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Regularized Risk Minimization

Machine Learning

We want to build a model which predicts well on data

A model’s performance is quantified by a loss function

a sophisticated discrepancy score

Our model must generalize to unseen data

Avoid over-fitting by penalizing complex models (Regularization)

More Formally

Training data: {x1, . . . , xm}
Labels: {y1, . . . , ym}
Learn a vector: w

minimize
w

J(w) := λΩ(w)︸ ︷︷ ︸
Regularizer

+
1

m

m∑
i=1

l(xi , yi ,w)︸ ︷︷ ︸
Risk Remp
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Convex Functions and Sets

Outline

1 Convex Functions and Sets

2 Operations Which Preserve Convexity

3 First Order Properties

4 Subgradients

5 Constraints

6 Warmup: Minimizing a 1-d Convex Function

7 Warmup: Coordinate Descent
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Convex Functions and Sets

Focus of my Lectures

S.V.N. Vishwanathan (UCSC) Optimization for Machine Learning 4 / 43



Convex Functions and Sets

Focus of my Lectures

S.V.N. Vishwanathan (UCSC) Optimization for Machine Learning 4 / 43



Convex Functions and Sets

Focus of my Lectures
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Convex Functions and Sets

Disclaimer

My focus is on showing connections between various methods

I will sacrifice mathematical rigor and focus on intuition
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Convex Functions and Sets

Convex Function

f (x ′)

f (x)

A function f is convex if, and only if, for all x , x ′ and λ ∈ (0, 1)

f (λx + (1− λ)x ′) ≤ λf (x) + (1− λ)f (x ′)
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Convex Functions and Sets

Convex Function

f (x ′)

f (x)

A function f is strictly convex if, and only if, for all x , x ′ and λ ∈ (0, 1)

f (λx + (1− λ)x ′)<λf (x) + (1− λ)f (x ′)
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Convex Functions and Sets

Convex Function

f (x ′)

f (x)

A function f is σ-strongly convex if, and only if, f (·) − σ
2 ‖·‖

2 is convex.
That is, for all x , x ′ and λ ∈ (0, 1)

f (λx + (1− λ)x ′) ≤ λf (x) + (1− λ)f (x ′)− σ

2
λ(1− λ)

∥∥x − x ′
∥∥2
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Convex Functions and Sets

Exercise: Jensen’s Inequality

Extend the definition of convexity to show that if f is convex, then for
all λi ≥ 0 such that

∑
i λi = 1 we have

f

(∑
i

λixi

)
≤
∑
i

λi f (xi )
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Convex Functions and Sets

Some Familiar Examples

−4 −2 2 4

2

4

6

8

10

12

f (x) = 1
2x

2 (Square norm)
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Convex Functions and Sets

Some Familiar Examples
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50

f (x , y) =
1

2

[
x , y

] [ 10, 1
2, 1

] [
x
y

]
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Convex Functions and Sets

Some Familiar Examples

0 0.2 0.4 0.6 0.8 1

−0.6

−0.4

−0.2

0

f (x) = x log x + (1− x) log(1− x) (Negative entropy)
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Convex Functions and Sets

Some Familiar Examples

0
0.5 1

1.5 2 0

1

2
−2

−1

0

f (x , y) = x log x + y log y − x − y (Un-normalized negative entropy)
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Convex Functions and Sets

Some Familiar Examples

−3 −2 −1 0 1 2 3

0

1

2

3

4

f (x) = max(0, 1− x) (Hinge Loss)
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Convex Functions and Sets

Some Other Important Examples

Linear functions: f (x) = ax + b

Softmax: f (x) = log
∑

i exp(xi )

Norms: For example the 2-norm f (x) =
√∑

i x
2
i
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Convex Functions and Sets

Convex Sets

A set C is convex if, and only if, for all x , x ′ ∈ C and λ ∈ (0, 1) we have

λx + (1− λ)x ′ ∈ C
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Convex Functions and Sets

Convex Sets and Convex Functions

A function f is convex if, and only if, its epigraph is a convex set
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Convex Functions and Sets

Convex Sets and Convex Functions

Indicator functions of convex sets are convex

IC (x) =

{
0 if x ∈ C

∞ otherwise.
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Convex Functions and Sets

Below sets of Convex Functions

−2
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2 −2

0

20

10

f (x , y) = x2 + y2
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Convex Functions and Sets

Below sets of Convex Functions
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Convex Functions and Sets

Below sets of Convex Functions
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Convex Functions and Sets

Below sets of Convex Functions

0
0.5 1

1.5 2 0
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0

f (x , y) = x log x + y log y − x − y
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Convex Functions and Sets

Below sets of Convex Functions
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Convex Functions and Sets

Below sets of Convex Functions
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Convex Functions and Sets

Below sets of Convex Functions

If f is convex, then all its level sets are convex

Is the converse true? (Exercise: construct a counter-example)
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Convex Functions and Sets

Minima on Convex Sets

Set of minima of a convex function is a convex set

Proof: Consider the set {x : f (x) ≤ f ∗}
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Convex Functions and Sets

Minima on Convex Sets

Set of minima of a strictly convex function is a singleton

Proof: try this at home!
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Operations Which Preserve Convexity

Outline

1 Convex Functions and Sets

2 Operations Which Preserve Convexity

3 First Order Properties

4 Subgradients

5 Constraints

6 Warmup: Minimizing a 1-d Convex Function

7 Warmup: Coordinate Descent
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Operations Which Preserve Convexity

Set Operations

Intersection of convex sets is convex

Image of a convex set under a linear transformation is convex

Inverse image of a convex set under a linear transformation is convex
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Operations Which Preserve Convexity

Function Operations

Linear Combination with non-negative weights: f (x) =
∑

i wi fi (x)
s.t. wi ≥ 0

Pointwise maximum: f (x) = maxi fi (x)

Composition with affine function: f (x) = g(Ax + b)

Projection along a direction: f (η) = g(x0 + ηd)

Restricting the domain on a convex set: f (x)s.t. x ∈ C
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Operations Which Preserve Convexity

One Quick Example

The piecewise linear function f (x) := maxi 〈ui , x〉 is convex
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First Order Properties

Outline

1 Convex Functions and Sets

2 Operations Which Preserve Convexity

3 First Order Properties

4 Subgradients

5 Constraints

6 Warmup: Minimizing a 1-d Convex Function

7 Warmup: Coordinate Descent
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First Order Properties

First Order Taylor Expansion

The First Order Taylor approximation globally lower bounds the function

For any x and x ′ we have

f (x) ≥ f (x ′) +
〈
x − x ′,∇f (x ′)

〉
S.V.N. Vishwanathan (UCSC) Optimization for Machine Learning 21 / 43



First Order Properties

Bregman Divergence

f (x ′) + 〈x − x ′,∇f (x ′)〉

f (x)

f (x ′)

For any x and x ′ the Bregman divergence defined by f is given by

∆f (x , x ′) = f (x)− f (x ′)−
〈
x − x ′,∇f (x ′)

〉
.
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First Order Properties

Euclidean Distance Squared

Bregman Divergence

For any x and x ′ the Bregman divergence defined by f is given by

∆f (x , x ′) = f (x)− f (x ′)−
〈
x − x ′,∇f (x ′)

〉
.

Use f (x) = 1
2 ‖x‖

2 and verify that

∆f (x , x ′) =
1

2

∥∥x − x ′
∥∥2
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First Order Properties

Unnormalized Relative Entropy

Bregman Divergence

For any x and x ′ the Bregman divergence defined by f is given by

∆f (x , x ′) = f (x)− f (x ′)−
〈
x − x ′,∇f (x ′)

〉
.

Use f (x) =
∑

i xi log xi − xi and verify that

∆f (x , x ′) =
∑
i

xi log xi − xi − xi log x ′i + x ′i
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First Order Properties

Identifying the Minimum

Let f : X → R be a differentiable convex function. Then x is a
minimizer of f , if, and only if,〈

x ′ − x ,∇f (x)
〉
≥ 0 for all x ′.

One way to ensure this is to set ∇f (x) = 0

Minimizing a smooth convex function is the same as finding an x
such that ∇f (x) = 0
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Subgradients

Outline

1 Convex Functions and Sets
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Subgradients

What if the Function is NonSmooth?

The piecewise linear function

f (x) := max
i
〈ui , x〉

is convex but not differentiable at the kinks!
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Subgradients

Subgradients to the Rescue

A subgradient at x ′ is any vector s which satisfies

f (x) ≥ f (x ′) +
〈
x − x ′, s

〉
for all x

Set of all subgradients is denoted as ∂f (w)
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Subgradients

Example

−3 −2 −1 0 1 2 3

0

1

2

3

f (x) = |x | and ∂f (0) = [−1, 1]
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Subgradients

Identifying the Minimum

Let f : X → R be a convex function. Then x is a minimizer of f , if,
and only if, there exists a µ ∈ ∂f (x) such that〈

x ′ − x , µ
〉
≥ 0 for all x ′.

One way to ensure this is to ensure that 0 ∈ ∂f (x)
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Constraints
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Constraints

A Simple Example

−4 −2 2 4

2

4

6

8

10

12

Minimize 1
2x

2s.t. 1 ≤ w ≤ 2
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Constraints

Projection

x ′

x

PC(x ′) := min
x∈C

∥∥x − x ′
∥∥2
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Constraints

First Order Conditions For Constrained Problems

x = PC(x −∇f (x))

If x −∇f (x) ∈ C then PC(x −∇f (x)) = x implies that ∇f (x) = 0

Otherwise, it shows that the constraints are preventing further
progress in the direction of descent
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Warmup: Minimizing a 1-d Convex Function
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Warmup: Minimizing a 1-d Convex Function

Problem Statement

Given a black-box which can compute J : R→ R and J ′ : R→ R find
the minimum value of J
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Warmup: Minimizing a 1-d Convex Function

Increasing Gradients

From the first order conditions

J(w) ≥ J(w ′) + (w − w ′) · J ′(w ′)

and

J(w ′) ≥ J(w) + (w ′ − w) · J ′(w)

Add the two

(w − w ′) · (J ′(w)− J ′(w ′)) ≥ 0

w ≥ w ′ implies that J ′(w) ≥ J ′(w ′)
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Warmup: Minimizing a 1-d Convex Function

Problem Restatement

w

J ′(w)

Identify the point where the increasing function J ′ crosses zero
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Warmup: Minimizing a 1-d Convex Function

Bisection Algorithm

U

L w

J ′(w)

S.V.N. Vishwanathan (UCSC) Optimization for Machine Learning 39 / 43



Warmup: Minimizing a 1-d Convex Function

Bisection Algorithm

U
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M

w

J ′(w)
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Warmup: Minimizing a 1-d Convex Function
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Warmup: Minimizing a 1-d Convex Function

Interval Bisection

Require: L,U, ε
1: maxgrad ← J ′(U)
2: while (U − L) ·maxgrad > ε do
3: M ← U+L

2
4: if J ′(M) > 0 then
5: U ← M
6: else
7: L← M
8: end if
9: end while

10: return U+L
2
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Warmup: Coordinate Descent
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Warmup: Coordinate Descent

Problem Statement

−2
0

2 −2
0

2

0

50

Given a black-box which can compute J : Rn → R and J ′ : Rn → Rn

find the minimum value of J
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Warmup: Coordinate Descent

Concrete Example
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Warmup: Coordinate Descent

Concrete Example
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Warmup: Coordinate Descent

Concrete Example

−3 −2 −1 0 1 2 3
0

20

40

60

x

f (x , 3) = 5x2 +
9

2
x +

9

2
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Warmup: Coordinate Descent

Concrete Example

−3 −2 −1 0 1 2 3
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f (x , 3) = 5x2 +
9

2
x +

9

2
Minima: x = − 9

20
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Warmup: Coordinate Descent

Concrete Example
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Warmup: Coordinate Descent

Concrete Example
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Warmup: Coordinate Descent

Concrete Example
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Warmup: Coordinate Descent

Concrete Example
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Are we done?
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Warmup: Coordinate Descent

Concrete Example
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Are we done?

S.V.N. Vishwanathan (UCSC) Optimization for Machine Learning 43 / 43


	Convex Functions and Sets
	Operations Which Preserve Convexity
	First Order Properties
	Subgradients
	Constraints
	Warmup: Minimizing a 1-d Convex Function
	Warmup: Coordinate Descent

