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Regularized Risk Minimization

Machine Learning

@ We want to build a model which predicts well on data
@ A model's performance is quantified by a loss function
@ a sophisticated discrepancy score

@ Our model must generalize to unseen data

@ Avoid over-fitting by penalizing complex models (Regularization)

More Formally

@ Training data: {x1,...,Xm}

o Labels: {y1,...,ym}
@ Learn a vector: w

1 m
minimize J(w) := AQ(w) +*Z/(XI7YI7W)
w N—— m i1

Regularizer

Risk Remp
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© Convex Functions and Sets

© Operations Which Preserve Convexity

© First Order Properties

@ Subgradients

© Constraints

Q Warmup: Minimizing a 1-d Convex Function

@ Warmup: Coordinate Descent
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Convex Functions and Sets

Disclaimer

@ My focus is on showing connections between various methods

o | will sacrifice mathematical rigor and focus on intuition
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Convex Functions and Sets

Convex Function

A function f is convex if, and only if, for all x,x" and X € (0,1)

F(Ax + (1= N)x") < M (x)+ (1 = XN)F(X)
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Convex Functions and Sets

Convex Function

A function f is strictly convex if, and only if, for all x,x’ and )\ € (0,1)

F(Ax + (1= A)X) <M (x) + (1 = N F(X)
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Convex Functions and Sets

Convex Function

A function f is o-strongly convex if, and only if, f(-) — § ||-||? is convex.
That is, for all x,x" and X € (0,1)

FOWX + (1= M)x) < AF(x) + (1= NF(X) — %m — ) []x = x|
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Convex Functions and Sets

Exercise: Jensen’s Inequality

@ Extend the definition of convexity to show that if f is convex, then for
all \; > 0 such that > . A\j =1 we have

f Z/\,‘X,‘ S Z)\,-f(x,-)
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Convex Functions and Sets

Some Familiar Examples

f(x) = $x2 (Square norm)
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Convex Functions and Sets
Some Familiar Examples
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f(x) = xlog x + (1 — x) log(1 — x) (Negative entropy)
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Convex Functions and Sets

Some Familiar Examples

f(x,y) = xlogx + ylogy — x —y (Un-normalized negative entropy)
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Convex Functions and Sets

Some Familiar Examples

41 i

-3 -2 -1 0 1 2 3

f(x) = max(0,1 — x) (Hinge Loss)
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Convex Functions and Sets

Some Other Important Examples

@ Linear functions: f(x) =ax+ b
@ Softmax: f(x) = log ) _; exp(x;)

@ Norms: For example the 2-norm f(x) = />, x?
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A set C is convex if, and only if, for all x,x" € C and X € (0,1) we have

M+ (1=A)x"eC



A function f is convex if, and only if, its epigraph is a convex set



Convex Functions and Sets

Convex Sets and Convex Functions

@ Indicator functions of convex sets are convex

0 ifxeC

oo  otherwise.

Ic(x) =
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Convex Functions and Sets

Below sets of Convex Functions

Fx,y) =x*+y2
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Below sets of Convex Functions
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Convex Functions and Sets

Below sets of Convex Functions
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f(x,y) =xlogx+ylogy —x—y
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Convex Functions and Sets

Below sets of Convex Functions

S.V. N. Vishwanathan (UCSC) Optimization for Machine Learning 13 / 43



Convex Functions and Sets

Below sets of Convex Functions
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Convex Functions and Sets

Below sets of Convex Functions

o If f is convex, then all its level sets are convex

@ Is the converse true? (Exercise: construct a counter-example)
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Convex Functions and Sets

Minima on Convex Sets

@ Set of minima of a convex function is a convex set
@ Proof: Consider the set {x : f(x) < f*}
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Convex Functions and Sets

Minima on Convex Sets

@ Set of minima of a strictly convex function is a singleton

@ Proof: try this at home!
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Operations Which Preserve Convexity

Set Operations

@ Intersection of convex sets is convex
@ Image of a convex set under a linear transformation is convex

@ Inverse image of a convex set under a linear transformation is convex
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Operations Which Preserve Convexity

Function Operations

@ Linear Combination with non-negative weights: f(x) =", w;fi(x)
st.w; >0

@ Pointwise maximum: f(x) = max; fi(x)

o Composition with affine function: f(x) = g(Ax + b)

@ Projection along a direction: f(n) = g(xo + nd)

@ Restricting the domain on a convex set: f(x)s.t. x € C
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Operations Which Preserve Convexity

One Quick Example

The piecewise linear function f(x) := max; (uj, x) is convex

S.V. N. Vishwanathan (UCSC) Optimization for Machine Learning

19 / 43



@ Convex Functions and Sets

© Operations Which Preserve Convexity

© First Order Properties

@ Subgradients

© Constraints

Q Warmup: Minimizing a 1-d Convex Function

@ Warmup: Coordinate Descent



First Order Properties

First Order Taylor Expansion

The First Order Taylor approximation globally lower bounds the function

For any x and x’ we have
f(x) > f(x —|—<X—X Vi (x )>
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First Order Properties

Bregman Divergence

@ For any x and x’ the Bregman divergence defined by f is given by

Ar(x,x") = f(x) = f(X') = (x = X', V(X)) .
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First Order Properties

Euclidean Distance Squared

Bregman Divergence

@ For any x and x’ the Bregman divergence defined by f is given by

Ar(x,x") = f(x) = f(x') = (x = x', VF(X)).

o Use f(x) =3 |x]|? and verify that

1
As(x,x') = 5 |x — X’H2
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First Order Properties

Unnormalized Relative Entropy

Bregman Divergence

@ For any x and x’ the Bregman divergence defined by f is given by

Af(x,x') = f(x) — f(x') = (x = X, VF(X)).

@ Use f(x) =), xilog x; — x; and verify that

Ar(x,x') = E xilog x; — x; — x; log x| + x!
i
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First Order Properties

Identifying the Minimum

@ Let f : X — R be a differentiable convex function. Then x is a
minimizer of f, if, and only if,

(x' = x,Vf(x)) > 0 for all x'.

@ One way to ensure this is to set Vf(x) =0

@ Minimizing a smooth convex function is the same as finding an x
such that Vf(x) =0
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Subgradients

What if the Function is NonSmooth?

The piecewise linear function
f(x) := max (uj, x)
1

is convex but not differentiable at the kinks!
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Subgradients

Subgradients to the Rescue

A subgradient at x’ is any vector s which satisfies
f(x) > f(xX')+ (x = x',s) for all x

Set of all subgradients is denoted as Of (w)
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Subgradients

Example

|
-3 -2 -1 0 1 2 3
o f(x) = |x| and OF(0) = [1,1]
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Subgradients

Identifying the Minimum

@ Let f : X = R be a convex function. Then x is a minimizer of f, if,
and only if, there exists a € Of(x) such that

(x" = x,pu) >0 for all x".

@ One way to ensure this is to ensure that 0 € 0f(x)
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Constraints

A Simple Example

@ Minimize %xzs.t. 1<w<?2
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Pe(x') = min [[x — x|



Constraints

First Order Conditions For Constrained Problems

x = Pe(x — Vf(x))

o If x — Vf(x) € € then Pe(x — Vf(x)) = x implies that Vf(x) =0
@ Otherwise, it shows that the constraints are preventing further
progress in the direction of descent
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Warmup: Minimizing a 1-d Convex Function

Outline

Q Warmup: Minimizing a 1-d Convex Function
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Warmup: Minimizing a 1-d Convex Function

Problem Statement

@ Given a black-box which can compute J: R — R and J': R — R find
the minimum value of J
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Warmup: Minimizing a 1-d Convex Function

Increasing Gradients

@ From the first order conditions
J(w) = W) + (w—w') - S (W)
and
JW') = J(w) + (W' = w) - J'(w)
@ Add the two
(w—=w)- (S (w) = S (w)) =0

w > w' implies that J'(w) > J'(w’)
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Warmup: Minimizing a 1-d Convex Function

Increasing Gradients
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Warmup: Minimizing a 1-d Convex Function

Increasing Gradients

S (w)
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Warmup: Minimizing a 1-d Convex Function

Problem Restatement

o ldentify the point

S.V. N. Vishwanathan (UCSC)

where the increasing function J' crosses zero
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Warmup: Minimizing a 1-d Convex Function

Bisection Algorithm
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Warmup: Minimizing a 1-d Convex Function

Interval Bisection

Require: L, U, e
maxgrad < J'(U)
while (U — L) - maxgrad > ¢ do
M « YFE
if J/(M) > 0 then
UM
else
L+—M
end if
end while
return %

© 0N whH

-
e
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Warmup: Coordinate Descent

Problem Statement

@ Given a black-box which can compute J: R” — R and J': R" — R"
find the minimum value of J
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Warmup: Coordinate Descent

Concrete Example

1
2

f(X7y):

o[22 ][5
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Warmup: Coordinate Descent

Concrete Example

f(x,3)=

1
2

o) [0 ][5
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Warmup: Coordinate Descent

Concrete Example

60 | A

40 | §

20

f(x,3) :5X2+§X—|—g
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Warmup: Coordinate Descent

Concrete Example

60| A

20

-3 -2 -1 0 1 2 3

f(X>3):5X2+gX+g Minima: X:—%
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Warmup: Coordinate Descent

Concrete Example
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Warmup: Coordinate Descent

Concrete Example

8,

|
3 2 -1 0 1 2
y
9 1., 27 8l
Fl—— y)=2y2 2L, 4 &
(=50 ¥) =% ~ 30" t 50
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Warmup: Coordinate Descent

Concrete Example

8, ]
6, |
4 i
2, |
| | | | | | |
3 =2 -1 0 1 2 3
y
9 1., 27 81 27
fle— ) =2y2— 2Ly 0 S0 Minima: y = =&
(=59 ¥)=35Y" —4g¥ tgg Minima:y =70
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Warmup: Coordinate Descent

Concrete Example

50 | |
40| :

~ 30| |

RIS

-

= 20| |
10 [ :
O, |

| | | | | | |

@ Are we done?
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Warmup: Coordinate Descent

Concrete Example

50 |
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@ Are we done?
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