrow \mathbb{R}$ and $J^{\prime}: \mathbb{R} \rightarrow \mathbb{R}$ find the minimum value of J

Increasing Gradients

- From the first order conditions

$$
J(w) \geq J\left(w^{\prime}\right)+\left(w-w^{\prime}\right) \cdot J^{\prime}\left(w^{\prime}\right)
$$

and

$$
J\left(w^{\prime}\right) \geq J(w)+\left(w^{\prime}-w\right) \cdot J^{\prime}(w)
$$

- Add the two

$$
\left(w-w^{\prime}\right) \cdot\left(J^{\prime}(w)-J^{\prime}\left(w^{\prime}\right)\right) \geq 0
$$

$w \geq w^{\prime}$ implies that $J^{\prime}(w) \geq J^{\prime}\left(w^{\prime}\right)$

Increasing Gradients

Increasing Gradients

Increasing Gradients

Increasing Gradients

Problem Restatement

- Identify the point where the increasing function J^{\prime} crosses zero

Bisection Algorithm

Interval Bisection

Require: L, U, ϵ
1: maxgrad $\leftarrow J^{\prime}(U)$
2: while $(U-L) \cdot$ maxgrad $>\epsilon$ do
3: $\quad M \leftarrow \frac{U+L}{2}$
4: if $J^{\prime}(M)>0$ then
5: $\quad U \leftarrow M$
6: else
7: $\quad L \leftarrow M$
8: end if
9: end while
10: return $\frac{U+L}{2}$

Outline

(1) Convex Functions and Sets
(2) Operations Which Preserve Convexity
(3) First Order Properties
(4) Subgradients
(5) Constraints
(6) Warmup: Minimizing a 1-d Convex Function
(7) Warmup: Coordinate Descent

Problem Statement

- Given a black-box which can compute $J: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $J^{\prime}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ find the minimum value of J

Concrete Example

$$
f(x, y)=\frac{1}{2}[x, y]\left[\begin{array}{c}
10,1 \\
2,1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Concrete Example

$$
f(x, 3)=\frac{1}{2}[x, 3]\left[\begin{array}{c}
10,1 \\
2,1
\end{array}\right]\left[\begin{array}{l}
x \\
3
\end{array}\right]
$$

Concrete Example

$$
f(x, 3)=5 x^{2}+\frac{9}{2} x+\frac{9}{2}
$$

Concrete Example

Concrete Example

Concrete Example

Concrete Example

$$
f\left(-\frac{9}{20}, y\right)=\frac{1}{2} y^{2}-\frac{27}{40} y+\frac{81}{80} \quad \text { Minima: } y=\frac{27}{40}
$$

Concrete Example

- Are we done?

Concrete Example

- Are we done?

