
++ ≥

NOML: Submodularity in Machine Learning
June 17th, 2015: Intro and Applications

Jeffrey A. Bilmes and Rishabh Iyer

Departments of Electrical Engineering
& Computer Science and Engineering

University of Washington, Seattle
http://melodi.ee.washington.edu/~bilmes

http://melodi.ee.washington.edu/~rkiyer/

June 17th-19th, 2015

J. Bilmes & R. Iyer NOML: Submodularity in ML page 1 / 123

Intro Basics Other Exs. Optimization

Goals of the Tutorial

+f (A) + f (B) f (A ∪ B)

= f (Ar) +f (C) + f (Br)

≥
= f (A ∩ B)

f (A ∩ B)

= f (Ar) + 2f (C) + f (Br)

Clockwise from top left:v
Lásló Lovász

Jack Edmonds
Satoru Fujishige

George Nemhauser
Laurence Wolsey

András Frank
Lloyd Shapley
H. Narayanan
Robert Bixby

William Cunningham
William Tutte
Richard Rado

Alexander Schrijver
Garrett Birkho�
Hassler Whitney

Richard Dedekind

Intuitive sense for and familiarity with submodular functions.

Survey a variety of applications of submodularity in machine learning
and beyond.

Realize why submodularity is important, worthy of study, and should
be a standard tool in the tool chest of ML and AI.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 2 / 123

Intro Basics Other Exs. Optimization

On The Submodularity Tutorial

The definition of submodularity is fairly simple: given a finite ground
set V , a function f : 2V → R is said to be submodular if

f (A) + f (B) ≥ f (A ∪ B) + f (A ∩ B), ∀A,B ⊆ V , (1)

we will revisit this in many forms today

The definition, however, is only the tip of the iceberg — this simple
definition can lead to great mathematical and practical richness.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 3 / 123

Intro Basics Other Exs. Optimization

On The Submodularity Tutorial

The definition of submodularity is fairly simple: given a finite ground
set V , a function f : 2V → R is said to be submodular if

f (A) + f (B) ≥ f (A ∪ B) + f (A ∩ B), ∀A,B ⊆ V , (1)

we will revisit this in many forms today
The definition, however, is only the tip of the iceberg — this simple
definition can lead to great mathematical and practical richness.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 3 / 123

Intro Basics Other Exs. Optimization

Overall Outline of Tutorial

1 Today (Wednesady): Basics, Examples, Properties, and Applications
(presented by myself, Jeff Bilmes)

2 Tomorrow: Algorithms for constrained and unconstrained
submodular optimization, details of semidifferentials, many novel
submodular strucures (presented by Dr. Rishabh Iyer)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 4 / 123

Intro Basics Other Exs. Optimization

Overall Outline of Today’s Tutorial

1 Part 1: Basics, Examples, and Properties

2 Part 2: Applications

J. Bilmes & R. Iyer NOML: Submodularity in ML page 5 / 123

Intro Basics Other Exs. Optimization

Outline of Part 1: Basics, Examples, and Properties

1 Introduction
Goals of the Tutorial

2 Basics
Set Functions
Economic applications
Set Cover Like Functions
Submodular Definitions
Other Background, sets, vectors, gain, other defs

3 Other examples of submodular functs
Traditional combinatorial and graph functions
Concave over modular, and sums thereof
Matrix Rank
Venn Diagrams
Information Theory Functions

4 Optimization

J. Bilmes & R. Iyer NOML: Submodularity in ML page 6 / 123

Intro Basics Other Exs. Optimization

Outline of Part 2: Submodular Applications in ML

5 Submodular Applications in Machine Learning
Where is submodularity useful?

6 As a model of diversity, coverage, span, or information

7 As a model of cooperative costs, complexity, roughness, and
irregularity

8 As a Parameter for an ML algorithm

9 Itself, as a target for learning

10 Surrogates for optimization and analysis

11 Reading
Refs

J. Bilmes & R. Iyer NOML: Submodularity in ML page 7 / 123

Intro Basics Other Exs. Optimization

Acknowledgments

Thanks to the following people (former & current students, and current
colleagues):

Mukund Narasimhan, Hui Lin, Andrew Guillory, Stefanie
Jegelka, Sebastian Tschiatschek, Kai Wei, Yuzong Liu, Rishabh
Iyer, Jennifer Gillenwater, Yoshinobu Kawahara, Katrin
Kirchhoff, Carlos Guestrin, & Bill Noble.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 8 / 123

Intro Basics Other Exs. Optimization

Outline: Part 1

1 Introduction
Goals of the Tutorial

2 Basics
Set Functions
Economic applications
Set Cover Like Functions
Submodular Definitions
Other Background, sets, vectors, gain, other defs

3 Other examples of submodular functs
Traditional combinatorial and graph functions
Concave over modular, and sums thereof
Matrix Rank
Venn Diagrams
Information Theory Functions

4 Optimization

J. Bilmes & R. Iyer NOML: Submodularity in ML page 9 / 123

Intro Basics Other Exs. Optimization

Sets and set functions

We are given a finite “ground” set of objects:

V =

Also given a set function f : 2V → R that valuates subsets A ⊆ V .
Ex: f (V) = 6

J. Bilmes & R. Iyer NOML: Submodularity in ML page 10 / 123

Intro Basics Other Exs. Optimization

Sets and set functions

Subset A ⊆ V of objects:

A =

Also given a set function f : 2V → R that valuates subsets A ⊆ V .
Ex: f (A) = 1

J. Bilmes & R. Iyer NOML: Submodularity in ML page 10 / 123

Intro Basics Other Exs. Optimization

Sets and set functions

Subset B ⊆ V of objects:

B =

Also given a set function f : 2V → R that valuates subsets A ⊆ V .
Ex: f (B) = 6

J. Bilmes & R. Iyer NOML: Submodularity in ML page 10 / 123

Intro Basics Other Exs. Optimization

Simple Costs

Grocery store: finite set of items V that one can purchase.

Each item v ∈ V has a price m(v).

Basket of groceries A ⊆ V costs:

m(A) =
∑

a∈A
m(a), (2)

the sum of individual item costs (no two-for-one discounts).

This is known as a modular function.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 11 / 123

Intro Basics Other Exs. Optimization

Simple Costs

Grocery store: finite set of items V that one can purchase.

Each item v ∈ V has a price m(v).

Basket of groceries A ⊆ V costs:

m(A) =
∑

a∈A
m(a), (2)

the sum of individual item costs (no two-for-one discounts).

This is known as a modular function.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 11 / 123

Intro Basics Other Exs. Optimization

Simple Costs

Grocery store: finite set of items V that one can purchase.

Each item v ∈ V has a price m(v).

Basket of groceries A ⊆ V costs:

m(A) =
∑

a∈A
m(a), (2)

the sum of individual item costs (no two-for-one discounts).

This is known as a modular function.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 11 / 123

Intro Basics Other Exs. Optimization

Simple Costs

Grocery store: finite set of items V that one can purchase.

Each item v ∈ V has a price m(v).

Basket of groceries A ⊆ V costs:

m(A) =
∑

a∈A
m(a), (2)

the sum of individual item costs (no two-for-one discounts).

This is known as a modular function.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 11 / 123

Intro Basics Other Exs. Optimization

Discounted Costs

Let f be the cost of purchasing a set of items (consumer cost).

For
example, V = {”coke”, ”fries”, ”hamburger”} and f (A) measures
the cost of any subset A ⊆ V .Then,

f () ≥ f () + f ()f ()+

Rearranging terms, we can see this as a form of diminishing returns:

f () f () ≥ f () f ()

Typical: additional cost of a coke is free only if you add it to a fries
and hamburger order.
Such costs are submodular

J. Bilmes & R. Iyer NOML: Submodularity in ML page 12 / 123

Intro Basics Other Exs. Optimization

Discounted Costs

Let f be the cost of purchasing a set of items (consumer cost). For
example, V = {”coke”, ”fries”, ”hamburger”} and f (A) measures
the cost of any subset A ⊆ V .

Then,

f () ≥ f () + f ()f ()+

Rearranging terms, we can see this as a form of diminishing returns:

f () f () ≥ f () f ()

Typical: additional cost of a coke is free only if you add it to a fries
and hamburger order.
Such costs are submodular

J. Bilmes & R. Iyer NOML: Submodularity in ML page 12 / 123

Intro Basics Other Exs. Optimization

Discounted Costs

Let f be the cost of purchasing a set of items (consumer cost). For
example, V = {”coke”, ”fries”, ”hamburger”} and f (A) measures
the cost of any subset A ⊆ V .Then,

f () ≥ f () + f ()f ()+

Rearranging terms, we can see this as a form of diminishing returns:

f () f () ≥ f () f ()

Typical: additional cost of a coke is free only if you add it to a fries
and hamburger order.
Such costs are submodular

J. Bilmes & R. Iyer NOML: Submodularity in ML page 12 / 123

Intro Basics Other Exs. Optimization

Discounted Costs

Let f be the cost of purchasing a set of items (consumer cost). For
example, V = {”coke”, ”fries”, ”hamburger”} and f (A) measures
the cost of any subset A ⊆ V .Then,

f () ≥ f () + f ()f ()+

Rearranging terms, we can see this as a form of diminishing returns:

f () f () ≥ f () f ()

Typical: additional cost of a coke is free only if you add it to a fries
and hamburger order.
Such costs are submodular

J. Bilmes & R. Iyer NOML: Submodularity in ML page 12 / 123

Intro Basics Other Exs. Optimization

Discounted Costs

Let f be the cost of purchasing a set of items (consumer cost). For
example, V = {”coke”, ”fries”, ”hamburger”} and f (A) measures
the cost of any subset A ⊆ V .Then,

f () ≥ f () + f ()f ()+

Rearranging terms, we can see this as a form of diminishing returns:

f () f () ≥ f () f ()

Typical: additional cost of a coke is free only if you add it to a fries
and hamburger order.

Such costs are submodular

J. Bilmes & R. Iyer NOML: Submodularity in ML page 12 / 123

Intro Basics Other Exs. Optimization

Discounted Costs

Let f be the cost of purchasing a set of items (consumer cost). For
example, V = {”coke”, ”fries”, ”hamburger”} and f (A) measures
the cost of any subset A ⊆ V .Then,

f () ≥ f () + f ()f ()+

Rearranging terms, we can see this as a form of diminishing returns:

f () f () ≥ f () f ()

Typical: additional cost of a coke is free only if you add it to a fries
and hamburger order.
Such costs are submodular

J. Bilmes & R. Iyer NOML: Submodularity in ML page 12 / 123

Intro Basics Other Exs. Optimization

Shared Fixed Costs (interacting costs)

Costs often interact in the real world.

Ex: Let V = {v1, v2} be a set of actions with:

v1 = “buy milk at the store” v2 = “buy honey at the store”

For A ⊆ V , let f (A) be the consumer cost of set of items A.

f ({v1}) = cost to drive to and from store cd , and cost to purchase
milk cm, so f ({v1}) = cd + cm.

f ({v2}) = cost to drive to and from store cd , and cost to purchase
honey ch, so f ({v2}) = cd + ch.

But f ({v1, v2}) = cd + cm + ch < 2cd + cm + ch since cd (driving) is
a shared fixed cost.

Shared fixed costs are submodular: f (v1) + f (v2) ≥ f (v1, v2) + f (∅)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 13 / 123

Intro Basics Other Exs. Optimization

Shared Fixed Costs (interacting costs)

Costs often interact in the real world.

Ex: Let V = {v1, v2} be a set of actions with:

v1 = “buy milk at the store” v2 = “buy honey at the store”

For A ⊆ V , let f (A) be the consumer cost of set of items A.

f ({v1}) = cost to drive to and from store cd , and cost to purchase
milk cm, so f ({v1}) = cd + cm.

f ({v2}) = cost to drive to and from store cd , and cost to purchase
honey ch, so f ({v2}) = cd + ch.

But f ({v1, v2}) = cd + cm + ch < 2cd + cm + ch since cd (driving) is
a shared fixed cost.

Shared fixed costs are submodular: f (v1) + f (v2) ≥ f (v1, v2) + f (∅)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 13 / 123

Intro Basics Other Exs. Optimization

Shared Fixed Costs (interacting costs)

Costs often interact in the real world.

Ex: Let V = {v1, v2} be a set of actions with:

v1 = “buy milk at the store” v2 = “buy honey at the store”

For A ⊆ V , let f (A) be the consumer cost of set of items A.

f ({v1}) = cost to drive to and from store cd , and cost to purchase
milk cm, so f ({v1}) = cd + cm.

f ({v2}) = cost to drive to and from store cd , and cost to purchase
honey ch, so f ({v2}) = cd + ch.

But f ({v1, v2}) = cd + cm + ch < 2cd + cm + ch since cd (driving) is
a shared fixed cost.

Shared fixed costs are submodular: f (v1) + f (v2) ≥ f (v1, v2) + f (∅)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 13 / 123

Intro Basics Other Exs. Optimization

Shared Fixed Costs (interacting costs)

Costs often interact in the real world.

Ex: Let V = {v1, v2} be a set of actions with:

v1 = “buy milk at the store” v2 = “buy honey at the store”

For A ⊆ V , let f (A) be the consumer cost of set of items A.

f ({v1}) = cost to drive to and from store cd , and cost to purchase
milk cm, so f ({v1}) = cd + cm.

f ({v2}) = cost to drive to and from store cd , and cost to purchase
honey ch, so f ({v2}) = cd + ch.

But f ({v1, v2}) = cd + cm + ch < 2cd + cm + ch since cd (driving) is
a shared fixed cost.

Shared fixed costs are submodular: f (v1) + f (v2) ≥ f (v1, v2) + f (∅)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 13 / 123

Intro Basics Other Exs. Optimization

Shared Fixed Costs (interacting costs)

Costs often interact in the real world.

Ex: Let V = {v1, v2} be a set of actions with:

v1 = “buy milk at the store” v2 = “buy honey at the store”

For A ⊆ V , let f (A) be the consumer cost of set of items A.

f ({v1}) = cost to drive to and from store cd , and cost to purchase
milk cm, so f ({v1}) = cd + cm.

f ({v2}) = cost to drive to and from store cd , and cost to purchase
honey ch, so f ({v2}) = cd + ch.

But f ({v1, v2}) = cd + cm + ch < 2cd + cm + ch since cd (driving) is
a shared fixed cost.

Shared fixed costs are submodular: f (v1) + f (v2) ≥ f (v1, v2) + f (∅)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 13 / 123

Intro Basics Other Exs. Optimization

Shared Fixed Costs (interacting costs)

Costs often interact in the real world.

Ex: Let V = {v1, v2} be a set of actions with:

v1 = “buy milk at the store” v2 = “buy honey at the store”

For A ⊆ V , let f (A) be the consumer cost of set of items A.

f ({v1}) = cost to drive to and from store cd , and cost to purchase
milk cm, so f ({v1}) = cd + cm.

f ({v2}) = cost to drive to and from store cd , and cost to purchase
honey ch, so f ({v2}) = cd + ch.

But f ({v1, v2}) = cd + cm + ch < 2cd + cm + ch since cd (driving) is
a shared fixed cost.

Shared fixed costs are submodular: f (v1) + f (v2) ≥ f (v1, v2) + f (∅)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 13 / 123

Intro Basics Other Exs. Optimization

Shared Fixed Costs (interacting costs)

Costs often interact in the real world.

Ex: Let V = {v1, v2} be a set of actions with:

v1 = “buy milk at the store” v2 = “buy honey at the store”

For A ⊆ V , let f (A) be the consumer cost of set of items A.

f ({v1}) = cost to drive to and from store cd , and cost to purchase
milk cm, so f ({v1}) = cd + cm.

f ({v2}) = cost to drive to and from store cd , and cost to purchase
honey ch, so f ({v2}) = cd + ch.

But f ({v1, v2}) = cd + cm + ch < 2cd + cm + ch since cd (driving) is
a shared fixed cost.

Shared fixed costs are submodular: f (v1) + f (v2) ≥ f (v1, v2) + f (∅)
J. Bilmes & R. Iyer NOML: Submodularity in ML page 13 / 123

Intro Basics Other Exs. Optimization

Supply Side Economies of scale

Let V be a set of possible items to manufacture, and let f (S) for
S ⊆ V be the manufacture costs of items in the subset S .

Ex: V might be paint colors to produce: green, red, blue, yellow,
white, etc.

Producing green when you are already producing yellow and blue is
probably cheaper than if you were only producing some other colors.

f (green, blue, yellow)− f (blue, yellow) <= f (green, blue)− f (blue)

So diminishing returns (a submodular function) would be a good
model.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 14 / 123

Intro Basics Other Exs. Optimization

Supply Side Economies of scale

Let V be a set of possible items to manufacture, and let f (S) for
S ⊆ V be the manufacture costs of items in the subset S .

Ex: V might be paint colors to produce: green, red, blue, yellow,
white, etc.

Producing green when you are already producing yellow and blue is
probably cheaper than if you were only producing some other colors.

f (green, blue, yellow)− f (blue, yellow) <= f (green, blue)− f (blue)

So diminishing returns (a submodular function) would be a good
model.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 14 / 123

Intro Basics Other Exs. Optimization

Supply Side Economies of scale

Let V be a set of possible items to manufacture, and let f (S) for
S ⊆ V be the manufacture costs of items in the subset S .

Ex: V might be paint colors to produce: green, red, blue, yellow,
white, etc.

Producing green when you are already producing yellow and blue is
probably cheaper than if you were only producing some other colors.

f (green, blue, yellow)− f (blue, yellow) <= f (green, blue)− f (blue)

So diminishing returns (a submodular function) would be a good
model.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 14 / 123

Intro Basics Other Exs. Optimization

Supply Side Economies of scale

Let V be a set of possible items to manufacture, and let f (S) for
S ⊆ V be the manufacture costs of items in the subset S .

Ex: V might be paint colors to produce: green, red, blue, yellow,
white, etc.

Producing green when you are already producing yellow and blue is
probably cheaper than if you were only producing some other colors.

f (green, blue, yellow)− f (blue, yellow) <= f (green, blue)− f (blue)

So diminishing returns (a submodular function) would be a good
model.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 14 / 123

Intro Basics Other Exs. Optimization

Demand side Economies of Scale: Network Externalities

Value of a network to a user
depends on the number of other
users in that network. External
use benefits internal use.

Consumers derive positive
incremental value when size of
the market for that good
increases.

Va
lu

e
of

 N
et

w
or

k

Called network externalities (Katz & Shapiro 1986), or network
effects and is a form of demand-side economies of scale
Ex: durable goods (e.g., a car or phone), software (facebook,
smartphone apps), and technology-specific human capital
investment (e.g., education in a skill).
Let V be a set of goods, A a subset and v /∈ A. Incremental gain of
good f (A + v)− f (A) gets larger as size of market A grows. This is
known as a supermodular function.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 15 / 123

Intro Basics Other Exs. Optimization

Demand side Economies of Scale: Network Externalities

Value of a network to a user
depends on the number of other
users in that network. External
use benefits internal use.

Consumers derive positive
incremental value when size of
the market for that good
increases.

Va
lu

e
of

 N
et

w
or

k

Called network externalities (Katz & Shapiro 1986), or network
effects and is a form of demand-side economies of scale
Ex: durable goods (e.g., a car or phone), software (facebook,
smartphone apps), and technology-specific human capital
investment (e.g., education in a skill).
Let V be a set of goods, A a subset and v /∈ A. Incremental gain of
good f (A + v)− f (A) gets larger as size of market A grows. This is
known as a supermodular function.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 15 / 123

Intro Basics Other Exs. Optimization

Demand side Economies of Scale: Network Externalities

Value of a network to a user
depends on the number of other
users in that network. External
use benefits internal use.

Consumers derive positive
incremental value when size of
the market for that good
increases.

Va
lu

e
of

 N
et

w
or

k

Called network externalities (Katz & Shapiro 1986), or network
effects and is a form of demand-side economies of scale

Ex: durable goods (e.g., a car or phone), software (facebook,
smartphone apps), and technology-specific human capital
investment (e.g., education in a skill).
Let V be a set of goods, A a subset and v /∈ A. Incremental gain of
good f (A + v)− f (A) gets larger as size of market A grows. This is
known as a supermodular function.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 15 / 123

Intro Basics Other Exs. Optimization

Demand side Economies of Scale: Network Externalities

Value of a network to a user
depends on the number of other
users in that network. External
use benefits internal use.

Consumers derive positive
incremental value when size of
the market for that good
increases.

Va
lu

e
of

 N
et

w
or

k

Called network externalities (Katz & Shapiro 1986), or network
effects and is a form of demand-side economies of scale
Ex: durable goods (e.g., a car or phone), software (facebook,
smartphone apps), and technology-specific human capital
investment (e.g., education in a skill).

Let V be a set of goods, A a subset and v /∈ A. Incremental gain of
good f (A + v)− f (A) gets larger as size of market A grows. This is
known as a supermodular function.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 15 / 123

Intro Basics Other Exs. Optimization

Demand side Economies of Scale: Network Externalities

Value of a network to a user
depends on the number of other
users in that network. External
use benefits internal use.

Consumers derive positive
incremental value when size of
the market for that good
increases.

Va
lu

e
of

 N
et

w
or

k

Called network externalities (Katz & Shapiro 1986), or network
effects and is a form of demand-side economies of scale
Ex: durable goods (e.g., a car or phone), software (facebook,
smartphone apps), and technology-specific human capital
investment (e.g., education in a skill).
Let V be a set of goods, A a subset and v /∈ A. Incremental gain of
good f (A + v)− f (A) gets larger as size of market A grows. This is
known as a supermodular function.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 15 / 123

Intro Basics Other Exs. Optimization

Area of the union of areas indexed by A

Let V be a set of indices, and each v ∈ V indexes a given sub-area
of some region.

Let area(v) be the area corresponding to item v .

Let f (S) =
⋃

s∈S area(s) be the union of the areas indexed by
elements in A.

Then f (S) is submodular.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 16 / 123

Intro Basics Other Exs. Optimization

Area of the union of areas indexed by A

Union of areas of elements of A is given by:

f (A) = f ({a1, a2, a3, a4})

J. Bilmes & R. Iyer NOML: Submodularity in ML page 17 / 123

Intro Basics Other Exs. Optimization

Area of the union of areas indexed by A

Area of A along with with v :

f (A ∪ {v}) = f ({a1, a2, a3, a4} ∪ {v})

J. Bilmes & R. Iyer NOML: Submodularity in ML page 17 / 123

Intro Basics Other Exs. Optimization

Area of the union of areas indexed by A

Gain (value) of v in context of A:

f (A ∪ {v})− f (A) = f ({v})

We get full value f ({v}) in this case since the area of v has no overlap
with that of A.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 17 / 123

Intro Basics Other Exs. Optimization

Area of the union of areas indexed by A

Area of A once again.

f (A) = f ({a1, a2, a3, a4})

J. Bilmes & R. Iyer NOML: Submodularity in ML page 17 / 123

Intro Basics Other Exs. Optimization

Area of the union of areas indexed by A

Union of areas of elements of B ⊃ A, where v is not included:

f (B) where v /∈ B and where A ⊆ B

J. Bilmes & R. Iyer NOML: Submodularity in ML page 17 / 123

Intro Basics Other Exs. Optimization

Area of the union of areas indexed by A

Area of B now also including v :

f (B ∪ {v})

J. Bilmes & R. Iyer NOML: Submodularity in ML page 17 / 123

Intro Basics Other Exs. Optimization

Area of the union of areas indexed by A

Incremental value of v in the context of B ⊃ A.

f (B ∪ {v})− f (B) < f ({v}) = f (A ∪ {v})− f (A)

So benefit of v in the context of A is greater than the benefit of v in the
context of B ⊇ A.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 17 / 123

Intro Basics Other Exs. Optimization

Example Submodular: Number of Colors of Balls in Urns

Consider an urn containing colored balls. Given a set S of balls,
f (S) counts the number of distinct colors.

Initial value: 2 (colors in urn).
New value with added blue ball: 3

Initial value: 3 (colors in urn).
New value with added blue ball: 3

Submodularity: Incremental Value of Object Diminishes in a Larger
Context (diminishing returns).

Thus, f is submodular.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 18 / 123

Intro Basics Other Exs. Optimization

Example Submodular: Number of Colors of Balls in Urns

Consider an urn containing colored balls. Given a set S of balls,
f (S) counts the number of distinct colors.

Initial value: 2 (colors in urn).
New value with added blue ball: 3

Initial value: 3 (colors in urn).
New value with added blue ball: 3

Submodularity: Incremental Value of Object Diminishes in a Larger
Context (diminishing returns).

Thus, f is submodular.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 18 / 123

Intro Basics Other Exs. Optimization

Example Submodular: Number of Colors of Balls in Urns

Consider an urn containing colored balls. Given a set S of balls,
f (S) counts the number of distinct colors.

Initial value: 2 (colors in urn).
New value with added blue ball: 3

Initial value: 3 (colors in urn).
New value with added blue ball: 3

Submodularity: Incremental Value of Object Diminishes in a Larger
Context (diminishing returns).

Thus, f is submodular.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 18 / 123

Intro Basics Other Exs. Optimization

Example Submodular: Number of Colors of Balls in Urns

Consider an urn containing colored balls. Given a set S of balls,
f (S) counts the number of distinct colors.

Initial value: 2 (colors in urn).
New value with added blue ball: 3

Initial value: 3 (colors in urn).
New value with added blue ball: 3

Submodularity: Incremental Value of Object Diminishes in a Larger
Context (diminishing returns).

Thus, f is submodular.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 18 / 123

Intro Basics Other Exs. Optimization

Two Equivalent Submodular Definitions

Definition (submodular)

A function f : 2V → R is submodular if for any A,B ⊆ V , we have that:

f (A) + f (B) ≥ f (A ∪ B) + f (A ∩ B) (3)

An alternate and equivalent definition is:

Definition (submodular (diminishing returns))

A function f : 2V → R is submodular if for any A ⊆ B ⊂ V , and
v ∈ V \ B, we have that:

f (A ∪ {v})− f (A) ≥ f (B ∪ {v})− f (B) (4)

Incremental “value”, “gain”, or “cost” of v decreases (diminishes)
as the context in which v is considered grows from A to B.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 19 / 123

Intro Basics Other Exs. Optimization

Two Equivalent Supermodular Definitions

Definition (submodular)

A function f : 2V → R is supermodular if for any A,B ⊆ V , we have
that:

f (A) + f (B) ≤ f (A ∪ B) + f (A ∩ B) (5)

Definition (supermodular (improving returns))

A function f : 2V → R is supermodular if for any A ⊆ B ⊂ V , and
v ∈ V \ B, we have that:

f (A ∪ {v})− f (A) ≤ f (B ∪ {v})− f (B) (6)

The incremental “value”, “gain”, or “cost” of v increases (improves)
as the context in which v is considered grows from A to B.

A function f is submodular iff −f is supermodular.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 20 / 123

Intro Basics Other Exs. Optimization

Sets and Vectors: Some Notation Conventions

Any set A ⊆ V can be represented as a binary vector x ∈ {0, 1}V .

The characteristic vector of a set is given by 1A ∈ {0, 1}V where for
all v ∈ V , we have:

1A(v) =

{
1 if v ∈ A

0 else
(7)

If V = {1, 2, . . . , 20} and A = {1, 3, 5, . . . , 19}, then
1A = (1, 0, 1, 0, . . .)ᵀ.

It is sometimes useful to go back and forth. Given X ⊆ V then

x(X)
∆
= 1X and X (x) = {v ∈ V : x(v) = 1}.

f (x) : {0, 1}V → R is a pseudo-Boolean function. A submodular
function is a special case.

Also, it is a bit tedious to write A ∪ {v} so we instead occasionally
write A + v .

J. Bilmes & R. Iyer NOML: Submodularity in ML page 21 / 123

Intro Basics Other Exs. Optimization

Sets and Vectors: Some Notation Conventions

Any set A ⊆ V can be represented as a binary vector x ∈ {0, 1}V .

The characteristic vector of a set is given by 1A ∈ {0, 1}V where for
all v ∈ V , we have:

1A(v) =

{
1 if v ∈ A

0 else
(7)

If V = {1, 2, . . . , 20} and A = {1, 3, 5, . . . , 19}, then
1A = (1, 0, 1, 0, . . .)ᵀ.

It is sometimes useful to go back and forth. Given X ⊆ V then

x(X)
∆
= 1X and X (x) = {v ∈ V : x(v) = 1}.

f (x) : {0, 1}V → R is a pseudo-Boolean function. A submodular
function is a special case.

Also, it is a bit tedious to write A ∪ {v} so we instead occasionally
write A + v .

J. Bilmes & R. Iyer NOML: Submodularity in ML page 21 / 123

Intro Basics Other Exs. Optimization

Sets and Vectors: Some Notation Conventions

Any set A ⊆ V can be represented as a binary vector x ∈ {0, 1}V .

The characteristic vector of a set is given by 1A ∈ {0, 1}V where for
all v ∈ V , we have:

1A(v) =

{
1 if v ∈ A

0 else
(7)

If V = {1, 2, . . . , 20} and A = {1, 3, 5, . . . , 19}, then
1A = (1, 0, 1, 0, . . .)ᵀ.

It is sometimes useful to go back and forth. Given X ⊆ V then

x(X)
∆
= 1X and X (x) = {v ∈ V : x(v) = 1}.

f (x) : {0, 1}V → R is a pseudo-Boolean function. A submodular
function is a special case.

Also, it is a bit tedious to write A ∪ {v} so we instead occasionally
write A + v .

J. Bilmes & R. Iyer NOML: Submodularity in ML page 21 / 123

Intro Basics Other Exs. Optimization

Sets and Vectors: Some Notation Conventions

Any set A ⊆ V can be represented as a binary vector x ∈ {0, 1}V .

The characteristic vector of a set is given by 1A ∈ {0, 1}V where for
all v ∈ V , we have:

1A(v) =

{
1 if v ∈ A

0 else
(7)

If V = {1, 2, . . . , 20} and A = {1, 3, 5, . . . , 19}, then
1A = (1, 0, 1, 0, . . .)ᵀ.

It is sometimes useful to go back and forth. Given X ⊆ V then

x(X)
∆
= 1X and X (x) = {v ∈ V : x(v) = 1}.

f (x) : {0, 1}V → R is a pseudo-Boolean function. A submodular
function is a special case.

Also, it is a bit tedious to write A ∪ {v} so we instead occasionally
write A + v .

J. Bilmes & R. Iyer NOML: Submodularity in ML page 21 / 123

Intro Basics Other Exs. Optimization

Sets and Vectors: Some Notation Conventions

Any set A ⊆ V can be represented as a binary vector x ∈ {0, 1}V .

The characteristic vector of a set is given by 1A ∈ {0, 1}V where for
all v ∈ V , we have:

1A(v) =

{
1 if v ∈ A

0 else
(7)

If V = {1, 2, . . . , 20} and A = {1, 3, 5, . . . , 19}, then
1A = (1, 0, 1, 0, . . .)ᵀ.

It is sometimes useful to go back and forth. Given X ⊆ V then

x(X)
∆
= 1X and X (x) = {v ∈ V : x(v) = 1}.

f (x) : {0, 1}V → R is a pseudo-Boolean function. A submodular
function is a special case.

Also, it is a bit tedious to write A ∪ {v} so we instead occasionally
write A + v .

J. Bilmes & R. Iyer NOML: Submodularity in ML page 21 / 123

Intro Basics Other Exs. Optimization

Sets and Vectors: Some Notation Conventions

Any set A ⊆ V can be represented as a binary vector x ∈ {0, 1}V .

The characteristic vector of a set is given by 1A ∈ {0, 1}V where for
all v ∈ V , we have:

1A(v) =

{
1 if v ∈ A

0 else
(7)

If V = {1, 2, . . . , 20} and A = {1, 3, 5, . . . , 19}, then
1A = (1, 0, 1, 0, . . .)ᵀ.

It is sometimes useful to go back and forth. Given X ⊆ V then

x(X)
∆
= 1X and X (x) = {v ∈ V : x(v) = 1}.

f (x) : {0, 1}V → R is a pseudo-Boolean function. A submodular
function is a special case.

Also, it is a bit tedious to write A ∪ {v} so we instead occasionally
write A + v .

J. Bilmes & R. Iyer NOML: Submodularity in ML page 21 / 123

Intro Basics Other Exs. Optimization

Modular functions, and vectors in RV

Any set function m : 2V → R whose valuations, for A ⊆ V , take form

m(A) =
∑

a∈A
m(a) (8)

is called modular and normalized (meaning m(∅) = 0).

Any normalized modular function is identical to a vector:

m ∈ RV . (9)

Hence, the characteristic vector 1A of a set is modular.

Modular functions are often called additive or linear.

Modular functions are submodular since
m(A) + m(B) ≥ m(A ∪ B) + m(A ∩ B).

Modular functions are also supermodular since
m(A) + m(B) ≤ m(A ∪ B) + m(A ∩ B).

If m is both submodular and supermodular, then it is modular,
meaning m(A) + m(B) = m(A ∪ B) + m(A ∩ B).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 22 / 123

Intro Basics Other Exs. Optimization

Modular functions, and vectors in RV

Any set function m : 2V → R whose valuations, for A ⊆ V , take form

m(A) =
∑

a∈A
m(a) (8)

is called modular and normalized (meaning m(∅) = 0).

Any normalized modular function is identical to a vector:

m ∈ RV . (9)

Hence, the characteristic vector 1A of a set is modular.

Modular functions are often called additive or linear.

Modular functions are submodular since
m(A) + m(B) ≥ m(A ∪ B) + m(A ∩ B).

Modular functions are also supermodular since
m(A) + m(B) ≤ m(A ∪ B) + m(A ∩ B).

If m is both submodular and supermodular, then it is modular,
meaning m(A) + m(B) = m(A ∪ B) + m(A ∩ B).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 22 / 123

Intro Basics Other Exs. Optimization

Modular functions, and vectors in RV

Any set function m : 2V → R whose valuations, for A ⊆ V , take form

m(A) =
∑

a∈A
m(a) (8)

is called modular and normalized (meaning m(∅) = 0).

Any normalized modular function is identical to a vector:

m ∈ RV . (9)

Hence, the characteristic vector 1A of a set is modular.

Modular functions are often called additive or linear.

Modular functions are submodular since
m(A) + m(B) ≥ m(A ∪ B) + m(A ∩ B).

Modular functions are also supermodular since
m(A) + m(B) ≤ m(A ∪ B) + m(A ∩ B).

If m is both submodular and supermodular, then it is modular,
meaning m(A) + m(B) = m(A ∪ B) + m(A ∩ B).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 22 / 123

Intro Basics Other Exs. Optimization

Modular functions, and vectors in RV

Any set function m : 2V → R whose valuations, for A ⊆ V , take form

m(A) =
∑

a∈A
m(a) (8)

is called modular and normalized (meaning m(∅) = 0).

Any normalized modular function is identical to a vector:

m ∈ RV . (9)

Hence, the characteristic vector 1A of a set is modular.

Modular functions are often called additive or linear.

Modular functions are submodular since
m(A) + m(B) ≥ m(A ∪ B) + m(A ∩ B).

Modular functions are also supermodular since
m(A) + m(B) ≤ m(A ∪ B) + m(A ∩ B).

If m is both submodular and supermodular, then it is modular,
meaning m(A) + m(B) = m(A ∪ B) + m(A ∩ B).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 22 / 123

Intro Basics Other Exs. Optimization

Modular functions, and vectors in RV

Any set function m : 2V → R whose valuations, for A ⊆ V , take form

m(A) =
∑

a∈A
m(a) (8)

is called modular and normalized (meaning m(∅) = 0).

Any normalized modular function is identical to a vector:

m ∈ RV . (9)

Hence, the characteristic vector 1A of a set is modular.

Modular functions are often called additive or linear.

Modular functions are submodular since
m(A) + m(B) ≥ m(A ∪ B) + m(A ∩ B).

Modular functions are also supermodular since
m(A) + m(B) ≤ m(A ∪ B) + m(A ∩ B).

If m is both submodular and supermodular, then it is modular,
meaning m(A) + m(B) = m(A ∪ B) + m(A ∩ B).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 22 / 123

Intro Basics Other Exs. Optimization

Modular functions, and vectors in RV

Any set function m : 2V → R whose valuations, for A ⊆ V , take form

m(A) =
∑

a∈A
m(a) (8)

is called modular and normalized (meaning m(∅) = 0).

Any normalized modular function is identical to a vector:

m ∈ RV . (9)

Hence, the characteristic vector 1A of a set is modular.

Modular functions are often called additive or linear.

Modular functions are submodular since
m(A) + m(B) ≥ m(A ∪ B) + m(A ∩ B).

Modular functions are also supermodular since
m(A) + m(B) ≤ m(A ∪ B) + m(A ∩ B).

If m is both submodular and supermodular, then it is modular,
meaning m(A) + m(B) = m(A ∪ B) + m(A ∩ B).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 22 / 123

Intro Basics Other Exs. Optimization

Modular functions, and vectors in RV

Any set function m : 2V → R whose valuations, for A ⊆ V , take form

m(A) =
∑

a∈A
m(a) (8)

is called modular and normalized (meaning m(∅) = 0).

Any normalized modular function is identical to a vector:

m ∈ RV . (9)

Hence, the characteristic vector 1A of a set is modular.

Modular functions are often called additive or linear.

Modular functions are submodular since
m(A) + m(B) ≥ m(A ∪ B) + m(A ∩ B).

Modular functions are also supermodular since
m(A) + m(B) ≤ m(A ∪ B) + m(A ∩ B).

If m is both submodular and supermodular, then it is modular,
meaning m(A) + m(B) = m(A ∪ B) + m(A ∩ B).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 22 / 123

Intro Basics Other Exs. Optimization

Monotone (nondecreasing) Functions

Definition (monotone function)

A function f : 2V → R is said to be monotone nondecreasing if:

f (A) ≤ f (B) whenever A ⊆ B ⊆ V (10)

Monotone nondecreasing functions are often just called monotone.

Monotone functions have the property that

f (A + v)− f (A) ≥ 0 (11)

for any A ⊆ V and v ∈ V .

Monotonicity 6⇒ Submodularity.

Submodularity 6⇒ Monotonicity.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 23 / 123

Intro Basics Other Exs. Optimization

Monotone (nondecreasing) Functions

Definition (monotone function)

A function f : 2V → R is said to be monotone nondecreasing if:

f (A) ≤ f (B) whenever A ⊆ B ⊆ V (10)

Monotone nondecreasing functions are often just called monotone.

Monotone functions have the property that

f (A + v)− f (A) ≥ 0 (11)

for any A ⊆ V and v ∈ V .

Monotonicity 6⇒ Submodularity.

Submodularity 6⇒ Monotonicity.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 23 / 123

Intro Basics Other Exs. Optimization

Monotone (nondecreasing) Functions

Definition (monotone function)

A function f : 2V → R is said to be monotone nondecreasing if:

f (A) ≤ f (B) whenever A ⊆ B ⊆ V (10)

Monotone nondecreasing functions are often just called monotone.

Monotone functions have the property that

f (A + v)− f (A) ≥ 0 (11)

for any A ⊆ V and v ∈ V .

Monotonicity 6⇒ Submodularity.

Submodularity 6⇒ Monotonicity.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 23 / 123

Intro Basics Other Exs. Optimization

Monotone (nondecreasing) Functions

Definition (monotone function)

A function f : 2V → R is said to be monotone nondecreasing if:

f (A) ≤ f (B) whenever A ⊆ B ⊆ V (10)

Monotone nondecreasing functions are often just called monotone.

Monotone functions have the property that

f (A + v)− f (A) ≥ 0 (11)

for any A ⊆ V and v ∈ V .

Monotonicity 6⇒ Submodularity.

Submodularity 6⇒ Monotonicity.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 23 / 123

Intro Basics Other Exs. Optimization

Polymatroid Functions

Definition (polymatroid function)

Any function f : 2V → R that is:

1 normalized (f (∅) = 0),
2 monotone (nondecreasing), and
3 submodular

is said to be a polymatroid function.

Thus, a polymatroid function is non-negative since f (A) ≥ f (∅) = 0.

Any submodular function can be written as a difference between a
polymatroid function and a modular function. I.e., for any
submodular f , we can write:

f (A) = fp(A)−m(A) (12)

where fp is a polymatroid function and m is a modular function.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 24 / 123

Intro Basics Other Exs. Optimization

Polymatroid Functions

Definition (polymatroid function)

Any function f : 2V → R that is:
1 normalized (f (∅) = 0),

2 monotone (nondecreasing), and
3 submodular

is said to be a polymatroid function.

Thus, a polymatroid function is non-negative since f (A) ≥ f (∅) = 0.

Any submodular function can be written as a difference between a
polymatroid function and a modular function. I.e., for any
submodular f , we can write:

f (A) = fp(A)−m(A) (12)

where fp is a polymatroid function and m is a modular function.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 24 / 123

Intro Basics Other Exs. Optimization

Polymatroid Functions

Definition (polymatroid function)

Any function f : 2V → R that is:
1 normalized (f (∅) = 0),
2 monotone (nondecreasing), and

3 submodular

is said to be a polymatroid function.

Thus, a polymatroid function is non-negative since f (A) ≥ f (∅) = 0.

Any submodular function can be written as a difference between a
polymatroid function and a modular function. I.e., for any
submodular f , we can write:

f (A) = fp(A)−m(A) (12)

where fp is a polymatroid function and m is a modular function.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 24 / 123

Intro Basics Other Exs. Optimization

Polymatroid Functions

Definition (polymatroid function)

Any function f : 2V → R that is:
1 normalized (f (∅) = 0),
2 monotone (nondecreasing), and
3 submodular

is said to be a polymatroid function.

Thus, a polymatroid function is non-negative since f (A) ≥ f (∅) = 0.

Any submodular function can be written as a difference between a
polymatroid function and a modular function. I.e., for any
submodular f , we can write:

f (A) = fp(A)−m(A) (12)

where fp is a polymatroid function and m is a modular function.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 24 / 123

Intro Basics Other Exs. Optimization

Polymatroid Functions

Definition (polymatroid function)

Any function f : 2V → R that is:
1 normalized (f (∅) = 0),
2 monotone (nondecreasing), and
3 submodular

is said to be a polymatroid function.

Thus, a polymatroid function is non-negative since f (A) ≥ f (∅) = 0.

Any submodular function can be written as a difference between a
polymatroid function and a modular function. I.e., for any
submodular f , we can write:

f (A) = fp(A)−m(A) (12)

where fp is a polymatroid function and m is a modular function.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 24 / 123

Intro Basics Other Exs. Optimization

Polymatroid Functions

Definition (polymatroid function)

Any function f : 2V → R that is:
1 normalized (f (∅) = 0),
2 monotone (nondecreasing), and
3 submodular

is said to be a polymatroid function.

Thus, a polymatroid function is non-negative since f (A) ≥ f (∅) = 0.

Any submodular function can be written as a difference between a
polymatroid function and a modular function. I.e., for any
submodular f , we can write:

f (A) = fp(A)−m(A) (12)

where fp is a polymatroid function and m is a modular function.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 24 / 123

Intro Basics Other Exs. Optimization

Polymatroid Functions

Definition (polymatroid function)

Any function f : 2V → R that is:
1 normalized (f (∅) = 0),
2 monotone (nondecreasing), and
3 submodular

is said to be a polymatroid function.

Thus, a polymatroid function is non-negative since f (A) ≥ f (∅) = 0.

Any submodular function can be written as a difference between a
polymatroid function and a modular function. I.e., for any
submodular f , we can write:

f (A) = fp(A)−m(A) (12)

where fp is a polymatroid function and m is a modular function.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 24 / 123

Intro Basics Other Exs. Optimization

Subadditive Functions

Definition (subadditive function)

A function f : 2V → R is said to be subadditive if:

f (A) + f (B) ≥ f (A ∪ B) for all A,B ⊆ V (13)

Subadditive 6⇒ Submodularity.

Submodularity 6⇒ Subadditive.

However, Polymatroidal ⇒ Subadditive.

superadditive means that f (A) + f (B) ≤ f (A ∪ B).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 25 / 123

Intro Basics Other Exs. Optimization

Subadditive Functions

Definition (subadditive function)

A function f : 2V → R is said to be subadditive if:

f (A) + f (B) ≥ f (A ∪ B) for all A,B ⊆ V (13)

Subadditive 6⇒ Submodularity.

Submodularity 6⇒ Subadditive.

However, Polymatroidal ⇒ Subadditive.

superadditive means that f (A) + f (B) ≤ f (A ∪ B).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 25 / 123

Intro Basics Other Exs. Optimization

Subadditive Functions

Definition (subadditive function)

A function f : 2V → R is said to be subadditive if:

f (A) + f (B) ≥ f (A ∪ B) for all A,B ⊆ V (13)

Subadditive 6⇒ Submodularity.

Submodularity 6⇒ Subadditive.

However, Polymatroidal ⇒ Subadditive.

superadditive means that f (A) + f (B) ≤ f (A ∪ B).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 25 / 123

Intro Basics Other Exs. Optimization

Subadditive Functions

Definition (subadditive function)

A function f : 2V → R is said to be subadditive if:

f (A) + f (B) ≥ f (A ∪ B) for all A,B ⊆ V (13)

Subadditive 6⇒ Submodularity.

Submodularity 6⇒ Subadditive.

However, Polymatroidal ⇒ Subadditive.

superadditive means that f (A) + f (B) ≤ f (A ∪ B).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 25 / 123

Intro Basics Other Exs. Optimization

Gain of an item j in the context of A
We often wish to express the gain of an item j ∈ V in context A,
namely f (A ∪ {j})− f (A).

This is called the gain and is used so often, there are equally as
many ways to notate this. I.e., you might see:

f (A ∪ {j})− f (A)
∆
= ρj(A) (14)

∆
= ρA(j) (15)

∆
= ∇j f (A) (16)

∆
= f ({j}|A) (17)

∆
= f (j |A) (18)

We’ll use f (j |A). Also, f (A|B) = f (A ∪ B)− f (B).
Submodularity’s diminishing returns stated using gain:

∀j , f (j |A) is a monotone non-increasing function of A. (19)

True since submodularity means f (j |A) ≥ f (j |B) whenever A ⊆ B.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 26 / 123

Intro Basics Other Exs. Optimization

Gain of an item j in the context of A
We often wish to express the gain of an item j ∈ V in context A,
namely f (A ∪ {j})− f (A).
This is called the gain and is used so often, there are equally as
many ways to notate this. I.e., you might see:

f (A ∪ {j})− f (A)
∆
= ρj(A) (14)

∆
= ρA(j) (15)

∆
= ∇j f (A) (16)

∆
= f ({j}|A) (17)

∆
= f (j |A) (18)

We’ll use f (j |A). Also, f (A|B) = f (A ∪ B)− f (B).
Submodularity’s diminishing returns stated using gain:

∀j , f (j |A) is a monotone non-increasing function of A. (19)

True since submodularity means f (j |A) ≥ f (j |B) whenever A ⊆ B.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 26 / 123

Intro Basics Other Exs. Optimization

Gain of an item j in the context of A
We often wish to express the gain of an item j ∈ V in context A,
namely f (A ∪ {j})− f (A).
This is called the gain and is used so often, there are equally as
many ways to notate this. I.e., you might see:

f (A ∪ {j})− f (A)
∆
= ρj(A) (14)

∆
= ρA(j) (15)

∆
= ∇j f (A) (16)

∆
= f ({j}|A) (17)

∆
= f (j |A) (18)

We’ll use f (j |A). Also, f (A|B) = f (A ∪ B)− f (B).

Submodularity’s diminishing returns stated using gain:

∀j , f (j |A) is a monotone non-increasing function of A. (19)

True since submodularity means f (j |A) ≥ f (j |B) whenever A ⊆ B.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 26 / 123

Intro Basics Other Exs. Optimization

Gain of an item j in the context of A
We often wish to express the gain of an item j ∈ V in context A,
namely f (A ∪ {j})− f (A).
This is called the gain and is used so often, there are equally as
many ways to notate this. I.e., you might see:

f (A ∪ {j})− f (A)
∆
= ρj(A) (14)

∆
= ρA(j) (15)

∆
= ∇j f (A) (16)

∆
= f ({j}|A) (17)

∆
= f (j |A) (18)

We’ll use f (j |A). Also, f (A|B) = f (A ∪ B)− f (B).
Submodularity’s diminishing returns stated using gain:

∀j , f (j |A) is a monotone non-increasing function of A. (19)

True since submodularity means f (j |A) ≥ f (j |B) whenever A ⊆ B.
J. Bilmes & R. Iyer NOML: Submodularity in ML page 26 / 123

Intro Basics Other Exs. Optimization

Recap: Basic Submodular/Supermodular Definitions

Set function: map from any subset A of a ground set V to a real number:

f : 2V → R

Submodular functions

for all A,B ⊆ V ,

f (A) + f (B) ≥ f (A ∪ B) + f (A ∩ B)

for all A ⊆ B ⊆ V , v /∈ B,

f (v |A) ≥ f (v |B)

Supermodular functions

for all A,B ⊆ V ,

f (A) + f (B) ≤ f (A ∪ B) + f (A ∩ B)

for all A ⊆ B ⊆ V , v /∈ B,

f (v |A) ≤ f (v |B)

Modular functions

for all A,B ⊆ V ,

f (A) + f (B) = f (A ∪ B) + f (A ∩ B)

for all A ⊆ B ⊆ V , v /∈ B,

f (v |A) = f (v |B)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 27 / 123

Intro Basics Other Exs. Optimization

Many (Equivalent) Definitions of Submodularity

f (A) + f (B) ≥ f (A ∪ B) + f (A ∩ B), ∀A,B ⊆ V (20)

f (j |S) ≥ f (j |T), ∀S ⊆ T ⊆ V , with j ∈ V \ T (21)

f (C |S) ≥ f (C |T),∀S ⊆ T ⊆ V , with C ⊆ V \ T (22)

f (j |S) ≥ f (j |S ∪ {k}), ∀S ⊆ V with j ∈ V \ (S ∪ {k}) (23)

f (A ∪ B|A ∩ B) ≤ f (A|A ∩ B) + f (B|A ∩ B), ∀A,B ⊆ V (24)

f (T) ≤ f (S) +
∑

j∈T\S
f (j |S)−

∑

j∈S\T
f (j |S ∪ T − {j}), ∀S ,T ⊆ V (25)

f (T) ≤ f (S) +
∑

j∈T\S
f (j |S), ∀S ⊆ T ⊆ V (26)

f (T) ≤ f (S)−
∑

j∈S\T
f (j |S \ {j}) +

∑

j∈T\S
f (j |S ∩ T) ∀S ,T ⊆ V

(27)

f (T) ≤ f (S)−
∑

j∈S\T
f (j |S \ {j}), ∀T ⊆ S ⊆ V (28)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 28 / 123

Intro Basics Other Exs. Optimization

Many (Equivalent) Definitions of Submodularity

f (A) + f (B) ≥ f (A ∪ B) + f (A ∩ B), ∀A,B ⊆ V (20)

f (j |S) ≥ f (j |T), ∀S ⊆ T ⊆ V , with j ∈ V \ T (21)

f (C |S) ≥ f (C |T),∀S ⊆ T ⊆ V , with C ⊆ V \ T (22)

f (j |S) ≥ f (j |S ∪ {k}), ∀S ⊆ V with j ∈ V \ (S ∪ {k}) (23)

f (A ∪ B|A ∩ B) ≤ f (A|A ∩ B) + f (B|A ∩ B), ∀A,B ⊆ V (24)

f (T) ≤ f (S) +
∑

j∈T\S
f (j |S)−

∑

j∈S\T
f (j |S ∪ T − {j}), ∀S ,T ⊆ V (25)

f (T) ≤ f (S) +
∑

j∈T\S
f (j |S), ∀S ⊆ T ⊆ V (26)

f (T) ≤ f (S)−
∑

j∈S\T
f (j |S \ {j}) +

∑

j∈T\S
f (j |S ∩ T) ∀S ,T ⊆ V

(27)

f (T) ≤ f (S)−
∑

j∈S\T
f (j |S \ {j}), ∀T ⊆ S ⊆ V (28)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 28 / 123

Intro Basics Other Exs. Optimization

Many (Equivalent) Definitions of Submodularity

f (A) + f (B) ≥ f (A ∪ B) + f (A ∩ B), ∀A,B ⊆ V (20)

f (j |S) ≥ f (j |T), ∀S ⊆ T ⊆ V , with j ∈ V \ T (21)

f (C |S) ≥ f (C |T),∀S ⊆ T ⊆ V , with C ⊆ V \ T (22)

f (j |S) ≥ f (j |S ∪ {k}), ∀S ⊆ V with j ∈ V \ (S ∪ {k}) (23)

f (A ∪ B|A ∩ B) ≤ f (A|A ∩ B) + f (B|A ∩ B), ∀A,B ⊆ V (24)

f (T) ≤ f (S) +
∑

j∈T\S
f (j |S)−

∑

j∈S\T
f (j |S ∪ T − {j}), ∀S ,T ⊆ V (25)

f (T) ≤ f (S) +
∑

j∈T\S
f (j |S), ∀S ⊆ T ⊆ V (26)

f (T) ≤ f (S)−
∑

j∈S\T
f (j |S \ {j}) +

∑

j∈T\S
f (j |S ∩ T) ∀S ,T ⊆ V

(27)

f (T) ≤ f (S)−
∑

j∈S\T
f (j |S \ {j}), ∀T ⊆ S ⊆ V (28)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 28 / 123

Intro Basics Other Exs. Optimization

Many (Equivalent) Definitions of Submodularity

f (A) + f (B) ≥ f (A ∪ B) + f (A ∩ B), ∀A,B ⊆ V (20)

f (j |S) ≥ f (j |T), ∀S ⊆ T ⊆ V , with j ∈ V \ T (21)

f (C |S) ≥ f (C |T),∀S ⊆ T ⊆ V , with C ⊆ V \ T (22)

f (j |S) ≥ f (j |S ∪ {k}), ∀S ⊆ V with j ∈ V \ (S ∪ {k}) (23)

f (A ∪ B|A ∩ B) ≤ f (A|A ∩ B) + f (B|A ∩ B), ∀A,B ⊆ V (24)

f (T) ≤ f (S) +
∑

j∈T\S
f (j |S)−

∑

j∈S\T
f (j |S ∪ T − {j}), ∀S ,T ⊆ V (25)

f (T) ≤ f (S) +
∑

j∈T\S
f (j |S), ∀S ⊆ T ⊆ V (26)

f (T) ≤ f (S)−
∑

j∈S\T
f (j |S \ {j}) +

∑

j∈T\S
f (j |S ∩ T) ∀S ,T ⊆ V

(27)

f (T) ≤ f (S)−
∑

j∈S\T
f (j |S \ {j}), ∀T ⊆ S ⊆ V (28)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 28 / 123

Intro Basics Other Exs. Optimization

Many (Equivalent) Definitions of Submodularity

f (A) + f (B) ≥ f (A ∪ B) + f (A ∩ B), ∀A,B ⊆ V (20)

f (j |S) ≥ f (j |T), ∀S ⊆ T ⊆ V , with j ∈ V \ T (21)

f (C |S) ≥ f (C |T),∀S ⊆ T ⊆ V , with C ⊆ V \ T (22)

f (j |S) ≥ f (j |S ∪ {k}), ∀S ⊆ V with j ∈ V \ (S ∪ {k}) (23)

f (A ∪ B|A ∩ B) ≤ f (A|A ∩ B) + f (B|A ∩ B), ∀A,B ⊆ V (24)

f (T) ≤ f (S) +
∑

j∈T\S
f (j |S)−

∑

j∈S\T
f (j |S ∪ T − {j}), ∀S ,T ⊆ V (25)

f (T) ≤ f (S) +
∑

j∈T\S
f (j |S), ∀S ⊆ T ⊆ V (26)

f (T) ≤ f (S)−
∑

j∈S\T
f (j |S \ {j}) +

∑

j∈T\S
f (j |S ∩ T) ∀S ,T ⊆ V

(27)

f (T) ≤ f (S)−
∑

j∈S\T
f (j |S \ {j}), ∀T ⊆ S ⊆ V (28)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 28 / 123

Intro Basics Other Exs. Optimization

Many (Equivalent) Definitions of Submodularity

f (A) + f (B) ≥ f (A ∪ B) + f (A ∩ B), ∀A,B ⊆ V (20)

f (j |S) ≥ f (j |T), ∀S ⊆ T ⊆ V , with j ∈ V \ T (21)

f (C |S) ≥ f (C |T),∀S ⊆ T ⊆ V , with C ⊆ V \ T (22)

f (j |S) ≥ f (j |S ∪ {k}), ∀S ⊆ V with j ∈ V \ (S ∪ {k}) (23)

f (A ∪ B|A ∩ B) ≤ f (A|A ∩ B) + f (B|A ∩ B), ∀A,B ⊆ V (24)

f (T) ≤ f (S) +
∑

j∈T\S
f (j |S)−

∑

j∈S\T
f (j |S ∪ T − {j}), ∀S ,T ⊆ V (25)

f (T) ≤ f (S) +
∑

j∈T\S
f (j |S), ∀S ⊆ T ⊆ V (26)

f (T) ≤ f (S)−
∑

j∈S\T
f (j |S \ {j}) +

∑

j∈T\S
f (j |S ∩ T) ∀S ,T ⊆ V

(27)

f (T) ≤ f (S)−
∑

j∈S\T
f (j |S \ {j}), ∀T ⊆ S ⊆ V (28)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 28 / 123

Intro Basics Other Exs. Optimization

Many (Equivalent) Definitions of Submodularity

f (A) + f (B) ≥ f (A ∪ B) + f (A ∩ B), ∀A,B ⊆ V (20)

f (j |S) ≥ f (j |T), ∀S ⊆ T ⊆ V , with j ∈ V \ T (21)

f (C |S) ≥ f (C |T),∀S ⊆ T ⊆ V , with C ⊆ V \ T (22)

f (j |S) ≥ f (j |S ∪ {k}), ∀S ⊆ V with j ∈ V \ (S ∪ {k}) (23)

f (A ∪ B|A ∩ B) ≤ f (A|A ∩ B) + f (B|A ∩ B), ∀A,B ⊆ V (24)

f (T) ≤ f (S) +
∑

j∈T\S
f (j |S)−

∑

j∈S\T
f (j |S ∪ T − {j}), ∀S ,T ⊆ V (25)

f (T) ≤ f (S) +
∑

j∈T\S
f (j |S), ∀S ⊆ T ⊆ V (26)

f (T) ≤ f (S)−
∑

j∈S\T
f (j |S \ {j}) +

∑

j∈T\S
f (j |S ∩ T) ∀S ,T ⊆ V

(27)

f (T) ≤ f (S)−
∑

j∈S\T
f (j |S \ {j}), ∀T ⊆ S ⊆ V (28)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 28 / 123

Intro Basics Other Exs. Optimization

Many (Equivalent) Definitions of Submodularity

f (A) + f (B) ≥ f (A ∪ B) + f (A ∩ B), ∀A,B ⊆ V (20)

f (j |S) ≥ f (j |T), ∀S ⊆ T ⊆ V , with j ∈ V \ T (21)

f (C |S) ≥ f (C |T),∀S ⊆ T ⊆ V , with C ⊆ V \ T (22)

f (j |S) ≥ f (j |S ∪ {k}), ∀S ⊆ V with j ∈ V \ (S ∪ {k}) (23)

f (A ∪ B|A ∩ B) ≤ f (A|A ∩ B) + f (B|A ∩ B), ∀A,B ⊆ V (24)

f (T) ≤ f (S) +
∑

j∈T\S
f (j |S)−

∑

j∈S\T
f (j |S ∪ T − {j}), ∀S ,T ⊆ V (25)

f (T) ≤ f (S) +
∑

j∈T\S
f (j |S), ∀S ⊆ T ⊆ V (26)

f (T) ≤ f (S)−
∑

j∈S\T
f (j |S \ {j}) +

∑

j∈T\S
f (j |S ∩ T) ∀S ,T ⊆ V

(27)

f (T) ≤ f (S)−
∑

j∈S\T
f (j |S \ {j}), ∀T ⊆ S ⊆ V (28)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 28 / 123

Intro Basics Other Exs. Optimization

Many (Equivalent) Definitions of Submodularity

f (A) + f (B) ≥ f (A ∪ B) + f (A ∩ B), ∀A,B ⊆ V (20)

f (j |S) ≥ f (j |T), ∀S ⊆ T ⊆ V , with j ∈ V \ T (21)

f (C |S) ≥ f (C |T),∀S ⊆ T ⊆ V , with C ⊆ V \ T (22)

f (j |S) ≥ f (j |S ∪ {k}), ∀S ⊆ V with j ∈ V \ (S ∪ {k}) (23)

f (A ∪ B|A ∩ B) ≤ f (A|A ∩ B) + f (B|A ∩ B), ∀A,B ⊆ V (24)

f (T) ≤ f (S) +
∑

j∈T\S
f (j |S)−

∑

j∈S\T
f (j |S ∪ T − {j}), ∀S ,T ⊆ V (25)

f (T) ≤ f (S) +
∑

j∈T\S
f (j |S), ∀S ⊆ T ⊆ V (26)

f (T) ≤ f (S)−
∑

j∈S\T
f (j |S \ {j}) +

∑

j∈T\S
f (j |S ∩ T) ∀S ,T ⊆ V

(27)

f (T) ≤ f (S)−
∑

j∈S\T
f (j |S \ {j}), ∀T ⊆ S ⊆ V (28)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 28 / 123

Intro Basics Other Exs. Optimization

Many names exist for submodularity

Previous names used for submodularity:

Submodular
Attractive
Associative
Regular
Ferromagnetic
Potts
Subadditive (but this is now known as something different)
Strongly Subadditive
Upper semi-modular
Monge (of a matrix)
Fischer-Hadamard inequalities (after a log)
sub-valuation
β-functions
ground set rank function

“What’s in a name? That which we call a submodular function,
by any other name, would optimize as quickly”

J. Bilmes & R. Iyer NOML: Submodularity in ML page 29 / 123

Intro Basics Other Exs. Optimization

Many names exist for submodularity

Previous names used for submodularity:

Submodular
Attractive
Associative
Regular
Ferromagnetic
Potts
Subadditive (but this is now known as something different)
Strongly Subadditive
Upper semi-modular
Monge (of a matrix)
Fischer-Hadamard inequalities (after a log)
sub-valuation
β-functions
ground set rank function

“What’s in a name? That which we call a submodular function,
by any other name, would optimize as quickly”

J. Bilmes & R. Iyer NOML: Submodularity in ML page 29 / 123

Intro Basics Other Exs. Optimization

Many names exist for submodularity

Previous names used for submodularity:

Submodular
Attractive
Associative
Regular
Ferromagnetic
Potts
Subadditive (but this is now known as something different)
Strongly Subadditive
Upper semi-modular
Monge (of a matrix)
Fischer-Hadamard inequalities (after a log)
sub-valuation
β-functions
ground set rank function

“What’s in a name? That which we call a submodular function,
by any other name, would optimize as quickly”J. Bilmes & R. Iyer NOML: Submodularity in ML page 29 / 123

Intro Basics Other Exs. Optimization

Outline: Part 1

1 Introduction
Goals of the Tutorial

2 Basics
Set Functions
Economic applications
Set Cover Like Functions
Submodular Definitions
Other Background, sets, vectors, gain, other defs

3 Other examples of submodular functs
Traditional combinatorial and graph functions
Concave over modular, and sums thereof
Matrix Rank
Venn Diagrams
Information Theory Functions

4 Optimization

J. Bilmes & R. Iyer NOML: Submodularity in ML page 30 / 123

Intro Basics Other Exs. Optimization

Set Cover and Maximum Coverage

We are given a finite set U of m elements and a size-n set of subsets
U = {U1,U2, . . . ,Un} of U, where Ui ⊆ U and

⋃
i Ui = U.

The goal of minimum set cover is to choose the smallest subset
A ⊆ [n] , {1, . . . , n} = V such that

⋃
a∈A Ua = U.

Maximum k cover: The goal in maximum coverage is, given an
integer k ≤ n, select k subsets, say {a1, a2, . . . , ak} with ai ∈ [n]
such that |⋃k

i=1 Uai | is maximized.

Both Set cover and maximum coverage are well known to be
NP-hard, but have a fast greedy approximation algorithm.

The set cover function f (A) = |⋃a∈A Ua| is submodular!

f (A) = µ(
⋃k

i=1 Uai) is still submodular if we take U ⊆ R` and
Ui ⊆ U and µ(·) is an additive measure (e.g., the Lebesgue
measure).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 31 / 123

Intro Basics Other Exs. Optimization

Set Cover and Maximum Coverage

We are given a finite set U of m elements and a size-n set of subsets
U = {U1,U2, . . . ,Un} of U, where Ui ⊆ U and

⋃
i Ui = U.

The goal of minimum set cover is to choose the smallest subset
A ⊆ [n] , {1, . . . , n} = V such that

⋃
a∈A Ua = U.

Maximum k cover: The goal in maximum coverage is, given an
integer k ≤ n, select k subsets, say {a1, a2, . . . , ak} with ai ∈ [n]
such that |⋃k

i=1 Uai | is maximized.

Both Set cover and maximum coverage are well known to be
NP-hard, but have a fast greedy approximation algorithm.

The set cover function f (A) = |⋃a∈A Ua| is submodular!

f (A) = µ(
⋃k

i=1 Uai) is still submodular if we take U ⊆ R` and
Ui ⊆ U and µ(·) is an additive measure (e.g., the Lebesgue
measure).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 31 / 123

Intro Basics Other Exs. Optimization

Set Cover and Maximum Coverage

We are given a finite set U of m elements and a size-n set of subsets
U = {U1,U2, . . . ,Un} of U, where Ui ⊆ U and

⋃
i Ui = U.

The goal of minimum set cover is to choose the smallest subset
A ⊆ [n] , {1, . . . , n} = V such that

⋃
a∈A Ua = U.

Maximum k cover: The goal in maximum coverage is, given an
integer k ≤ n, select k subsets, say {a1, a2, . . . , ak} with ai ∈ [n]
such that |⋃k

i=1 Uai | is maximized.

Both Set cover and maximum coverage are well known to be
NP-hard, but have a fast greedy approximation algorithm.

The set cover function f (A) = |⋃a∈A Ua| is submodular!

f (A) = µ(
⋃k

i=1 Uai) is still submodular if we take U ⊆ R` and
Ui ⊆ U and µ(·) is an additive measure (e.g., the Lebesgue
measure).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 31 / 123

Intro Basics Other Exs. Optimization

Set Cover and Maximum Coverage

We are given a finite set U of m elements and a size-n set of subsets
U = {U1,U2, . . . ,Un} of U, where Ui ⊆ U and

⋃
i Ui = U.

The goal of minimum set cover is to choose the smallest subset
A ⊆ [n] , {1, . . . , n} = V such that

⋃
a∈A Ua = U.

Maximum k cover: The goal in maximum coverage is, given an
integer k ≤ n, select k subsets, say {a1, a2, . . . , ak} with ai ∈ [n]
such that |⋃k

i=1 Uai | is maximized.

Both Set cover and maximum coverage are well known to be
NP-hard, but have a fast greedy approximation algorithm.

The set cover function f (A) = |⋃a∈A Ua| is submodular!

f (A) = µ(
⋃k

i=1 Uai) is still submodular if we take U ⊆ R` and
Ui ⊆ U and µ(·) is an additive measure (e.g., the Lebesgue
measure).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 31 / 123

Intro Basics Other Exs. Optimization

Set Cover and Maximum Coverage

We are given a finite set U of m elements and a size-n set of subsets
U = {U1,U2, . . . ,Un} of U, where Ui ⊆ U and

⋃
i Ui = U.

The goal of minimum set cover is to choose the smallest subset
A ⊆ [n] , {1, . . . , n} = V such that

⋃
a∈A Ua = U.

Maximum k cover: The goal in maximum coverage is, given an
integer k ≤ n, select k subsets, say {a1, a2, . . . , ak} with ai ∈ [n]
such that |⋃k

i=1 Uai | is maximized.

Both Set cover and maximum coverage are well known to be
NP-hard, but have a fast greedy approximation algorithm.

The set cover function f (A) = |⋃a∈A Ua| is submodular!

f (A) = µ(
⋃k

i=1 Uai) is still submodular if we take U ⊆ R` and
Ui ⊆ U and µ(·) is an additive measure (e.g., the Lebesgue
measure).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 31 / 123

Intro Basics Other Exs. Optimization

Set Cover and Maximum Coverage

We are given a finite set U of m elements and a size-n set of subsets
U = {U1,U2, . . . ,Un} of U, where Ui ⊆ U and

⋃
i Ui = U.

The goal of minimum set cover is to choose the smallest subset
A ⊆ [n] , {1, . . . , n} = V such that

⋃
a∈A Ua = U.

Maximum k cover: The goal in maximum coverage is, given an
integer k ≤ n, select k subsets, say {a1, a2, . . . , ak} with ai ∈ [n]
such that |⋃k

i=1 Uai | is maximized.

Both Set cover and maximum coverage are well known to be
NP-hard, but have a fast greedy approximation algorithm.

The set cover function f (A) = |⋃a∈A Ua| is submodular!

f (A) = µ(
⋃k

i=1 Uai) is still submodular if we take U ⊆ R` and
Ui ⊆ U and µ(·) is an additive measure (e.g., the Lebesgue
measure).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 31 / 123

Intro Basics Other Exs. Optimization

Vertex and Edge Covers

Definition (vertex cover)

A vertex cover (a “vertex-based cover of edges”) in graph G = (V ,E) is
a set S ⊆ V (G) of vertices such that every edge in G is incident to at
least one vertex in S .

Let I (S) be the number of edges incident to vertex set S . Then we
wish to find the smallest set S ⊆ V subject to I (S) = |E |.
I (S) is submodular.

Definition (edge cover)

A edge cover (an “edge-based cover of vertices”) in graph G = (V ,E) is
a set F ⊆ E (G) of edges such that every vertex in G is incident to at
least one edge in F .

Let |V |(F) be the number of vertices incident to edge set F . Then
we wish to find the smallest set F ⊆ E subject to |V |(F) = |V |.
Let |V |(F) is submodular.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 32 / 123

Intro Basics Other Exs. Optimization

Vertex and Edge Covers

Definition (vertex cover)

A vertex cover (a “vertex-based cover of edges”) in graph G = (V ,E) is
a set S ⊆ V (G) of vertices such that every edge in G is incident to at
least one vertex in S .

Let I (S) be the number of edges incident to vertex set S . Then we
wish to find the smallest set S ⊆ V subject to I (S) = |E |.

I (S) is submodular.

Definition (edge cover)

A edge cover (an “edge-based cover of vertices”) in graph G = (V ,E) is
a set F ⊆ E (G) of edges such that every vertex in G is incident to at
least one edge in F .

Let |V |(F) be the number of vertices incident to edge set F . Then
we wish to find the smallest set F ⊆ E subject to |V |(F) = |V |.
Let |V |(F) is submodular.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 32 / 123

Intro Basics Other Exs. Optimization

Vertex and Edge Covers

Definition (vertex cover)

A vertex cover (a “vertex-based cover of edges”) in graph G = (V ,E) is
a set S ⊆ V (G) of vertices such that every edge in G is incident to at
least one vertex in S .

Let I (S) be the number of edges incident to vertex set S . Then we
wish to find the smallest set S ⊆ V subject to I (S) = |E |.
I (S) is submodular.

Definition (edge cover)

A edge cover (an “edge-based cover of vertices”) in graph G = (V ,E) is
a set F ⊆ E (G) of edges such that every vertex in G is incident to at
least one edge in F .

Let |V |(F) be the number of vertices incident to edge set F . Then
we wish to find the smallest set F ⊆ E subject to |V |(F) = |V |.
Let |V |(F) is submodular.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 32 / 123

Intro Basics Other Exs. Optimization

Vertex and Edge Covers

Definition (vertex cover)

A vertex cover (a “vertex-based cover of edges”) in graph G = (V ,E) is
a set S ⊆ V (G) of vertices such that every edge in G is incident to at
least one vertex in S .

Let I (S) be the number of edges incident to vertex set S . Then we
wish to find the smallest set S ⊆ V subject to I (S) = |E |.
I (S) is submodular.

Definition (edge cover)

A edge cover (an “edge-based cover of vertices”) in graph G = (V ,E) is
a set F ⊆ E (G) of edges such that every vertex in G is incident to at
least one edge in F .

Let |V |(F) be the number of vertices incident to edge set F . Then
we wish to find the smallest set F ⊆ E subject to |V |(F) = |V |.
Let |V |(F) is submodular.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 32 / 123

Intro Basics Other Exs. Optimization

Vertex and Edge Covers

Definition (vertex cover)

A vertex cover (a “vertex-based cover of edges”) in graph G = (V ,E) is
a set S ⊆ V (G) of vertices such that every edge in G is incident to at
least one vertex in S .

Let I (S) be the number of edges incident to vertex set S . Then we
wish to find the smallest set S ⊆ V subject to I (S) = |E |.
I (S) is submodular.

Definition (edge cover)

A edge cover (an “edge-based cover of vertices”) in graph G = (V ,E) is
a set F ⊆ E (G) of edges such that every vertex in G is incident to at
least one edge in F .

Let |V |(F) be the number of vertices incident to edge set F . Then
we wish to find the smallest set F ⊆ E subject to |V |(F) = |V |.

Let |V |(F) is submodular.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 32 / 123

Intro Basics Other Exs. Optimization

Vertex and Edge Covers

Definition (vertex cover)

A vertex cover (a “vertex-based cover of edges”) in graph G = (V ,E) is
a set S ⊆ V (G) of vertices such that every edge in G is incident to at
least one vertex in S .

Let I (S) be the number of edges incident to vertex set S . Then we
wish to find the smallest set S ⊆ V subject to I (S) = |E |.
I (S) is submodular.

Definition (edge cover)

A edge cover (an “edge-based cover of vertices”) in graph G = (V ,E) is
a set F ⊆ E (G) of edges such that every vertex in G is incident to at
least one edge in F .

Let |V |(F) be the number of vertices incident to edge set F . Then
we wish to find the smallest set F ⊆ E subject to |V |(F) = |V |.
Let |V |(F) is submodular.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 32 / 123

Intro Basics Other Exs. Optimization

Graph Cut Problems

Given a graph G = (V ,E), let f : 2V → R+ be the cut function,
namely for any given set of nodes X ⊆ V , f (X) measures the
number of edges between nodes X and V \ X .

f (X) =
∣∣{(u, v) ∈ E : u ∈ X , v ∈ V \ X}

∣∣ (29)

Minimum cut: Given a graph G = (V ,E), find a set of vertices
S ⊆ V that minimize the cut (set of edges) between S and V \ S .
Maximum cut: Given a graph G = (V ,E), find a set of vertices
S ⊆ V that maximize the cut (set of edges) between S and V \ S .
Weighted versions, we have a non-negative modular function
w : 2E → R+ defined on the edges that give cut costs.

f (X) = w
(
{(u, v) ∈ E : u ∈ X , v ∈ V \ X}

)
(30)

=
∑

e∈{(u,v)∈E :u∈X ,v∈V \X}
w(e) (31)

Both functions (Equations (29) and (30)) are submodular.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 33 / 123

Intro Basics Other Exs. Optimization

Graph Cut Problems

Given a graph G = (V ,E), let f : 2V → R+ be the cut function,
namely for any given set of nodes X ⊆ V , f (X) measures the
number of edges between nodes X and V \ X .

f (X) =
∣∣{(u, v) ∈ E : u ∈ X , v ∈ V \ X}

∣∣ (29)

Minimum cut: Given a graph G = (V ,E), find a set of vertices
S ⊆ V that minimize the cut (set of edges) between S and V \ S .

Maximum cut: Given a graph G = (V ,E), find a set of vertices
S ⊆ V that maximize the cut (set of edges) between S and V \ S .
Weighted versions, we have a non-negative modular function
w : 2E → R+ defined on the edges that give cut costs.

f (X) = w
(
{(u, v) ∈ E : u ∈ X , v ∈ V \ X}

)
(30)

=
∑

e∈{(u,v)∈E :u∈X ,v∈V \X}
w(e) (31)

Both functions (Equations (29) and (30)) are submodular.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 33 / 123

Intro Basics Other Exs. Optimization

Graph Cut Problems

Given a graph G = (V ,E), let f : 2V → R+ be the cut function,
namely for any given set of nodes X ⊆ V , f (X) measures the
number of edges between nodes X and V \ X .

f (X) =
∣∣{(u, v) ∈ E : u ∈ X , v ∈ V \ X}

∣∣ (29)

Minimum cut: Given a graph G = (V ,E), find a set of vertices
S ⊆ V that minimize the cut (set of edges) between S and V \ S .
Maximum cut: Given a graph G = (V ,E), find a set of vertices
S ⊆ V that maximize the cut (set of edges) between S and V \ S .

Weighted versions, we have a non-negative modular function
w : 2E → R+ defined on the edges that give cut costs.

f (X) = w
(
{(u, v) ∈ E : u ∈ X , v ∈ V \ X}

)
(30)

=
∑

e∈{(u,v)∈E :u∈X ,v∈V \X}
w(e) (31)

Both functions (Equations (29) and (30)) are submodular.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 33 / 123

Intro Basics Other Exs. Optimization

Graph Cut Problems

Given a graph G = (V ,E), let f : 2V → R+ be the cut function,
namely for any given set of nodes X ⊆ V , f (X) measures the
number of edges between nodes X and V \ X .

f (X) =
∣∣{(u, v) ∈ E : u ∈ X , v ∈ V \ X}

∣∣ (29)

Minimum cut: Given a graph G = (V ,E), find a set of vertices
S ⊆ V that minimize the cut (set of edges) between S and V \ S .
Maximum cut: Given a graph G = (V ,E), find a set of vertices
S ⊆ V that maximize the cut (set of edges) between S and V \ S .
Weighted versions, we have a non-negative modular function
w : 2E → R+ defined on the edges that give cut costs.

f (X) = w
(
{(u, v) ∈ E : u ∈ X , v ∈ V \ X}

)
(30)

=
∑

e∈{(u,v)∈E :u∈X ,v∈V \X}
w(e) (31)

Both functions (Equations (29) and (30)) are submodular.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 33 / 123

Intro Basics Other Exs. Optimization

Graph Cut Problems

Given a graph G = (V ,E), let f : 2V → R+ be the cut function,
namely for any given set of nodes X ⊆ V , f (X) measures the
number of edges between nodes X and V \ X .

f (X) =
∣∣{(u, v) ∈ E : u ∈ X , v ∈ V \ X}

∣∣ (29)

Minimum cut: Given a graph G = (V ,E), find a set of vertices
S ⊆ V that minimize the cut (set of edges) between S and V \ S .
Maximum cut: Given a graph G = (V ,E), find a set of vertices
S ⊆ V that maximize the cut (set of edges) between S and V \ S .
Weighted versions, we have a non-negative modular function
w : 2E → R+ defined on the edges that give cut costs.

f (X) = w
(
{(u, v) ∈ E : u ∈ X , v ∈ V \ X}

)
(30)

=
∑

e∈{(u,v)∈E :u∈X ,v∈V \X}
w(e) (31)

Both functions (Equations (29) and (30)) are submodular.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 33 / 123

Intro Basics Other Exs. Optimization

Bipartite Neighborhood Function

Let G = (V ,U,E ,w) be a
weighted bipartite graph,
where V (resp. U) is a set of
left (resp. right) nodes, E is a
set of edges, and
w : 2U → R+ is a modular
function on right nodes.

Neighbors function: Γ(X) =
{u ∈ U : |X × {u} ∩ E | ≥ 1}
for X ⊆ V .

Size of neighbors,
f (X) = |Γ(X)| is submodular.

Weight of neighbors,
f (X) = w(Γ(X)) is also
submodular.

Γ(X)

X

U
E

V

v1

v2

v3

v4

u1

u2

u3

J. Bilmes & R. Iyer NOML: Submodularity in ML page 34 / 123

Intro Basics Other Exs. Optimization

Bipartite Neighborhood Function

Let G = (V ,U,E ,w) be a
weighted bipartite graph,
where V (resp. U) is a set of
left (resp. right) nodes, E is a
set of edges, and
w : 2U → R+ is a modular
function on right nodes.

Neighbors function: Γ(X) =
{u ∈ U : |X × {u} ∩ E | ≥ 1}
for X ⊆ V .

Size of neighbors,
f (X) = |Γ(X)| is submodular.

Weight of neighbors,
f (X) = w(Γ(X)) is also
submodular.

Γ(X)

X

U
E

V

v1

v2

v3

v4

u1

u2

u3

J. Bilmes & R. Iyer NOML: Submodularity in ML page 34 / 123

Intro Basics Other Exs. Optimization

Bipartite Neighborhood Function

Let G = (V ,U,E ,w) be a
weighted bipartite graph,
where V (resp. U) is a set of
left (resp. right) nodes, E is a
set of edges, and
w : 2U → R+ is a modular
function on right nodes.

Neighbors function: Γ(X) =
{u ∈ U : |X × {u} ∩ E | ≥ 1}
for X ⊆ V .

Size of neighbors,
f (X) = |Γ(X)| is submodular.

Weight of neighbors,
f (X) = w(Γ(X)) is also
submodular.

Γ(X)

X

U
E

V

v1

v2

v3

v4

u1

u2

u3

J. Bilmes & R. Iyer NOML: Submodularity in ML page 34 / 123

Intro Basics Other Exs. Optimization

Bipartite Neighborhood Function

Let G = (V ,U,E ,w) be a
weighted bipartite graph,
where V (resp. U) is a set of
left (resp. right) nodes, E is a
set of edges, and
w : 2U → R+ is a modular
function on right nodes.

Neighbors function: Γ(X) =
{u ∈ U : |X × {u} ∩ E | ≥ 1}
for X ⊆ V .

Size of neighbors,
f (X) = |Γ(X)| is submodular.

Weight of neighbors,
f (X) = w(Γ(X)) is also
submodular.

Γ(X)

X

U
E

V

v1

v2

v3

v4

u1

u2

u3

J. Bilmes & R. Iyer NOML: Submodularity in ML page 34 / 123

Intro Basics Other Exs. Optimization

Facility/Plant Location (uncapacitated)

Core problem in operations research, early motivation for submodularity.

Goal: as efficiently as possible, place “facilities” (factories) at certain
locations to satisfy sites (at all locations) having various demands.

We can model this with a weighted
bipartite graph G = (F ,S ,E , c)
where F is set of possible
factory/plant locations, S is set of
sites needing service, E are edges
indicating (factory,site) service
possibility pairs, and c : E → R+ is
the benefit of a given pair.

Facility location function has form:

f (A) =
∑

i∈F
max
j∈A

cij . (32)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 35 / 123

Intro Basics Other Exs. Optimization

Facility/Plant Location (uncapacitated)

Core problem in operations research, early motivation for submodularity.

Goal: as efficiently as possible, place “facilities” (factories) at certain
locations to satisfy sites (at all locations) having various demands.

We can model this with a weighted
bipartite graph G = (F ,S ,E , c)
where F is set of possible
factory/plant locations, S is set of
sites needing service, E are edges
indicating (factory,site) service
possibility pairs, and c : E → R+ is
the benefit of a given pair.

Facility location function has form:

f (A) =
∑

i∈F
max
j∈A

cij . (32)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 35 / 123

Intro Basics Other Exs. Optimization

Facility/Plant Location (uncapacitated)

Core problem in operations research, early motivation for submodularity.

Goal: as efficiently as possible, place “facilities” (factories) at certain
locations to satisfy sites (at all locations) having various demands.

We can model this with a weighted
bipartite graph G = (F ,S ,E , c)
where F is set of possible
factory/plant locations, S is set of
sites needing service, E are edges
indicating (factory,site) service
possibility pairs, and c : E → R+ is
the benefit of a given pair.

Facility location function has form:

f (A) =
∑

i∈F
max
j∈A

cij . (32)

facility locations sites

...

...

1

2

3

4

5

f

1

2

3

4

s

c24m3

Bene�t of having
site 2 serviced by
facility 4.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 35 / 123

Intro Basics Other Exs. Optimization

Square root of cardinality

Define a function f :
2V → R+ as follows:

f (A) =
√
|A|,

square root of cardi-
nality of A.

0
0

1

2

3

2 4 6 8 10 12

∇g (2) = g (3) − g (2)

∇g (6) = g (7) − g (6)

This is a concave function (i.e., square root) composed with a modular
function (m(A) =

∑
a∈A m(a) where m(a) = 1).

∇g(i) > ∇g(j) for j > i by concavity, so f is a submodular function.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 36 / 123

Intro Basics Other Exs. Optimization

Square root of cardinality

Define a function f :
2V → R+ as follows:

f (A) =
√
|A|,

square root of cardi-
nality of A.

0
0

1

2

3

2 4 6 8 10 12

∇g (2) = g (3) − g (2)

∇g (6) = g (7) − g (6)

This is a concave function (i.e., square root) composed with a modular
function (m(A) =

∑
a∈A m(a) where m(a) = 1).

∇g(i) > ∇g(j) for j > i by concavity, so f is a submodular function.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 36 / 123

Intro Basics Other Exs. Optimization

Square root of cardinality

Define a function f :
2V → R+ as follows:

f (A) =
√
|A|,

square root of cardi-
nality of A.

0
0

1

2

3

2 4 6 8 10 12

∇g (2) = g (3) − g (2)

∇g (6) = g (7) − g (6)

This is a concave function (i.e., square root) composed with a modular
function (m(A) =

∑
a∈A m(a) where m(a) = 1).

∇g(i) > ∇g(j) for j > i by concavity, so f is a submodular function.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 36 / 123

Intro Basics Other Exs. Optimization

Concave function composed with a modular function

Let g : R→ R be any concave function.

Let m : 2V → R+ be any modular function with non-negative
entries (i.e., m(v) ≥ 0 for all v ∈ V).
Then f : 2V → R defined as

f (A) = g(m(A)) (33)

is a submodular function.
Given a set of such concave functions {gi} and modular functions
{mi}, then the sum of such functions

f (A) =
∑

i

gi (mi (A)) (34)

is also submodular.
Very large class of functions, including graph cut, bipartite
neighborhoods, set cover (Stobbe & Krause).
However, Vondrak showed that a simple matroid rank function
(defined below) which is submodular is not a member.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 37 / 123

Intro Basics Other Exs. Optimization

Concave function composed with a modular function

Let g : R→ R be any concave function.
Let m : 2V → R+ be any modular function with non-negative
entries (i.e., m(v) ≥ 0 for all v ∈ V).

Then f : 2V → R defined as

f (A) = g(m(A)) (33)

is a submodular function.
Given a set of such concave functions {gi} and modular functions
{mi}, then the sum of such functions

f (A) =
∑

i

gi (mi (A)) (34)

is also submodular.
Very large class of functions, including graph cut, bipartite
neighborhoods, set cover (Stobbe & Krause).
However, Vondrak showed that a simple matroid rank function
(defined below) which is submodular is not a member.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 37 / 123

Intro Basics Other Exs. Optimization

Concave function composed with a modular function

Let g : R→ R be any concave function.
Let m : 2V → R+ be any modular function with non-negative
entries (i.e., m(v) ≥ 0 for all v ∈ V).
Then f : 2V → R defined as

f (A) = g(m(A)) (33)

is a submodular function.

Given a set of such concave functions {gi} and modular functions
{mi}, then the sum of such functions

f (A) =
∑

i

gi (mi (A)) (34)

is also submodular.
Very large class of functions, including graph cut, bipartite
neighborhoods, set cover (Stobbe & Krause).
However, Vondrak showed that a simple matroid rank function
(defined below) which is submodular is not a member.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 37 / 123

Intro Basics Other Exs. Optimization

Concave function composed with a modular function

Let g : R→ R be any concave function.
Let m : 2V → R+ be any modular function with non-negative
entries (i.e., m(v) ≥ 0 for all v ∈ V).
Then f : 2V → R defined as

f (A) = g(m(A)) (33)

is a submodular function.
Given a set of such concave functions {gi} and modular functions
{mi}, then the sum of such functions

f (A) =
∑

i

gi (mi (A)) (34)

is also submodular.

Very large class of functions, including graph cut, bipartite
neighborhoods, set cover (Stobbe & Krause).
However, Vondrak showed that a simple matroid rank function
(defined below) which is submodular is not a member.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 37 / 123

Intro Basics Other Exs. Optimization

Concave function composed with a modular function

Let g : R→ R be any concave function.
Let m : 2V → R+ be any modular function with non-negative
entries (i.e., m(v) ≥ 0 for all v ∈ V).
Then f : 2V → R defined as

f (A) = g(m(A)) (33)

is a submodular function.
Given a set of such concave functions {gi} and modular functions
{mi}, then the sum of such functions

f (A) =
∑

i

gi (mi (A)) (34)

is also submodular.
Very large class of functions, including graph cut, bipartite
neighborhoods, set cover (Stobbe & Krause).

However, Vondrak showed that a simple matroid rank function
(defined below) which is submodular is not a member.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 37 / 123

Intro Basics Other Exs. Optimization

Concave function composed with a modular function

Let g : R→ R be any concave function.
Let m : 2V → R+ be any modular function with non-negative
entries (i.e., m(v) ≥ 0 for all v ∈ V).
Then f : 2V → R defined as

f (A) = g(m(A)) (33)

is a submodular function.
Given a set of such concave functions {gi} and modular functions
{mi}, then the sum of such functions

f (A) =
∑

i

gi (mi (A)) (34)

is also submodular.
Very large class of functions, including graph cut, bipartite
neighborhoods, set cover (Stobbe & Krause).
However, Vondrak showed that a simple matroid rank function
(defined below) which is submodular is not a member.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 37 / 123

Intro Basics Other Exs. Optimization

Example: Rank function of a matrix

Given an n ×m matrix, thought of as m column vectors:

X =

1 2 3 4 m

| | | | |
x1 x2 x3 x4 . . . xm

| | | | |

 (35)

Let set V = {1, 2, . . . ,m} be the set of column vector indices.

For any subset of column vector indices A ⊆ V ,
let r(A) be the rank of the column vectors indexed by A.

Hence r : 2V → Z+ and r(A) is the dimensionality of the vector
space spanned by the set of vectors {xa}a∈A.

Intuitively, r(A) is the size of the largest set of independent vectors
contained within the set of vectors indexed by A.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 38 / 123

Intro Basics Other Exs. Optimization

Example: Rank function of a matrix

Ex: a 4× 8 matrix with column index set V = {1, 2, 3, 4, 5, 6, 7, 8}.

1 2 3 4 5 6 7 8

1 0 2 2 3 0 1 3 1

2 0 3 0 4 0 0 2 4

3 0 0 0 0 3 0 0 5

4 2 0 0 0 0 0 0 5

=

1 2 3 4 5 6 7 8

| | | | | | | |
x1 x2 x3 x4 x5 x6 x7 x8

| | | | | | | |

Let A = {1, 2, 3}, B = {3, 4, 5}, C = {6, 7}, Ar = {1}, Br = {5}.
Then r(A) = 3, r(B) = 3, r(C) = 2.

r(A ∪ C) = 3, r(B ∪ C) = 3.

r(A ∪ Ar) = 3, r(B ∪ Br) = 3, r(A ∪ Br) = 4, r(B ∪ Ar) = 4.

r(A ∪ B) = 4, r(A ∩ B) = 1 < r(C) = 2.

6 = r(A) + r(B) > r(A ∪ B) + r(A ∩ B) = 5

J. Bilmes & R. Iyer NOML: Submodularity in ML page 39 / 123

Intro Basics Other Exs. Optimization

Example: Rank function of a matrix

Ex: a 4× 8 matrix with column index set V = {1, 2, 3, 4, 5, 6, 7, 8}.

1 2 3 4 5 6 7 8

1 0 2 2 3 0 1 3 1

2 0 3 0 4 0 0 2 4

3 0 0 0 0 3 0 0 5

4 2 0 0 0 0 0 0 5

=

1 2 3 4 5 6 7 8

| | | | | | | |
x1 x2 x3 x4 x5 x6 x7 x8

| | | | | | | |

Let A = {1, 2, 3}, B = {3, 4, 5}, C = {6, 7}, Ar = {1}, Br = {5}.
Then r(A) = 3, r(B) = 3, r(C) = 2.

r(A ∪ C) = 3, r(B ∪ C) = 3.

r(A ∪ Ar) = 3, r(B ∪ Br) = 3, r(A ∪ Br) = 4, r(B ∪ Ar) = 4.

r(A ∪ B) = 4, r(A ∩ B) = 1 < r(C) = 2.

6 = r(A) + r(B) > r(A ∪ B) + r(A ∩ B) = 5

J. Bilmes & R. Iyer NOML: Submodularity in ML page 39 / 123

Intro Basics Other Exs. Optimization

Example: Rank function of a matrix

Ex: a 4× 8 matrix with column index set V = {1, 2, 3, 4, 5, 6, 7, 8}.

1 2 3 4 5 6 7 8

1 0 2 2 3 0 1 3 1

2 0 3 0 4 0 0 2 4

3 0 0 0 0 3 0 0 5

4 2 0 0 0 0 0 0 5

=

1 2 3 4 5 6 7 8

| | | | | | | |
x1 x2 x3 x4 x5 x6 x7 x8

| | | | | | | |

Let A = {1, 2, 3}, B = {3, 4, 5}, C = {6, 7}, Ar = {1}, Br = {5}.
Then r(A) = 3, r(B) = 3, r(C) = 2.

r(A ∪ C) = 3, r(B ∪ C) = 3.

r(A ∪ Ar) = 3, r(B ∪ Br) = 3, r(A ∪ Br) = 4, r(B ∪ Ar) = 4.

r(A ∪ B) = 4, r(A ∩ B) = 1 < r(C) = 2.

6 = r(A) + r(B) > r(A ∪ B) + r(A ∩ B) = 5

J. Bilmes & R. Iyer NOML: Submodularity in ML page 39 / 123

Intro Basics Other Exs. Optimization

Example: Rank function of a matrix

Ex: a 4× 8 matrix with column index set V = {1, 2, 3, 4, 5, 6, 7, 8}.

1 2 3 4 5 6 7 8

1 0 2 2 3 0 1 3 1

2 0 3 0 4 0 0 2 4

3 0 0 0 0 3 0 0 5

4 2 0 0 0 0 0 0 5

=

1 2 3 4 5 6 7 8

| | | | | | | |
x1 x2 x3 x4 x5 x6 x7 x8

| | | | | | | |

Let A = {1, 2, 3}, B = {3, 4, 5}, C = {6, 7}, Ar = {1}, Br = {5}.
Then r(A) = 3, r(B) = 3, r(C) = 2.

r(A ∪ C) = 3, r(B ∪ C) = 3.

r(A ∪ Ar) = 3, r(B ∪ Br) = 3, r(A ∪ Br) = 4, r(B ∪ Ar) = 4.

r(A ∪ B) = 4, r(A ∩ B) = 1 < r(C) = 2.

6 = r(A) + r(B) > r(A ∪ B) + r(A ∩ B) = 5

J. Bilmes & R. Iyer NOML: Submodularity in ML page 39 / 123

Intro Basics Other Exs. Optimization

Example: Rank function of a matrix

Ex: a 4× 8 matrix with column index set V = {1, 2, 3, 4, 5, 6, 7, 8}.

1 2 3 4 5 6 7 8

1 0 2 2 3 0 1 3 1

2 0 3 0 4 0 0 2 4

3 0 0 0 0 3 0 0 5

4 2 0 0 0 0 0 0 5

=

1 2 3 4 5 6 7 8

| | | | | | | |
x1 x2 x3 x4 x5 x6 x7 x8

| | | | | | | |

Let A = {1, 2, 3}, B = {3, 4, 5}, C = {6, 7}, Ar = {1}, Br = {5}.
Then r(A) = 3, r(B) = 3, r(C) = 2.

r(A ∪ C) = 3, r(B ∪ C) = 3.

r(A ∪ Ar) = 3, r(B ∪ Br) = 3, r(A ∪ Br) = 4, r(B ∪ Ar) = 4.

r(A ∪ B) = 4, r(A ∩ B) = 1 < r(C) = 2.

6 = r(A) + r(B) > r(A ∪ B) + r(A ∩ B) = 5

J. Bilmes & R. Iyer NOML: Submodularity in ML page 39 / 123

Intro Basics Other Exs. Optimization

Example: Rank function of a matrix

Ex: a 4× 8 matrix with column index set V = {1, 2, 3, 4, 5, 6, 7, 8}.

1 2 3 4 5 6 7 8

1 0 2 2 3 0 1 3 1

2 0 3 0 4 0 0 2 4

3 0 0 0 0 3 0 0 5

4 2 0 0 0 0 0 0 5

=

1 2 3 4 5 6 7 8

| | | | | | | |
x1 x2 x3 x4 x5 x6 x7 x8

| | | | | | | |

Let A = {1, 2, 3}, B = {3, 4, 5}, C = {6, 7}, Ar = {1}, Br = {5}.
Then r(A) = 3, r(B) = 3, r(C) = 2.

r(A ∪ C) = 3, r(B ∪ C) = 3.

r(A ∪ Ar) = 3, r(B ∪ Br) = 3, r(A ∪ Br) = 4, r(B ∪ Ar) = 4.

r(A ∪ B) = 4, r(A ∩ B) = 1 < r(C) = 2.

6 = r(A) + r(B) > r(A ∪ B) + r(A ∩ B) = 5

J. Bilmes & R. Iyer NOML: Submodularity in ML page 39 / 123

Intro Basics Other Exs. Optimization

Example: Rank function of a matrix

Ex: a 4× 8 matrix with column index set V = {1, 2, 3, 4, 5, 6, 7, 8}.

1 2 3 4 5 6 7 8

1 0 2 2 3 0 1 3 1

2 0 3 0 4 0 0 2 4

3 0 0 0 0 3 0 0 5

4 2 0 0 0 0 0 0 5

=

1 2 3 4 5 6 7 8

| | | | | | | |
x1 x2 x3 x4 x5 x6 x7 x8

| | | | | | | |

Let A = {1, 2, 3}, B = {3, 4, 5}, C = {6, 7}, Ar = {1}, Br = {5}.
Then r(A) = 3, r(B) = 3, r(C) = 2.

r(A ∪ C) = 3, r(B ∪ C) = 3.

r(A ∪ Ar) = 3, r(B ∪ Br) = 3, r(A ∪ Br) = 4, r(B ∪ Ar) = 4.

r(A ∪ B) = 4, r(A ∩ B) = 1 < r(C) = 2.

6 = r(A) + r(B) > r(A ∪ B) + r(A ∩ B) = 5

J. Bilmes & R. Iyer NOML: Submodularity in ML page 39 / 123

Intro Basics Other Exs. Optimization

Example: Rank function of a matrix

Ex: a 4× 8 matrix with column index set V = {1, 2, 3, 4, 5, 6, 7, 8}.

1 2 3 4 5 6 7 8

1 0 2 2 3 0 1 3 1

2 0 3 0 4 0 0 2 4

3 0 0 0 0 3 0 0 5

4 2 0 0 0 0 0 0 5

=

1 2 3 4 5 6 7 8

| | | | | | | |
x1 x2 x3 x4 x5 x6 x7 x8

| | | | | | | |

Let A = {1, 2, 3}, B = {3, 4, 5}, C = {6, 7}, Ar = {1}, Br = {5}.
Then r(A) = 3, r(B) = 3, r(C) = 2.

r(A ∪ C) = 3, r(B ∪ C) = 3.

r(A ∪ Ar) = 3, r(B ∪ Br) = 3, r(A ∪ Br) = 4, r(B ∪ Ar) = 4.

r(A ∪ B) = 4, r(A ∩ B) = 1 < r(C) = 2.

6 = r(A) + r(B) > r(A ∪ B) + r(A ∩ B) = 5

J. Bilmes & R. Iyer NOML: Submodularity in ML page 39 / 123

Intro Basics Other Exs. Optimization

Example: Rank function of a matrix

Ex: a 4× 8 matrix with column index set V = {1, 2, 3, 4, 5, 6, 7, 8}.

1 2 3 4 5 6 7 8

1 0 2 2 3 0 1 3 1

2 0 3 0 4 0 0 2 4

3 0 0 0 0 3 0 0 5

4 2 0 0 0 0 0 0 5

=

1 2 3 4 5 6 7 8

| | | | | | | |
x1 x2 x3 x4 x5 x6 x7 x8

| | | | | | | |

Let A = {1, 2, 3}, B = {3, 4, 5}, C = {6, 7}, Ar = {1}, Br = {5}.
Then r(A) = 3, r(B) = 3, r(C) = 2.

r(A ∪ C) = 3, r(B ∪ C) = 3.

r(A ∪ Ar) = 3, r(B ∪ Br) = 3, r(A ∪ Br) = 4, r(B ∪ Ar) = 4.

r(A ∪ B) = 4, r(A ∩ B) = 1 < r(C) = 2.

6 = r(A) + r(B) > r(A ∪ B) + r(A ∩ B) = 5

J. Bilmes & R. Iyer NOML: Submodularity in ML page 39 / 123

Intro Basics Other Exs. Optimization

Example: Rank function of a matrix

Ex: a 4× 8 matrix with column index set V = {1, 2, 3, 4, 5, 6, 7, 8}.

1 2 3 4 5 6 7 8

1 0 2 2 3 0 1 3 1

2 0 3 0 4 0 0 2 4

3 0 0 0 0 3 0 0 5

4 2 0 0 0 0 0 0 5

=

1 2 3 4 5 6 7 8

| | | | | | | |
x1 x2 x3 x4 x5 x6 x7 x8

| | | | | | | |

Let A = {1, 2, 3}, B = {3, 4, 5}, C = {6, 7}, Ar = {1}, Br = {5}.
Then r(A) = 3, r(B) = 3, r(C) = 2.

r(A ∪ C) = 3, r(B ∪ C) = 3.

r(A ∪ Ar) = 3, r(B ∪ Br) = 3, r(A ∪ Br) = 4, r(B ∪ Ar) = 4.

r(A ∪ B) = 4, r(A ∩ B) = 1 < r(C) = 2.

6 = r(A) + r(B) > r(A ∪ B) + r(A ∩ B) = 5

J. Bilmes & R. Iyer NOML: Submodularity in ML page 39 / 123

Intro Basics Other Exs. Optimization

Example: Rank function of a matrix

Ex: a 4× 8 matrix with column index set V = {1, 2, 3, 4, 5, 6, 7, 8}.

1 2 3 4 5 6 7 8

1 0 2 2 3 0 1 3 1

2 0 3 0 4 0 0 2 4

3 0 0 0 0 3 0 0 5

4 2 0 0 0 0 0 0 5

=

1 2 3 4 5 6 7 8

| | | | | | | |
x1 x2 x3 x4 x5 x6 x7 x8

| | | | | | | |

Let A = {1, 2, 3}, B = {3, 4, 5}, C = {6, 7}, Ar = {1}, Br = {5}.
Then r(A) = 3, r(B) = 3, r(C) = 2.

r(A ∪ C) = 3, r(B ∪ C) = 3.

r(A ∪ Ar) = 3, r(B ∪ Br) = 3, r(A ∪ Br) = 4, r(B ∪ Ar) = 4.

r(A ∪ B) = 4, r(A ∩ B) = 1 < r(C) = 2.

6 = r(A) + r(B) > r(A ∪ B) + r(A ∩ B) = 5

J. Bilmes & R. Iyer NOML: Submodularity in ML page 39 / 123

Intro Basics Other Exs. Optimization

Example: Rank function of a matrix

Ex: a 4× 8 matrix with column index set V = {1, 2, 3, 4, 5, 6, 7, 8}.

1 2 3 4 5 6 7 8

1 0 2 2 3 0 1 3 1

2 0 3 0 4 0 0 2 4

3 0 0 0 0 3 0 0 5

4 2 0 0 0 0 0 0 5

=

1 2 3 4 5 6 7 8

| | | | | | | |
x1 x2 x3 x4 x5 x6 x7 x8

| | | | | | | |

Let A = {1, 2, 3}, B = {3, 4, 5}, C = {6, 7}, Ar = {1}, Br = {5}.
Then r(A) = 3, r(B) = 3, r(C) = 2.

r(A ∪ C) = 3, r(B ∪ C) = 3.

r(A ∪ Ar) = 3, r(B ∪ Br) = 3, r(A ∪ Br) = 4, r(B ∪ Ar) = 4.

r(A ∪ B) = 4, r(A ∩ B) = 1 < r(C) = 2.

6 = r(A) + r(B) > r(A ∪ B) + r(A ∩ B) = 5

J. Bilmes & R. Iyer NOML: Submodularity in ML page 39 / 123

Intro Basics Other Exs. Optimization

Example: Rank function of a matrix

Ex: a 4× 8 matrix with column index set V = {1, 2, 3, 4, 5, 6, 7, 8}.

1 2 3 4 5 6 7 8

1 0 2 2 3 0 1 3 1

2 0 3 0 4 0 0 2 4

3 0 0 0 0 3 0 0 5

4 2 0 0 0 0 0 0 5

=

1 2 3 4 5 6 7 8

| | | | | | | |
x1 x2 x3 x4 x5 x6 x7 x8

| | | | | | | |

Let A = {1, 2, 3}, B = {3, 4, 5}, C = {6, 7}, Ar = {1}, Br = {5}.
Then r(A) = 3, r(B) = 3, r(C) = 2.

r(A ∪ C) = 3, r(B ∪ C) = 3.

r(A ∪ Ar) = 3, r(B ∪ Br) = 3, r(A ∪ Br) = 4, r(B ∪ Ar) = 4.

r(A ∪ B) = 4, r(A ∩ B) = 1 < r(C) = 2.

6 = r(A) + r(B) > r(A ∪ B) + r(A ∩ B) = 5

J. Bilmes & R. Iyer NOML: Submodularity in ML page 39 / 123

Intro Basics Other Exs. Optimization

Example: Rank function of a matrix

Ex: a 4× 8 matrix with column index set V = {1, 2, 3, 4, 5, 6, 7, 8}.

1 2 3 4 5 6 7 8

1 0 2 2 3 0 1 3 1

2 0 3 0 4 0 0 2 4

3 0 0 0 0 3 0 0 5

4 2 0 0 0 0 0 0 5

=

1 2 3 4 5 6 7 8

| | | | | | | |
x1 x2 x3 x4 x5 x6 x7 x8

| | | | | | | |

Let A = {1, 2, 3}, B = {3, 4, 5}, C = {6, 7}, Ar = {1}, Br = {5}.
Then r(A) = 3, r(B) = 3, r(C) = 2.

r(A ∪ C) = 3, r(B ∪ C) = 3.

r(A ∪ Ar) = 3, r(B ∪ Br) = 3, r(A ∪ Br) = 4, r(B ∪ Ar) = 4.

r(A ∪ B) = 4, r(A ∩ B) = 1 < r(C) = 2.

6 = r(A) + r(B) > r(A ∪ B) + r(A ∩ B) = 5

J. Bilmes & R. Iyer NOML: Submodularity in ML page 39 / 123

Intro Basics Other Exs. Optimization

Example: Rank function of a matrix

Ex: a 4× 8 matrix with column index set V = {1, 2, 3, 4, 5, 6, 7, 8}.

1 2 3 4 5 6 7 8

1 0 2 2 3 0 1 3 1

2 0 3 0 4 0 0 2 4

3 0 0 0 0 3 0 0 5

4 2 0 0 0 0 0 0 5

=

1 2 3 4 5 6 7 8

| | | | | | | |
x1 x2 x3 x4 x5 x6 x7 x8

| | | | | | | |

Let A = {1, 2, 3}, B = {3, 4, 5}, C = {6, 7}, Ar = {1}, Br = {5}.
Then r(A) = 3, r(B) = 3, r(C) = 2.

r(A ∪ C) = 3, r(B ∪ C) = 3.

r(A ∪ Ar) = 3, r(B ∪ Br) = 3, r(A ∪ Br) = 4, r(B ∪ Ar) = 4.

r(A ∪ B) = 4, r(A ∩ B) = 1 < r(C) = 2.

6 = r(A) + r(B) > r(A ∪ B) + r(A ∩ B) = 5

J. Bilmes & R. Iyer NOML: Submodularity in ML page 39 / 123

Intro Basics Other Exs. Optimization

Example: Rank function of a matrix

Ex: a 4× 8 matrix with column index set V = {1, 2, 3, 4, 5, 6, 7, 8}.

1 2 3 4 5 6 7 8

1 0 2 2 3 0 1 3 1

2 0 3 0 4 0 0 2 4

3 0 0 0 0 3 0 0 5

4 2 0 0 0 0 0 0 5

=

1 2 3 4 5 6 7 8

| | | | | | | |
x1 x2 x3 x4 x5 x6 x7 x8

| | | | | | | |

Let A = {1, 2, 3}, B = {3, 4, 5}, C = {6, 7}, Ar = {1}, Br = {5}.
Then r(A) = 3, r(B) = 3, r(C) = 2.

r(A ∪ C) = 3, r(B ∪ C) = 3.

r(A ∪ Ar) = 3, r(B ∪ Br) = 3, r(A ∪ Br) = 4, r(B ∪ Ar) = 4.

r(A ∪ B) = 4, r(A ∩ B) = 1 < r(C) = 2.

6 = r(A) + r(B) > r(A ∪ B) + r(A ∩ B) = 5

J. Bilmes & R. Iyer NOML: Submodularity in ML page 39 / 123

Intro Basics Other Exs. Optimization

Example: Rank function of a matrix

Ex: a 4× 8 matrix with column index set V = {1, 2, 3, 4, 5, 6, 7, 8}.

1 2 3 4 5 6 7 8

1 0 2 2 3 0 1 3 1

2 0 3 0 4 0 0 2 4

3 0 0 0 0 3 0 0 5

4 2 0 0 0 0 0 0 5

=

1 2 3 4 5 6 7 8

| | | | | | | |
x1 x2 x3 x4 x5 x6 x7 x8

| | | | | | | |

Let A = {1, 2, 3}, B = {3, 4, 5}, C = {6, 7}, Ar = {1}, Br = {5}.
Then r(A) = 3, r(B) = 3, r(C) = 2.

r(A ∪ C) = 3, r(B ∪ C) = 3.

r(A ∪ Ar) = 3, r(B ∪ Br) = 3, r(A ∪ Br) = 4, r(B ∪ Ar) = 4.

r(A ∪ B) = 4, r(A ∩ B) = 1 < r(C) = 2.

6 = r(A) + r(B) > r(A ∪ B) + r(A ∩ B) = 5

J. Bilmes & R. Iyer NOML: Submodularity in ML page 39 / 123

Intro Basics Other Exs. Optimization

Example: Rank function of a matrix

Ex: a 4× 8 matrix with column index set V = {1, 2, 3, 4, 5, 6, 7, 8}.

1 2 3 4 5 6 7 8

1 0 2 2 3 0 1 3 1

2 0 3 0 4 0 0 2 4

3 0 0 0 0 3 0 0 5

4 2 0 0 0 0 0 0 5

=

1 2 3 4 5 6 7 8

| | | | | | | |
x1 x2 x3 x4 x5 x6 x7 x8

| | | | | | | |

Let A = {1, 2, 3}, B = {3, 4, 5}, C = {6, 7}, Ar = {1}, Br = {5}.
Then r(A) = 3, r(B) = 3, r(C) = 2.

r(A ∪ C) = 3, r(B ∪ C) = 3.

r(A ∪ Ar) = 3, r(B ∪ Br) = 3, r(A ∪ Br) = 4, r(B ∪ Ar) = 4.

r(A ∪ B) = 4, r(A ∩ B) = 1 < r(C) = 2.

6 = r(A) + r(B) > r(A ∪ B) + r(A ∩ B) = 5

J. Bilmes & R. Iyer NOML: Submodularity in ML page 39 / 123

Intro Basics Other Exs. Optimization

Example: Rank function of a matrix

Ex: a 4× 8 matrix with column index set V = {1, 2, 3, 4, 5, 6, 7, 8}.

1 2 3 4 5 6 7 8

1 0 2 2 3 0 1 3 1

2 0 3 0 4 0 0 2 4

3 0 0 0 0 3 0 0 5

4 2 0 0 0 0 0 0 5

=

1 2 3 4 5 6 7 8

| | | | | | | |
x1 x2 x3 x4 x5 x6 x7 x8

| | | | | | | |

Let A = {1, 2, 3}, B = {3, 4, 5}, C = {6, 7}, Ar = {1}, Br = {5}.
Then r(A) = 3, r(B) = 3, r(C) = 2.

r(A ∪ C) = 3, r(B ∪ C) = 3.

r(A ∪ Ar) = 3, r(B ∪ Br) = 3, r(A ∪ Br) = 4, r(B ∪ Ar) = 4.

r(A ∪ B) = 4, r(A ∩ B) = 1 < r(C) = 2.

6 = r(A) + r(B) > r(A ∪ B) + r(A ∩ B) = 5

J. Bilmes & R. Iyer NOML: Submodularity in ML page 39 / 123

Intro Basics Other Exs. Optimization

Rank function of a matrix

Let A,B ⊆ V be two subsets of column indices.

The rank of the two sets unioned together A ∪ B is no more than
the sum of the two individual ranks.
In Venn diagram, Let area correspond to dimensions spanned by
vectors indexed by a set. Hence, r(A) can be viewed as an area.

r(A) + r(B) ≥ r(A ∪ B)

If some of the dimensions spanned by A overlap some of the
dimensions spanned by B (i.e., if ∃ common span), then that area is
counted twice in r(A) + r(B), so the inequality will be strict.
Any function where the above inequality is true for all A,B ⊆ V is
called subadditive.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 40 / 123

Intro Basics Other Exs. Optimization

Rank function of a matrix

Let A,B ⊆ V be two subsets of column indices.
The rank of the two sets unioned together A ∪ B is no more than
the sum of the two individual ranks.

In Venn diagram, Let area correspond to dimensions spanned by
vectors indexed by a set. Hence, r(A) can be viewed as an area.

r(A) + r(B) ≥ r(A ∪ B)

If some of the dimensions spanned by A overlap some of the
dimensions spanned by B (i.e., if ∃ common span), then that area is
counted twice in r(A) + r(B), so the inequality will be strict.
Any function where the above inequality is true for all A,B ⊆ V is
called subadditive.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 40 / 123

Intro Basics Other Exs. Optimization

Rank function of a matrix

Let A,B ⊆ V be two subsets of column indices.
The rank of the two sets unioned together A ∪ B is no more than
the sum of the two individual ranks.
In Venn diagram, Let area correspond to dimensions spanned by
vectors indexed by a set. Hence, r(A) can be viewed as an area.

r(A) + r(B) ≥ r(A ∪ B)

If some of the dimensions spanned by A overlap some of the
dimensions spanned by B (i.e., if ∃ common span), then that area is
counted twice in r(A) + r(B), so the inequality will be strict.
Any function where the above inequality is true for all A,B ⊆ V is
called subadditive.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 40 / 123

Intro Basics Other Exs. Optimization

Rank function of a matrix

Let A,B ⊆ V be two subsets of column indices.
The rank of the two sets unioned together A ∪ B is no more than
the sum of the two individual ranks.
In Venn diagram, Let area correspond to dimensions spanned by
vectors indexed by a set. Hence, r(A) can be viewed as an area.

r(A) + r(B) ≥ r(A ∪ B)

If some of the dimensions spanned by A overlap some of the
dimensions spanned by B (i.e., if ∃ common span), then that area is
counted twice in r(A) + r(B), so the inequality will be strict.
Any function where the above inequality is true for all A,B ⊆ V is
called subadditive.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 40 / 123

Intro Basics Other Exs. Optimization

Rank function of a matrix

Let A,B ⊆ V be two subsets of column indices.
The rank of the two sets unioned together A ∪ B is no more than
the sum of the two individual ranks.
In Venn diagram, Let area correspond to dimensions spanned by
vectors indexed by a set. Hence, r(A) can be viewed as an area.

r(A) + r(B) ≥ r(A ∪ B)

If some of the dimensions spanned by A overlap some of the
dimensions spanned by B (i.e., if ∃ common span), then that area is
counted twice in r(A) + r(B), so the inequality will be strict.

Any function where the above inequality is true for all A,B ⊆ V is
called subadditive.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 40 / 123

Intro Basics Other Exs. Optimization

Rank function of a matrix

Let A,B ⊆ V be two subsets of column indices.
The rank of the two sets unioned together A ∪ B is no more than
the sum of the two individual ranks.
In Venn diagram, Let area correspond to dimensions spanned by
vectors indexed by a set. Hence, r(A) can be viewed as an area.

r(A) + r(B) ≥ r(A ∪ B)

If some of the dimensions spanned by A overlap some of the
dimensions spanned by B (i.e., if ∃ common span), then that area is
counted twice in r(A) + r(B), so the inequality will be strict.
Any function where the above inequality is true for all A,B ⊆ V is
called subadditive.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 40 / 123

Intro Basics Other Exs. Optimization

Rank functions of a matrix

Vectors A and B have a (possibly empty) common span and two
(possibly empty) non-common residual spans.

Let C index vectors spanning dimensions common to A and B.

Let Ar index vectors spanning dimensions spanned by A but not B.

Let Br index vectors spanning dimensions spanned by B but not A.

Then, r(A) = r(C) + r(Ar)

Similarly, r(B) = r(C) + r(Br).

Then r(A) + r(B) counts the dimensions spanned by C twice, i.e.,

r(A) + r(B) = r(Ar) + 2r(C) + r(Br). (36)

But r(A ∪ B) counts the dimensions spanned by C only once.

r(A ∪ B) = r(Ar) + r(C) + r(Br) (37)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 41 / 123

Intro Basics Other Exs. Optimization

Rank functions of a matrix

Vectors A and B have a (possibly empty) common span and two
(possibly empty) non-common residual spans.

Let C index vectors spanning dimensions common to A and B.

Let Ar index vectors spanning dimensions spanned by A but not B.

Let Br index vectors spanning dimensions spanned by B but not A.

Then, r(A) = r(C) + r(Ar)

Similarly, r(B) = r(C) + r(Br).

Then r(A) + r(B) counts the dimensions spanned by C twice, i.e.,

r(A) + r(B) = r(Ar) + 2r(C) + r(Br). (36)

But r(A ∪ B) counts the dimensions spanned by C only once.

r(A ∪ B) = r(Ar) + r(C) + r(Br) (37)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 41 / 123

Intro Basics Other Exs. Optimization

Rank functions of a matrix

Vectors A and B have a (possibly empty) common span and two
(possibly empty) non-common residual spans.

Let C index vectors spanning dimensions common to A and B.

Let Ar index vectors spanning dimensions spanned by A but not B.

Let Br index vectors spanning dimensions spanned by B but not A.

Then, r(A) = r(C) + r(Ar)

Similarly, r(B) = r(C) + r(Br).

Then r(A) + r(B) counts the dimensions spanned by C twice, i.e.,

r(A) + r(B) = r(Ar) + 2r(C) + r(Br). (36)

But r(A ∪ B) counts the dimensions spanned by C only once.

r(A ∪ B) = r(Ar) + r(C) + r(Br) (37)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 41 / 123

Intro Basics Other Exs. Optimization

Rank functions of a matrix

Vectors A and B have a (possibly empty) common span and two
(possibly empty) non-common residual spans.

Let C index vectors spanning dimensions common to A and B.

Let Ar index vectors spanning dimensions spanned by A but not B.

Let Br index vectors spanning dimensions spanned by B but not A.

Then, r(A) = r(C) + r(Ar)

Similarly, r(B) = r(C) + r(Br).

Then r(A) + r(B) counts the dimensions spanned by C twice, i.e.,

r(A) + r(B) = r(Ar) + 2r(C) + r(Br). (36)

But r(A ∪ B) counts the dimensions spanned by C only once.

r(A ∪ B) = r(Ar) + r(C) + r(Br) (37)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 41 / 123

Intro Basics Other Exs. Optimization

Rank functions of a matrix

Vectors A and B have a (possibly empty) common span and two
(possibly empty) non-common residual spans.

Let C index vectors spanning dimensions common to A and B.

Let Ar index vectors spanning dimensions spanned by A but not B.

Let Br index vectors spanning dimensions spanned by B but not A.

Then, r(A) = r(C) + r(Ar)

Similarly, r(B) = r(C) + r(Br).

Then r(A) + r(B) counts the dimensions spanned by C twice, i.e.,

r(A) + r(B) = r(Ar) + 2r(C) + r(Br). (36)

But r(A ∪ B) counts the dimensions spanned by C only once.

r(A ∪ B) = r(Ar) + r(C) + r(Br) (37)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 41 / 123

Intro Basics Other Exs. Optimization

Rank functions of a matrix

Vectors A and B have a (possibly empty) common span and two
(possibly empty) non-common residual spans.

Let C index vectors spanning dimensions common to A and B.

Let Ar index vectors spanning dimensions spanned by A but not B.

Let Br index vectors spanning dimensions spanned by B but not A.

Then, r(A) = r(C) + r(Ar)

Similarly, r(B) = r(C) + r(Br).

Then r(A) + r(B) counts the dimensions spanned by C twice, i.e.,

r(A) + r(B) = r(Ar) + 2r(C) + r(Br). (36)

But r(A ∪ B) counts the dimensions spanned by C only once.

r(A ∪ B) = r(Ar) + r(C) + r(Br) (37)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 41 / 123

Intro Basics Other Exs. Optimization

Rank functions of a matrix

Vectors A and B have a (possibly empty) common span and two
(possibly empty) non-common residual spans.

Let C index vectors spanning dimensions common to A and B.

Let Ar index vectors spanning dimensions spanned by A but not B.

Let Br index vectors spanning dimensions spanned by B but not A.

Then, r(A) = r(C) + r(Ar)

Similarly, r(B) = r(C) + r(Br).

Then r(A) + r(B) counts the dimensions spanned by C twice, i.e.,

r(A) + r(B) = r(Ar) + 2r(C) + r(Br). (36)

But r(A ∪ B) counts the dimensions spanned by C only once.

r(A ∪ B) = r(Ar) + r(C) + r(Br) (37)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 41 / 123

Intro Basics Other Exs. Optimization

Rank functions of a matrix

Vectors A and B have a (possibly empty) common span and two
(possibly empty) non-common residual spans.

Let C index vectors spanning dimensions common to A and B.

Let Ar index vectors spanning dimensions spanned by A but not B.

Let Br index vectors spanning dimensions spanned by B but not A.

Then, r(A) = r(C) + r(Ar)

Similarly, r(B) = r(C) + r(Br).

Then r(A) + r(B) counts the dimensions spanned by C twice, i.e.,

r(A) + r(B) = r(Ar) + 2r(C) + r(Br). (36)

But r(A ∪ B) counts the dimensions spanned by C only once.

r(A ∪ B) = r(Ar) + r(C) + r(Br) (37)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 41 / 123

Intro Basics Other Exs. Optimization

Rank functions of a matrix

Then r(A) + r(B) counts the dimensions spanned by C twice, i.e.,

r(A) + r(B) = r(Ar) + 2r(C) + r(Br)

But r(A ∪ B) counts the dimensions spanned by C only once.

r(A ∪ B) = r(Ar) +r(C) + r(Br)

Thus, we have subadditivity: r(A) + r(B) ≥ r(A ∪ B). Can we add
more to the r.h.s. and still have an inequality? Yes.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 42 / 123

Intro Basics Other Exs. Optimization

Rank functions of a matrix

Then r(A) + r(B) counts the dimensions spanned by C twice, i.e.,

r(A) + r(B) = r(Ar) + 2r(C) + r(Br)

But r(A ∪ B) counts the dimensions spanned by C only once.

r(A ∪ B) = r(Ar) +r(C) + r(Br)

Thus, we have subadditivity: r(A) + r(B) ≥ r(A ∪ B). Can we add
more to the r.h.s. and still have an inequality? Yes.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 42 / 123

Intro Basics Other Exs. Optimization

Rank functions of a matrix

Then r(A) + r(B) counts the dimensions spanned by C twice, i.e.,

r(A) + r(B) = r(Ar) + 2r(C) + r(Br)

But r(A ∪ B) counts the dimensions spanned by C only once.

r(A ∪ B) = r(Ar) +r(C) + r(Br)

Thus, we have subadditivity: r(A) + r(B) ≥ r(A ∪ B). Can we add
more to the r.h.s. and still have an inequality? Yes.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 42 / 123

Intro Basics Other Exs. Optimization

Rank function of a matrix

Note, r(A ∩ B) ≤ r(C). Why? Vectors indexed by A ∩ B (i.e., the
common index set) span no more than the dimensions commonly
spanned by A and B (namely, those spanned by the professed C).

r(A ∩ B)≥r(C)

In short:

Common span (blue) is “more” (no less) than span of common
index (magenta).

More generally, common information (blue) is “more” (no less) than
information within common index (magenta).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 43 / 123

Intro Basics Other Exs. Optimization

Rank function of a matrix

Note, r(A ∩ B) ≤ r(C). Why? Vectors indexed by A ∩ B (i.e., the
common index set) span no more than the dimensions commonly
spanned by A and B (namely, those spanned by the professed C).

r(A ∩ B)≥r(C)

In short:

Common span (blue) is “more” (no less) than span of common
index (magenta).

More generally, common information (blue) is “more” (no less) than
information within common index (magenta).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 43 / 123

Intro Basics Other Exs. Optimization

Rank function of a matrix

Note, r(A ∩ B) ≤ r(C). Why? Vectors indexed by A ∩ B (i.e., the
common index set) span no more than the dimensions commonly
spanned by A and B (namely, those spanned by the professed C).

r(A ∩ B)≥r(C)

In short:

Common span (blue) is “more” (no less) than span of common
index (magenta).

More generally, common information (blue) is “more” (no less) than
information within common index (magenta).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 43 / 123

Intro Basics Other Exs. Optimization

The Venn and Art of Submodularity

+r(A) + r(B) r(A ∪ B)

= r(Ar) +r(C) + r(Br)

≥
= r(A ∩ B)

r(A ∩ B)

= r(Ar) + 2r(C) + r(Br)

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

J. Bilmes & R. Iyer NOML: Submodularity in ML page 44 / 123

Intro Basics Other Exs. Optimization

Matroid

Definition (set system)

A (finite) ground set V and a set of subsets of V , ∅ 6= I ⊆ 2V is called a
set system, notated (V , I).

Definition (independence (or hereditary) system)

A set system (V , I) is an independence system if

∅ ∈ I (emptyset containing) (I1)
and

∀I ∈ I, J ⊂ I ⇒ J ∈ I (subclusive) (I2)

Definition (Matroid)

A set system (V , I) is a Matroid if

(I1) ∅ ∈ I (emptyset containing)

(I2) ∀I ∈ I, J ⊂ I ⇒ J ∈ I (down-closed or subclusive)

(I3) ∀I , J ∈ I, with |I | = |J|+ 1, then ∃ x ∈ I \ J s.t. J ∪ {x} ∈ I.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 45 / 123

Intro Basics Other Exs. Optimization

Matroid

Definition (set system)

A (finite) ground set V and a set of subsets of V , ∅ 6= I ⊆ 2V is called a
set system, notated (V , I).

Definition (independence (or hereditary) system)

A set system (V , I) is an independence system if

∅ ∈ I (emptyset containing) (I1)
and

∀I ∈ I, J ⊂ I ⇒ J ∈ I (subclusive) (I2)

Definition (Matroid)

A set system (V , I) is a Matroid if

(I1) ∅ ∈ I (emptyset containing)

(I2) ∀I ∈ I, J ⊂ I ⇒ J ∈ I (down-closed or subclusive)

(I3) ∀I , J ∈ I, with |I | = |J|+ 1, then ∃ x ∈ I \ J s.t. J ∪ {x} ∈ I.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 45 / 123

Intro Basics Other Exs. Optimization

Matroid

Definition (set system)

A (finite) ground set V and a set of subsets of V , ∅ 6= I ⊆ 2V is called a
set system, notated (V , I).

Definition (independence (or hereditary) system)

A set system (V , I) is an independence system if

∅ ∈ I (emptyset containing) (I1)
and

∀I ∈ I, J ⊂ I ⇒ J ∈ I (subclusive) (I2)

Definition (Matroid)

A set system (V , I) is a Matroid if

(I1) ∅ ∈ I (emptyset containing)

(I2) ∀I ∈ I, J ⊂ I ⇒ J ∈ I (down-closed or subclusive)

(I3) ∀I , J ∈ I, with |I | = |J|+ 1, then ∃ x ∈ I \ J s.t. J ∪ {x} ∈ I.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 45 / 123

Intro Basics Other Exs. Optimization

Matroid

Definition (set system)

A (finite) ground set V and a set of subsets of V , ∅ 6= I ⊆ 2V is called a
set system, notated (V , I).

Definition (independence (or hereditary) system)

A set system (V , I) is an independence system if

∅ ∈ I (emptyset containing) (I1)
and

∀I ∈ I, J ⊂ I ⇒ J ∈ I (subclusive) (I2)

Definition (Matroid)

A set system (V , I) is a Matroid if

(I1) ∅ ∈ I (emptyset containing)

(I2) ∀I ∈ I, J ⊂ I ⇒ J ∈ I (down-closed or subclusive)

(I3) ∀I , J ∈ I, with |I | = |J|+ 1, then ∃ x ∈ I \ J s.t. J ∪ {x} ∈ I.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 45 / 123

Intro Basics Other Exs. Optimization

Matroid

Definition (set system)

A (finite) ground set V and a set of subsets of V , ∅ 6= I ⊆ 2V is called a
set system, notated (V , I).

Definition (independence (or hereditary) system)

A set system (V , I) is an independence system if

∅ ∈ I (emptyset containing) (I1)
and

∀I ∈ I, J ⊂ I ⇒ J ∈ I (subclusive) (I2)

Definition (Matroid)

A set system (V , I) is a Matroid if

(I1) ∅ ∈ I (emptyset containing)

(I2) ∀I ∈ I, J ⊂ I ⇒ J ∈ I (down-closed or subclusive)

(I3) ∀I , J ∈ I, with |I | = |J|+ 1, then ∃ x ∈ I \ J s.t. J ∪ {x} ∈ I.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 45 / 123

Intro Basics Other Exs. Optimization

Matroid

Definition (set system)

A (finite) ground set V and a set of subsets of V , ∅ 6= I ⊆ 2V is called a
set system, notated (V , I).

Definition (independence (or hereditary) system)

A set system (V , I) is an independence system if

∅ ∈ I (emptyset containing) (I1)
and

∀I ∈ I, J ⊂ I ⇒ J ∈ I (subclusive) (I2)

Definition (Matroid)

A set system (V , I) is a Matroid if

(I1) ∅ ∈ I (emptyset containing)

(I2) ∀I ∈ I, J ⊂ I ⇒ J ∈ I (down-closed or subclusive)

(I3) ∀I , J ∈ I, with |I | = |J|+ 1, then ∃ x ∈ I \ J s.t. J ∪ {x} ∈ I.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 45 / 123

Intro Basics Other Exs. Optimization

A matroid rank function is submodular

We can a bit more formally define the rank function this way.

Definition

The rank of a matroid is a function r : 2V → Z+ defined by

r(A) = max {|X | : X ⊆ A,X ∈ I} = max
X∈I
|A ∩ X | (38)

From the above, we immediately see that r(A) ≤ |A|.
Moreover, if r(A) = |A|, then A ∈ I, meaning A is independent

Lemma

The rank function r : 2V → Z+ of a matroid is submodular, that is
r(A) + r(B) ≥ r(A ∪ B) + r(A ∩ B)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 46 / 123

Intro Basics Other Exs. Optimization

A matroid rank function is submodular

We can a bit more formally define the rank function this way.

Definition

The rank of a matroid is a function r : 2V → Z+ defined by

r(A) = max {|X | : X ⊆ A,X ∈ I} = max
X∈I
|A ∩ X | (38)

From the above, we immediately see that r(A) ≤ |A|.

Moreover, if r(A) = |A|, then A ∈ I, meaning A is independent

Lemma

The rank function r : 2V → Z+ of a matroid is submodular, that is
r(A) + r(B) ≥ r(A ∪ B) + r(A ∩ B)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 46 / 123

Intro Basics Other Exs. Optimization

A matroid rank function is submodular

We can a bit more formally define the rank function this way.

Definition

The rank of a matroid is a function r : 2V → Z+ defined by

r(A) = max {|X | : X ⊆ A,X ∈ I} = max
X∈I
|A ∩ X | (38)

From the above, we immediately see that r(A) ≤ |A|.
Moreover, if r(A) = |A|, then A ∈ I, meaning A is independent

Lemma

The rank function r : 2V → Z+ of a matroid is submodular, that is
r(A) + r(B) ≥ r(A ∪ B) + r(A ∩ B)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 46 / 123

Intro Basics Other Exs. Optimization

A matroid rank function is submodular

We can a bit more formally define the rank function this way.

Definition

The rank of a matroid is a function r : 2V → Z+ defined by

r(A) = max {|X | : X ⊆ A,X ∈ I} = max
X∈I
|A ∩ X | (38)

From the above, we immediately see that r(A) ≤ |A|.
Moreover, if r(A) = |A|, then A ∈ I, meaning A is independent

Lemma

The rank function r : 2V → Z+ of a matroid is submodular, that is
r(A) + r(B) ≥ r(A ∪ B) + r(A ∩ B)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 46 / 123

Intro Basics Other Exs. Optimization

Example: Partition Matroid

Ground set of objects, V =

{

}

J. Bilmes & R. Iyer NOML: Submodularity in ML page 47 / 123

Intro Basics Other Exs. Optimization

Example: Partition Matroid

Partition of V into six blocks, V1,V2, . . . ,V6

J. Bilmes & R. Iyer NOML: Submodularity in ML page 47 / 123

Intro Basics Other Exs. Optimization

Example: Partition Matroid

Limit associated with each block, {k1, k2, . . . , k6}

J. Bilmes & R. Iyer NOML: Submodularity in ML page 47 / 123

Intro Basics Other Exs. Optimization

Example: Partition Matroid

Independent subset but not maximally independent.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 47 / 123

Intro Basics Other Exs. Optimization

Example: Partition Matroid

Maximally independent subset, what is called a base.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 47 / 123

Intro Basics Other Exs. Optimization

Example: Partition Matroid

Not independent since over limit in set six.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 47 / 123

Intro Basics Other Exs. Optimization

Information and Complexity functions

Given a collection of random variables X1,X2, . . . ,Xn then entropy
H(X1, . . . ,Xn) is the information in those n random variables.

Define V = {1, 2, . . . , n} , [n] to be the set of integers (indices).

Consider a function f : 2V → R+ where f (A) is entropy of the
subset A = {a1, a2, . . . , ak} ⊆ V of random variables:

f (A) = H(XA) = H(Xa1 ,Xa2 , . . . ,Xak) = −
∑

xA

Pr(xA) log Pr(xA)

Entropy is submodular due to non-negativity of conditional mutual
information. Given A,B,C ⊆ V ,

I (XA\B ; XB\A|XA∩B)

= H(XA) + H(XB)− H(XA∪B)− H(XA∩B) ≥ 0 (39)

This was realized as early as 1954 (McGill) but it was not called
submodularity then.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 48 / 123

Intro Basics Other Exs. Optimization

Information and Complexity functions

Given a collection of random variables X1,X2, . . . ,Xn then entropy
H(X1, . . . ,Xn) is the information in those n random variables.

Define V = {1, 2, . . . , n} , [n] to be the set of integers (indices).

Consider a function f : 2V → R+ where f (A) is entropy of the
subset A = {a1, a2, . . . , ak} ⊆ V of random variables:

f (A) = H(XA) = H(Xa1 ,Xa2 , . . . ,Xak) = −
∑

xA

Pr(xA) log Pr(xA)

Entropy is submodular due to non-negativity of conditional mutual
information. Given A,B,C ⊆ V ,

I (XA\B ; XB\A|XA∩B)

= H(XA) + H(XB)− H(XA∪B)− H(XA∩B) ≥ 0 (39)

This was realized as early as 1954 (McGill) but it was not called
submodularity then.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 48 / 123

Intro Basics Other Exs. Optimization

Information and Complexity functions

Given a collection of random variables X1,X2, . . . ,Xn then entropy
H(X1, . . . ,Xn) is the information in those n random variables.

Define V = {1, 2, . . . , n} , [n] to be the set of integers (indices).

Consider a function f : 2V → R+ where f (A) is entropy of the
subset A = {a1, a2, . . . , ak} ⊆ V of random variables:

f (A) = H(XA) = H(Xa1 ,Xa2 , . . . ,Xak) = −
∑

xA

Pr(xA) log Pr(xA)

Entropy is submodular due to non-negativity of conditional mutual
information. Given A,B,C ⊆ V ,

I (XA\B ; XB\A|XA∩B)

= H(XA) + H(XB)− H(XA∪B)− H(XA∩B) ≥ 0 (39)

This was realized as early as 1954 (McGill) but it was not called
submodularity then.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 48 / 123

Intro Basics Other Exs. Optimization

Information and Complexity functions

Given a collection of random variables X1,X2, . . . ,Xn then entropy
H(X1, . . . ,Xn) is the information in those n random variables.

Define V = {1, 2, . . . , n} , [n] to be the set of integers (indices).

Consider a function f : 2V → R+ where f (A) is entropy of the
subset A = {a1, a2, . . . , ak} ⊆ V of random variables:

f (A) = H(XA) = H(Xa1 ,Xa2 , . . . ,Xak) = −
∑

xA

Pr(xA) log Pr(xA)

Entropy is submodular due to non-negativity of conditional mutual
information. Given A,B,C ⊆ V ,

I (XA\B ; XB\A|XA∩B)

= H(XA) + H(XB)− H(XA∪B)− H(XA∩B) ≥ 0 (39)

This was realized as early as 1954 (McGill) but it was not called
submodularity then.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 48 / 123

Intro Basics Other Exs. Optimization

Information and Complexity functions

Given a collection of random variables X1,X2, . . . ,Xn then entropy
H(X1, . . . ,Xn) is the information in those n random variables.

Define V = {1, 2, . . . , n} , [n] to be the set of integers (indices).

Consider a function f : 2V → R+ where f (A) is entropy of the
subset A = {a1, a2, . . . , ak} ⊆ V of random variables:

f (A) = H(XA) = H(Xa1 ,Xa2 , . . . ,Xak) = −
∑

xA

Pr(xA) log Pr(xA)

Entropy is submodular due to non-negativity of conditional mutual
information. Given A,B,C ⊆ V ,

I (XA\B ; XB\A|XA∩B)

= H(XA) + H(XB)− H(XA∪B)− H(XA∩B) ≥ 0 (39)

This was realized as early as 1954 (McGill) but it was not called
submodularity then.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 48 / 123

Intro Basics Other Exs. Optimization

Gaussian entropy, and the log-determinant function

Definition (differential entropy h(X))

h(X) = −
∫

S
f (x) log f (x)dx (40)

When x ∼ N (µ,Σ) is multivariate Gaussian, the (differential)
entropy of the r.v. X is given by

h(X) = log
√
|2πeΣ| = log

√
(2πe)n|Σ| (41)

For matrix M, define MA as the principle submatrix of M, obtained
from M by deleting rows and columns in the set V \ A.
For A ⊆ V and a constant γ, define

f (A) = h(XA) = log
√

(2πe)|A||ΣA| = γ|A|+ 1

2
log |ΣA| (42)

Submodularity of differential entropy follows from:
I (XA\B ; XB\A|XA∩B) = h(XA) + h(XB)− h(XA∪B)− h(XA∩B) ≥ 0,
Hence, logdet function f (A) = log det(ΣA) is submodular.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 49 / 123

Intro Basics Other Exs. Optimization

Gaussian entropy, and the log-determinant function

Definition (differential entropy h(X))

h(X) = −
∫

S
f (x) log f (x)dx (40)

When x ∼ N (µ,Σ) is multivariate Gaussian, the (differential)
entropy of the r.v. X is given by

h(X) = log
√
|2πeΣ| = log

√
(2πe)n|Σ| (41)

For matrix M, define MA as the principle submatrix of M, obtained
from M by deleting rows and columns in the set V \ A.

For A ⊆ V and a constant γ, define

f (A) = h(XA) = log
√

(2πe)|A||ΣA| = γ|A|+ 1

2
log |ΣA| (42)

Submodularity of differential entropy follows from:
I (XA\B ; XB\A|XA∩B) = h(XA) + h(XB)− h(XA∪B)− h(XA∩B) ≥ 0,
Hence, logdet function f (A) = log det(ΣA) is submodular.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 49 / 123

Intro Basics Other Exs. Optimization

Gaussian entropy, and the log-determinant function

Definition (differential entropy h(X))

h(X) = −
∫

S
f (x) log f (x)dx (40)

When x ∼ N (µ,Σ) is multivariate Gaussian, the (differential)
entropy of the r.v. X is given by

h(X) = log
√
|2πeΣ| = log

√
(2πe)n|Σ| (41)

For matrix M, define MA as the principle submatrix of M, obtained
from M by deleting rows and columns in the set V \ A.
For A ⊆ V and a constant γ, define

f (A) = h(XA) = log
√

(2πe)|A||ΣA| = γ|A|+ 1

2
log |ΣA| (42)

Submodularity of differential entropy follows from:
I (XA\B ; XB\A|XA∩B) = h(XA) + h(XB)− h(XA∪B)− h(XA∩B) ≥ 0,
Hence, logdet function f (A) = log det(ΣA) is submodular.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 49 / 123

Intro Basics Other Exs. Optimization

Gaussian entropy, and the log-determinant function

Definition (differential entropy h(X))

h(X) = −
∫

S
f (x) log f (x)dx (40)

When x ∼ N (µ,Σ) is multivariate Gaussian, the (differential)
entropy of the r.v. X is given by

h(X) = log
√
|2πeΣ| = log

√
(2πe)n|Σ| (41)

For matrix M, define MA as the principle submatrix of M, obtained
from M by deleting rows and columns in the set V \ A.
For A ⊆ V and a constant γ, define

f (A) = h(XA) = log
√

(2πe)|A||ΣA| = γ|A|+ 1

2
log |ΣA| (42)

Submodularity of differential entropy follows from:
I (XA\B ; XB\A|XA∩B) = h(XA) + h(XB)− h(XA∪B)− h(XA∩B) ≥ 0,

Hence, logdet function f (A) = log det(ΣA) is submodular.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 49 / 123

Intro Basics Other Exs. Optimization

Gaussian entropy, and the log-determinant function

Definition (differential entropy h(X))

h(X) = −
∫

S
f (x) log f (x)dx (40)

When x ∼ N (µ,Σ) is multivariate Gaussian, the (differential)
entropy of the r.v. X is given by

h(X) = log
√
|2πeΣ| = log

√
(2πe)n|Σ| (41)

For matrix M, define MA as the principle submatrix of M, obtained
from M by deleting rows and columns in the set V \ A.
For A ⊆ V and a constant γ, define

f (A) = h(XA) = log
√

(2πe)|A||ΣA| = γ|A|+ 1

2
log |ΣA| (42)

Submodularity of differential entropy follows from:
I (XA\B ; XB\A|XA∩B) = h(XA) + h(XB)− h(XA∪B)− h(XA∩B) ≥ 0,
Hence, logdet function f (A) = log det(ΣA) is submodular.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 49 / 123

Intro Basics Other Exs. Optimization

Spectral Functions of a Matrix

Given a positive definite matrix M, then log det M = Tr[log M],
where log M is the log of the matrix M (which is a matrix).

Seen as a submodular function, we have that f (A) = Tr[log MA] is
submodular (again MA is the principle submatrix of M)

Friedland and Gaubert (2010) generalization: if M is a Hermitian
matrix (equal to its own conjugate transpose), and g is matrix-to-
matrix function similar to a form of concavity (i.e., g is the “primitive”
(like an integral) of a function that is operator antitone), then:

f (A) = Tr[g(M[A])] (43)

is a submodular function.

This covers not only logdet, but also generalizes and shows
submodularity of quantum entropy (used in quantum physics) with
g(x) = x ln x and other functions such as g(x) = xp for 0 < p < 1.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 50 / 123

Intro Basics Other Exs. Optimization

Spectral Functions of a Matrix

Given a positive definite matrix M, then log det M = Tr[log M],
where log M is the log of the matrix M (which is a matrix).

Seen as a submodular function, we have that f (A) = Tr[log MA] is
submodular (again MA is the principle submatrix of M)

Friedland and Gaubert (2010) generalization: if M is a Hermitian
matrix (equal to its own conjugate transpose), and g is matrix-to-
matrix function similar to a form of concavity (i.e., g is the “primitive”
(like an integral) of a function that is operator antitone), then:

f (A) = Tr[g(M[A])] (43)

is a submodular function.

This covers not only logdet, but also generalizes and shows
submodularity of quantum entropy (used in quantum physics) with
g(x) = x ln x and other functions such as g(x) = xp for 0 < p < 1.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 50 / 123

Intro Basics Other Exs. Optimization

Spectral Functions of a Matrix

Given a positive definite matrix M, then log det M = Tr[log M],
where log M is the log of the matrix M (which is a matrix).

Seen as a submodular function, we have that f (A) = Tr[log MA] is
submodular (again MA is the principle submatrix of M)

Friedland and Gaubert (2010) generalization: if M is a Hermitian
matrix (equal to its own conjugate transpose), and g is matrix-to-
matrix function similar to a form of concavity (i.e., g is the “primitive”
(like an integral) of a function that is operator antitone), then:

f (A) = Tr[g(M[A])] (43)

is a submodular function.

This covers not only logdet, but also generalizes and shows
submodularity of quantum entropy (used in quantum physics) with
g(x) = x ln x and other functions such as g(x) = xp for 0 < p < 1.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 50 / 123

Intro Basics Other Exs. Optimization

Spectral Functions of a Matrix

Given a positive definite matrix M, then log det M = Tr[log M],
where log M is the log of the matrix M (which is a matrix).

Seen as a submodular function, we have that f (A) = Tr[log MA] is
submodular (again MA is the principle submatrix of M)

Friedland and Gaubert (2010) generalization: if M is a Hermitian
matrix (equal to its own conjugate transpose), and g is matrix-to-
matrix function similar to a form of concavity (i.e., g is the “primitive”
(like an integral) of a function that is operator antitone), then:

f (A) = Tr[g(M[A])] (43)

is a submodular function.

This covers not only logdet, but also generalizes and shows
submodularity of quantum entropy (used in quantum physics) with
g(x) = x ln x and other functions such as g(x) = xp for 0 < p < 1.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 50 / 123

Intro Basics Other Exs. Optimization

Are all polymatroid functions entropy functions?

No, entropy functions must also satisfy the following:

Theorem (Yeung, 1998)

For any four discrete random variables {X ,Y ,Z ,U}, then

I (X ; Y) = I (X ; Y |Z) = 0 (44)

implies that

I (X ; Y |Z ,U) ≤ I (Z ; U|X ,Y) + I (X ; Y |U) (45)

where I (·; ·|·) is the standard Shannon entropic mutual information
function.

Not required for all polymatroid conditional mutual information
functions If (A; B|C) = f (A∪C) + f (B ∪C)− f (C)− f (A∪B ∪C).

Open: Are all polymatroid functions spectral functions of a matrix?

J. Bilmes & R. Iyer NOML: Submodularity in ML page 51 / 123

Intro Basics Other Exs. Optimization

Are all polymatroid functions entropy functions?

No, entropy functions must also satisfy the following:

Theorem (Yeung, 1998)

For any four discrete random variables {X ,Y ,Z ,U}, then

I (X ; Y) = I (X ; Y |Z) = 0 (44)

implies that

I (X ; Y |Z ,U) ≤ I (Z ; U|X ,Y) + I (X ; Y |U) (45)

where I (·; ·|·) is the standard Shannon entropic mutual information
function.

Not required for all polymatroid conditional mutual information
functions If (A; B|C) = f (A∪C) + f (B ∪C)− f (C)− f (A∪B ∪C).

Open: Are all polymatroid functions spectral functions of a matrix?

J. Bilmes & R. Iyer NOML: Submodularity in ML page 51 / 123

Intro Basics Other Exs. Optimization

Are all polymatroid functions entropy functions?

No, entropy functions must also satisfy the following:

Theorem (Yeung, 1998)

For any four discrete random variables {X ,Y ,Z ,U}, then

I (X ; Y) = I (X ; Y |Z) = 0 (44)

implies that

I (X ; Y |Z ,U) ≤ I (Z ; U|X ,Y) + I (X ; Y |U) (45)

where I (·; ·|·) is the standard Shannon entropic mutual information
function.

Not required for all polymatroid conditional mutual information
functions If (A; B|C) = f (A∪C) + f (B ∪C)− f (C)− f (A∪B ∪C).

Open: Are all polymatroid functions spectral functions of a matrix?

J. Bilmes & R. Iyer NOML: Submodularity in ML page 51 / 123

Intro Basics Other Exs. Optimization

Outline: Part 1

1 Introduction
Goals of the Tutorial

2 Basics
Set Functions
Economic applications
Set Cover Like Functions
Submodular Definitions
Other Background, sets, vectors, gain, other defs

3 Other examples of submodular functs
Traditional combinatorial and graph functions
Concave over modular, and sums thereof
Matrix Rank
Venn Diagrams
Information Theory Functions

4 Optimization

J. Bilmes & R. Iyer NOML: Submodularity in ML page 52 / 123

Intro Basics Other Exs. Optimization

Other Submodular Properties

We’ve defined submodular functions, and seen some of them.

Are there other properties, besides their ubiquity, that are useful?

Also, as this tutorial ultimately will cover, they seem to be useful for
a variety of problems in machine learning.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 53 / 123

Intro Basics Other Exs. Optimization

Other Submodular Properties

We’ve defined submodular functions, and seen some of them.

Are there other properties, besides their ubiquity, that are useful?

Also, as this tutorial ultimately will cover, they seem to be useful for
a variety of problems in machine learning.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 53 / 123

Intro Basics Other Exs. Optimization

Other Submodular Properties

We’ve defined submodular functions, and seen some of them.

Are there other properties, besides their ubiquity, that are useful?

Also, as this tutorial ultimately will cover, they seem to be useful for
a variety of problems in machine learning.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 53 / 123

Intro Basics Other Exs. Optimization

Discrete Optimization

We are given a finite set of objects V of size n = |V |.

There are 2n such subsets (denoted 2V) of the form A ⊆ V .

We have a function f : 2V → R that judges the quality (or value, or
cost, or etc.) of each subset. f (A) = some real number.

Unconstrained minimization & maximization:

min
X⊆V

f (X) (46) max
X⊆V

f (X) (47)

Without knowing anything about f , it takes 2n queries to be able to
offer any quality assurance on a candidate solution. Otherwise,
solution can be unboundedly poor.

When f is submodular, Eq. (46) is polytime, and Eq. (47) is
constant-factor approximable.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 54 / 123

Intro Basics Other Exs. Optimization

Discrete Optimization

We are given a finite set of objects V of size n = |V |.
There are 2n such subsets (denoted 2V) of the form A ⊆ V .

We have a function f : 2V → R that judges the quality (or value, or
cost, or etc.) of each subset. f (A) = some real number.

Unconstrained minimization & maximization:

min
X⊆V

f (X) (46) max
X⊆V

f (X) (47)

Without knowing anything about f , it takes 2n queries to be able to
offer any quality assurance on a candidate solution. Otherwise,
solution can be unboundedly poor.

When f is submodular, Eq. (46) is polytime, and Eq. (47) is
constant-factor approximable.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 54 / 123

Intro Basics Other Exs. Optimization

Discrete Optimization

We are given a finite set of objects V of size n = |V |.
There are 2n such subsets (denoted 2V) of the form A ⊆ V .

We have a function f : 2V → R that judges the quality (or value, or
cost, or etc.) of each subset. f (A) = some real number.

Unconstrained minimization & maximization:

min
X⊆V

f (X) (46) max
X⊆V

f (X) (47)

Without knowing anything about f , it takes 2n queries to be able to
offer any quality assurance on a candidate solution. Otherwise,
solution can be unboundedly poor.

When f is submodular, Eq. (46) is polytime, and Eq. (47) is
constant-factor approximable.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 54 / 123

Intro Basics Other Exs. Optimization

Discrete Optimization

We are given a finite set of objects V of size n = |V |.
There are 2n such subsets (denoted 2V) of the form A ⊆ V .

We have a function f : 2V → R that judges the quality (or value, or
cost, or etc.) of each subset. f (A) = some real number.

Unconstrained minimization & maximization:

min
X⊆V

f (X) (46) max
X⊆V

f (X) (47)

Without knowing anything about f , it takes 2n queries to be able to
offer any quality assurance on a candidate solution. Otherwise,
solution can be unboundedly poor.

When f is submodular, Eq. (46) is polytime, and Eq. (47) is
constant-factor approximable.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 54 / 123

Intro Basics Other Exs. Optimization

Discrete Optimization

We are given a finite set of objects V of size n = |V |.
There are 2n such subsets (denoted 2V) of the form A ⊆ V .

We have a function f : 2V → R that judges the quality (or value, or
cost, or etc.) of each subset. f (A) = some real number.

Unconstrained minimization & maximization:

min
X⊆V

f (X) (46) max
X⊆V

f (X) (47)

Without knowing anything about f , it takes 2n queries to be able to
offer any quality assurance on a candidate solution. Otherwise,
solution can be unboundedly poor.

When f is submodular, Eq. (46) is polytime, and Eq. (47) is
constant-factor approximable.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 54 / 123

Intro Basics Other Exs. Optimization

Discrete Optimization

We are given a finite set of objects V of size n = |V |.
There are 2n such subsets (denoted 2V) of the form A ⊆ V .

We have a function f : 2V → R that judges the quality (or value, or
cost, or etc.) of each subset. f (A) = some real number.

Unconstrained minimization & maximization:

min
X⊆V

f (X) (46) max
X⊆V

f (X) (47)

Without knowing anything about f , it takes 2n queries to be able to
offer any quality assurance on a candidate solution. Otherwise,
solution can be unboundedly poor.

When f is submodular, Eq. (46) is polytime, and Eq. (47) is
constant-factor approximable.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 54 / 123

Intro Basics Other Exs. Optimization

Constrained Discrete Optimization

Often, we are interested only in a subset of the set of possible
subsets, namely S ⊆ 2V .

Example: only sets having bounded size S = {S ⊆ V : |S | ≤ k} or
within a budget

{
S ⊆ V :

∑
s∈S w(s) ≤ b

}
.

Example: the sets might need to correspond to a combinatorially
feasible object (i.e., feasible S might be trees, matchings, paths,
vertex covers, or cuts).

Ex: S might be a function of some g (e.g., sub-level sets of g ,
S = {S ⊆ V : g(S) ≤ α}, sup-level sets S = {S ⊆ V : g(S) ≥ α}).

Constrained discrete optimization problems:

maximize
S ⊆ V

f (S)

subject to S ∈ S (48)

minimize
S ⊆ V

f (S)

subject to S ∈ S (49)

Fortunately, when f (and g) are submodular, solving these problems
can often be done with guarantees (and often efficiently)!

J. Bilmes & R. Iyer NOML: Submodularity in ML page 55 / 123

Intro Basics Other Exs. Optimization

Constrained Discrete Optimization

Often, we are interested only in a subset of the set of possible
subsets, namely S ⊆ 2V .

Example: only sets having bounded size S = {S ⊆ V : |S | ≤ k} or
within a budget

{
S ⊆ V :

∑
s∈S w(s) ≤ b

}
.

Example: the sets might need to correspond to a combinatorially
feasible object (i.e., feasible S might be trees, matchings, paths,
vertex covers, or cuts).

Ex: S might be a function of some g (e.g., sub-level sets of g ,
S = {S ⊆ V : g(S) ≤ α}, sup-level sets S = {S ⊆ V : g(S) ≥ α}).

Constrained discrete optimization problems:

maximize
S ⊆ V

f (S)

subject to S ∈ S (48)

minimize
S ⊆ V

f (S)

subject to S ∈ S (49)

Fortunately, when f (and g) are submodular, solving these problems
can often be done with guarantees (and often efficiently)!

J. Bilmes & R. Iyer NOML: Submodularity in ML page 55 / 123

Intro Basics Other Exs. Optimization

Constrained Discrete Optimization

Often, we are interested only in a subset of the set of possible
subsets, namely S ⊆ 2V .

Example: only sets having bounded size S = {S ⊆ V : |S | ≤ k} or
within a budget

{
S ⊆ V :

∑
s∈S w(s) ≤ b

}
.

Example: the sets might need to correspond to a combinatorially
feasible object (i.e., feasible S might be trees, matchings, paths,
vertex covers, or cuts).

Ex: S might be a function of some g (e.g., sub-level sets of g ,
S = {S ⊆ V : g(S) ≤ α}, sup-level sets S = {S ⊆ V : g(S) ≥ α}).

Constrained discrete optimization problems:

maximize
S ⊆ V

f (S)

subject to S ∈ S (48)

minimize
S ⊆ V

f (S)

subject to S ∈ S (49)

Fortunately, when f (and g) are submodular, solving these problems
can often be done with guarantees (and often efficiently)!

J. Bilmes & R. Iyer NOML: Submodularity in ML page 55 / 123

Intro Basics Other Exs. Optimization

Constrained Discrete Optimization

Often, we are interested only in a subset of the set of possible
subsets, namely S ⊆ 2V .

Example: only sets having bounded size S = {S ⊆ V : |S | ≤ k} or
within a budget

{
S ⊆ V :

∑
s∈S w(s) ≤ b

}
.

Example: the sets might need to correspond to a combinatorially
feasible object (i.e., feasible S might be trees, matchings, paths,
vertex covers, or cuts).

Ex: S might be a function of some g (e.g., sub-level sets of g ,
S = {S ⊆ V : g(S) ≤ α}, sup-level sets S = {S ⊆ V : g(S) ≥ α}).

Constrained discrete optimization problems:

maximize
S ⊆ V

f (S)

subject to S ∈ S (48)

minimize
S ⊆ V

f (S)

subject to S ∈ S (49)

Fortunately, when f (and g) are submodular, solving these problems
can often be done with guarantees (and often efficiently)!

J. Bilmes & R. Iyer NOML: Submodularity in ML page 55 / 123

Intro Basics Other Exs. Optimization

Constrained Discrete Optimization

Often, we are interested only in a subset of the set of possible
subsets, namely S ⊆ 2V .

Example: only sets having bounded size S = {S ⊆ V : |S | ≤ k} or
within a budget

{
S ⊆ V :

∑
s∈S w(s) ≤ b

}
.

Example: the sets might need to correspond to a combinatorially
feasible object (i.e., feasible S might be trees, matchings, paths,
vertex covers, or cuts).

Ex: S might be a function of some g (e.g., sub-level sets of g ,
S = {S ⊆ V : g(S) ≤ α}, sup-level sets S = {S ⊆ V : g(S) ≥ α}).

Constrained discrete optimization problems:

maximize
S ⊆ V

f (S)

subject to S ∈ S (48)

minimize
S ⊆ V

f (S)

subject to S ∈ S (49)

Fortunately, when f (and g) are submodular, solving these problems
can often be done with guarantees (and often efficiently)!

J. Bilmes & R. Iyer NOML: Submodularity in ML page 55 / 123

Intro Basics Other Exs. Optimization

Constrained Discrete Optimization

Often, we are interested only in a subset of the set of possible
subsets, namely S ⊆ 2V .

Example: only sets having bounded size S = {S ⊆ V : |S | ≤ k} or
within a budget

{
S ⊆ V :

∑
s∈S w(s) ≤ b

}
.

Example: the sets might need to correspond to a combinatorially
feasible object (i.e., feasible S might be trees, matchings, paths,
vertex covers, or cuts).

Ex: S might be a function of some g (e.g., sub-level sets of g ,
S = {S ⊆ V : g(S) ≤ α}, sup-level sets S = {S ⊆ V : g(S) ≥ α}).

Constrained discrete optimization problems:

maximize
S ⊆ V

f (S)

subject to S ∈ S (48)

minimize
S ⊆ V

f (S)

subject to S ∈ S (49)

Fortunately, when f (and g) are submodular, solving these problems
can often be done with guarantees (and often efficiently)!

J. Bilmes & R. Iyer NOML: Submodularity in ML page 55 / 123

Intro Basics Other Exs. Optimization

Ex: Cardinality Constrained Max. of Polymatroid Functions

Given an arbitrary polymatroid function f .

Given k, goal is: find A∗ ∈ argmax {f (A) : |A| ≤ k}
w.l.o.g., we can find A∗ ∈ argmax {f (A) : |A| = k}
Nemhauser et. al. (1978) states that for normalized (f (∅) = 0)
monotone submodular functions (i.e., polymatroids) can be
approximately maximized using a simple greedy algorithm.

Algorithm 1: The Greedy Algorithm

Set S0 ← ∅ ;
for i ← 1 . . . |V | do

Choose vi as follows: vi ∈
{

argmaxv∈V \Si f ({v}|Si−1)
}

;

Set Si ← Si−1 ∪ {vi} ;

This yields a chain of sets ∅ = S0 ⊂ S1 ⊂ S2 ⊂ · · · ⊂ Sn = V , with
|Si | = i , having very nice properties.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 56 / 123

Intro Basics Other Exs. Optimization

Ex: Cardinality Constrained Max. of Polymatroid Functions

Given an arbitrary polymatroid function f .

Given k, goal is: find A∗ ∈ argmax {f (A) : |A| ≤ k}

w.l.o.g., we can find A∗ ∈ argmax {f (A) : |A| = k}
Nemhauser et. al. (1978) states that for normalized (f (∅) = 0)
monotone submodular functions (i.e., polymatroids) can be
approximately maximized using a simple greedy algorithm.

Algorithm 2: The Greedy Algorithm

Set S0 ← ∅ ;
for i ← 1 . . . |V | do

Choose vi as follows: vi ∈
{

argmaxv∈V \Si f ({v}|Si−1)
}

;

Set Si ← Si−1 ∪ {vi} ;

This yields a chain of sets ∅ = S0 ⊂ S1 ⊂ S2 ⊂ · · · ⊂ Sn = V , with
|Si | = i , having very nice properties.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 56 / 123

Intro Basics Other Exs. Optimization

Ex: Cardinality Constrained Max. of Polymatroid Functions

Given an arbitrary polymatroid function f .

Given k, goal is: find A∗ ∈ argmax {f (A) : |A| ≤ k}
w.l.o.g., we can find A∗ ∈ argmax {f (A) : |A| = k}

Nemhauser et. al. (1978) states that for normalized (f (∅) = 0)
monotone submodular functions (i.e., polymatroids) can be
approximately maximized using a simple greedy algorithm.

Algorithm 3: The Greedy Algorithm

Set S0 ← ∅ ;
for i ← 1 . . . |V | do

Choose vi as follows: vi ∈
{

argmaxv∈V \Si f ({v}|Si−1)
}

;

Set Si ← Si−1 ∪ {vi} ;

This yields a chain of sets ∅ = S0 ⊂ S1 ⊂ S2 ⊂ · · · ⊂ Sn = V , with
|Si | = i , having very nice properties.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 56 / 123

Intro Basics Other Exs. Optimization

Ex: Cardinality Constrained Max. of Polymatroid Functions

Given an arbitrary polymatroid function f .

Given k, goal is: find A∗ ∈ argmax {f (A) : |A| ≤ k}
w.l.o.g., we can find A∗ ∈ argmax {f (A) : |A| = k}
Nemhauser et. al. (1978) states that for normalized (f (∅) = 0)
monotone submodular functions (i.e., polymatroids) can be
approximately maximized using a simple greedy algorithm.

Algorithm 4: The Greedy Algorithm

Set S0 ← ∅ ;
for i ← 1 . . . |V | do

Choose vi as follows: vi ∈
{

argmaxv∈V \Si f ({v}|Si−1)
}

;

Set Si ← Si−1 ∪ {vi} ;

This yields a chain of sets ∅ = S0 ⊂ S1 ⊂ S2 ⊂ · · · ⊂ Sn = V , with
|Si | = i , having very nice properties.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 56 / 123

Intro Basics Other Exs. Optimization

Ex: Cardinality Constrained Max. of Polymatroid Functions

Given an arbitrary polymatroid function f .

Given k, goal is: find A∗ ∈ argmax {f (A) : |A| ≤ k}
w.l.o.g., we can find A∗ ∈ argmax {f (A) : |A| = k}
Nemhauser et. al. (1978) states that for normalized (f (∅) = 0)
monotone submodular functions (i.e., polymatroids) can be
approximately maximized using a simple greedy algorithm.

Algorithm 5: The Greedy Algorithm

Set S0 ← ∅ ;
for i ← 1 . . . |V | do

Choose vi as follows: vi ∈
{

argmaxv∈V \Si f ({v}|Si−1)
}

;

Set Si ← Si−1 ∪ {vi} ;

This yields a chain of sets ∅ = S0 ⊂ S1 ⊂ S2 ⊂ · · · ⊂ Sn = V , with
|Si | = i , having very nice properties.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 56 / 123

Intro Basics Other Exs. Optimization

Ex: Cardinality Constrained Max. of Polymatroid Functions

Given an arbitrary polymatroid function f .

Given k, goal is: find A∗ ∈ argmax {f (A) : |A| ≤ k}
w.l.o.g., we can find A∗ ∈ argmax {f (A) : |A| = k}
Nemhauser et. al. (1978) states that for normalized (f (∅) = 0)
monotone submodular functions (i.e., polymatroids) can be
approximately maximized using a simple greedy algorithm.

Algorithm 6: The Greedy Algorithm

Set S0 ← ∅ ;
for i ← 1 . . . |V | do

Choose vi as follows: vi ∈
{

argmaxv∈V \Si f ({v}|Si−1)
}

;

Set Si ← Si−1 ∪ {vi} ;

This yields a chain of sets ∅ = S0 ⊂ S1 ⊂ S2 ⊂ · · · ⊂ Sn = V , with
|Si | = i , having very nice properties.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 56 / 123

Intro Basics Other Exs. Optimization

Greedy Algorithm for Card. Constrained Submodular Max

This algorithm has the celebrated guarantee of 1− 1/e. That is

Theorem (Nemhauser et. al. (1978))

Given a polymatroid function f : 2V → R+, then the above greedy
algorithm returns chain of sets {S1,S2, . . . ,Si} such that for each i we
have f (Si) ≥ (1− 1/e) max|S |≤i f (S).

To find A∗ ∈ argmax {f (A) : |A| ≤ k}, we stop greedy at step k .

The greedy chain also addresses the problem:

minimize |A| subject to f (A) ≥ α (50)

i.e., the submodular set cover problem (approximation factor
O(log(maxs∈V f (s))).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 57 / 123

Intro Basics Other Exs. Optimization

Greedy Algorithm for Card. Constrained Submodular Max

This algorithm has the celebrated guarantee of 1− 1/e. That is

Theorem (Nemhauser et. al. (1978))

Given a polymatroid function f : 2V → R+, then the above greedy
algorithm returns chain of sets {S1,S2, . . . ,Si} such that for each i we
have f (Si) ≥ (1− 1/e) max|S |≤i f (S).

To find A∗ ∈ argmax {f (A) : |A| ≤ k}, we stop greedy at step k .

The greedy chain also addresses the problem:

minimize |A| subject to f (A) ≥ α (50)

i.e., the submodular set cover problem (approximation factor
O(log(maxs∈V f (s))).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 57 / 123

Intro Basics Other Exs. Optimization

Greedy Algorithm for Card. Constrained Submodular Max

This algorithm has the celebrated guarantee of 1− 1/e. That is

Theorem (Nemhauser et. al. (1978))

Given a polymatroid function f : 2V → R+, then the above greedy
algorithm returns chain of sets {S1,S2, . . . ,Si} such that for each i we
have f (Si) ≥ (1− 1/e) max|S |≤i f (S).

To find A∗ ∈ argmax {f (A) : |A| ≤ k}, we stop greedy at step k .

The greedy chain also addresses the problem:

minimize |A| subject to f (A) ≥ α (50)

i.e., the submodular set cover problem (approximation factor
O(log(maxs∈V f (s))).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 57 / 123

Intro Basics Other Exs. Optimization

Greedy Algorithm for Card. Constrained Submodular Max

This algorithm has the celebrated guarantee of 1− 1/e. That is

Theorem (Nemhauser et. al. (1978))

Given a polymatroid function f : 2V → R+, then the above greedy
algorithm returns chain of sets {S1,S2, . . . ,Si} such that for each i we
have f (Si) ≥ (1− 1/e) max|S |≤i f (S).

To find A∗ ∈ argmax {f (A) : |A| ≤ k}, we stop greedy at step k .

The greedy chain also addresses the problem:

minimize |A| subject to f (A) ≥ α (50)

i.e., the submodular set cover problem (approximation factor
O(log(maxs∈V f (s))).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 57 / 123

Intro Basics Other Exs. Optimization

The Greedy Algorithm: 1− 1/e intuition.
At step i < k , greedy chooses vi that maximizes f (v |Si).

Let S∗ be optimal solution (of size k) and OPT = f (S∗).

By
submodularity, we can show:

∃v ∈ V \ Si : f (v |Si) ≥
1

k
(OPT− f (Si)) (51)

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(
1 − 1

k

)k

1

e

k

Equation (51) ⇒:

OPT− f (Si+1)

≤ (1− 1/k)(OPT− f (Si))

⇒ OPT− f (Sk)

≤ (1− 1/k)kOPT

≤ 1/eOPT

⇒ OPT(1− 1/e) ≤ f (Sk)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 58 / 123

Intro Basics Other Exs. Optimization

The Greedy Algorithm: 1− 1/e intuition.
At step i < k , greedy chooses vi that maximizes f (v |Si).
Let S∗ be optimal solution (of size k) and OPT = f (S∗).

By
submodularity, we can show:

∃v ∈ V \ Si : f (v |Si) ≥
1

k
(OPT− f (Si)) (51)

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(
1 − 1

k

)k

1

e

k

Equation (51) ⇒:

OPT− f (Si+1)

≤ (1− 1/k)(OPT− f (Si))

⇒ OPT− f (Sk)

≤ (1− 1/k)kOPT

≤ 1/eOPT

⇒ OPT(1− 1/e) ≤ f (Sk)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 58 / 123

Intro Basics Other Exs. Optimization

The Greedy Algorithm: 1− 1/e intuition.
At step i < k , greedy chooses vi that maximizes f (v |Si).
Let S∗ be optimal solution (of size k) and OPT = f (S∗). By
submodularity, we can show:

∃v ∈ V \ Si : f (v |Si) ≥
1

k
(OPT− f (Si)) (51)

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(
1 − 1

k

)k

1

e

k

Equation (51) ⇒:

OPT− f (Si+1)

≤ (1− 1/k)(OPT− f (Si))

⇒ OPT− f (Sk)

≤ (1− 1/k)kOPT

≤ 1/eOPT

⇒ OPT(1− 1/e) ≤ f (Sk)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 58 / 123

Intro Basics Other Exs. Optimization

The Greedy Algorithm: 1− 1/e intuition.
At step i < k , greedy chooses vi that maximizes f (v |Si).
Let S∗ be optimal solution (of size k) and OPT = f (S∗). By
submodularity, we can show:

∃v ∈ V \ Si : f (v |Si) ≥
1

k
(OPT− f (Si)) (51)

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(
1 − 1

k

)k

1

e

k

Equation (51) ⇒:

OPT− f (Si+1)

≤ (1− 1/k)(OPT− f (Si))

⇒ OPT− f (Sk)

≤ (1− 1/k)kOPT

≤ 1/eOPT

⇒ OPT(1− 1/e) ≤ f (Sk)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 58 / 123

Intro Basics Other Exs. Optimization

The Greedy Algorithm: 1− 1/e intuition.
At step i < k , greedy chooses vi that maximizes f (v |Si).
Let S∗ be optimal solution (of size k) and OPT = f (S∗). By
submodularity, we can show:

∃v ∈ V \ Si : f (v |Si) ≥
1

k
(OPT− f (Si)) (51)

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(
1 − 1

k

)k

1

e

k

Equation (51) ⇒:

OPT− f (Si+1)

≤ (1− 1/k)(OPT− f (Si))

⇒ OPT− f (Sk)

≤ (1− 1/k)kOPT

≤ 1/eOPT

⇒ OPT(1− 1/e) ≤ f (Sk)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 58 / 123

Intro Basics Other Exs. Optimization

The Greedy Algorithm: 1− 1/e intuition.
At step i < k , greedy chooses vi that maximizes f (v |Si).
Let S∗ be optimal solution (of size k) and OPT = f (S∗). By
submodularity, we can show:

∃v ∈ V \ Si : f (v |Si) ≥
1

k
(OPT− f (Si)) (51)

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(
1 − 1

k

)k

1

e

k

Equation (51) ⇒:

OPT− f (Si+1)

≤ (1− 1/k)(OPT− f (Si))

⇒ OPT− f (Sk)

≤ (1− 1/k)kOPT

≤ 1/eOPT

⇒ OPT(1− 1/e) ≤ f (Sk)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 58 / 123

Intro Basics Other Exs. Optimization

Externally Non-Submodular/Internally Submodular

Even when h : 2V → R is not submodular, submodularity can help.

Example: difference of submodular (DS) functions
h(X) = f (X)− g(X) for f and g submodular (Narasimhan & B.,
Iyer & B.)

Any set function is a DS function. When naturally expressible as a
DS function, there are good heuristics for optimization
(minimization or maximization) that often work well in practice.

Cooperative cut functions (Jegelka & B.):

f (X) = g({(u, v) ∈ E : u ∈ X , v ∈ V \ X}
)

(52)

where g : 2E → R+ is a submodular function defined on subsets of
edges of the graph.

Frankenstein Cuts (Kawahara, Iyer, & B): h(X) = f (X) + g(X)
where f is submodular and g is a supermodular tree (submodular
optimization for f , dynamic programming for g).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 59 / 123

Intro Basics Other Exs. Optimization

Externally Non-Submodular/Internally Submodular

Even when h : 2V → R is not submodular, submodularity can help.

Example: difference of submodular (DS) functions
h(X) = f (X)− g(X) for f and g submodular (Narasimhan & B.,
Iyer & B.)

Any set function is a DS function. When naturally expressible as a
DS function, there are good heuristics for optimization
(minimization or maximization) that often work well in practice.

Cooperative cut functions (Jegelka & B.):

f (X) = g({(u, v) ∈ E : u ∈ X , v ∈ V \ X}
)

(52)

where g : 2E → R+ is a submodular function defined on subsets of
edges of the graph.

Frankenstein Cuts (Kawahara, Iyer, & B): h(X) = f (X) + g(X)
where f is submodular and g is a supermodular tree (submodular
optimization for f , dynamic programming for g).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 59 / 123

Intro Basics Other Exs. Optimization

Externally Non-Submodular/Internally Submodular

Even when h : 2V → R is not submodular, submodularity can help.

Example: difference of submodular (DS) functions
h(X) = f (X)− g(X) for f and g submodular (Narasimhan & B.,
Iyer & B.)

Any set function is a DS function. When naturally expressible as a
DS function, there are good heuristics for optimization
(minimization or maximization) that often work well in practice.

Cooperative cut functions (Jegelka & B.):

f (X) = g({(u, v) ∈ E : u ∈ X , v ∈ V \ X}
)

(52)

where g : 2E → R+ is a submodular function defined on subsets of
edges of the graph.

Frankenstein Cuts (Kawahara, Iyer, & B): h(X) = f (X) + g(X)
where f is submodular and g is a supermodular tree (submodular
optimization for f , dynamic programming for g).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 59 / 123

Intro Basics Other Exs. Optimization

Externally Non-Submodular/Internally Submodular

Even when h : 2V → R is not submodular, submodularity can help.

Example: difference of submodular (DS) functions
h(X) = f (X)− g(X) for f and g submodular (Narasimhan & B.,
Iyer & B.)

Any set function is a DS function. When naturally expressible as a
DS function, there are good heuristics for optimization
(minimization or maximization) that often work well in practice.

Cooperative cut functions (Jegelka & B.):

f (X) = g({(u, v) ∈ E : u ∈ X , v ∈ V \ X}
)

(52)

where g : 2E → R+ is a submodular function defined on subsets of
edges of the graph.

Frankenstein Cuts (Kawahara, Iyer, & B): h(X) = f (X) + g(X)
where f is submodular and g is a supermodular tree (submodular
optimization for f , dynamic programming for g).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 59 / 123

Intro Basics Other Exs. Optimization

Externally Non-Submodular/Internally Submodular

Even when h : 2V → R is not submodular, submodularity can help.

Example: difference of submodular (DS) functions
h(X) = f (X)− g(X) for f and g submodular (Narasimhan & B.,
Iyer & B.)

Any set function is a DS function. When naturally expressible as a
DS function, there are good heuristics for optimization
(minimization or maximization) that often work well in practice.

Cooperative cut functions (Jegelka & B.):

f (X) = g({(u, v) ∈ E : u ∈ X , v ∈ V \ X}
)

(52)

where g : 2E → R+ is a submodular function defined on subsets of
edges of the graph.

Frankenstein Cuts (Kawahara, Iyer, & B): h(X) = f (X) + g(X)
where f is submodular and g is a supermodular tree (submodular
optimization for f , dynamic programming for g).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 59 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Outline: Part 2

5 Submodular Applications in Machine Learning
Where is submodularity useful?

6 As a model of diversity, coverage, span, or information

7 As a model of cooperative costs, complexity, roughness, and
irregularity

8 As a Parameter for an ML algorithm

9 Itself, as a target for learning

10 Surrogates for optimization and analysis

11 Reading
Refs

J. Bilmes & R. Iyer NOML: Submodularity in ML page 60 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Submodularity’s utility in ML

A model of a physical process:

What a submodular function is good for modeling depends on if we
wish to maximize or wish to minimize it.
Submodular functions naturally model aspects like:
diversity, coverage, span, and information in maximization problems,
and cooperative costs, complexity, roughness, and irregularity in
minimization problems.

A submodular function can act as a parameter for a machine learning
strategy (active/semi-supervised learning, discrete divergence, convex
norms for use in regularization).
Itself, as an object or function to learn, based on data.
A surrogate or relaxation strategy for optimization or analysis

An alternate to factorization, decomposition, or sum-product based
simplification (as one typically finds in a graphical model). I.e., a
means towards tractable surrogates for graphical models.
Also, we can “relax” a problem to a submodular one where it can be
efficiently solved and offer a bounded quality solution.
Non-submodular problems can be analyzed via submodularity.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 61 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Submodularity’s utility in ML

A model of a physical process:
What a submodular function is good for modeling depends on if we
wish to maximize or wish to minimize it.

Submodular functions naturally model aspects like:
diversity, coverage, span, and information in maximization problems,
and cooperative costs, complexity, roughness, and irregularity in
minimization problems.

A submodular function can act as a parameter for a machine learning
strategy (active/semi-supervised learning, discrete divergence, convex
norms for use in regularization).
Itself, as an object or function to learn, based on data.
A surrogate or relaxation strategy for optimization or analysis

An alternate to factorization, decomposition, or sum-product based
simplification (as one typically finds in a graphical model). I.e., a
means towards tractable surrogates for graphical models.
Also, we can “relax” a problem to a submodular one where it can be
efficiently solved and offer a bounded quality solution.
Non-submodular problems can be analyzed via submodularity.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 61 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Submodularity’s utility in ML

A model of a physical process:
What a submodular function is good for modeling depends on if we
wish to maximize or wish to minimize it.
Submodular functions naturally model aspects like:

diversity, coverage, span, and information in maximization problems,
and cooperative costs, complexity, roughness, and irregularity in
minimization problems.

A submodular function can act as a parameter for a machine learning
strategy (active/semi-supervised learning, discrete divergence, convex
norms for use in regularization).
Itself, as an object or function to learn, based on data.
A surrogate or relaxation strategy for optimization or analysis

An alternate to factorization, decomposition, or sum-product based
simplification (as one typically finds in a graphical model). I.e., a
means towards tractable surrogates for graphical models.
Also, we can “relax” a problem to a submodular one where it can be
efficiently solved and offer a bounded quality solution.
Non-submodular problems can be analyzed via submodularity.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 61 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Submodularity’s utility in ML

A model of a physical process:
What a submodular function is good for modeling depends on if we
wish to maximize or wish to minimize it.
Submodular functions naturally model aspects like:
diversity, coverage, span, and information in maximization problems,

and cooperative costs, complexity, roughness, and irregularity in
minimization problems.

A submodular function can act as a parameter for a machine learning
strategy (active/semi-supervised learning, discrete divergence, convex
norms for use in regularization).
Itself, as an object or function to learn, based on data.
A surrogate or relaxation strategy for optimization or analysis

An alternate to factorization, decomposition, or sum-product based
simplification (as one typically finds in a graphical model). I.e., a
means towards tractable surrogates for graphical models.
Also, we can “relax” a problem to a submodular one where it can be
efficiently solved and offer a bounded quality solution.
Non-submodular problems can be analyzed via submodularity.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 61 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Submodularity’s utility in ML

A model of a physical process:
What a submodular function is good for modeling depends on if we
wish to maximize or wish to minimize it.
Submodular functions naturally model aspects like:
diversity, coverage, span, and information in maximization problems,
and cooperative costs, complexity, roughness, and irregularity in
minimization problems.

A submodular function can act as a parameter for a machine learning
strategy (active/semi-supervised learning, discrete divergence, convex
norms for use in regularization).
Itself, as an object or function to learn, based on data.
A surrogate or relaxation strategy for optimization or analysis

An alternate to factorization, decomposition, or sum-product based
simplification (as one typically finds in a graphical model). I.e., a
means towards tractable surrogates for graphical models.
Also, we can “relax” a problem to a submodular one where it can be
efficiently solved and offer a bounded quality solution.
Non-submodular problems can be analyzed via submodularity.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 61 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Submodularity’s utility in ML

A model of a physical process:
What a submodular function is good for modeling depends on if we
wish to maximize or wish to minimize it.
Submodular functions naturally model aspects like:
diversity, coverage, span, and information in maximization problems,
and cooperative costs, complexity, roughness, and irregularity in
minimization problems.

A submodular function can act as a parameter for a machine learning
strategy (active/semi-supervised learning, discrete divergence, convex
norms for use in regularization).

Itself, as an object or function to learn, based on data.
A surrogate or relaxation strategy for optimization or analysis

An alternate to factorization, decomposition, or sum-product based
simplification (as one typically finds in a graphical model). I.e., a
means towards tractable surrogates for graphical models.
Also, we can “relax” a problem to a submodular one where it can be
efficiently solved and offer a bounded quality solution.
Non-submodular problems can be analyzed via submodularity.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 61 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Submodularity’s utility in ML

A model of a physical process:
What a submodular function is good for modeling depends on if we
wish to maximize or wish to minimize it.
Submodular functions naturally model aspects like:
diversity, coverage, span, and information in maximization problems,
and cooperative costs, complexity, roughness, and irregularity in
minimization problems.

A submodular function can act as a parameter for a machine learning
strategy (active/semi-supervised learning, discrete divergence, convex
norms for use in regularization).
Itself, as an object or function to learn, based on data.

A surrogate or relaxation strategy for optimization or analysis

An alternate to factorization, decomposition, or sum-product based
simplification (as one typically finds in a graphical model). I.e., a
means towards tractable surrogates for graphical models.
Also, we can “relax” a problem to a submodular one where it can be
efficiently solved and offer a bounded quality solution.
Non-submodular problems can be analyzed via submodularity.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 61 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Submodularity’s utility in ML

A model of a physical process:
What a submodular function is good for modeling depends on if we
wish to maximize or wish to minimize it.
Submodular functions naturally model aspects like:
diversity, coverage, span, and information in maximization problems,
and cooperative costs, complexity, roughness, and irregularity in
minimization problems.

A submodular function can act as a parameter for a machine learning
strategy (active/semi-supervised learning, discrete divergence, convex
norms for use in regularization).
Itself, as an object or function to learn, based on data.
A surrogate or relaxation strategy for optimization or analysis

An alternate to factorization, decomposition, or sum-product based
simplification (as one typically finds in a graphical model). I.e., a
means towards tractable surrogates for graphical models.
Also, we can “relax” a problem to a submodular one where it can be
efficiently solved and offer a bounded quality solution.
Non-submodular problems can be analyzed via submodularity.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 61 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Submodularity’s utility in ML

A model of a physical process:
What a submodular function is good for modeling depends on if we
wish to maximize or wish to minimize it.
Submodular functions naturally model aspects like:
diversity, coverage, span, and information in maximization problems,
and cooperative costs, complexity, roughness, and irregularity in
minimization problems.

A submodular function can act as a parameter for a machine learning
strategy (active/semi-supervised learning, discrete divergence, convex
norms for use in regularization).
Itself, as an object or function to learn, based on data.
A surrogate or relaxation strategy for optimization or analysis

An alternate to factorization, decomposition, or sum-product based
simplification (as one typically finds in a graphical model). I.e., a
means towards tractable surrogates for graphical models.

Also, we can “relax” a problem to a submodular one where it can be
efficiently solved and offer a bounded quality solution.
Non-submodular problems can be analyzed via submodularity.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 61 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Submodularity’s utility in ML

A model of a physical process:
What a submodular function is good for modeling depends on if we
wish to maximize or wish to minimize it.
Submodular functions naturally model aspects like:
diversity, coverage, span, and information in maximization problems,
and cooperative costs, complexity, roughness, and irregularity in
minimization problems.

A submodular function can act as a parameter for a machine learning
strategy (active/semi-supervised learning, discrete divergence, convex
norms for use in regularization).
Itself, as an object or function to learn, based on data.
A surrogate or relaxation strategy for optimization or analysis

An alternate to factorization, decomposition, or sum-product based
simplification (as one typically finds in a graphical model). I.e., a
means towards tractable surrogates for graphical models.
Also, we can “relax” a problem to a submodular one where it can be
efficiently solved and offer a bounded quality solution.

Non-submodular problems can be analyzed via submodularity.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 61 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Submodularity’s utility in ML

A model of a physical process:
What a submodular function is good for modeling depends on if we
wish to maximize or wish to minimize it.
Submodular functions naturally model aspects like:
diversity, coverage, span, and information in maximization problems,
and cooperative costs, complexity, roughness, and irregularity in
minimization problems.

A submodular function can act as a parameter for a machine learning
strategy (active/semi-supervised learning, discrete divergence, convex
norms for use in regularization).
Itself, as an object or function to learn, based on data.
A surrogate or relaxation strategy for optimization or analysis

An alternate to factorization, decomposition, or sum-product based
simplification (as one typically finds in a graphical model). I.e., a
means towards tractable surrogates for graphical models.
Also, we can “relax” a problem to a submodular one where it can be
efficiently solved and offer a bounded quality solution.
Non-submodular problems can be analyzed via submodularity.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 61 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Outline: Part 2

5 Submodular Applications in Machine Learning
Where is submodularity useful?

6 As a model of diversity, coverage, span, or information

7 As a model of cooperative costs, complexity, roughness, and
irregularity

8 As a Parameter for an ML algorithm

9 Itself, as a target for learning

10 Surrogates for optimization and analysis

11 Reading
Refs

J. Bilmes & R. Iyer NOML: Submodularity in ML page 62 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Extractive Document Summarization

The figure below represents the sentences of a document

The summary on the left is a subset of the summary on the right.

Consider adding a new (blue) sentence to each of the two
summaries.

The marginal (incremental) benefit of adding the new (blue)
sentence to the smaller (left) summary is no more than the marginal
benefit of adding the new sentence to the larger (right) summary.

diminishing returns ↔ submodularity

J. Bilmes & R. Iyer NOML: Submodularity in ML page 63 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Extractive Document Summarization

We extract sentences (green) as a summary of the full document

The summary on the left is a subset of the summary on the right.
Consider adding a new (blue) sentence to each of the two
summaries.
The marginal (incremental) benefit of adding the new (blue)
sentence to the smaller (left) summary is no more than the marginal
benefit of adding the new sentence to the larger (right) summary.
diminishing returns ↔ submodularity

J. Bilmes & R. Iyer NOML: Submodularity in ML page 63 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Extractive Document Summarization

We extract sentences (green) as a summary of the full document

The summary on the left is a subset of the summary on the right.
Consider adding a new (blue) sentence to each of the two
summaries.
The marginal (incremental) benefit of adding the new (blue)
sentence to the smaller (left) summary is no more than the marginal
benefit of adding the new sentence to the larger (right) summary.
diminishing returns ↔ submodularity

J. Bilmes & R. Iyer NOML: Submodularity in ML page 63 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Extractive Document Summarization

We extract sentences (green) as a summary of the full document

⊂

The summary on the left is a subset of the summary on the right.

Consider adding a new (blue) sentence to each of the two
summaries.
The marginal (incremental) benefit of adding the new (blue)
sentence to the smaller (left) summary is no more than the marginal
benefit of adding the new sentence to the larger (right) summary.
diminishing returns ↔ submodularity

J. Bilmes & R. Iyer NOML: Submodularity in ML page 63 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Extractive Document Summarization

We extract sentences (green) as a summary of the full document

⊂

The summary on the left is a subset of the summary on the right.
Consider adding a new (blue) sentence to each of the two
summaries.

The marginal (incremental) benefit of adding the new (blue)
sentence to the smaller (left) summary is no more than the marginal
benefit of adding the new sentence to the larger (right) summary.
diminishing returns ↔ submodularity

J. Bilmes & R. Iyer NOML: Submodularity in ML page 63 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Extractive Document Summarization

We extract sentences (green) as a summary of the full document

⊂

The summary on the left is a subset of the summary on the right.
Consider adding a new (blue) sentence to each of the two
summaries.
The marginal (incremental) benefit of adding the new (blue)
sentence to the smaller (left) summary is no more than the marginal
benefit of adding the new sentence to the larger (right) summary.

diminishing returns ↔ submodularity

J. Bilmes & R. Iyer NOML: Submodularity in ML page 63 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Extractive Document Summarization

We extract sentences (green) as a summary of the full document

⊂

The summary on the left is a subset of the summary on the right.
Consider adding a new (blue) sentence to each of the two
summaries.
The marginal (incremental) benefit of adding the new (blue)
sentence to the smaller (left) summary is no more than the marginal
benefit of adding the new sentence to the larger (right) summary.
diminishing returns ↔ submodularity

J. Bilmes & R. Iyer NOML: Submodularity in ML page 63 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Image collections

Many images, also that have a higher level gestalt than just a few.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 64 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Image Summarization

10×10 image collection: 3 best summaries:

3 medium summaries:

3 worst summaries:

The three best summaries exhibit diversity. The three worst summaries
exhibit redundancy (Tschiatschek, Iyer, & B, NIPS 2014).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 65 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Variable Selection in Classification/Regression

Let Y be a random variable we wish to accurately predict based on at
most n observed measurement variables (X1,X2, . . . ,Xn) = XV in a
presumed probability model Pr(Y ,X1,X2, . . . ,Xn).

Too costly to use all variables. Goal is to choose a good subset A ⊆ V
of variables within budget |A| ≤ k .

The mutual information function f (A) = I (Y ; XA) measures how well
variables A can predicting Y (entropy reduction, reduction of
uncertainty of Y).

The mutual information function f (A) = I (Y ; XA) is defined as:

I (Y ; XA) =
∑

y ,xA

Pr(y , xA) log
Pr(y , xA)

Pr(y) Pr(xA)
= H(Y)− H(Y |XA) (53)

= H(XA)− H(XA|Y) = H(XA) + H(Y)− H(XA,Y) (54)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 66 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Variable Selection in Classification/Regression

Let Y be a random variable we wish to accurately predict based on at
most n observed measurement variables (X1,X2, . . . ,Xn) = XV in a
presumed probability model Pr(Y ,X1,X2, . . . ,Xn).

Too costly to use all variables. Goal is to choose a good subset A ⊆ V
of variables within budget |A| ≤ k .

The mutual information function f (A) = I (Y ; XA) measures how well
variables A can predicting Y (entropy reduction, reduction of
uncertainty of Y).

The mutual information function f (A) = I (Y ; XA) is defined as:

I (Y ; XA) =
∑

y ,xA

Pr(y , xA) log
Pr(y , xA)

Pr(y) Pr(xA)
= H(Y)− H(Y |XA) (53)

= H(XA)− H(XA|Y) = H(XA) + H(Y)− H(XA,Y) (54)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 66 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Variable Selection in Classification/Regression

Let Y be a random variable we wish to accurately predict based on at
most n observed measurement variables (X1,X2, . . . ,Xn) = XV in a
presumed probability model Pr(Y ,X1,X2, . . . ,Xn).

Too costly to use all variables. Goal is to choose a good subset A ⊆ V
of variables within budget |A| ≤ k .

The mutual information function f (A) = I (Y ; XA) measures how well
variables A can predicting Y (entropy reduction, reduction of
uncertainty of Y).

The mutual information function f (A) = I (Y ; XA) is defined as:

I (Y ; XA) =
∑

y ,xA

Pr(y , xA) log
Pr(y , xA)

Pr(y) Pr(xA)
= H(Y)− H(Y |XA) (53)

= H(XA)− H(XA|Y) = H(XA) + H(Y)− H(XA,Y) (54)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 66 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Variable Selection in Classification/Regression

Let Y be a random variable we wish to accurately predict based on at
most n observed measurement variables (X1,X2, . . . ,Xn) = XV in a
presumed probability model Pr(Y ,X1,X2, . . . ,Xn).

Too costly to use all variables. Goal is to choose a good subset A ⊆ V
of variables within budget |A| ≤ k .

The mutual information function f (A) = I (Y ; XA) measures how well
variables A can predicting Y (entropy reduction, reduction of
uncertainty of Y).

The mutual information function f (A) = I (Y ; XA) is defined as:

I (Y ; XA) =
∑

y ,xA

Pr(y , xA) log
Pr(y , xA)

Pr(y) Pr(xA)
= H(Y)− H(Y |XA) (53)

= H(XA)− H(XA|Y) = H(XA) + H(Y)− H(XA,Y) (54)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 66 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Feature Selection in Pattern Classification: Näıve Bayes

Näıve Bayes property: XA⊥⊥XB |Y for all A,B.

Y

X1 X2 X3 X4 X5

Y

X1 X2 X3 X4 X5 X1 X2 X3 X4 X5 X6 X7

Y1 Y2 Y3 Y4

When XA⊥⊥XB |Y for all A,B (the Näıve Bayes assumption holds),
then

f (A) = I (Y ; XA) = H(XA)− H(XA|Y) = H(XA)−
∑

a∈A
H(Xa|Y)

(55)

is submodular (submodular minus modular).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 67 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Feature Selection in Pattern Classification: Näıve Bayes

Näıve Bayes property: XA⊥⊥XB |Y for all A,B.

Y

X1 X2 X3 X4 X5

Y

X1 X2 X3 X4 X5 X1 X2 X3 X4 X5 X6 X7

Y1 Y2 Y3 Y4

When XA⊥⊥XB |Y for all A,B (the Näıve Bayes assumption holds),
then

f (A) = I (Y ; XA) = H(XA)− H(XA|Y) = H(XA)−
∑

a∈A
H(Xa|Y)

(55)

is submodular (submodular minus modular).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 67 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Variable Selection in Pattern Classification

Näıve Bayes property fails:
Y

X1 X2 X3 X4 X5

Y

X1 X2 X3 X4 X5 X1 X2 X3 X4 X5 X6 X7

Y1 Y2 Y3 Y4

f (A) naturally expressed as a difference of two submodular functions

f (A) = I (Y ; XA) = H(XA)− H(XA|Y), (56)

which is a DS (difference of submodular) function.

Alternatively, when Näıve Bayes assumption is false, we can make a
submodular approximation (Peng-2005). E.g., functions of the form:

f (A) =
∑

a∈A
I (Xa; Y)− λ

∑

a,a′∈A
I (Xa; Xa′ |Y) (57)

where λ ≥ 0 is a tradeoff constant.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 68 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Variable Selection in Pattern Classification

Näıve Bayes property fails:
Y

X1 X2 X3 X4 X5

Y

X1 X2 X3 X4 X5 X1 X2 X3 X4 X5 X6 X7

Y1 Y2 Y3 Y4

f (A) naturally expressed as a difference of two submodular functions

f (A) = I (Y ; XA) = H(XA)− H(XA|Y), (56)

which is a DS (difference of submodular) function.

Alternatively, when Näıve Bayes assumption is false, we can make a
submodular approximation (Peng-2005). E.g., functions of the form:

f (A) =
∑

a∈A
I (Xa; Y)− λ

∑

a,a′∈A
I (Xa; Xa′ |Y) (57)

where λ ≥ 0 is a tradeoff constant.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 68 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Variable Selection in Pattern Classification

Näıve Bayes property fails:
Y

X1 X2 X3 X4 X5

Y

X1 X2 X3 X4 X5 X1 X2 X3 X4 X5 X6 X7

Y1 Y2 Y3 Y4

f (A) naturally expressed as a difference of two submodular functions

f (A) = I (Y ; XA) = H(XA)− H(XA|Y), (56)

which is a DS (difference of submodular) function.

Alternatively, when Näıve Bayes assumption is false, we can make a
submodular approximation (Peng-2005). E.g., functions of the form:

f (A) =
∑

a∈A
I (Xa; Y)− λ

∑

a,a′∈A
I (Xa; Xa′ |Y) (57)

where λ ≥ 0 is a tradeoff constant.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 68 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Variable Selection: Linear Regression Case

Here Z is continuous and predictor is linear Z̃A =
∑

i∈A αiXi .

Error measure is the residual variance

R2
Z ,A =

Var(Z)− E [(Z − Z̃A)2]

Var(Z)
(58)

R2
Z ,A’s minimizing parameters, for a given A, can be easily computed

(R2
Z ,A = bA

ᵀ(C−1
A)

ᵀ
bA when VarZ = 1, where bi = Cov(Z ,Xi) and

C = E [(X − E [X])ᵀ(X − E [X])] is the covariance matrix).

When there are no “suppressor” variables (essentially,
no v-structures that converge on Xj with parents Xi

and Z), then

f (A) = R2
Z ,A = bA

ᵀ(C−1
A)

ᵀ
bA (59)

is a polymatroid function (so the greedy algorithm gives
the 1− 1/e guarantee). (Das&Kempe).

ZXi

Xj

J. Bilmes & R. Iyer NOML: Submodularity in ML page 69 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Variable Selection: Linear Regression Case

Here Z is continuous and predictor is linear Z̃A =
∑

i∈A αiXi .

Error measure is the residual variance

R2
Z ,A =

Var(Z)− E [(Z − Z̃A)2]

Var(Z)
(58)

R2
Z ,A’s minimizing parameters, for a given A, can be easily computed

(R2
Z ,A = bA

ᵀ(C−1
A)

ᵀ
bA when VarZ = 1, where bi = Cov(Z ,Xi) and

C = E [(X − E [X])ᵀ(X − E [X])] is the covariance matrix).

When there are no “suppressor” variables (essentially,
no v-structures that converge on Xj with parents Xi

and Z), then

f (A) = R2
Z ,A = bA

ᵀ(C−1
A)

ᵀ
bA (59)

is a polymatroid function (so the greedy algorithm gives
the 1− 1/e guarantee). (Das&Kempe).

ZXi

Xj

J. Bilmes & R. Iyer NOML: Submodularity in ML page 69 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Variable Selection: Linear Regression Case

Here Z is continuous and predictor is linear Z̃A =
∑

i∈A αiXi .

Error measure is the residual variance

R2
Z ,A =

Var(Z)− E [(Z − Z̃A)2]

Var(Z)
(58)

R2
Z ,A’s minimizing parameters, for a given A, can be easily computed

(R2
Z ,A = bA

ᵀ(C−1
A)

ᵀ
bA when VarZ = 1, where bi = Cov(Z ,Xi) and

C = E [(X − E [X])ᵀ(X − E [X])] is the covariance matrix).

When there are no “suppressor” variables (essentially,
no v-structures that converge on Xj with parents Xi

and Z), then

f (A) = R2
Z ,A = bA

ᵀ(C−1
A)

ᵀ
bA (59)

is a polymatroid function (so the greedy algorithm gives
the 1− 1/e guarantee). (Das&Kempe).

ZXi

Xj

J. Bilmes & R. Iyer NOML: Submodularity in ML page 69 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Variable Selection: Linear Regression Case

Here Z is continuous and predictor is linear Z̃A =
∑

i∈A αiXi .

Error measure is the residual variance

R2
Z ,A =

Var(Z)− E [(Z − Z̃A)2]

Var(Z)
(58)

R2
Z ,A’s minimizing parameters, for a given A, can be easily computed

(R2
Z ,A = bA

ᵀ(C−1
A)

ᵀ
bA when VarZ = 1, where bi = Cov(Z ,Xi) and

C = E [(X − E [X])ᵀ(X − E [X])] is the covariance matrix).

When there are no “suppressor” variables (essentially,
no v-structures that converge on Xj with parents Xi

and Z), then

f (A) = R2
Z ,A = bA

ᵀ(C−1
A)

ᵀ
bA (59)

is a polymatroid function (so the greedy algorithm gives
the 1− 1/e guarantee). (Das&Kempe).

ZXi

Xj

J. Bilmes & R. Iyer NOML: Submodularity in ML page 69 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Data Subset Selection

Suppose we are given a data set D = {xi}ni=1 of n data items
V = {v1, v2, . . . , vn} and we wish to choose a subset A ⊂ V of
items that is good in some way.

Suppose moreover each data item v ∈ V is described by a vector of
non-negative scores for a set U of “features” (or properties, or
characteristics, etc.) of each data item.

That is, for u ∈ U and v ∈ V , let mu(v) represent the “degree of
u-ness” possessed by data item v . Then mu ∈ RV

+ for all u ∈ U.

Example: U could be a set of colors, and for an image v ∈ V ,
mu(v) could represent the number of pixels that are of color u.

Example: U might be a set of textual features (e.g., ngrams), and
mu(v) is the number of ngrams of type u in sentence v . E.g., if a
document consists of the sentence

v = “Whenever I go to New York City, I visit the New York City museum.”

then m’the’(v) = 1 while m’New York City’(v) = 2.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 70 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Data Subset Selection

Suppose we are given a data set D = {xi}ni=1 of n data items
V = {v1, v2, . . . , vn} and we wish to choose a subset A ⊂ V of
items that is good in some way.

Suppose moreover each data item v ∈ V is described by a vector of
non-negative scores for a set U of “features” (or properties, or
characteristics, etc.) of each data item.

That is, for u ∈ U and v ∈ V , let mu(v) represent the “degree of
u-ness” possessed by data item v . Then mu ∈ RV

+ for all u ∈ U.

Example: U could be a set of colors, and for an image v ∈ V ,
mu(v) could represent the number of pixels that are of color u.

Example: U might be a set of textual features (e.g., ngrams), and
mu(v) is the number of ngrams of type u in sentence v . E.g., if a
document consists of the sentence

v = “Whenever I go to New York City, I visit the New York City museum.”

then m’the’(v) = 1 while m’New York City’(v) = 2.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 70 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Data Subset Selection

Suppose we are given a data set D = {xi}ni=1 of n data items
V = {v1, v2, . . . , vn} and we wish to choose a subset A ⊂ V of
items that is good in some way.

Suppose moreover each data item v ∈ V is described by a vector of
non-negative scores for a set U of “features” (or properties, or
characteristics, etc.) of each data item.

That is, for u ∈ U and v ∈ V , let mu(v) represent the “degree of
u-ness” possessed by data item v . Then mu ∈ RV

+ for all u ∈ U.

Example: U could be a set of colors, and for an image v ∈ V ,
mu(v) could represent the number of pixels that are of color u.

Example: U might be a set of textual features (e.g., ngrams), and
mu(v) is the number of ngrams of type u in sentence v . E.g., if a
document consists of the sentence

v = “Whenever I go to New York City, I visit the New York City museum.”

then m’the’(v) = 1 while m’New York City’(v) = 2.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 70 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Data Subset Selection

Suppose we are given a data set D = {xi}ni=1 of n data items
V = {v1, v2, . . . , vn} and we wish to choose a subset A ⊂ V of
items that is good in some way.

Suppose moreover each data item v ∈ V is described by a vector of
non-negative scores for a set U of “features” (or properties, or
characteristics, etc.) of each data item.

That is, for u ∈ U and v ∈ V , let mu(v) represent the “degree of
u-ness” possessed by data item v . Then mu ∈ RV

+ for all u ∈ U.

Example: U could be a set of colors, and for an image v ∈ V ,
mu(v) could represent the number of pixels that are of color u.

Example: U might be a set of textual features (e.g., ngrams), and
mu(v) is the number of ngrams of type u in sentence v . E.g., if a
document consists of the sentence

v = “Whenever I go to New York City, I visit the New York City museum.”

then m’the’(v) = 1 while m’New York City’(v) = 2.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 70 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Data Subset Selection

Suppose we are given a data set D = {xi}ni=1 of n data items
V = {v1, v2, . . . , vn} and we wish to choose a subset A ⊂ V of
items that is good in some way.

Suppose moreover each data item v ∈ V is described by a vector of
non-negative scores for a set U of “features” (or properties, or
characteristics, etc.) of each data item.

That is, for u ∈ U and v ∈ V , let mu(v) represent the “degree of
u-ness” possessed by data item v . Then mu ∈ RV

+ for all u ∈ U.

Example: U could be a set of colors, and for an image v ∈ V ,
mu(v) could represent the number of pixels that are of color u.

Example: U might be a set of textual features (e.g., ngrams), and
mu(v) is the number of ngrams of type u in sentence v . E.g., if a
document consists of the sentence

v = “Whenever I go to New York City, I visit the New York City museum.”

then m’the’(v) = 1 while m’New York City’(v) = 2.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 70 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Data Subset Selection

For X ⊆ V , define mu(X) =
∑

x∈X mu(x), so mu(X) is a modular
function representing the “degree of u-ness” in subset X .

Since mu(X) is modular, it does not have a diminishing returns
property. I.e., as we add to X , the degree of u-ness grows additively.
With g non-decreasing concave, g(mu(X)) grows subadditively (if we
add v to a context A with less u-ness, the u-ness benefit is more than if
we add v to a context B ⊇ A having more u-ness).

That is

g(mu(A + v))− g(mu(A)) ≥ g(mu(B + v))− g(mu(B)) (60)

Consider the following class of feature functions f : 2V → R+

f (X) =
∑

u∈U
αugu(mu(X)) (61)

where gu is a non-decreasing concave, and αu ≥ 0 is a feature
importance weight. Thus, f is submodular.
f (X) measures X ’s ability to represent set of features U as measured by
mu(X), with diminishing returns function g , and importance weights αu.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 71 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Data Subset Selection

For X ⊆ V , define mu(X) =
∑

x∈X mu(x), so mu(X) is a modular
function representing the “degree of u-ness” in subset X .
Since mu(X) is modular, it does not have a diminishing returns
property. I.e., as we add to X , the degree of u-ness grows additively.

With g non-decreasing concave, g(mu(X)) grows subadditively (if we
add v to a context A with less u-ness, the u-ness benefit is more than if
we add v to a context B ⊇ A having more u-ness).

That is

g(mu(A + v))− g(mu(A)) ≥ g(mu(B + v))− g(mu(B)) (60)

Consider the following class of feature functions f : 2V → R+

f (X) =
∑

u∈U
αugu(mu(X)) (61)

where gu is a non-decreasing concave, and αu ≥ 0 is a feature
importance weight. Thus, f is submodular.
f (X) measures X ’s ability to represent set of features U as measured by
mu(X), with diminishing returns function g , and importance weights αu.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 71 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Data Subset Selection

For X ⊆ V , define mu(X) =
∑

x∈X mu(x), so mu(X) is a modular
function representing the “degree of u-ness” in subset X .
Since mu(X) is modular, it does not have a diminishing returns
property. I.e., as we add to X , the degree of u-ness grows additively.
With g non-decreasing concave, g(mu(X)) grows subadditively (if we
add v to a context A with less u-ness, the u-ness benefit is more than if
we add v to a context B ⊇ A having more u-ness).

That is

g(mu(A + v))− g(mu(A)) ≥ g(mu(B + v))− g(mu(B)) (60)

Consider the following class of feature functions f : 2V → R+

f (X) =
∑

u∈U
αugu(mu(X)) (61)

where gu is a non-decreasing concave, and αu ≥ 0 is a feature
importance weight. Thus, f is submodular.
f (X) measures X ’s ability to represent set of features U as measured by
mu(X), with diminishing returns function g , and importance weights αu.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 71 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Data Subset Selection

For X ⊆ V , define mu(X) =
∑

x∈X mu(x), so mu(X) is a modular
function representing the “degree of u-ness” in subset X .
Since mu(X) is modular, it does not have a diminishing returns
property. I.e., as we add to X , the degree of u-ness grows additively.
With g non-decreasing concave, g(mu(X)) grows subadditively (if we
add v to a context A with less u-ness, the u-ness benefit is more than if
we add v to a context B ⊇ A having more u-ness). That is

g(mu(A + v))− g(mu(A)) ≥ g(mu(B + v))− g(mu(B)) (60)

Consider the following class of feature functions f : 2V → R+

f (X) =
∑

u∈U
αugu(mu(X)) (61)

where gu is a non-decreasing concave, and αu ≥ 0 is a feature
importance weight. Thus, f is submodular.
f (X) measures X ’s ability to represent set of features U as measured by
mu(X), with diminishing returns function g , and importance weights αu.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 71 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Data Subset Selection

For X ⊆ V , define mu(X) =
∑

x∈X mu(x), so mu(X) is a modular
function representing the “degree of u-ness” in subset X .
Since mu(X) is modular, it does not have a diminishing returns
property. I.e., as we add to X , the degree of u-ness grows additively.
With g non-decreasing concave, g(mu(X)) grows subadditively (if we
add v to a context A with less u-ness, the u-ness benefit is more than if
we add v to a context B ⊇ A having more u-ness). That is

g(mu(A + v))− g(mu(A)) ≥ g(mu(B + v))− g(mu(B)) (60)

Consider the following class of feature functions f : 2V → R+

f (X) =
∑

u∈U
αugu(mu(X)) (61)

where gu is a non-decreasing concave, and αu ≥ 0 is a feature
importance weight. Thus, f is submodular.

f (X) measures X ’s ability to represent set of features U as measured by
mu(X), with diminishing returns function g , and importance weights αu.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 71 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Data Subset Selection

For X ⊆ V , define mu(X) =
∑

x∈X mu(x), so mu(X) is a modular
function representing the “degree of u-ness” in subset X .
Since mu(X) is modular, it does not have a diminishing returns
property. I.e., as we add to X , the degree of u-ness grows additively.
With g non-decreasing concave, g(mu(X)) grows subadditively (if we
add v to a context A with less u-ness, the u-ness benefit is more than if
we add v to a context B ⊇ A having more u-ness). That is

g(mu(A + v))− g(mu(A)) ≥ g(mu(B + v))− g(mu(B)) (60)

Consider the following class of feature functions f : 2V → R+

f (X) =
∑

u∈U
αugu(mu(X)) (61)

where gu is a non-decreasing concave, and αu ≥ 0 is a feature
importance weight. Thus, f is submodular.
f (X) measures X ’s ability to represent set of features U as measured by
mu(X), with diminishing returns function g , and importance weights αu.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 71 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Data Subset Selection, KL-divergence

Let p = {pu}u∈U be a desired probability distribution over features (i.e.,∑
u pu = 1 and pu ≥ 0 for all u ∈ U).

Next, normalize the modular weights for each feature:

m̄u(X) =
mu(X)∑

u′∈U mu′(X)
=

mu(X)

m(X)
(62)

where m(X) ,
∑

u′∈U mu′(X).
Then m̄u(X) can also be seen as a distribution over features since
m̄u(X) ≥ 0 and

∑
u m̄u(X) = 1 for any X ⊆ V .

Consider the KL-divergence between these two distributions:

D(p||{m̄u(X)}u∈U) =
∑

u∈U
pu log pu −

∑

u∈U
pu log(m̄u(X)) (63)

=
∑

u∈U
pu log pu −

∑

u∈U
pu log(mu(X)) + log(m(X))

= −H(p) + log m(X)−
∑

u∈U
pu log(mu(X)) (64)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 72 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Data Subset Selection, KL-divergence

Let p = {pu}u∈U be a desired probability distribution over features (i.e.,∑
u pu = 1 and pu ≥ 0 for all u ∈ U).

Next, normalize the modular weights for each feature:

m̄u(X) =
mu(X)∑

u′∈U mu′(X)
=

mu(X)

m(X)
(62)

where m(X) ,
∑

u′∈U mu′(X).

Then m̄u(X) can also be seen as a distribution over features since
m̄u(X) ≥ 0 and

∑
u m̄u(X) = 1 for any X ⊆ V .

Consider the KL-divergence between these two distributions:

D(p||{m̄u(X)}u∈U) =
∑

u∈U
pu log pu −

∑

u∈U
pu log(m̄u(X)) (63)

=
∑

u∈U
pu log pu −

∑

u∈U
pu log(mu(X)) + log(m(X))

= −H(p) + log m(X)−
∑

u∈U
pu log(mu(X)) (64)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 72 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Data Subset Selection, KL-divergence

Let p = {pu}u∈U be a desired probability distribution over features (i.e.,∑
u pu = 1 and pu ≥ 0 for all u ∈ U).

Next, normalize the modular weights for each feature:

m̄u(X) =
mu(X)∑

u′∈U mu′(X)
=

mu(X)

m(X)
(62)

where m(X) ,
∑

u′∈U mu′(X).
Then m̄u(X) can also be seen as a distribution over features since
m̄u(X) ≥ 0 and

∑
u m̄u(X) = 1 for any X ⊆ V .

Consider the KL-divergence between these two distributions:

D(p||{m̄u(X)}u∈U) =
∑

u∈U
pu log pu −

∑

u∈U
pu log(m̄u(X)) (63)

=
∑

u∈U
pu log pu −

∑

u∈U
pu log(mu(X)) + log(m(X))

= −H(p) + log m(X)−
∑

u∈U
pu log(mu(X)) (64)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 72 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Data Subset Selection, KL-divergence

Let p = {pu}u∈U be a desired probability distribution over features (i.e.,∑
u pu = 1 and pu ≥ 0 for all u ∈ U).

Next, normalize the modular weights for each feature:

m̄u(X) =
mu(X)∑

u′∈U mu′(X)
=

mu(X)

m(X)
(62)

where m(X) ,
∑

u′∈U mu′(X).
Then m̄u(X) can also be seen as a distribution over features since
m̄u(X) ≥ 0 and

∑
u m̄u(X) = 1 for any X ⊆ V .

Consider the KL-divergence between these two distributions:

D(p||{m̄u(X)}u∈U) =
∑

u∈U
pu log pu −

∑

u∈U
pu log(m̄u(X)) (63)

=
∑

u∈U
pu log pu −

∑

u∈U
pu log(mu(X)) + log(m(X))

= −H(p) + log m(X)−
∑

u∈U
pu log(mu(X)) (64)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 72 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Data Subset Selection, KL-divergence

The objective once again, treating entropy H(p) as a constant,

D(p||{m̄u(X)}) = const. + log m(X)−
∑

u∈U
pu log(mu(X)) (65)

But seen as a function of X , both log m(X) and
∑

u∈U pu log mu(X)
are submodular functions.

Hence the KL-divergence, seen as a function of X , i.e.,
f (X) = D(p||{m̄u(X)}) is quite naturally represented as a difference
of submodular functions.

Alternatively, if we define (Shinohara, 2014)

g(X) , log m(X)− D(p||{m̄u(X)}) =
∑

u∈U
pu log(mu(X)) (66)

we have a submodular function g that represents a combination of
its quantity of X via its features (i.e., log m(X)) and its feature
distribution closeness to some distribution p (i.e., D(p||{m̄u(X)})).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 73 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Data Subset Selection, KL-divergence

The objective once again, treating entropy H(p) as a constant,

D(p||{m̄u(X)}) = const. + log m(X)−
∑

u∈U
pu log(mu(X)) (65)

But seen as a function of X , both log m(X) and
∑

u∈U pu log mu(X)
are submodular functions.

Hence the KL-divergence, seen as a function of X , i.e.,
f (X) = D(p||{m̄u(X)}) is quite naturally represented as a difference
of submodular functions.

Alternatively, if we define (Shinohara, 2014)

g(X) , log m(X)− D(p||{m̄u(X)}) =
∑

u∈U
pu log(mu(X)) (66)

we have a submodular function g that represents a combination of
its quantity of X via its features (i.e., log m(X)) and its feature
distribution closeness to some distribution p (i.e., D(p||{m̄u(X)})).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 73 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Data Subset Selection, KL-divergence

The objective once again, treating entropy H(p) as a constant,

D(p||{m̄u(X)}) = const. + log m(X)−
∑

u∈U
pu log(mu(X)) (65)

But seen as a function of X , both log m(X) and
∑

u∈U pu log mu(X)
are submodular functions.

Hence the KL-divergence, seen as a function of X , i.e.,
f (X) = D(p||{m̄u(X)}) is quite naturally represented as a difference
of submodular functions.

Alternatively, if we define (Shinohara, 2014)

g(X) , log m(X)− D(p||{m̄u(X)}) =
∑

u∈U
pu log(mu(X)) (66)

we have a submodular function g that represents a combination of
its quantity of X via its features (i.e., log m(X)) and its feature
distribution closeness to some distribution p (i.e., D(p||{m̄u(X)})).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 73 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Data Subset Selection, KL-divergence

The objective once again, treating entropy H(p) as a constant,

D(p||{m̄u(X)}) = const. + log m(X)−
∑

u∈U
pu log(mu(X)) (65)

But seen as a function of X , both log m(X) and
∑

u∈U pu log mu(X)
are submodular functions.

Hence the KL-divergence, seen as a function of X , i.e.,
f (X) = D(p||{m̄u(X)}) is quite naturally represented as a difference
of submodular functions.

Alternatively, if we define (Shinohara, 2014)

g(X) , log m(X)− D(p||{m̄u(X)}) =
∑

u∈U
pu log(mu(X)) (66)

we have a submodular function g that represents a combination of
its quantity of X via its features (i.e., log m(X)) and its feature
distribution closeness to some distribution p (i.e., D(p||{m̄u(X)})).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 73 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Sensor Placement

Information gain applicable not only in pattern recognition, but in
the sensor coverage problem as well, where Y is whatever question
we wish to ask about an environment.

Given an environment, there is a set V of candidate locations for
placement of a sensor (e.g., temperature, gas, audio, video, bacteria
or other environmental contaminant, etc.).

We have a function f (A) that measures the “coverage” of any given
set A of sensor placement decisions. Then f (V) is maximum
possible coverage.

One possible goal: choose smallest set A such that f (A) ≥ αf (V)
with 0 < α ≤ 1 (recall the submodular set cover problem)

Another possible goal: choose size at most k set A such that f (A) is
maximized.

Environment could be a floor of a building, water network,
monitored ecological preservation.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 74 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Sensor Placement

Information gain applicable not only in pattern recognition, but in
the sensor coverage problem as well, where Y is whatever question
we wish to ask about an environment.

Given an environment, there is a set V of candidate locations for
placement of a sensor (e.g., temperature, gas, audio, video, bacteria
or other environmental contaminant, etc.).

We have a function f (A) that measures the “coverage” of any given
set A of sensor placement decisions. Then f (V) is maximum
possible coverage.

One possible goal: choose smallest set A such that f (A) ≥ αf (V)
with 0 < α ≤ 1 (recall the submodular set cover problem)

Another possible goal: choose size at most k set A such that f (A) is
maximized.

Environment could be a floor of a building, water network,
monitored ecological preservation.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 74 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Sensor Placement

Information gain applicable not only in pattern recognition, but in
the sensor coverage problem as well, where Y is whatever question
we wish to ask about an environment.

Given an environment, there is a set V of candidate locations for
placement of a sensor (e.g., temperature, gas, audio, video, bacteria
or other environmental contaminant, etc.).

We have a function f (A) that measures the “coverage” of any given
set A of sensor placement decisions. Then f (V) is maximum
possible coverage.

One possible goal: choose smallest set A such that f (A) ≥ αf (V)
with 0 < α ≤ 1 (recall the submodular set cover problem)

Another possible goal: choose size at most k set A such that f (A) is
maximized.

Environment could be a floor of a building, water network,
monitored ecological preservation.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 74 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Sensor Placement

Information gain applicable not only in pattern recognition, but in
the sensor coverage problem as well, where Y is whatever question
we wish to ask about an environment.

Given an environment, there is a set V of candidate locations for
placement of a sensor (e.g., temperature, gas, audio, video, bacteria
or other environmental contaminant, etc.).

We have a function f (A) that measures the “coverage” of any given
set A of sensor placement decisions. Then f (V) is maximum
possible coverage.

One possible goal: choose smallest set A such that f (A) ≥ αf (V)
with 0 < α ≤ 1 (recall the submodular set cover problem)

Another possible goal: choose size at most k set A such that f (A) is
maximized.

Environment could be a floor of a building, water network,
monitored ecological preservation.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 74 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Sensor Placement

Information gain applicable not only in pattern recognition, but in
the sensor coverage problem as well, where Y is whatever question
we wish to ask about an environment.

Given an environment, there is a set V of candidate locations for
placement of a sensor (e.g., temperature, gas, audio, video, bacteria
or other environmental contaminant, etc.).

We have a function f (A) that measures the “coverage” of any given
set A of sensor placement decisions. Then f (V) is maximum
possible coverage.

One possible goal: choose smallest set A such that f (A) ≥ αf (V)
with 0 < α ≤ 1 (recall the submodular set cover problem)

Another possible goal: choose size at most k set A such that f (A) is
maximized.

Environment could be a floor of a building, water network,
monitored ecological preservation.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 74 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Sensor Placement

Information gain applicable not only in pattern recognition, but in
the sensor coverage problem as well, where Y is whatever question
we wish to ask about an environment.

Given an environment, there is a set V of candidate locations for
placement of a sensor (e.g., temperature, gas, audio, video, bacteria
or other environmental contaminant, etc.).

We have a function f (A) that measures the “coverage” of any given
set A of sensor placement decisions. Then f (V) is maximum
possible coverage.

One possible goal: choose smallest set A such that f (A) ≥ αf (V)
with 0 < α ≤ 1 (recall the submodular set cover problem)

Another possible goal: choose size at most k set A such that f (A) is
maximized.

Environment could be a floor of a building, water network,
monitored ecological preservation.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 74 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Sensor Placement within Buildings

An example of a room layout. Should be possible to determine
temperature at all points in the room. Sensors cannot sense beyond
wall (thick black line) boundaries.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 75 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Sensor Placement within Buildings

Example sensor placement using small range cheap sensors (located
at red dots).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 75 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Sensor Placement within Buildings

Example sensor placement using longer range expensive sensors
(located at red dots).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 75 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Sensor Placement within Buildings

Example sensor placement using mixed range sensors (located at red
dots).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 75 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Social Networks

(from Newman, 2004). Clockwise from top
left: 1) predator-prey interactions, 2) sci-
entific collaborations, 3) sexual contact, 4)
school friendships.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 76 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

The value of a friend

1982 1992 1997 2002 2012

Let V be a set of individuals, how valuable is a given friend v ∈ V ?

It depends on how many friends you have.

Valuate a group of friends S ⊆ V via set function f (S).

A submodular model: a friend becomes less marginally valuable as
your set of friends grows.

Supermodular model: a friend becomes more valuable the more
friends you have (“I’d get by with a little help from my friends”).

Which is a better model?

J. Bilmes & R. Iyer NOML: Submodularity in ML page 77 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

The value of a friend

1982 1992 1997 2002 2012

Let V be a set of individuals, how valuable is a given friend v ∈ V ?

It depends on how many friends you have.

Valuate a group of friends S ⊆ V via set function f (S).

A submodular model: a friend becomes less marginally valuable as
your set of friends grows.

Supermodular model: a friend becomes more valuable the more
friends you have (“I’d get by with a little help from my friends”).

Which is a better model?

J. Bilmes & R. Iyer NOML: Submodularity in ML page 77 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

The value of a friend

1982 1992 1997 2002 2012

Let V be a set of individuals, how valuable is a given friend v ∈ V ?

It depends on how many friends you have.

Valuate a group of friends S ⊆ V via set function f (S).

A submodular model: a friend becomes less marginally valuable as
your set of friends grows.

Supermodular model: a friend becomes more valuable the more
friends you have (“I’d get by with a little help from my friends”).

Which is a better model?

J. Bilmes & R. Iyer NOML: Submodularity in ML page 77 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

The value of a friend

1982 1992 1997 2002 2012

Let V be a set of individuals, how valuable is a given friend v ∈ V ?

It depends on how many friends you have.

Valuate a group of friends S ⊆ V via set function f (S).

A submodular model: a friend becomes less marginally valuable as
your set of friends grows.

Supermodular model: a friend becomes more valuable the more
friends you have (“I’d get by with a little help from my friends”).

Which is a better model?

J. Bilmes & R. Iyer NOML: Submodularity in ML page 77 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

The value of a friend

1982 1992 1997 2002 2012

Let V be a set of individuals, how valuable is a given friend v ∈ V ?

It depends on how many friends you have.

Valuate a group of friends S ⊆ V via set function f (S).

A submodular model: a friend becomes less marginally valuable as
your set of friends grows.

Supermodular model: a friend becomes more valuable the more
friends you have (“I’d get by with a little help from my friends”).

Which is a better model?

J. Bilmes & R. Iyer NOML: Submodularity in ML page 77 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

The value of a friend

1982 1992 1997 2002 2012

Let V be a set of individuals, how valuable is a given friend v ∈ V ?

It depends on how many friends you have.

Valuate a group of friends S ⊆ V via set function f (S).

A submodular model: a friend becomes less marginally valuable as
your set of friends grows.

Supermodular model: a friend becomes more valuable the more
friends you have (“I’d get by with a little help from my friends”).

Which is a better model?

J. Bilmes & R. Iyer NOML: Submodularity in ML page 77 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Information Cascades, Diffusion Networks

How to model flow of information from source to the point it reaches
users — information used in its common sense (like news events).

Orig
inal Event

Goal: How to find the most influential sources, the ones that often
set off cascades, which are like large “waves” of information flow?

J. Bilmes & R. Iyer NOML: Submodularity in ML page 78 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Information Cascades, Diffusion Networks

How to model flow of information from source to the point it reaches
users — information used in its common sense (like news events).

Orig
inal Event

Goal: How to find the most influential sources, the ones that often
set off cascades, which are like large “waves” of information flow?

J. Bilmes & R. Iyer NOML: Submodularity in ML page 78 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Information Cascades, Diffusion Networks

How to model flow of information from source to the point it reaches
users — information used in its common sense (like news events).

Orig
inal Event

Goal: How to find the most influential sources, the ones that often
set off cascades, which are like large “waves” of information flow?

J. Bilmes & R. Iyer NOML: Submodularity in ML page 78 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Information Cascades, Diffusion Networks

How to model flow of information from source to the point it reaches
users — information used in its common sense (like news events).

Orig
inal Event

Goal: How to find the most influential sources, the ones that often
set off cascades, which are like large “waves” of information flow?

J. Bilmes & R. Iyer NOML: Submodularity in ML page 78 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Information Cascades, Diffusion Networks

How to model flow of information from source to the point it reaches
users — information used in its common sense (like news events).

Orig
inal Event

Goal: How to find the most influential sources, the ones that often
set off cascades, which are like large “waves” of information flow?

J. Bilmes & R. Iyer NOML: Submodularity in ML page 78 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Information Cascades, Diffusion Networks

How to model flow of information from source to the point it reaches
users — information used in its common sense (like news events).

Orig
inal Event

Goal: How to find the most influential sources, the ones that often
set off cascades, which are like large “waves” of information flow?

J. Bilmes & R. Iyer NOML: Submodularity in ML page 78 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Information Cascades, Diffusion Networks

How to model flow of information from source to the point it reaches
users — information used in its common sense (like news events).

Orig
inal Event

Goal: How to find the most influential sources, the ones that often
set off cascades, which are like large “waves” of information flow?

J. Bilmes & R. Iyer NOML: Submodularity in ML page 78 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Information Cascades, Diffusion Networks

How to model flow of information from source to the point it reaches
users — information used in its common sense (like news events).

Orig
inal Event

Goal: How to find the most influential sources, the ones that often
set off cascades, which are like large “waves” of information flow?

J. Bilmes & R. Iyer NOML: Submodularity in ML page 78 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Information Cascades, Diffusion Networks

How to model flow of information from source to the point it reaches
users — information used in its common sense (like news events).

Orig
inal Event

Goal: How to find the most influential sources, the ones that often
set off cascades, which are like large “waves” of information flow?

J. Bilmes & R. Iyer NOML: Submodularity in ML page 78 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Information Cascades, Diffusion Networks

How to model flow of information from source to the point it reaches
users — information used in its common sense (like news events).

Orig
inal Event

Goal: How to find the most influential sources, the ones that often
set off cascades, which are like large “waves” of information flow?

J. Bilmes & R. Iyer NOML: Submodularity in ML page 78 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Information Cascades, Diffusion Networks

How to model flow of information from source to the point it reaches
users — information used in its common sense (like news events).

Orig
inal Event

Goal: How to find the most influential sources, the ones that often
set off cascades, which are like large “waves” of information flow?

J. Bilmes & R. Iyer NOML: Submodularity in ML page 78 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

A model of influence in social networks

Given a graph G = (V ,E), each v ∈ V corresponds to a person, to
each v we have an activation function fv : 2V → [0, 1] dependent
only on its neighbors. I.e., fv (A) = fv (A ∩ Γ(v)).

Goal - Viral Marketing: find a small subset S ⊆ V of individuals to
directly influence, and thus indirectly influence the greatest number
of possible other individuals (via the social network G).

We define a function f : 2V → Z+ that models the ultimate
influence of an initial set S of nodes based on the following iterative
process: At each step, a given set of nodes S are activated, and we
activate new nodes v ∈ V \ S if fv (S) ≥ U[0, 1] (where U[0, 1] is a
uniform random number between 0 and 1).

It can be shown that for many fv (including simple linear functions,
and where fv is submodular itself) that f is submodular (Kempe,
Kleinberg, Tardos 1993).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 79 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

A model of influence in social networks

Given a graph G = (V ,E), each v ∈ V corresponds to a person, to
each v we have an activation function fv : 2V → [0, 1] dependent
only on its neighbors. I.e., fv (A) = fv (A ∩ Γ(v)).

Goal - Viral Marketing: find a small subset S ⊆ V of individuals to
directly influence, and thus indirectly influence the greatest number
of possible other individuals (via the social network G).

We define a function f : 2V → Z+ that models the ultimate
influence of an initial set S of nodes based on the following iterative
process: At each step, a given set of nodes S are activated, and we
activate new nodes v ∈ V \ S if fv (S) ≥ U[0, 1] (where U[0, 1] is a
uniform random number between 0 and 1).

It can be shown that for many fv (including simple linear functions,
and where fv is submodular itself) that f is submodular (Kempe,
Kleinberg, Tardos 1993).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 79 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

A model of influence in social networks

Given a graph G = (V ,E), each v ∈ V corresponds to a person, to
each v we have an activation function fv : 2V → [0, 1] dependent
only on its neighbors. I.e., fv (A) = fv (A ∩ Γ(v)).

Goal - Viral Marketing: find a small subset S ⊆ V of individuals to
directly influence, and thus indirectly influence the greatest number
of possible other individuals (via the social network G).

We define a function f : 2V → Z+ that models the ultimate
influence of an initial set S of nodes based on the following iterative
process: At each step, a given set of nodes S are activated, and we
activate new nodes v ∈ V \ S if fv (S) ≥ U[0, 1] (where U[0, 1] is a
uniform random number between 0 and 1).

It can be shown that for many fv (including simple linear functions,
and where fv is submodular itself) that f is submodular (Kempe,
Kleinberg, Tardos 1993).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 79 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

A model of influence in social networks

Given a graph G = (V ,E), each v ∈ V corresponds to a person, to
each v we have an activation function fv : 2V → [0, 1] dependent
only on its neighbors. I.e., fv (A) = fv (A ∩ Γ(v)).

Goal - Viral Marketing: find a small subset S ⊆ V of individuals to
directly influence, and thus indirectly influence the greatest number
of possible other individuals (via the social network G).

We define a function f : 2V → Z+ that models the ultimate
influence of an initial set S of nodes based on the following iterative
process: At each step, a given set of nodes S are activated, and we
activate new nodes v ∈ V \ S if fv (S) ≥ U[0, 1] (where U[0, 1] is a
uniform random number between 0 and 1).

It can be shown that for many fv (including simple linear functions,
and where fv is submodular itself) that f is submodular (Kempe,
Kleinberg, Tardos 1993).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 79 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Graphical Model Structure Learning

A probability distribution on binary vectors p : {0, 1}V → [0, 1]:

p(x) =
1

Z
exp(−E (x)) (67)

where E (x) is the energy function.

A graphical model G = (V , E) represents a family of probability
distributions p ∈ F(G) all of which factor w.r.t. the graph.

I.e., if C are a set of cliques of graph G , then we must have:

E (x) =
∑

c∈C
Ec(xc) (68)

The problem of structure learning in graphical models is to find the
graph G based on data.

This can be viewed as a discrete optimization problem on the
potential (undirected) edges of the graph V × V .

J. Bilmes & R. Iyer NOML: Submodularity in ML page 80 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Graphical Model Structure Learning

A probability distribution on binary vectors p : {0, 1}V → [0, 1]:

p(x) =
1

Z
exp(−E (x)) (67)

where E (x) is the energy function.

A graphical model G = (V , E) represents a family of probability
distributions p ∈ F(G) all of which factor w.r.t. the graph.

I.e., if C are a set of cliques of graph G , then we must have:

E (x) =
∑

c∈C
Ec(xc) (68)

The problem of structure learning in graphical models is to find the
graph G based on data.

This can be viewed as a discrete optimization problem on the
potential (undirected) edges of the graph V × V .

J. Bilmes & R. Iyer NOML: Submodularity in ML page 80 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Graphical Model Structure Learning

A probability distribution on binary vectors p : {0, 1}V → [0, 1]:

p(x) =
1

Z
exp(−E (x)) (67)

where E (x) is the energy function.

A graphical model G = (V , E) represents a family of probability
distributions p ∈ F(G) all of which factor w.r.t. the graph.

I.e., if C are a set of cliques of graph G , then we must have:

E (x) =
∑

c∈C
Ec(xc) (68)

The problem of structure learning in graphical models is to find the
graph G based on data.

This can be viewed as a discrete optimization problem on the
potential (undirected) edges of the graph V × V .

J. Bilmes & R. Iyer NOML: Submodularity in ML page 80 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Graphical Model Structure Learning

A probability distribution on binary vectors p : {0, 1}V → [0, 1]:

p(x) =
1

Z
exp(−E (x)) (67)

where E (x) is the energy function.

A graphical model G = (V , E) represents a family of probability
distributions p ∈ F(G) all of which factor w.r.t. the graph.

I.e., if C are a set of cliques of graph G , then we must have:

E (x) =
∑

c∈C
Ec(xc) (68)

The problem of structure learning in graphical models is to find the
graph G based on data.

This can be viewed as a discrete optimization problem on the
potential (undirected) edges of the graph V × V .

J. Bilmes & R. Iyer NOML: Submodularity in ML page 80 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Graphical Model Structure Learning

A probability distribution on binary vectors p : {0, 1}V → [0, 1]:

p(x) =
1

Z
exp(−E (x)) (67)

where E (x) is the energy function.

A graphical model G = (V , E) represents a family of probability
distributions p ∈ F(G) all of which factor w.r.t. the graph.

I.e., if C are a set of cliques of graph G , then we must have:

E (x) =
∑

c∈C
Ec(xc) (68)

The problem of structure learning in graphical models is to find the
graph G based on data.

This can be viewed as a discrete optimization problem on the
potential (undirected) edges of the graph V × V .

J. Bilmes & R. Iyer NOML: Submodularity in ML page 80 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Graphical Models: Learning Tree Distributions

Goal: find the closest distribution pt to p subject to pt factoring w.r.t.
some tree T = (V ,F), i.e., pt ∈ F(T ,M).

This can be expressed as a discrete optimization problem:

minimize
pt∈F(G ,M)

D(p||pt)

subject to pt ∈ F(T ,M).

T = (V ,F) is a tree

H

F G

C

ED

J
I

A B

K

H

F G

C

ED

J
I

A B

K

Discrete problem: choose the optimal set of edges A ⊆ E that
constitute tree (i.e., find a spanning tree of G of best quality).
Define f : 2E → R+ where f is a weighted cycle matroid rank function
(a type of submodular function), with weights
w(e) = w(u, v) = I (Xu; Xv) for e ∈ E .
Then finding the maximum weight base of the matroid is solved by the
greedy algorithm, and also finds the optimal tree (Chow & Liu, 1968)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 81 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Graphical Models: Learning Tree Distributions

Goal: find the closest distribution pt to p subject to pt factoring w.r.t.
some tree T = (V ,F), i.e., pt ∈ F(T ,M).
This can be expressed as a discrete optimization problem:

minimize
pt∈F(G ,M)

D(p||pt)

subject to pt ∈ F(T ,M).

T = (V ,F) is a tree

H

F G

C

ED

J
I

A B

K

H

F G

C

ED

J
I

A B

K

Discrete problem: choose the optimal set of edges A ⊆ E that
constitute tree (i.e., find a spanning tree of G of best quality).
Define f : 2E → R+ where f is a weighted cycle matroid rank function
(a type of submodular function), with weights
w(e) = w(u, v) = I (Xu; Xv) for e ∈ E .
Then finding the maximum weight base of the matroid is solved by the
greedy algorithm, and also finds the optimal tree (Chow & Liu, 1968)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 81 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Graphical Models: Learning Tree Distributions

Goal: find the closest distribution pt to p subject to pt factoring w.r.t.
some tree T = (V ,F), i.e., pt ∈ F(T ,M).
This can be expressed as a discrete optimization problem:

minimize
pt∈F(G ,M)

D(p||pt)

subject to pt ∈ F(T ,M).

T = (V ,F) is a tree

H

F G

C

ED

J
I

A B

K

H

F G

C

ED

J
I

A B

K

Discrete problem: choose the optimal set of edges A ⊆ E that
constitute tree (i.e., find a spanning tree of G of best quality).

Define f : 2E → R+ where f is a weighted cycle matroid rank function
(a type of submodular function), with weights
w(e) = w(u, v) = I (Xu; Xv) for e ∈ E .
Then finding the maximum weight base of the matroid is solved by the
greedy algorithm, and also finds the optimal tree (Chow & Liu, 1968)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 81 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Graphical Models: Learning Tree Distributions

Goal: find the closest distribution pt to p subject to pt factoring w.r.t.
some tree T = (V ,F), i.e., pt ∈ F(T ,M).
This can be expressed as a discrete optimization problem:

minimize
pt∈F(G ,M)

D(p||pt)

subject to pt ∈ F(T ,M).

T = (V ,F) is a tree

H

F G

C

ED

J
I

A B

K

H

F G

C

ED

J
I

A B

K

Discrete problem: choose the optimal set of edges A ⊆ E that
constitute tree (i.e., find a spanning tree of G of best quality).
Define f : 2E → R+ where f is a weighted cycle matroid rank function
(a type of submodular function), with weights
w(e) = w(u, v) = I (Xu; Xv) for e ∈ E .

Then finding the maximum weight base of the matroid is solved by the
greedy algorithm, and also finds the optimal tree (Chow & Liu, 1968)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 81 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Graphical Models: Learning Tree Distributions

Goal: find the closest distribution pt to p subject to pt factoring w.r.t.
some tree T = (V ,F), i.e., pt ∈ F(T ,M).
This can be expressed as a discrete optimization problem:

minimize
pt∈F(G ,M)

D(p||pt)

subject to pt ∈ F(T ,M).

T = (V ,F) is a tree

H

F G

C

ED

J
I

A B

K

H

F G

C

ED

J
I

A B

K

Discrete problem: choose the optimal set of edges A ⊆ E that
constitute tree (i.e., find a spanning tree of G of best quality).
Define f : 2E → R+ where f is a weighted cycle matroid rank function
(a type of submodular function), with weights
w(e) = w(u, v) = I (Xu; Xv) for e ∈ E .
Then finding the maximum weight base of the matroid is solved by the
greedy algorithm, and also finds the optimal tree (Chow & Liu, 1968)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 81 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Determinantal Point Processes (DPPs)

Sometimes we wish not only to valuate subsets A ⊆ V but to induce
probability distributions over all subsets.

We may wish to prefer samples where elements of A are diverse (i.e.,
given a sample A, for a, b ∈ A, we prefer a and b to be different).

(Kulesza,
Gillen-
water, &
Taskar,
2011)

A Determinantal point processes (DPPs) is a probability distribution
over subsets A of V where the “energy” function is submodular.
More “diverse” or “complex” samples are given higher probability.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 82 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Determinantal Point Processes (DPPs)

Sometimes we wish not only to valuate subsets A ⊆ V but to induce
probability distributions over all subsets.
We may wish to prefer samples where elements of A are diverse (i.e.,
given a sample A, for a, b ∈ A, we prefer a and b to be different).

(Kulesza,
Gillen-
water, &
Taskar,
2011)

A Determinantal point processes (DPPs) is a probability distribution
over subsets A of V where the “energy” function is submodular.
More “diverse” or “complex” samples are given higher probability.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 82 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Determinantal Point Processes (DPPs)

Sometimes we wish not only to valuate subsets A ⊆ V but to induce
probability distributions over all subsets.
We may wish to prefer samples where elements of A are diverse (i.e.,
given a sample A, for a, b ∈ A, we prefer a and b to be different).

(Kulesza,
Gillen-
water, &
Taskar,
2011)

A Determinantal point processes (DPPs) is a probability distribution
over subsets A of V where the “energy” function is submodular.

More “diverse” or “complex” samples are given higher probability.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 82 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Determinantal Point Processes (DPPs)

Sometimes we wish not only to valuate subsets A ⊆ V but to induce
probability distributions over all subsets.
We may wish to prefer samples where elements of A are diverse (i.e.,
given a sample A, for a, b ∈ A, we prefer a and b to be different).

(Kulesza,
Gillen-
water, &
Taskar,
2011)

A Determinantal point processes (DPPs) is a probability distribution
over subsets A of V where the “energy” function is submodular.
More “diverse” or “complex” samples are given higher probability.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 82 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

DPPs and log-submodular probability distributions

Given binary vectors x , y ∈ {0, 1}V , y ≤ x if y(v) ≤ x(v),∀v ∈ V .

Given a positive-definite n × n matrix M and a subset X ⊆ V , let
MX be the |X | × |X | principle submatrix as we’ve seen before.

A Determinantal Point Process (DPP) is a distribution of the form:

Pr(X = x) =
|MX (x)|
|M + I | = exp

(
log
(|MX (x)|
|M + I |

))
∝ det(MX (x)) (69)

where I is n× n identity matrix, and X ∈ {0, 1}V is a random vector.

Equivalently, defining K as K = M(M + I)−1, we have:
∑

x∈{0,1}V :x≥y
Pr(X = x) = Pr(X ≥ y) = exp

(
log
(
|KY (y)|

))
(70)

Given positive definite matrix M, function f : 2V → R with
f (A) = log |MA| (the logdet function) is submodular.

Therefore, a DPP is a log-submodular probability distribution.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 83 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

DPPs and log-submodular probability distributions

Given binary vectors x , y ∈ {0, 1}V , y ≤ x if y(v) ≤ x(v),∀v ∈ V .

Given a positive-definite n × n matrix M and a subset X ⊆ V , let
MX be the |X | × |X | principle submatrix as we’ve seen before.

A Determinantal Point Process (DPP) is a distribution of the form:

Pr(X = x) =
|MX (x)|
|M + I | = exp

(
log
(|MX (x)|
|M + I |

))
∝ det(MX (x)) (69)

where I is n× n identity matrix, and X ∈ {0, 1}V is a random vector.

Equivalently, defining K as K = M(M + I)−1, we have:
∑

x∈{0,1}V :x≥y
Pr(X = x) = Pr(X ≥ y) = exp

(
log
(
|KY (y)|

))
(70)

Given positive definite matrix M, function f : 2V → R with
f (A) = log |MA| (the logdet function) is submodular.

Therefore, a DPP is a log-submodular probability distribution.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 83 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

DPPs and log-submodular probability distributions

Given binary vectors x , y ∈ {0, 1}V , y ≤ x if y(v) ≤ x(v),∀v ∈ V .

Given a positive-definite n × n matrix M and a subset X ⊆ V , let
MX be the |X | × |X | principle submatrix as we’ve seen before.

A Determinantal Point Process (DPP) is a distribution of the form:

Pr(X = x) =
|MX (x)|
|M + I | = exp

(
log
(|MX (x)|
|M + I |

))
∝ det(MX (x)) (69)

where I is n× n identity matrix, and X ∈ {0, 1}V is a random vector.

Equivalently, defining K as K = M(M + I)−1, we have:
∑

x∈{0,1}V :x≥y
Pr(X = x) = Pr(X ≥ y) = exp

(
log
(
|KY (y)|

))
(70)

Given positive definite matrix M, function f : 2V → R with
f (A) = log |MA| (the logdet function) is submodular.

Therefore, a DPP is a log-submodular probability distribution.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 83 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

DPPs and log-submodular probability distributions

Given binary vectors x , y ∈ {0, 1}V , y ≤ x if y(v) ≤ x(v),∀v ∈ V .

Given a positive-definite n × n matrix M and a subset X ⊆ V , let
MX be the |X | × |X | principle submatrix as we’ve seen before.

A Determinantal Point Process (DPP) is a distribution of the form:

Pr(X = x) =
|MX (x)|
|M + I | = exp

(
log
(|MX (x)|
|M + I |

))
∝ det(MX (x)) (69)

where I is n× n identity matrix, and X ∈ {0, 1}V is a random vector.

Equivalently, defining K as K = M(M + I)−1, we have:
∑

x∈{0,1}V :x≥y
Pr(X = x) = Pr(X ≥ y) = exp

(
log
(
|KY (y)|

))
(70)

Given positive definite matrix M, function f : 2V → R with
f (A) = log |MA| (the logdet function) is submodular.

Therefore, a DPP is a log-submodular probability distribution.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 83 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

DPPs and log-submodular probability distributions

Given binary vectors x , y ∈ {0, 1}V , y ≤ x if y(v) ≤ x(v),∀v ∈ V .

Given a positive-definite n × n matrix M and a subset X ⊆ V , let
MX be the |X | × |X | principle submatrix as we’ve seen before.

A Determinantal Point Process (DPP) is a distribution of the form:

Pr(X = x) =
|MX (x)|
|M + I | = exp

(
log
(|MX (x)|
|M + I |

))
∝ det(MX (x)) (69)

where I is n× n identity matrix, and X ∈ {0, 1}V is a random vector.

Equivalently, defining K as K = M(M + I)−1, we have:
∑

x∈{0,1}V :x≥y
Pr(X = x) = Pr(X ≥ y) = exp

(
log
(
|KY (y)|

))
(70)

Given positive definite matrix M, function f : 2V → R with
f (A) = log |MA| (the logdet function) is submodular.

Therefore, a DPP is a log-submodular probability distribution.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 83 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

DPPs and log-submodular probability distributions

Given binary vectors x , y ∈ {0, 1}V , y ≤ x if y(v) ≤ x(v),∀v ∈ V .

Given a positive-definite n × n matrix M and a subset X ⊆ V , let
MX be the |X | × |X | principle submatrix as we’ve seen before.

A Determinantal Point Process (DPP) is a distribution of the form:

Pr(X = x) =
|MX (x)|
|M + I | = exp

(
log
(|MX (x)|
|M + I |

))
∝ det(MX (x)) (69)

where I is n× n identity matrix, and X ∈ {0, 1}V is a random vector.

Equivalently, defining K as K = M(M + I)−1, we have:
∑

x∈{0,1}V :x≥y
Pr(X = x) = Pr(X ≥ y) = exp

(
log
(
|KY (y)|

))
(70)

Given positive definite matrix M, function f : 2V → R with
f (A) = log |MA| (the logdet function) is submodular.

Therefore, a DPP is a log-submodular probability distribution.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 83 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Outline: Part 2

5 Submodular Applications in Machine Learning
Where is submodularity useful?

6 As a model of diversity, coverage, span, or information

7 As a model of cooperative costs, complexity, roughness, and
irregularity

8 As a Parameter for an ML algorithm

9 Itself, as a target for learning

10 Surrogates for optimization and analysis

11 Reading
Refs

J. Bilmes & R. Iyer NOML: Submodularity in ML page 84 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Graphical Models and fast MAP Inference

Given distribution that factors w.r.t. a graph:

p(x) =
1

Z
exp(−E (x)) (71)

where E (x) =
∑

c∈C Ec(xc) and C are cliques of graph G = (V , E).

MAP inference problem is important in ML: compute

x∗ ∈ argmax
x∈{0,1}V

p(x) (72)

Easy when G a tree, exponential in k (tree-width of G) in general.
Even worse, NP-hard to find the tree-width.
Tree-width can be large even when degree is small (e.g., regular grid
graphs have low-degree but Ω(

√
n) tree-width).

Many approximate inference strategies utilize additional
factorization assumptions (e.g., mean-field, variational inference,
expectation propagation, etc).
Can we do exact MAP inference in polynomial time regardless of the
tree-width, without even knowing the tree-width?

J. Bilmes & R. Iyer NOML: Submodularity in ML page 85 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Graphical Models and fast MAP Inference

Given distribution that factors w.r.t. a graph:

p(x) =
1

Z
exp(−E (x)) (71)

where E (x) =
∑

c∈C Ec(xc) and C are cliques of graph G = (V , E).
MAP inference problem is important in ML: compute

x∗ ∈ argmax
x∈{0,1}V

p(x) (72)

Easy when G a tree, exponential in k (tree-width of G) in general.
Even worse, NP-hard to find the tree-width.
Tree-width can be large even when degree is small (e.g., regular grid
graphs have low-degree but Ω(

√
n) tree-width).

Many approximate inference strategies utilize additional
factorization assumptions (e.g., mean-field, variational inference,
expectation propagation, etc).
Can we do exact MAP inference in polynomial time regardless of the
tree-width, without even knowing the tree-width?

J. Bilmes & R. Iyer NOML: Submodularity in ML page 85 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Graphical Models and fast MAP Inference

Given distribution that factors w.r.t. a graph:

p(x) =
1

Z
exp(−E (x)) (71)

where E (x) =
∑

c∈C Ec(xc) and C are cliques of graph G = (V , E).
MAP inference problem is important in ML: compute

x∗ ∈ argmax
x∈{0,1}V

p(x) (72)

Easy when G a tree, exponential in k (tree-width of G) in general.

Even worse, NP-hard to find the tree-width.
Tree-width can be large even when degree is small (e.g., regular grid
graphs have low-degree but Ω(

√
n) tree-width).

Many approximate inference strategies utilize additional
factorization assumptions (e.g., mean-field, variational inference,
expectation propagation, etc).
Can we do exact MAP inference in polynomial time regardless of the
tree-width, without even knowing the tree-width?

J. Bilmes & R. Iyer NOML: Submodularity in ML page 85 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Graphical Models and fast MAP Inference

Given distribution that factors w.r.t. a graph:

p(x) =
1

Z
exp(−E (x)) (71)

where E (x) =
∑

c∈C Ec(xc) and C are cliques of graph G = (V , E).
MAP inference problem is important in ML: compute

x∗ ∈ argmax
x∈{0,1}V

p(x) (72)

Easy when G a tree, exponential in k (tree-width of G) in general.
Even worse, NP-hard to find the tree-width.

Tree-width can be large even when degree is small (e.g., regular grid
graphs have low-degree but Ω(

√
n) tree-width).

Many approximate inference strategies utilize additional
factorization assumptions (e.g., mean-field, variational inference,
expectation propagation, etc).
Can we do exact MAP inference in polynomial time regardless of the
tree-width, without even knowing the tree-width?

J. Bilmes & R. Iyer NOML: Submodularity in ML page 85 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Graphical Models and fast MAP Inference

Given distribution that factors w.r.t. a graph:

p(x) =
1

Z
exp(−E (x)) (71)

where E (x) =
∑

c∈C Ec(xc) and C are cliques of graph G = (V , E).
MAP inference problem is important in ML: compute

x∗ ∈ argmax
x∈{0,1}V

p(x) (72)

Easy when G a tree, exponential in k (tree-width of G) in general.
Even worse, NP-hard to find the tree-width.
Tree-width can be large even when degree is small (e.g., regular grid
graphs have low-degree but Ω(

√
n) tree-width).

Many approximate inference strategies utilize additional
factorization assumptions (e.g., mean-field, variational inference,
expectation propagation, etc).
Can we do exact MAP inference in polynomial time regardless of the
tree-width, without even knowing the tree-width?

J. Bilmes & R. Iyer NOML: Submodularity in ML page 85 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Graphical Models and fast MAP Inference

Given distribution that factors w.r.t. a graph:

p(x) =
1

Z
exp(−E (x)) (71)

where E (x) =
∑

c∈C Ec(xc) and C are cliques of graph G = (V , E).
MAP inference problem is important in ML: compute

x∗ ∈ argmax
x∈{0,1}V

p(x) (72)

Easy when G a tree, exponential in k (tree-width of G) in general.
Even worse, NP-hard to find the tree-width.
Tree-width can be large even when degree is small (e.g., regular grid
graphs have low-degree but Ω(

√
n) tree-width).

Many approximate inference strategies utilize additional
factorization assumptions (e.g., mean-field, variational inference,
expectation propagation, etc).

Can we do exact MAP inference in polynomial time regardless of the
tree-width, without even knowing the tree-width?

J. Bilmes & R. Iyer NOML: Submodularity in ML page 85 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Graphical Models and fast MAP Inference

Given distribution that factors w.r.t. a graph:

p(x) =
1

Z
exp(−E (x)) (71)

where E (x) =
∑

c∈C Ec(xc) and C are cliques of graph G = (V , E).
MAP inference problem is important in ML: compute

x∗ ∈ argmax
x∈{0,1}V

p(x) (72)

Easy when G a tree, exponential in k (tree-width of G) in general.
Even worse, NP-hard to find the tree-width.
Tree-width can be large even when degree is small (e.g., regular grid
graphs have low-degree but Ω(

√
n) tree-width).

Many approximate inference strategies utilize additional
factorization assumptions (e.g., mean-field, variational inference,
expectation propagation, etc).
Can we do exact MAP inference in polynomial time regardless of the
tree-width, without even knowing the tree-width?

J. Bilmes & R. Iyer NOML: Submodularity in ML page 85 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Order-two (edge) graphical models

Given G let p ∈ F(G ,M(f)) such that we can write the global
energy E (x) as a sum of unary and pairwise potentials:

E (x) =
∑

v∈V (G)

ev (xv) +
∑

(i ,j)∈E(G)

eij(xi , xj) (73)

ev (xv) and eij(xi , xj) are like local energy potentials.

Since log p(x) = −E (x) + const., the smaller ev (xv) or eij(xi , xj)
become, the higher the probability becomes.

Further, say that DXv = {0, 1} (binary), so we have binary random
vectors distributed according to p(x).

Thus, x ∈ {0, 1}V , and finding MPE solution is setting some of the
variables to 0 and some to 1, i.e.,

min
x∈{0,1}V

E (x) (74)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 86 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Order-two (edge) graphical models

Given G let p ∈ F(G ,M(f)) such that we can write the global
energy E (x) as a sum of unary and pairwise potentials:

E (x) =
∑

v∈V (G)

ev (xv) +
∑

(i ,j)∈E(G)

eij(xi , xj) (73)

ev (xv) and eij(xi , xj) are like local energy potentials.

Since log p(x) = −E (x) + const., the smaller ev (xv) or eij(xi , xj)
become, the higher the probability becomes.

Further, say that DXv = {0, 1} (binary), so we have binary random
vectors distributed according to p(x).

Thus, x ∈ {0, 1}V , and finding MPE solution is setting some of the
variables to 0 and some to 1, i.e.,

min
x∈{0,1}V

E (x) (74)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 86 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Order-two (edge) graphical models

Given G let p ∈ F(G ,M(f)) such that we can write the global
energy E (x) as a sum of unary and pairwise potentials:

E (x) =
∑

v∈V (G)

ev (xv) +
∑

(i ,j)∈E(G)

eij(xi , xj) (73)

ev (xv) and eij(xi , xj) are like local energy potentials.

Since log p(x) = −E (x) + const., the smaller ev (xv) or eij(xi , xj)
become, the higher the probability becomes.

Further, say that DXv = {0, 1} (binary), so we have binary random
vectors distributed according to p(x).

Thus, x ∈ {0, 1}V , and finding MPE solution is setting some of the
variables to 0 and some to 1, i.e.,

min
x∈{0,1}V

E (x) (74)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 86 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Order-two (edge) graphical models

Given G let p ∈ F(G ,M(f)) such that we can write the global
energy E (x) as a sum of unary and pairwise potentials:

E (x) =
∑

v∈V (G)

ev (xv) +
∑

(i ,j)∈E(G)

eij(xi , xj) (73)

ev (xv) and eij(xi , xj) are like local energy potentials.

Since log p(x) = −E (x) + const., the smaller ev (xv) or eij(xi , xj)
become, the higher the probability becomes.

Further, say that DXv = {0, 1} (binary), so we have binary random
vectors distributed according to p(x).

Thus, x ∈ {0, 1}V , and finding MPE solution is setting some of the
variables to 0 and some to 1, i.e.,

min
x∈{0,1}V

E (x) (74)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 86 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Order-two (edge) graphical models

Given G let p ∈ F(G ,M(f)) such that we can write the global
energy E (x) as a sum of unary and pairwise potentials:

E (x) =
∑

v∈V (G)

ev (xv) +
∑

(i ,j)∈E(G)

eij(xi , xj) (73)

ev (xv) and eij(xi , xj) are like local energy potentials.

Since log p(x) = −E (x) + const., the smaller ev (xv) or eij(xi , xj)
become, the higher the probability becomes.

Further, say that DXv = {0, 1} (binary), so we have binary random
vectors distributed according to p(x).

Thus, x ∈ {0, 1}V , and finding MPE solution is setting some of the
variables to 0 and some to 1, i.e.,

min
x∈{0,1}V

E (x) (74)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 86 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

MRF example

Markov random field

log p(x) ∝
∑

v∈V (G)

ev (xv) +
∑

(i ,j)∈E(G)

eij(xi , xj) (75)

When G is a 2D grid graph, we have

J. Bilmes & R. Iyer NOML: Submodularity in ML page 87 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Create an auxiliary graph

We can create auxiliary graph Ga that involves two new “terminal”
nodes s and t and all of the original “non-terminal” nodes
v ∈ V (G).

The non-terminal nodes represent the original random variables
xv , v ∈ V .

Starting with the original grid-graph amongst the vertices v ∈ V , we
connect each of s and t to all of the original nodes.

I.e., we form Ga = (V ∪ {s, t},E + ∪v∈V ((s, v) ∪ (v , t))).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 88 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Transformation from graphical model to auxiliary graph

Original 2D-grid graphical model G and energy function
E (x) =

∑
v∈V (G) ev (xv) +

∑
(i ,j)∈E(G) eij(xi , xj) needing to be minimized

over x ∈ {0, 1}V . Recall, tree-width is O(
√
|V |).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 89 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Transformation from graphical model to auxiliary graph

Augmented (graph-cut) directed graph Ga. Edge
weights (soon defined) of graph are derived
from {ev (·)}v∈V and {eij(·, ·)}(i ,j)∈E(G).

An (s, t)-cut C ⊆ E (Ga) is a set of
edges that cut all paths from s to
t. A minimum (s, t)-cut is one
that has minimum weight
where w(C) =

∑
e∈C we

is the cut weight.
To be a cut, must
have that, for
every v ∈ V ,
either (s, v) ∈ C or
(v , t) ∈ C . Graph is
directed, arrows pointing down
from s towards t or from i → j . t

s

J. Bilmes & R. Iyer NOML: Submodularity in ML page 89 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Transformation from graphical model to auxiliary graph

Augmented (graph-cut) directed graph Ga. Edge
weights (soon defined) of graph are derived
from {ev (·)}v∈V and {eij(·, ·)}(i ,j)∈E(G).

An (s, t)-cut C ⊆ E (Ga) is a set of
edges that cut all paths from s to
t. A minimum (s, t)-cut is one
that has minimum weight
where w(C) =

∑
e∈C we

is the cut weight.
To be a cut, must
have that, for
every v ∈ V ,
either (s, v) ∈ C or
(v , t) ∈ C . Graph is
directed, arrows pointing down
from s towards t or from i → j . t

s

J. Bilmes & R. Iyer NOML: Submodularity in ML page 89 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Transformation from graphical model to auxiliary graph

Cut edges that are incident to terminal nodes
s and t are indicated in green.

t

s

J. Bilmes & R. Iyer NOML: Submodularity in ML page 89 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Transformation from graphical model to auxiliary graph

Cut edges that are incident to terminal nodes
s and t removed from graph. But there are
still un-cut (s, t)-paths remaining.

t

s

J. Bilmes & R. Iyer NOML: Submodularity in ML page 89 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Transformation from graphical model to auxiliary graph

Additional cut edges incident to two
non-terminal nodes are indicated in green.

t

s

J. Bilmes & R. Iyer NOML: Submodularity in ML page 89 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Transformation from graphical model to auxiliary graph

Vertices adjacent to t are shaded blue,
vertices adjacent to s shaded red.

t

s

J. Bilmes & R. Iyer NOML: Submodularity in ML page 89 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Transformation from graphical model to auxiliary graph

Additional cut edges incident to two
non-terminal nodes are removed from graph.

t

s

J. Bilmes & R. Iyer NOML: Submodularity in ML page 89 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Transformation from graphical model to auxiliary graph

Augmented graph-cut graph with cut edges
removed corresponds to particular binary
vector x̄ ∈ {0, 1}n. Each vector x̄ has a
score corresponding to log p(x̄).
When can graph cut scores
correspond precisely to log p(x̄)
in a way that min-cut
algorithms can find
minimum of
energy E (x)?

t

s

J. Bilmes & R. Iyer NOML: Submodularity in ML page 89 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Setting of the weights in the auxiliary cut graph

Any graph cut corresponds to a vector x̄ ∈ {0, 1}n.

If weights of all edges, except those involving terminals s and t, are
non-negative, graph cut computable in polynomial time via max-flow
(many algorithms, e.g., Edmonds&Karp O(nm2) or
O(n2m log(nC)); Goldberg&Tarjan O(nm log(n2/m)), see Schrijver,
page 161).

If weights are set correctly in the cut graph, and if edge functions eij
satisfy certain properties, then graph-cut score corresponding to x̄
can be made equivalent to E (x) = log p(x̄) + const..

Hence, poly time graph cut, can find the optimal MPE assignment,
regardless of the graphical model’s tree-width!

In general, finding MPE is an NP-hard optimization problem.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 90 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Setting of the weights in the auxiliary cut graph

Any graph cut corresponds to a vector x̄ ∈ {0, 1}n.

If weights of all edges, except those involving terminals s and t, are
non-negative, graph cut computable in polynomial time via max-flow
(many algorithms, e.g., Edmonds&Karp O(nm2) or
O(n2m log(nC)); Goldberg&Tarjan O(nm log(n2/m)), see Schrijver,
page 161).

If weights are set correctly in the cut graph, and if edge functions eij
satisfy certain properties, then graph-cut score corresponding to x̄
can be made equivalent to E (x) = log p(x̄) + const..

Hence, poly time graph cut, can find the optimal MPE assignment,
regardless of the graphical model’s tree-width!

In general, finding MPE is an NP-hard optimization problem.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 90 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Setting of the weights in the auxiliary cut graph

Any graph cut corresponds to a vector x̄ ∈ {0, 1}n.

If weights of all edges, except those involving terminals s and t, are
non-negative, graph cut computable in polynomial time via max-flow
(many algorithms, e.g., Edmonds&Karp O(nm2) or
O(n2m log(nC)); Goldberg&Tarjan O(nm log(n2/m)), see Schrijver,
page 161).

If weights are set correctly in the cut graph, and if edge functions eij
satisfy certain properties, then graph-cut score corresponding to x̄
can be made equivalent to E (x) = log p(x̄) + const..

Hence, poly time graph cut, can find the optimal MPE assignment,
regardless of the graphical model’s tree-width!

In general, finding MPE is an NP-hard optimization problem.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 90 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Setting of the weights in the auxiliary cut graph

Any graph cut corresponds to a vector x̄ ∈ {0, 1}n.

If weights of all edges, except those involving terminals s and t, are
non-negative, graph cut computable in polynomial time via max-flow
(many algorithms, e.g., Edmonds&Karp O(nm2) or
O(n2m log(nC)); Goldberg&Tarjan O(nm log(n2/m)), see Schrijver,
page 161).

If weights are set correctly in the cut graph, and if edge functions eij
satisfy certain properties, then graph-cut score corresponding to x̄
can be made equivalent to E (x) = log p(x̄) + const..

Hence, poly time graph cut, can find the optimal MPE assignment,
regardless of the graphical model’s tree-width!

In general, finding MPE is an NP-hard optimization problem.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 90 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Setting of the weights in the auxiliary cut graph

Any graph cut corresponds to a vector x̄ ∈ {0, 1}n.

If weights of all edges, except those involving terminals s and t, are
non-negative, graph cut computable in polynomial time via max-flow
(many algorithms, e.g., Edmonds&Karp O(nm2) or
O(n2m log(nC)); Goldberg&Tarjan O(nm log(n2/m)), see Schrijver,
page 161).

If weights are set correctly in the cut graph, and if edge functions eij
satisfy certain properties, then graph-cut score corresponding to x̄
can be made equivalent to E (x) = log p(x̄) + const..

Hence, poly time graph cut, can find the optimal MPE assignment,
regardless of the graphical model’s tree-width!

In general, finding MPE is an NP-hard optimization problem.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 90 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Setting of the weights in the auxiliary cut graph

Edge weight assignments. Start with all weights set to zero.

For (s, v) with v ∈ V (G), set edge

ws,v = (ev (1)− ev (0))1(ev (1) > ev (0)) (76)

For (v , t) with v ∈ V (G), set edge

wv ,t = (ev (0)− ev (1))1(ev (0) ≥ ev (1)) (77)

For original edge (i , j) ∈ E , i , j ∈ V , set weight

wi ,j = eij(1, 0) + eij(0, 1)− eij(1, 1)− eij(0, 0) (78)

and if eij(1, 0) > eij(0, 0), and eij(1, 1) > eij(0, 1),

ws,i ← ws,i + (eij(1, 0)− eij(0, 0)) (79)

wj ,t ← wj ,t + (eij(1, 1)− eij(0, 1)) (80)

and analogous increments if inequalities are flipped.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 91 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Restricted clique functions
Edge functions must be submodular (equivalently “attractive”,
“regular”, or “ferromagnetic”) for this to work, i.e., for all
(i , j) ∈ E (G), we must have that:

eij(0, 1) + eij(1, 0) ≥ eij(1, 1) + eij(0, 0) (81)

which is a special case of more general submodular functions.

In probability form p(x) ∝∏ψ, we get
ψij(1, 0)ψij(0, 1) ≤ ψij(0, 0)ψij(1, 1), so geometric mean of factor
scores (thus probability) is higher when neighboring pixels have the
same value - reasonable assumption in natural scenes and signals.

So weights wij in s, t-graph above are always non-negative.

Theorem

If edge functions are submodular and edge weights in s, t-graph are set
as above, then finding the minimum s, t-cut in the auxiliary graph will
yield a variable assignment having maximum probability.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 92 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Restricted clique functions
Edge functions must be submodular (equivalently “attractive”,
“regular”, or “ferromagnetic”) for this to work, i.e., for all
(i , j) ∈ E (G), we must have that:

eij(0, 1) + eij(1, 0) ≥ eij(1, 1) + eij(0, 0) (81)

which is a special case of more general submodular functions.

In probability form p(x) ∝∏ψ, we get
ψij(1, 0)ψij(0, 1) ≤ ψij(0, 0)ψij(1, 1), so geometric mean of factor
scores (thus probability) is higher when neighboring pixels have the
same value - reasonable assumption in natural scenes and signals.

So weights wij in s, t-graph above are always non-negative.

Theorem

If edge functions are submodular and edge weights in s, t-graph are set
as above, then finding the minimum s, t-cut in the auxiliary graph will
yield a variable assignment having maximum probability.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 92 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Restricted clique functions
Edge functions must be submodular (equivalently “attractive”,
“regular”, or “ferromagnetic”) for this to work, i.e., for all
(i , j) ∈ E (G), we must have that:

eij(0, 1) + eij(1, 0) ≥ eij(1, 1) + eij(0, 0) (81)

which is a special case of more general submodular functions.

In probability form p(x) ∝∏ψ, we get
ψij(1, 0)ψij(0, 1) ≤ ψij(0, 0)ψij(1, 1), so geometric mean of factor
scores (thus probability) is higher when neighboring pixels have the
same value - reasonable assumption in natural scenes and signals.

So weights wij in s, t-graph above are always non-negative.

Theorem

If edge functions are submodular and edge weights in s, t-graph are set
as above, then finding the minimum s, t-cut in the auxiliary graph will
yield a variable assignment having maximum probability.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 92 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Restricted clique functions
Edge functions must be submodular (equivalently “attractive”,
“regular”, or “ferromagnetic”) for this to work, i.e., for all
(i , j) ∈ E (G), we must have that:

eij(0, 1) + eij(1, 0) ≥ eij(1, 1) + eij(0, 0) (81)

which is a special case of more general submodular functions.

In probability form p(x) ∝∏ψ, we get
ψij(1, 0)ψij(0, 1) ≤ ψij(0, 0)ψij(1, 1), so geometric mean of factor
scores (thus probability) is higher when neighboring pixels have the
same value - reasonable assumption in natural scenes and signals.

So weights wij in s, t-graph above are always non-negative.

Theorem

If edge functions are submodular and edge weights in s, t-graph are set
as above, then finding the minimum s, t-cut in the auxiliary graph will
yield a variable assignment having maximum probability.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 92 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Non-negative edge weights

The inequalities ensures that we are adding non-negative weights to
each of the edges. I.e., we do ws,i ← ws,i + (eij(1, 0)− eij(0, 0))
only if eij(1, 0) > eij(0, 0).

For (i , j) edge weight, it takes the form:

wi ,j = eij(1, 0) + eij(0, 1)− eij(1, 1)− eij(0, 0) (82)

For this to be non-negative, we need:

eij(1, 0) + eij(0, 1) ≥ eij(1, 1) + eij(0, 0) (83)

Thus weights wij in s, t-graph above are always non-negative, so
graph-cut solvable exactly.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 93 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Non-negative edge weights

The inequalities ensures that we are adding non-negative weights to
each of the edges. I.e., we do ws,i ← ws,i + (eij(1, 0)− eij(0, 0))
only if eij(1, 0) > eij(0, 0).

For (i , j) edge weight, it takes the form:

wi ,j = eij(1, 0) + eij(0, 1)− eij(1, 1)− eij(0, 0) (82)

For this to be non-negative, we need:

eij(1, 0) + eij(0, 1) ≥ eij(1, 1) + eij(0, 0) (83)

Thus weights wij in s, t-graph above are always non-negative, so
graph-cut solvable exactly.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 93 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Non-negative edge weights

The inequalities ensures that we are adding non-negative weights to
each of the edges. I.e., we do ws,i ← ws,i + (eij(1, 0)− eij(0, 0))
only if eij(1, 0) > eij(0, 0).

For (i , j) edge weight, it takes the form:

wi ,j = eij(1, 0) + eij(0, 1)− eij(1, 1)− eij(0, 0) (82)

For this to be non-negative, we need:

eij(1, 0) + eij(0, 1) ≥ eij(1, 1) + eij(0, 0) (83)

Thus weights wij in s, t-graph above are always non-negative, so
graph-cut solvable exactly.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 93 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Non-negative edge weights

The inequalities ensures that we are adding non-negative weights to
each of the edges. I.e., we do ws,i ← ws,i + (eij(1, 0)− eij(0, 0))
only if eij(1, 0) > eij(0, 0).

For (i , j) edge weight, it takes the form:

wi ,j = eij(1, 0) + eij(0, 1)− eij(1, 1)− eij(0, 0) (82)

For this to be non-negative, we need:

eij(1, 0) + eij(0, 1) ≥ eij(1, 1) + eij(0, 0) (83)

Thus weights wij in s, t-graph above are always non-negative, so
graph-cut solvable exactly.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 93 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Submodular potentials

Edge functions must be submodular (in the binary case, equivalent
to “associative”, “attractive”, “regular”, “Potts”, or
“ferromagnetic”): for all (i , j) ∈ E (G), must have:

eij(0, 1) + eij(1, 0) ≥ eij(1, 1) + eij(0, 0) (84)

This means: on average, preservation is preferred over change.

As a set function, this is the same as:

f (X) =
∑

{i ,j}∈E(G)

fi ,j(X ∩ {i , j}) (85)

which is submodular if each of the fi ,j ’s are submodular!

A special case of more general submodular functions – unconstrained
submodular function minimization is solvable in polytime.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 94 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Submodular potentials

Edge functions must be submodular (in the binary case, equivalent
to “associative”, “attractive”, “regular”, “Potts”, or
“ferromagnetic”): for all (i , j) ∈ E (G), must have:

eij(0, 1) + eij(1, 0) ≥ eij(1, 1) + eij(0, 0) (84)

This means: on average, preservation is preferred over change.

As a set function, this is the same as:

f (X) =
∑

{i ,j}∈E(G)

fi ,j(X ∩ {i , j}) (85)

which is submodular if each of the fi ,j ’s are submodular!

A special case of more general submodular functions – unconstrained
submodular function minimization is solvable in polytime.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 94 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Submodular potentials

Edge functions must be submodular (in the binary case, equivalent
to “associative”, “attractive”, “regular”, “Potts”, or
“ferromagnetic”): for all (i , j) ∈ E (G), must have:

eij(0, 1) + eij(1, 0) ≥ eij(1, 1) + eij(0, 0) (84)

This means: on average, preservation is preferred over change.

As a set function, this is the same as:

f (X) =
∑

{i ,j}∈E(G)

fi ,j(X ∩ {i , j}) (85)

which is submodular if each of the fi ,j ’s are submodular!

A special case of more general submodular functions – unconstrained
submodular function minimization is solvable in polytime.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 94 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Submodular potentials

Edge functions must be submodular (in the binary case, equivalent
to “associative”, “attractive”, “regular”, “Potts”, or
“ferromagnetic”): for all (i , j) ∈ E (G), must have:

eij(0, 1) + eij(1, 0) ≥ eij(1, 1) + eij(0, 0) (84)

This means: on average, preservation is preferred over change.

As a set function, this is the same as:

f (X) =
∑

{i ,j}∈E(G)

fi ,j(X ∩ {i , j}) (85)

which is submodular if each of the fi ,j ’s are submodular!

A special case of more general submodular functions – unconstrained
submodular function minimization is solvable in polytime.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 94 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

On log-supermodular vs. log-submodular distributions

Log-supermodular distributions.

log Pr(x) = f (x) + const. = −E (x) + const. (86)

where f is supermodular (E (x) is submodular). MAP (or
high-probable) assignments should be “regular”, “homogeneous”,
“smooth”, “simple”. E.g., attractive potentials in computer vision,
ferromagnetic Potts models statistical physics.

Log-submodular distributions:

log Pr(x) = f (x) + const. (87)

where f is submodular. MAP or high-probable assignments should
be “diverse”, or “complex”, or “covering”, like in determinantal
point processes.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 95 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

On log-supermodular vs. log-submodular distributions

Log-supermodular distributions.

log Pr(x) = f (x) + const. = −E (x) + const. (86)

where f is supermodular (E (x) is submodular). MAP (or
high-probable) assignments should be “regular”, “homogeneous”,
“smooth”, “simple”. E.g., attractive potentials in computer vision,
ferromagnetic Potts models statistical physics.

Log-submodular distributions:

log Pr(x) = f (x) + const. (87)

where f is submodular. MAP or high-probable assignments should
be “diverse”, or “complex”, or “covering”, like in determinantal
point processes.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 95 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Submodular potentials in GMs: Image Segmentation

an image needing to be segmented.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 96 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Submodular potentials in GMs: Image Segmentation

labeled data, some pixels being marked foreground (red) and others
marked background (blue) to train the unaries {ev (xv)}v∈V .

J. Bilmes & R. Iyer NOML: Submodularity in ML page 96 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Submodular potentials in GMs: Image Segmentation

Set of a graph over the image, graph shows binary pixel labels.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 96 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Submodular potentials in GMs: Image Segmentation

Run graph-cut to segment the image, foreground in red, background
in white.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 96 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Submodular potentials in GMs: Image Segmentation

the foreground is removed from the background.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 96 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Graph Cut Marginalization

What to do when potentials are not submodular?

QPBO, quadratic
pseudo Boolean optimization (computes only a partial solution)

.

Move making algorithms (α− β-swaps, α-expansions, fusion moves,
etc.)

Is submodularity sufficient to make standard marginalization
possible?

Unfortunately, even in submodular case, computing partition
function is a #P-complete problem (if it was possible to do it in
poly time, that would require P = NP).

On the other hand, for pairwise MRFs, computing partition function
in submodular potential case is approximable (has low error with
high probability).

SPPs and log(SPP)s (Rishabh’s talk) will also talk about how
submodularity allows further approximations via semigradients.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 97 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Graph Cut Marginalization

What to do when potentials are not submodular? QPBO, quadratic
pseudo Boolean optimization (computes only a partial solution).

Move making algorithms (α− β-swaps, α-expansions, fusion moves,
etc.)

Is submodularity sufficient to make standard marginalization
possible?

Unfortunately, even in submodular case, computing partition
function is a #P-complete problem (if it was possible to do it in
poly time, that would require P = NP).

On the other hand, for pairwise MRFs, computing partition function
in submodular potential case is approximable (has low error with
high probability).

SPPs and log(SPP)s (Rishabh’s talk) will also talk about how
submodularity allows further approximations via semigradients.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 97 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Graph Cut Marginalization

What to do when potentials are not submodular? QPBO, quadratic
pseudo Boolean optimization (computes only a partial solution).

Move making algorithms (α− β-swaps, α-expansions, fusion moves,
etc.)

Is submodularity sufficient to make standard marginalization
possible?

Unfortunately, even in submodular case, computing partition
function is a #P-complete problem (if it was possible to do it in
poly time, that would require P = NP).

On the other hand, for pairwise MRFs, computing partition function
in submodular potential case is approximable (has low error with
high probability).

SPPs and log(SPP)s (Rishabh’s talk) will also talk about how
submodularity allows further approximations via semigradients.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 97 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Graph Cut Marginalization

What to do when potentials are not submodular? QPBO, quadratic
pseudo Boolean optimization (computes only a partial solution).

Move making algorithms (α− β-swaps, α-expansions, fusion moves,
etc.)

Is submodularity sufficient to make standard marginalization
possible?

Unfortunately, even in submodular case, computing partition
function is a #P-complete problem (if it was possible to do it in
poly time, that would require P = NP).

On the other hand, for pairwise MRFs, computing partition function
in submodular potential case is approximable (has low error with
high probability).

SPPs and log(SPP)s (Rishabh’s talk) will also talk about how
submodularity allows further approximations via semigradients.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 97 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Graph Cut Marginalization

What to do when potentials are not submodular? QPBO, quadratic
pseudo Boolean optimization (computes only a partial solution).

Move making algorithms (α− β-swaps, α-expansions, fusion moves,
etc.)

Is submodularity sufficient to make standard marginalization
possible?

Unfortunately, even in submodular case, computing partition
function is a #P-complete problem (if it was possible to do it in
poly time, that would require P = NP).

On the other hand, for pairwise MRFs, computing partition function
in submodular potential case is approximable (has low error with
high probability).

SPPs and log(SPP)s (Rishabh’s talk) will also talk about how
submodularity allows further approximations via semigradients.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 97 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Graph Cut Marginalization

What to do when potentials are not submodular? QPBO, quadratic
pseudo Boolean optimization (computes only a partial solution).

Move making algorithms (α− β-swaps, α-expansions, fusion moves,
etc.)

Is submodularity sufficient to make standard marginalization
possible?

Unfortunately, even in submodular case, computing partition
function is a #P-complete problem (if it was possible to do it in
poly time, that would require P = NP).

On the other hand, for pairwise MRFs, computing partition function
in submodular potential case is approximable (has low error with
high probability).

SPPs and log(SPP)s (Rishabh’s talk) will also talk about how
submodularity allows further approximations via semigradients.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 97 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Graph Cut Marginalization

What to do when potentials are not submodular? QPBO, quadratic
pseudo Boolean optimization (computes only a partial solution).

Move making algorithms (α− β-swaps, α-expansions, fusion moves,
etc.)

Is submodularity sufficient to make standard marginalization
possible?

Unfortunately, even in submodular case, computing partition
function is a #P-complete problem (if it was possible to do it in
poly time, that would require P = NP).

On the other hand, for pairwise MRFs, computing partition function
in submodular potential case is approximable (has low error with
high probability).

SPPs and log(SPP)s (Rishabh’s talk) will also talk about how
submodularity allows further approximations via semigradients.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 97 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Shrinking bias in graph cut image segmentation

What does graph-cut based
image segmentation do with
elongated structures (top) or
contrast gradients (bottom)?

J. Bilmes & R. Iyer NOML: Submodularity in ML page 98 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Shrinking bias in graph cut image segmentation

J. Bilmes & R. Iyer NOML: Submodularity in ML page 98 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Shrinking bias in image segmentation

An image needing to be segmented

Clear high-contrast boundaries

J. Bilmes & R. Iyer NOML: Submodularity in ML page 99 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Shrinking bias in image segmentation

Graph-cut (MRF with submodular edge potentials) works well.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 99 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Shrinking bias in image segmentation

Now with contrast gradient (less clear segment as we move up).

The “elongated structure” also poses a challenge.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 99 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Shrinking bias in image segmentation

Unary potentials {ev (xv)}v∈V prefer a different segmentation.

Edge weights are the same regardless of where they are
wi ,j = eij(1, 0) + eij(0, 1)− eij(1, 1)− eij(0, 0) ≥ 0.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 99 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Shrinking bias in image segmentation

And the shrinking bias occurs, truncating the segmentation since it
results in lower energy.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 99 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Shrinking bias in image segmentation

With “typed” edges, we can have cut cost be sum of edge color
weights, not sum of edge weights.

Submodularity to the rescue: balls & urns.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 99 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Addressing shrinking bias with edge submodularity

Standard graph cut, uses a modular function w : 2E → R+ defined
on the edges to measure cut costs. Graph cut node function is
submodular.

fw (X) = w
(
{(u, v) ∈ E : u ∈ X , v ∈ V \ X}

)
(88)

Instead, we can use a submodular function g : 2E → R+ defined on
the edges to express cooperative costs.

fg (X) = g
(
{(u, v) ∈ E : u ∈ X , v ∈ V \ X}

)
(89)

Seen as a node function, fg : 2V → R+ is not submodular, but it
uses submodularity internally to solve the shrinking bias problem.

⇒ cooperative-cut (Jegelka & B., 2011).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 100 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Addressing shrinking bias with edge submodularity

Standard graph cut, uses a modular function w : 2E → R+ defined
on the edges to measure cut costs. Graph cut node function is
submodular.

fw (X) = w
(
{(u, v) ∈ E : u ∈ X , v ∈ V \ X}

)
(88)

Instead, we can use a submodular function g : 2E → R+ defined on
the edges to express cooperative costs.

fg (X) = g
(
{(u, v) ∈ E : u ∈ X , v ∈ V \ X}

)
(89)

Seen as a node function, fg : 2V → R+ is not submodular, but it
uses submodularity internally to solve the shrinking bias problem.

⇒ cooperative-cut (Jegelka & B., 2011).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 100 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Addressing shrinking bias with edge submodularity

Standard graph cut, uses a modular function w : 2E → R+ defined
on the edges to measure cut costs. Graph cut node function is
submodular.

fw (X) = w
(
{(u, v) ∈ E : u ∈ X , v ∈ V \ X}

)
(88)

Instead, we can use a submodular function g : 2E → R+ defined on
the edges to express cooperative costs.

fg (X) = g
(
{(u, v) ∈ E : u ∈ X , v ∈ V \ X}

)
(89)

Seen as a node function, fg : 2V → R+ is not submodular, but it
uses submodularity internally to solve the shrinking bias problem.

⇒ cooperative-cut (Jegelka & B., 2011).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 100 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Addressing shrinking bias with edge submodularity

Standard graph cut, uses a modular function w : 2E → R+ defined
on the edges to measure cut costs. Graph cut node function is
submodular.

fw (X) = w
(
{(u, v) ∈ E : u ∈ X , v ∈ V \ X}

)
(88)

Instead, we can use a submodular function g : 2E → R+ defined on
the edges to express cooperative costs.

fg (X) = g
(
{(u, v) ∈ E : u ∈ X , v ∈ V \ X}

)
(89)

Seen as a node function, fg : 2V → R+ is not submodular, but it
uses submodularity internally to solve the shrinking bias problem.

⇒ cooperative-cut (Jegelka & B., 2011).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 100 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Graph-cut vs. cooperative-cut comparisons

Graph Cut Cooperative Cut

(Jegelka&Bilmes,’11). There are fast algorithms for solving as well.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 101 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Outline: Part 2

5 Submodular Applications in Machine Learning
Where is submodularity useful?

6 As a model of diversity, coverage, span, or information

7 As a model of cooperative costs, complexity, roughness, and
irregularity

8 As a Parameter for an ML algorithm

9 Itself, as a target for learning

10 Surrogates for optimization and analysis

11 Reading
Refs

J. Bilmes & R. Iyer NOML: Submodularity in ML page 102 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

A submodular function as a parameter

In some cases, it may be useful to view a submodular function
f : 2V → R as a input “parameter” to a machine learning algorithm.

Machine Learning
Problem or Instance

Data

f : 2V → R+ Output

A given submodular function f ∈ S ⊆ R2n can be seen as a vector in
a 2n-dimensional compact cone.

S is a submodular cone since submodularity is closed under
non-negative (conic) combinations.

2n-dimensional since for certain f ∈ S, there exists fε ∈ R2n having
no zero elements with f + fε ∈ S.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 103 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

A submodular function as a parameter

In some cases, it may be useful to view a submodular function
f : 2V → R as a input “parameter” to a machine learning algorithm.

Machine Learning
Problem or Instance

Data

f : 2V → R+ Output

A given submodular function f ∈ S ⊆ R2n can be seen as a vector in
a 2n-dimensional compact cone.

S is a submodular cone since submodularity is closed under
non-negative (conic) combinations.

2n-dimensional since for certain f ∈ S, there exists fε ∈ R2n having
no zero elements with f + fε ∈ S.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 103 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

A submodular function as a parameter

In some cases, it may be useful to view a submodular function
f : 2V → R as a input “parameter” to a machine learning algorithm.

Machine Learning
Problem or Instance

Data

f : 2V → R+ Output

A given submodular function f ∈ S ⊆ R2n can be seen as a vector in
a 2n-dimensional compact cone.

S is a submodular cone since submodularity is closed under
non-negative (conic) combinations.

2n-dimensional since for certain f ∈ S, there exists fε ∈ R2n having
no zero elements with f + fε ∈ S.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 103 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

A submodular function as a parameter

In some cases, it may be useful to view a submodular function
f : 2V → R as a input “parameter” to a machine learning algorithm.

Machine Learning
Problem or Instance

Data

f : 2V → R+ Output

A given submodular function f ∈ S ⊆ R2n can be seen as a vector in
a 2n-dimensional compact cone.

S is a submodular cone since submodularity is closed under
non-negative (conic) combinations.

2n-dimensional since for certain f ∈ S, there exists fε ∈ R2n having
no zero elements with f + fε ∈ S.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 103 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Supervised Machine Learning

Given training data D = {(xi , yi)}mi=1 with (xi , yi) ∈ Rn × R,
perform the following risk minimization problem:

min
w∈Rn

1

m

m∑

i=1

`(yi ,w
ᵀxi) + λΩ(w), (90)

where `(·) is a loss function (e.g., squared error) and Ω(w) is a norm.

When data has multiple (k) responses (xi , yi) ∈ Rn × Rk for each of
the m samples, learning becomes:

min
w1,...,wk∈Rn

k∑

j=1

1

m

m∑

i=1

`(y j
i , (w j)

ᵀ
xi) + λΩ(w j), (91)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 104 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Supervised Machine Learning

Given training data D = {(xi , yi)}mi=1 with (xi , yi) ∈ Rn × R,
perform the following risk minimization problem:

min
w∈Rn

1

m

m∑

i=1

`(yi ,w
ᵀxi) + λΩ(w), (90)

where `(·) is a loss function (e.g., squared error) and Ω(w) is a norm.

When data has multiple (k) responses (xi , yi) ∈ Rn × Rk for each of
the m samples, learning becomes:

min
w1,...,wk∈Rn

k∑

j=1

1

m

m∑

i=1

`(y j
i , (w j)

ᵀ
xi) + λΩ(w j), (91)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 104 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Dictionary Learning and Selection

When only the multiple responses {yi}i∈[m] are observed, we get
either dictionary learning

min
x1,...,xm

min
w1,...,wk∈Rn

k∑

j=1

1

m

m∑

i=1

`(y j
i , (w j)

ᵀ
xi) + λΩ(w j), (92)

or when we select sub-dimensions of x , we get dictionary selection
(Cevher & Krause, Das & Kempe).

f (D) =
k∑

j=1

min
S⊆D,|S |≤k

min
w j∈RS

(
m∑

i=1

`(y j
i , (w j)

ᵀ
xS
i) + λΩ(w j)

)
(93)

where D is the dictionary (indices of x that are allowed), and xS is a
sub-vector of x . Each regression allows at most k ≤ |D| variables.

In each case of the above cases, the regularizer Ω(·) is critical.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 105 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Dictionary Learning and Selection

When only the multiple responses {yi}i∈[m] are observed, we get
either dictionary learning

min
x1,...,xm

min
w1,...,wk∈Rn

k∑

j=1

1

m

m∑

i=1

`(y j
i , (w j)

ᵀ
xi) + λΩ(w j), (92)

or when we select sub-dimensions of x , we get dictionary selection
(Cevher & Krause, Das & Kempe).

f (D) =
k∑

j=1

min
S⊆D,|S |≤k

min
w j∈RS

(
m∑

i=1

`(y j
i , (w j)

ᵀ
xS
i) + λΩ(w j)

)
(93)

where D is the dictionary (indices of x that are allowed), and xS is a
sub-vector of x . Each regression allows at most k ≤ |D| variables.

In each case of the above cases, the regularizer Ω(·) is critical.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 105 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Dictionary Learning and Selection

When only the multiple responses {yi}i∈[m] are observed, we get
either dictionary learning

min
x1,...,xm

min
w1,...,wk∈Rn

k∑

j=1

1

m

m∑

i=1

`(y j
i , (w j)

ᵀ
xi) + λΩ(w j), (92)

or when we select sub-dimensions of x , we get dictionary selection
(Cevher & Krause, Das & Kempe).

f (D) =
k∑

j=1

min
S⊆D,|S |≤k

min
w j∈RS

(
m∑

i=1

`(y j
i , (w j)

ᵀ
xS
i) + λΩ(w j)

)
(93)

where D is the dictionary (indices of x that are allowed), and xS is a
sub-vector of x . Each regression allows at most k ≤ |D| variables.

In each case of the above cases, the regularizer Ω(·) is critical.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 105 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Norms, sparse norms, and computer vision

Common norms include p-norm Ω(w) = ‖w‖p =
(∑p

i=1 wp
i

)1/p

1-norm promotes sparsity (prefer solutions with zero entries).
Image denoising, total variation is useful, norm takes form:

Ω(w) =
N∑

i=2

|wi − wi−1| (94)

Points of difference should be “sparse” (frequently zero).

(Rodriguez,

2009)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 106 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Submodular parameterization of a sparse convex norm

Prefer convex norms since they can be solved.

For w ∈ RV , supp(w) ∈ {0, 1}V has supp(w)(v) = 1 iff w(v) > 0
Given submodular function f : 2V → R+, f (supp(w)) measures the
“complexity” of the non-zero pattern of w ; can have more non-zero
values if they cooperate (via f) with other non-zero values.
f (supp(w)) is hard to optimize, but it’s convex envelope f̃ (|w |)
(i.e., largest convex under-estimator of f (supp(w))) is obtained via
the Lovász-extension f̃ of f (Bolton et al. 2008, Bach 2010).
Submodular functions thus parameterize structured convex sparse
norms via the Lovász-extension!
The Lovász-extension (Lovász ’82, Edmonds ’70) is easy to get via
the greedy algorithm: sort wσ1 ≥ wσ2 ≥ · · · ≥ wσn , then

f̃ (w) =
n∑

i=1

wσi (f (σ1, . . . , σi)− f (σ1, . . . , σi−1)) (95)

Ex: total variation is the Lovász-extension of graph cut

J. Bilmes & R. Iyer NOML: Submodularity in ML page 107 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Submodular parameterization of a sparse convex norm

Prefer convex norms since they can be solved.
For w ∈ RV , supp(w) ∈ {0, 1}V has supp(w)(v) = 1 iff w(v) > 0

Given submodular function f : 2V → R+, f (supp(w)) measures the
“complexity” of the non-zero pattern of w ; can have more non-zero
values if they cooperate (via f) with other non-zero values.
f (supp(w)) is hard to optimize, but it’s convex envelope f̃ (|w |)
(i.e., largest convex under-estimator of f (supp(w))) is obtained via
the Lovász-extension f̃ of f (Bolton et al. 2008, Bach 2010).
Submodular functions thus parameterize structured convex sparse
norms via the Lovász-extension!
The Lovász-extension (Lovász ’82, Edmonds ’70) is easy to get via
the greedy algorithm: sort wσ1 ≥ wσ2 ≥ · · · ≥ wσn , then

f̃ (w) =
n∑

i=1

wσi (f (σ1, . . . , σi)− f (σ1, . . . , σi−1)) (95)

Ex: total variation is the Lovász-extension of graph cut

J. Bilmes & R. Iyer NOML: Submodularity in ML page 107 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Submodular parameterization of a sparse convex norm

Prefer convex norms since they can be solved.
For w ∈ RV , supp(w) ∈ {0, 1}V has supp(w)(v) = 1 iff w(v) > 0
Given submodular function f : 2V → R+, f (supp(w)) measures the
“complexity” of the non-zero pattern of w ; can have more non-zero
values if they cooperate (via f) with other non-zero values.

f (supp(w)) is hard to optimize, but it’s convex envelope f̃ (|w |)
(i.e., largest convex under-estimator of f (supp(w))) is obtained via
the Lovász-extension f̃ of f (Bolton et al. 2008, Bach 2010).
Submodular functions thus parameterize structured convex sparse
norms via the Lovász-extension!
The Lovász-extension (Lovász ’82, Edmonds ’70) is easy to get via
the greedy algorithm: sort wσ1 ≥ wσ2 ≥ · · · ≥ wσn , then

f̃ (w) =
n∑

i=1

wσi (f (σ1, . . . , σi)− f (σ1, . . . , σi−1)) (95)

Ex: total variation is the Lovász-extension of graph cut

J. Bilmes & R. Iyer NOML: Submodularity in ML page 107 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Submodular parameterization of a sparse convex norm

Prefer convex norms since they can be solved.
For w ∈ RV , supp(w) ∈ {0, 1}V has supp(w)(v) = 1 iff w(v) > 0
Given submodular function f : 2V → R+, f (supp(w)) measures the
“complexity” of the non-zero pattern of w ; can have more non-zero
values if they cooperate (via f) with other non-zero values.
f (supp(w)) is hard to optimize, but it’s convex envelope f̃ (|w |)
(i.e., largest convex under-estimator of f (supp(w))) is obtained via
the Lovász-extension f̃ of f (Bolton et al. 2008, Bach 2010).

Submodular functions thus parameterize structured convex sparse
norms via the Lovász-extension!
The Lovász-extension (Lovász ’82, Edmonds ’70) is easy to get via
the greedy algorithm: sort wσ1 ≥ wσ2 ≥ · · · ≥ wσn , then

f̃ (w) =
n∑

i=1

wσi (f (σ1, . . . , σi)− f (σ1, . . . , σi−1)) (95)

Ex: total variation is the Lovász-extension of graph cut

J. Bilmes & R. Iyer NOML: Submodularity in ML page 107 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Submodular parameterization of a sparse convex norm

Prefer convex norms since they can be solved.
For w ∈ RV , supp(w) ∈ {0, 1}V has supp(w)(v) = 1 iff w(v) > 0
Given submodular function f : 2V → R+, f (supp(w)) measures the
“complexity” of the non-zero pattern of w ; can have more non-zero
values if they cooperate (via f) with other non-zero values.
f (supp(w)) is hard to optimize, but it’s convex envelope f̃ (|w |)
(i.e., largest convex under-estimator of f (supp(w))) is obtained via
the Lovász-extension f̃ of f (Bolton et al. 2008, Bach 2010).
Submodular functions thus parameterize structured convex sparse
norms via the Lovász-extension!

The Lovász-extension (Lovász ’82, Edmonds ’70) is easy to get via
the greedy algorithm: sort wσ1 ≥ wσ2 ≥ · · · ≥ wσn , then

f̃ (w) =
n∑

i=1

wσi (f (σ1, . . . , σi)− f (σ1, . . . , σi−1)) (95)

Ex: total variation is the Lovász-extension of graph cut

J. Bilmes & R. Iyer NOML: Submodularity in ML page 107 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Submodular parameterization of a sparse convex norm

Prefer convex norms since they can be solved.
For w ∈ RV , supp(w) ∈ {0, 1}V has supp(w)(v) = 1 iff w(v) > 0
Given submodular function f : 2V → R+, f (supp(w)) measures the
“complexity” of the non-zero pattern of w ; can have more non-zero
values if they cooperate (via f) with other non-zero values.
f (supp(w)) is hard to optimize, but it’s convex envelope f̃ (|w |)
(i.e., largest convex under-estimator of f (supp(w))) is obtained via
the Lovász-extension f̃ of f (Bolton et al. 2008, Bach 2010).
Submodular functions thus parameterize structured convex sparse
norms via the Lovász-extension!
The Lovász-extension (Lovász ’82, Edmonds ’70) is easy to get via
the greedy algorithm: sort wσ1 ≥ wσ2 ≥ · · · ≥ wσn , then

f̃ (w) =
n∑

i=1

wσi (f (σ1, . . . , σi)− f (σ1, . . . , σi−1)) (95)

Ex: total variation is the Lovász-extension of graph cut

J. Bilmes & R. Iyer NOML: Submodularity in ML page 107 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Submodular parameterization of a sparse convex norm

Prefer convex norms since they can be solved.
For w ∈ RV , supp(w) ∈ {0, 1}V has supp(w)(v) = 1 iff w(v) > 0
Given submodular function f : 2V → R+, f (supp(w)) measures the
“complexity” of the non-zero pattern of w ; can have more non-zero
values if they cooperate (via f) with other non-zero values.
f (supp(w)) is hard to optimize, but it’s convex envelope f̃ (|w |)
(i.e., largest convex under-estimator of f (supp(w))) is obtained via
the Lovász-extension f̃ of f (Bolton et al. 2008, Bach 2010).
Submodular functions thus parameterize structured convex sparse
norms via the Lovász-extension!
The Lovász-extension (Lovász ’82, Edmonds ’70) is easy to get via
the greedy algorithm: sort wσ1 ≥ wσ2 ≥ · · · ≥ wσn , then

f̃ (w) =
n∑

i=1

wσi (f (σ1, . . . , σi)− f (σ1, . . . , σi−1)) (95)

Ex: total variation is the Lovász-extension of graph cut
J. Bilmes & R. Iyer NOML: Submodularity in ML page 107 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Submodular Generalized Dependence
there is a notion of “independence” , i.e., A⊥⊥B:

f (A ∪ B) = f (A) + f (B), (96)

and a notion of “conditional independence” , i.e., A⊥⊥B|C :

f (A ∪ B ∪ C) + f (C) = f (A ∪ C) + f (B ∪ C) (97)

and a notion of “dependence” (conditioning reduces valuation):

f (A|B) , f (A ∪ B)− f (B) < f (A), (98)

and a notion of “conditional mutual information”

If (A; B|C) , f (A ∪ C) + f (B ∪ C)− f (A ∪ B ∪ C)− f (C) ≥ 0

and two notions of “information amongst a collection of sets”:

If (S1; S2; . . . ; Sk) =
k∑

i=1

f (Sk)− f (S1 ∪ S2 ∪ · · · ∪ Sk) (99)

I ′f (S1; S2; . . . ; Sk) =
∑

A⊆{1,2,...,k}
(−1)|A|+1f (

⋃

j∈A
Sj) (100)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 108 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Submodular Generalized Dependence
there is a notion of “independence” , i.e., A⊥⊥B:

f (A ∪ B) = f (A) + f (B), (96)

and a notion of “conditional independence” , i.e., A⊥⊥B|C :

f (A ∪ B ∪ C) + f (C) = f (A ∪ C) + f (B ∪ C) (97)

and a notion of “dependence” (conditioning reduces valuation):

f (A|B) , f (A ∪ B)− f (B) < f (A), (98)

and a notion of “conditional mutual information”

If (A; B|C) , f (A ∪ C) + f (B ∪ C)− f (A ∪ B ∪ C)− f (C) ≥ 0

and two notions of “information amongst a collection of sets”:

If (S1; S2; . . . ; Sk) =
k∑

i=1

f (Sk)− f (S1 ∪ S2 ∪ · · · ∪ Sk) (99)

I ′f (S1; S2; . . . ; Sk) =
∑

A⊆{1,2,...,k}
(−1)|A|+1f (

⋃

j∈A
Sj) (100)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 108 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Submodular Generalized Dependence
there is a notion of “independence” , i.e., A⊥⊥B:

f (A ∪ B) = f (A) + f (B), (96)

and a notion of “conditional independence” , i.e., A⊥⊥B|C :

f (A ∪ B ∪ C) + f (C) = f (A ∪ C) + f (B ∪ C) (97)

and a notion of “dependence” (conditioning reduces valuation):

f (A|B) , f (A ∪ B)− f (B) < f (A), (98)

and a notion of “conditional mutual information”

If (A; B|C) , f (A ∪ C) + f (B ∪ C)− f (A ∪ B ∪ C)− f (C) ≥ 0

and two notions of “information amongst a collection of sets”:

If (S1; S2; . . . ; Sk) =
k∑

i=1

f (Sk)− f (S1 ∪ S2 ∪ · · · ∪ Sk) (99)

I ′f (S1; S2; . . . ; Sk) =
∑

A⊆{1,2,...,k}
(−1)|A|+1f (

⋃

j∈A
Sj) (100)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 108 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Submodular Generalized Dependence
there is a notion of “independence” , i.e., A⊥⊥B:

f (A ∪ B) = f (A) + f (B), (96)

and a notion of “conditional independence” , i.e., A⊥⊥B|C :

f (A ∪ B ∪ C) + f (C) = f (A ∪ C) + f (B ∪ C) (97)

and a notion of “dependence” (conditioning reduces valuation):

f (A|B) , f (A ∪ B)− f (B) < f (A), (98)

and a notion of “conditional mutual information”

If (A; B|C) , f (A ∪ C) + f (B ∪ C)− f (A ∪ B ∪ C)− f (C) ≥ 0

and two notions of “information amongst a collection of sets”:

If (S1; S2; . . . ; Sk) =
k∑

i=1

f (Sk)− f (S1 ∪ S2 ∪ · · · ∪ Sk) (99)

I ′f (S1; S2; . . . ; Sk) =
∑

A⊆{1,2,...,k}
(−1)|A|+1f (

⋃

j∈A
Sj) (100)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 108 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Submodular Generalized Dependence
there is a notion of “independence” , i.e., A⊥⊥B:

f (A ∪ B) = f (A) + f (B), (96)

and a notion of “conditional independence” , i.e., A⊥⊥B|C :

f (A ∪ B ∪ C) + f (C) = f (A ∪ C) + f (B ∪ C) (97)

and a notion of “dependence” (conditioning reduces valuation):

f (A|B) , f (A ∪ B)− f (B) < f (A), (98)

and a notion of “conditional mutual information”

If (A; B|C) , f (A ∪ C) + f (B ∪ C)− f (A ∪ B ∪ C)− f (C) ≥ 0

and two notions of “information amongst a collection of sets”:

If (S1; S2; . . . ; Sk) =
k∑

i=1

f (Sk)− f (S1 ∪ S2 ∪ · · · ∪ Sk) (99)

I ′f (S1; S2; . . . ; Sk) =
∑

A⊆{1,2,...,k}
(−1)|A|+1f (

⋃

j∈A
Sj) (100)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 108 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Submodular Parameterized Clustering

Given a submodular function f : 2V → R, form the combinatorial
dependence function If (A; B) = f (A) + f (B)− f (A ∪ B).

Consider clustering algorithm: First find partition
A∗1 ∈ argminA⊆V If (A; V \ A) and A∗2 = V \ A∗1.

Then partition the partitions: A∗11 ∈ argminA⊆A∗1 If (A; A∗1 \ A),
A∗12 = A∗1 \ A∗11, and A∗21 ∈ argminA⊆A∗2 If (A; A∗2 \ A), etc.

Recursively partition the partitions, we end up with a partition
V = V1 ∪ V2 ∪ · · · ∪ Vk that clusters the data.

Each minimization can be done using Queyranne’s algorithm
(alternatively can construct a Gomory-Hu tree). This gives a
partition no worse than factor 2 away from optimal partition.
(Narasimhan&Bilmes, 2007).

Hence, family of clustering algorithms parameterized by f .

J. Bilmes & R. Iyer NOML: Submodularity in ML page 109 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Submodular Parameterized Clustering

Given a submodular function f : 2V → R, form the combinatorial
dependence function If (A; B) = f (A) + f (B)− f (A ∪ B).

Consider clustering algorithm: First find partition
A∗1 ∈ argminA⊆V If (A; V \ A) and A∗2 = V \ A∗1.

Then partition the partitions: A∗11 ∈ argminA⊆A∗1 If (A; A∗1 \ A),
A∗12 = A∗1 \ A∗11, and A∗21 ∈ argminA⊆A∗2 If (A; A∗2 \ A), etc.

Recursively partition the partitions, we end up with a partition
V = V1 ∪ V2 ∪ · · · ∪ Vk that clusters the data.

Each minimization can be done using Queyranne’s algorithm
(alternatively can construct a Gomory-Hu tree). This gives a
partition no worse than factor 2 away from optimal partition.
(Narasimhan&Bilmes, 2007).

Hence, family of clustering algorithms parameterized by f .

J. Bilmes & R. Iyer NOML: Submodularity in ML page 109 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Submodular Parameterized Clustering

Given a submodular function f : 2V → R, form the combinatorial
dependence function If (A; B) = f (A) + f (B)− f (A ∪ B).

Consider clustering algorithm: First find partition
A∗1 ∈ argminA⊆V If (A; V \ A) and A∗2 = V \ A∗1.

Then partition the partitions: A∗11 ∈ argminA⊆A∗1 If (A; A∗1 \ A),
A∗12 = A∗1 \ A∗11, and A∗21 ∈ argminA⊆A∗2 If (A; A∗2 \ A), etc.

Recursively partition the partitions, we end up with a partition
V = V1 ∪ V2 ∪ · · · ∪ Vk that clusters the data.

Each minimization can be done using Queyranne’s algorithm
(alternatively can construct a Gomory-Hu tree). This gives a
partition no worse than factor 2 away from optimal partition.
(Narasimhan&Bilmes, 2007).

Hence, family of clustering algorithms parameterized by f .

J. Bilmes & R. Iyer NOML: Submodularity in ML page 109 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Submodular Parameterized Clustering

Given a submodular function f : 2V → R, form the combinatorial
dependence function If (A; B) = f (A) + f (B)− f (A ∪ B).

Consider clustering algorithm: First find partition
A∗1 ∈ argminA⊆V If (A; V \ A) and A∗2 = V \ A∗1.

Then partition the partitions: A∗11 ∈ argminA⊆A∗1 If (A; A∗1 \ A),
A∗12 = A∗1 \ A∗11, and A∗21 ∈ argminA⊆A∗2 If (A; A∗2 \ A), etc.

Recursively partition the partitions, we end up with a partition
V = V1 ∪ V2 ∪ · · · ∪ Vk that clusters the data.

Each minimization can be done using Queyranne’s algorithm
(alternatively can construct a Gomory-Hu tree). This gives a
partition no worse than factor 2 away from optimal partition.
(Narasimhan&Bilmes, 2007).

Hence, family of clustering algorithms parameterized by f .

J. Bilmes & R. Iyer NOML: Submodularity in ML page 109 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Submodular Parameterized Clustering

Given a submodular function f : 2V → R, form the combinatorial
dependence function If (A; B) = f (A) + f (B)− f (A ∪ B).

Consider clustering algorithm: First find partition
A∗1 ∈ argminA⊆V If (A; V \ A) and A∗2 = V \ A∗1.

Then partition the partitions: A∗11 ∈ argminA⊆A∗1 If (A; A∗1 \ A),
A∗12 = A∗1 \ A∗11, and A∗21 ∈ argminA⊆A∗2 If (A; A∗2 \ A), etc.

Recursively partition the partitions, we end up with a partition
V = V1 ∪ V2 ∪ · · · ∪ Vk that clusters the data.

Each minimization can be done using Queyranne’s algorithm
(alternatively can construct a Gomory-Hu tree). This gives a
partition no worse than factor 2 away from optimal partition.
(Narasimhan&Bilmes, 2007).

Hence, family of clustering algorithms parameterized by f .

J. Bilmes & R. Iyer NOML: Submodularity in ML page 109 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Submodular Parameterized Clustering

Given a submodular function f : 2V → R, form the combinatorial
dependence function If (A; B) = f (A) + f (B)− f (A ∪ B).

Consider clustering algorithm: First find partition
A∗1 ∈ argminA⊆V If (A; V \ A) and A∗2 = V \ A∗1.

Then partition the partitions: A∗11 ∈ argminA⊆A∗1 If (A; A∗1 \ A),
A∗12 = A∗1 \ A∗11, and A∗21 ∈ argminA⊆A∗2 If (A; A∗2 \ A), etc.

Recursively partition the partitions, we end up with a partition
V = V1 ∪ V2 ∪ · · · ∪ Vk that clusters the data.

Each minimization can be done using Queyranne’s algorithm
(alternatively can construct a Gomory-Hu tree). This gives a
partition no worse than factor 2 away from optimal partition.
(Narasimhan&Bilmes, 2007).

Hence, family of clustering algorithms parameterized by f .

J. Bilmes & R. Iyer NOML: Submodularity in ML page 109 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Is Submodular Maximization Just Clustering?

1 Clustering objectives often NP-hard and inapproximable, submodular
maximization is approximable for any submodular function.

2 To have guarantee, clustering typically needs metricity, submodularity
parameterized via any non-negative pairwise values.

3 Clustering often requires separate process to choose representatives
within each cluster. Submodular max does this automatically. Can
also do submodular data partitioning (like clustering).

4 Submodular max covers clustering objectives such as k-medoids.
5 Can learn submodular functions (hence, learn clustering objective).
6 We can choose quality guarantee for any submodular function via

submodular set cover (only possible for some clustering algorithms).
7 Submodular max with constraints, ensures representatives are feasible

(e.g., knapsack, matroid independence, combinatorial, submodular
level set, etc.)

8 Submodular functions may be more general than clustering objectives
(submodularity allows high-order interactions between elements).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 110 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Is Submodular Maximization Just Clustering?

1 Clustering objectives often NP-hard and inapproximable, submodular
maximization is approximable for any submodular function.

2 To have guarantee, clustering typically needs metricity, submodularity
parameterized via any non-negative pairwise values.

3 Clustering often requires separate process to choose representatives
within each cluster. Submodular max does this automatically. Can
also do submodular data partitioning (like clustering).

4 Submodular max covers clustering objectives such as k-medoids.
5 Can learn submodular functions (hence, learn clustering objective).
6 We can choose quality guarantee for any submodular function via

submodular set cover (only possible for some clustering algorithms).
7 Submodular max with constraints, ensures representatives are feasible

(e.g., knapsack, matroid independence, combinatorial, submodular
level set, etc.)

8 Submodular functions may be more general than clustering objectives
(submodularity allows high-order interactions between elements).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 110 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Is Submodular Maximization Just Clustering?

1 Clustering objectives often NP-hard and inapproximable, submodular
maximization is approximable for any submodular function.

2 To have guarantee, clustering typically needs metricity, submodularity
parameterized via any non-negative pairwise values.

3 Clustering often requires separate process to choose representatives
within each cluster. Submodular max does this automatically. Can
also do submodular data partitioning (like clustering).

4 Submodular max covers clustering objectives such as k-medoids.
5 Can learn submodular functions (hence, learn clustering objective).
6 We can choose quality guarantee for any submodular function via

submodular set cover (only possible for some clustering algorithms).
7 Submodular max with constraints, ensures representatives are feasible

(e.g., knapsack, matroid independence, combinatorial, submodular
level set, etc.)

8 Submodular functions may be more general than clustering objectives
(submodularity allows high-order interactions between elements).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 110 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Is Submodular Maximization Just Clustering?

1 Clustering objectives often NP-hard and inapproximable, submodular
maximization is approximable for any submodular function.

2 To have guarantee, clustering typically needs metricity, submodularity
parameterized via any non-negative pairwise values.

3 Clustering often requires separate process to choose representatives
within each cluster. Submodular max does this automatically. Can
also do submodular data partitioning (like clustering).

4 Submodular max covers clustering objectives such as k-medoids.

5 Can learn submodular functions (hence, learn clustering objective).
6 We can choose quality guarantee for any submodular function via

submodular set cover (only possible for some clustering algorithms).
7 Submodular max with constraints, ensures representatives are feasible

(e.g., knapsack, matroid independence, combinatorial, submodular
level set, etc.)

8 Submodular functions may be more general than clustering objectives
(submodularity allows high-order interactions between elements).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 110 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Is Submodular Maximization Just Clustering?

1 Clustering objectives often NP-hard and inapproximable, submodular
maximization is approximable for any submodular function.

2 To have guarantee, clustering typically needs metricity, submodularity
parameterized via any non-negative pairwise values.

3 Clustering often requires separate process to choose representatives
within each cluster. Submodular max does this automatically. Can
also do submodular data partitioning (like clustering).

4 Submodular max covers clustering objectives such as k-medoids.
5 Can learn submodular functions (hence, learn clustering objective).

6 We can choose quality guarantee for any submodular function via
submodular set cover (only possible for some clustering algorithms).

7 Submodular max with constraints, ensures representatives are feasible
(e.g., knapsack, matroid independence, combinatorial, submodular
level set, etc.)

8 Submodular functions may be more general than clustering objectives
(submodularity allows high-order interactions between elements).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 110 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Is Submodular Maximization Just Clustering?

1 Clustering objectives often NP-hard and inapproximable, submodular
maximization is approximable for any submodular function.

2 To have guarantee, clustering typically needs metricity, submodularity
parameterized via any non-negative pairwise values.

3 Clustering often requires separate process to choose representatives
within each cluster. Submodular max does this automatically. Can
also do submodular data partitioning (like clustering).

4 Submodular max covers clustering objectives such as k-medoids.
5 Can learn submodular functions (hence, learn clustering objective).
6 We can choose quality guarantee for any submodular function via

submodular set cover (only possible for some clustering algorithms).

7 Submodular max with constraints, ensures representatives are feasible
(e.g., knapsack, matroid independence, combinatorial, submodular
level set, etc.)

8 Submodular functions may be more general than clustering objectives
(submodularity allows high-order interactions between elements).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 110 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Is Submodular Maximization Just Clustering?

1 Clustering objectives often NP-hard and inapproximable, submodular
maximization is approximable for any submodular function.

2 To have guarantee, clustering typically needs metricity, submodularity
parameterized via any non-negative pairwise values.

3 Clustering often requires separate process to choose representatives
within each cluster. Submodular max does this automatically. Can
also do submodular data partitioning (like clustering).

4 Submodular max covers clustering objectives such as k-medoids.
5 Can learn submodular functions (hence, learn clustering objective).
6 We can choose quality guarantee for any submodular function via

submodular set cover (only possible for some clustering algorithms).
7 Submodular max with constraints, ensures representatives are feasible

(e.g., knapsack, matroid independence, combinatorial, submodular
level set, etc.)

8 Submodular functions may be more general than clustering objectives
(submodularity allows high-order interactions between elements).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 110 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Is Submodular Maximization Just Clustering?

1 Clustering objectives often NP-hard and inapproximable, submodular
maximization is approximable for any submodular function.

2 To have guarantee, clustering typically needs metricity, submodularity
parameterized via any non-negative pairwise values.

3 Clustering often requires separate process to choose representatives
within each cluster. Submodular max does this automatically. Can
also do submodular data partitioning (like clustering).

4 Submodular max covers clustering objectives such as k-medoids.
5 Can learn submodular functions (hence, learn clustering objective).
6 We can choose quality guarantee for any submodular function via

submodular set cover (only possible for some clustering algorithms).
7 Submodular max with constraints, ensures representatives are feasible

(e.g., knapsack, matroid independence, combinatorial, submodular
level set, etc.)

8 Submodular functions may be more general than clustering objectives
(submodularity allows high-order interactions between elements).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 110 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Active Transductive Semi-Supervised Learning

Batch/Offline active learning: Given a set V of unlabeled data
items, learner chooses subset L ⊆ V of items to be labeled

Nature reveals labels yL ∈ {0, 1}L, learner predicts labels ŷ ∈ {0, 1}V

+
-

+
+

+

-
- -+

-

-

++

Learner suffers loss ‖ŷ − y‖1, where y is truth. Below, ‖ŷ − y‖1 = 2.

+ +
+

-
- -+

-
-

++

+ +
+

-
- -+

-
+

+-
Predicted Actual

J. Bilmes & R. Iyer NOML: Submodularity in ML page 111 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Active Transductive Semi-Supervised Learning

Batch/Offline active learning: Given a set V of unlabeled data
items, learner chooses subset L ⊆ V of items to be labeled

Nature reveals labels yL ∈ {0, 1}L, learner predicts labels ŷ ∈ {0, 1}V

+
-

+
+

+

-
- -+

-

-

++

Learner suffers loss ‖ŷ − y‖1, where y is truth. Below, ‖ŷ − y‖1 = 2.

+ +
+

-
- -+

-
-

++

+ +
+

-
- -+

-
+

+-
Predicted Actual

J. Bilmes & R. Iyer NOML: Submodularity in ML page 111 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Active Transductive Semi-Supervised Learning

Batch/Offline active learning: Given a set V of unlabeled data
items, learner chooses subset L ⊆ V of items to be labeled

Nature reveals labels yL ∈ {0, 1}L, learner predicts labels ŷ ∈ {0, 1}V

+
-

+
+

+

-
- -+

-

-

++

Learner suffers loss ‖ŷ − y‖1, where y is truth. Below, ‖ŷ − y‖1 = 2.

+ +
+

-
- -+

-
-

++

+ +
+

-
- -+

-
+

+-
Predicted Actual

J. Bilmes & R. Iyer NOML: Submodularity in ML page 111 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Choosing labels: how to select L

Consider the following objective

Ψ(L) = min
T⊆V \L:T 6=∅

Γ(T)

|T | (101)

where Γ(T) = If (T ; V \ T) = f (T) + f (V \ T)− f (V) is an
arbitrary symmetric submodular function (e.g., graph cut value
between T and V \ T , or combinatorial mutual information).

Small Ψ(L) means an adversary can separate away many (|T | is big)
combinatorially “independent” (Γ(T) is small) points from L.

This suggests choosing (bounded cost) L that maximizes Ψ(L).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 112 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Choosing labels: how to select L

Consider the following objective

Ψ(L) = min
T⊆V \L:T 6=∅

Γ(T)

|T | (101)

where Γ(T) = If (T ; V \ T) = f (T) + f (V \ T)− f (V) is an
arbitrary symmetric submodular function (e.g., graph cut value
between T and V \ T , or combinatorial mutual information).

Small Ψ(L) means an adversary can separate away many (|T | is big)
combinatorially “independent” (Γ(T) is small) points from L.

L
T

V \L

L
V \L

This suggests choosing (bounded cost) L that maximizes Ψ(L).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 112 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Choosing labels: how to select L

Consider the following objective

Ψ(L) = min
T⊆V \L:T 6=∅

Γ(T)

|T | (101)

where Γ(T) = If (T ; V \ T) = f (T) + f (V \ T)− f (V) is an
arbitrary symmetric submodular function (e.g., graph cut value
between T and V \ T , or combinatorial mutual information).

Small Ψ(L) means an adversary can separate away many (|T | is big)
combinatorially “independent” (Γ(T) is small) points from L.

Ψ(L) = 1/8 Ψ(L) = 1

This suggests choosing (bounded cost) L that maximizes Ψ(L).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 112 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Choosing labels: how to select L

Consider the following objective

Ψ(L) = min
T⊆V \L:T 6=∅

Γ(T)

|T | (101)

where Γ(T) = If (T ; V \ T) = f (T) + f (V \ T)− f (V) is an
arbitrary symmetric submodular function (e.g., graph cut value
between T and V \ T , or combinatorial mutual information).

Small Ψ(L) means an adversary can separate away many (|T | is big)
combinatorially “independent” (Γ(T) is small) points from L.

Ψ(L) = 1/8 Ψ(L) = 1
This suggests choosing (bounded cost) L that maximizes Ψ(L).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 112 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Choosing remaining labels: semi-supervised learning

Once given labels for L, how to complete the remaining labels?

We form a labeling ŷ ∈ {0, 1}V such that ŷL = yL (i.e., we agree
with the known labels).

Γ(T) measures label smoothness, how much combinatorial
“information” between labels T and complement V \ T (e.g., in
graph-cut case, says label change should be across small cuts).

Hence, choose labels to minimize Γ(Y (ŷ)) such that ŷL = yL.

This is submodular function minimization on function
g : 2V \L → R+ where for A ⊆ V \ L,

g(A) = Γ(A ∪ {v ∈ L : yL(v) = 1}) (102)

In graph cut case, this is standard min-cut (Blum & Chawla 2001)
approach to semi-supervised learning.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 113 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Choosing remaining labels: semi-supervised learning

Once given labels for L, how to complete the remaining labels?

We form a labeling ŷ ∈ {0, 1}V such that ŷL = yL (i.e., we agree
with the known labels).

Γ(T) measures label smoothness, how much combinatorial
“information” between labels T and complement V \ T (e.g., in
graph-cut case, says label change should be across small cuts).

Hence, choose labels to minimize Γ(Y (ŷ)) such that ŷL = yL.

This is submodular function minimization on function
g : 2V \L → R+ where for A ⊆ V \ L,

g(A) = Γ(A ∪ {v ∈ L : yL(v) = 1}) (102)

In graph cut case, this is standard min-cut (Blum & Chawla 2001)
approach to semi-supervised learning.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 113 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Choosing remaining labels: semi-supervised learning

Once given labels for L, how to complete the remaining labels?

We form a labeling ŷ ∈ {0, 1}V such that ŷL = yL (i.e., we agree
with the known labels).

Γ(T) measures label smoothness, how much combinatorial
“information” between labels T and complement V \ T (e.g., in
graph-cut case, says label change should be across small cuts).

Hence, choose labels to minimize Γ(Y (ŷ)) such that ŷL = yL.

This is submodular function minimization on function
g : 2V \L → R+ where for A ⊆ V \ L,

g(A) = Γ(A ∪ {v ∈ L : yL(v) = 1}) (102)

In graph cut case, this is standard min-cut (Blum & Chawla 2001)
approach to semi-supervised learning.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 113 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Choosing remaining labels: semi-supervised learning

Once given labels for L, how to complete the remaining labels?

We form a labeling ŷ ∈ {0, 1}V such that ŷL = yL (i.e., we agree
with the known labels).

Γ(T) measures label smoothness, how much combinatorial
“information” between labels T and complement V \ T (e.g., in
graph-cut case, says label change should be across small cuts).

Hence, choose labels to minimize Γ(Y (ŷ)) such that ŷL = yL.

This is submodular function minimization on function
g : 2V \L → R+ where for A ⊆ V \ L,

g(A) = Γ(A ∪ {v ∈ L : yL(v) = 1}) (102)

In graph cut case, this is standard min-cut (Blum & Chawla 2001)
approach to semi-supervised learning.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 113 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Choosing remaining labels: semi-supervised learning

Once given labels for L, how to complete the remaining labels?

We form a labeling ŷ ∈ {0, 1}V such that ŷL = yL (i.e., we agree
with the known labels).

Γ(T) measures label smoothness, how much combinatorial
“information” between labels T and complement V \ T (e.g., in
graph-cut case, says label change should be across small cuts).

Hence, choose labels to minimize Γ(Y (ŷ)) such that ŷL = yL.

This is submodular function minimization on function
g : 2V \L → R+ where for A ⊆ V \ L,

g(A) = Γ(A ∪ {v ∈ L : yL(v) = 1}) (102)

In graph cut case, this is standard min-cut (Blum & Chawla 2001)
approach to semi-supervised learning.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 113 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Choosing remaining labels: semi-supervised learning

Once given labels for L, how to complete the remaining labels?

We form a labeling ŷ ∈ {0, 1}V such that ŷL = yL (i.e., we agree
with the known labels).

Γ(T) measures label smoothness, how much combinatorial
“information” between labels T and complement V \ T (e.g., in
graph-cut case, says label change should be across small cuts).

Hence, choose labels to minimize Γ(Y (ŷ)) such that ŷL = yL.

This is submodular function minimization on function
g : 2V \L → R+ where for A ⊆ V \ L,

g(A) = Γ(A ∪ {v ∈ L : yL(v) = 1}) (102)

In graph cut case, this is standard min-cut (Blum & Chawla 2001)
approach to semi-supervised learning.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 113 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Generalized Error Bound

Theorem (Guillory & B., ’11)

For any symmetric submodular Γ(S), assume ŷ minimizes Γ(Y (ŷ))
subject to ŷL = yL. Then

‖ŷ − y‖1 ≤ 2
Γ(Y (y))

Ψ(L)
(103)

where y ∈ {0, 1}V are the true labels.

All is defined in terms of the symmetric submodular function Γ
(need not be graph cut), where:

Ψ(S) = min
T⊆V \S :T 6=∅

Γ(T)

|T | (104)

Γ(T) = If (T ; V \ T) = f (S) + f (V \ S)− f (V) determined by
arbitrary submodular function f , different error bound for each.
Joint algorithm is “parameterized” by a submodular function f .

J. Bilmes & R. Iyer NOML: Submodularity in ML page 114 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Discrete Submodular Divergences

A convex function parameterizes a Bregman divergence, useful for
clustering (Banerjee et al.), includes KL-divergence, squared l2, etc.

Given a (not nec. differentiable) convex function φ and a
sub-gradient map Hφ (the gradient when φ is everywhere
differentiable), the generalized Bregman divergence is defined as:

d
Hφ
φ (x , y) = φ(x)− φ(y)− 〈Hφ(y), x − y〉,∀x , y ∈ dom(φ) (105)

A submodular function parameterizes a discrete submodular
Bregman divergence (Iyer & B., 2012).

Example, lower-bound form:

dHf
f (X ,Y) = f (X)− f (Y)− 〈Hf (Y), 1X − 1Y 〉 (106)

where Hf (Y) is a sub-gradient map.

Submodular Bregman divergences also definable in terms of
supergradients.

General: Hamming, Recall, Precision, Cond. MI, Sq. Hamming, etc.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 115 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Discrete Submodular Divergences

A convex function parameterizes a Bregman divergence, useful for
clustering (Banerjee et al.), includes KL-divergence, squared l2, etc.

Given a (not nec. differentiable) convex function φ and a
sub-gradient map Hφ (the gradient when φ is everywhere
differentiable), the generalized Bregman divergence is defined as:

d
Hφ
φ (x , y) = φ(x)− φ(y)− 〈Hφ(y), x − y〉,∀x , y ∈ dom(φ) (105)

A submodular function parameterizes a discrete submodular
Bregman divergence (Iyer & B., 2012).

Example, lower-bound form:

dHf
f (X ,Y) = f (X)− f (Y)− 〈Hf (Y), 1X − 1Y 〉 (106)

where Hf (Y) is a sub-gradient map.

Submodular Bregman divergences also definable in terms of
supergradients.

General: Hamming, Recall, Precision, Cond. MI, Sq. Hamming, etc.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 115 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Discrete Submodular Divergences

A convex function parameterizes a Bregman divergence, useful for
clustering (Banerjee et al.), includes KL-divergence, squared l2, etc.

Given a (not nec. differentiable) convex function φ and a
sub-gradient map Hφ (the gradient when φ is everywhere
differentiable), the generalized Bregman divergence is defined as:

d
Hφ
φ (x , y) = φ(x)− φ(y)− 〈Hφ(y), x − y〉,∀x , y ∈ dom(φ) (105)

A submodular function parameterizes a discrete submodular
Bregman divergence (Iyer & B., 2012).

Example, lower-bound form:

dHf
f (X ,Y) = f (X)− f (Y)− 〈Hf (Y), 1X − 1Y 〉 (106)

where Hf (Y) is a sub-gradient map.

Submodular Bregman divergences also definable in terms of
supergradients.

General: Hamming, Recall, Precision, Cond. MI, Sq. Hamming, etc.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 115 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Discrete Submodular Divergences

A convex function parameterizes a Bregman divergence, useful for
clustering (Banerjee et al.), includes KL-divergence, squared l2, etc.

Given a (not nec. differentiable) convex function φ and a
sub-gradient map Hφ (the gradient when φ is everywhere
differentiable), the generalized Bregman divergence is defined as:

d
Hφ
φ (x , y) = φ(x)− φ(y)− 〈Hφ(y), x − y〉,∀x , y ∈ dom(φ) (105)

A submodular function parameterizes a discrete submodular
Bregman divergence (Iyer & B., 2012).

Example, lower-bound form:

dHf
f (X ,Y) = f (X)− f (Y)− 〈Hf (Y), 1X − 1Y 〉 (106)

where Hf (Y) is a sub-gradient map.

Submodular Bregman divergences also definable in terms of
supergradients.

General: Hamming, Recall, Precision, Cond. MI, Sq. Hamming, etc.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 115 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Discrete Submodular Divergences

A convex function parameterizes a Bregman divergence, useful for
clustering (Banerjee et al.), includes KL-divergence, squared l2, etc.

Given a (not nec. differentiable) convex function φ and a
sub-gradient map Hφ (the gradient when φ is everywhere
differentiable), the generalized Bregman divergence is defined as:

d
Hφ
φ (x , y) = φ(x)− φ(y)− 〈Hφ(y), x − y〉,∀x , y ∈ dom(φ) (105)

A submodular function parameterizes a discrete submodular
Bregman divergence (Iyer & B., 2012).

Example, lower-bound form:

dHf
f (X ,Y) = f (X)− f (Y)− 〈Hf (Y), 1X − 1Y 〉 (106)

where Hf (Y) is a sub-gradient map.

Submodular Bregman divergences also definable in terms of
supergradients.

General: Hamming, Recall, Precision, Cond. MI, Sq. Hamming, etc.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 115 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Discrete Submodular Divergences

A convex function parameterizes a Bregman divergence, useful for
clustering (Banerjee et al.), includes KL-divergence, squared l2, etc.

Given a (not nec. differentiable) convex function φ and a
sub-gradient map Hφ (the gradient when φ is everywhere
differentiable), the generalized Bregman divergence is defined as:

d
Hφ
φ (x , y) = φ(x)− φ(y)− 〈Hφ(y), x − y〉,∀x , y ∈ dom(φ) (105)

A submodular function parameterizes a discrete submodular
Bregman divergence (Iyer & B., 2012).

Example, lower-bound form:

dHf
f (X ,Y) = f (X)− f (Y)− 〈Hf (Y), 1X − 1Y 〉 (106)

where Hf (Y) is a sub-gradient map.

Submodular Bregman divergences also definable in terms of
supergradients.

General: Hamming, Recall, Precision, Cond. MI, Sq. Hamming, etc.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 115 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

examples: submodular parameterization

Combinatorial independence, generalized entropy, and “information”
or “complexity” functions (seen above).

Simultaneous batch active-learning/semi-supervised learning
(Guillory & Bilmes).

Rank-order based divergences (Submodular Bregman Divergence,
and the Lovász-Bregman Divergences) (Iyer & Bilmes, 2013).

Feature and dictionary selection (Krause & Guestrin, Das & Kempe)

Computer vision (Kolmogorov, Boykov, Kohli, Ladicky, Torr, etc.).

Data subset (or core set) selection in machine learning (Lin &
Bilmes, Wei & Bilmes). Data summarization, summarizing big
redundant data.

Influence determination in social networks (Kempe, Kleinberg, &
Tardos)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 116 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

examples: submodular parameterization

Combinatorial independence, generalized entropy, and “information”
or “complexity” functions (seen above).

Simultaneous batch active-learning/semi-supervised learning
(Guillory & Bilmes).

Rank-order based divergences (Submodular Bregman Divergence,
and the Lovász-Bregman Divergences) (Iyer & Bilmes, 2013).

Feature and dictionary selection (Krause & Guestrin, Das & Kempe)

Computer vision (Kolmogorov, Boykov, Kohli, Ladicky, Torr, etc.).

Data subset (or core set) selection in machine learning (Lin &
Bilmes, Wei & Bilmes). Data summarization, summarizing big
redundant data.

Influence determination in social networks (Kempe, Kleinberg, &
Tardos)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 116 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

examples: submodular parameterization

Combinatorial independence, generalized entropy, and “information”
or “complexity” functions (seen above).

Simultaneous batch active-learning/semi-supervised learning
(Guillory & Bilmes).

Rank-order based divergences (Submodular Bregman Divergence,
and the Lovász-Bregman Divergences) (Iyer & Bilmes, 2013).

Feature and dictionary selection (Krause & Guestrin, Das & Kempe)

Computer vision (Kolmogorov, Boykov, Kohli, Ladicky, Torr, etc.).

Data subset (or core set) selection in machine learning (Lin &
Bilmes, Wei & Bilmes). Data summarization, summarizing big
redundant data.

Influence determination in social networks (Kempe, Kleinberg, &
Tardos)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 116 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

examples: submodular parameterization

Combinatorial independence, generalized entropy, and “information”
or “complexity” functions (seen above).

Simultaneous batch active-learning/semi-supervised learning
(Guillory & Bilmes).

Rank-order based divergences (Submodular Bregman Divergence,
and the Lovász-Bregman Divergences) (Iyer & Bilmes, 2013).

Feature and dictionary selection (Krause & Guestrin, Das & Kempe)

Computer vision (Kolmogorov, Boykov, Kohli, Ladicky, Torr, etc.).

Data subset (or core set) selection in machine learning (Lin &
Bilmes, Wei & Bilmes). Data summarization, summarizing big
redundant data.

Influence determination in social networks (Kempe, Kleinberg, &
Tardos)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 116 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

examples: submodular parameterization

Combinatorial independence, generalized entropy, and “information”
or “complexity” functions (seen above).

Simultaneous batch active-learning/semi-supervised learning
(Guillory & Bilmes).

Rank-order based divergences (Submodular Bregman Divergence,
and the Lovász-Bregman Divergences) (Iyer & Bilmes, 2013).

Feature and dictionary selection (Krause & Guestrin, Das & Kempe)

Computer vision (Kolmogorov, Boykov, Kohli, Ladicky, Torr, etc.).

Data subset (or core set) selection in machine learning (Lin &
Bilmes, Wei & Bilmes). Data summarization, summarizing big
redundant data.

Influence determination in social networks (Kempe, Kleinberg, &
Tardos)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 116 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

examples: submodular parameterization

Combinatorial independence, generalized entropy, and “information”
or “complexity” functions (seen above).

Simultaneous batch active-learning/semi-supervised learning
(Guillory & Bilmes).

Rank-order based divergences (Submodular Bregman Divergence,
and the Lovász-Bregman Divergences) (Iyer & Bilmes, 2013).

Feature and dictionary selection (Krause & Guestrin, Das & Kempe)

Computer vision (Kolmogorov, Boykov, Kohli, Ladicky, Torr, etc.).

Data subset (or core set) selection in machine learning (Lin &
Bilmes, Wei & Bilmes). Data summarization, summarizing big
redundant data.

Influence determination in social networks (Kempe, Kleinberg, &
Tardos)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 116 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

examples: submodular parameterization

Combinatorial independence, generalized entropy, and “information”
or “complexity” functions (seen above).

Simultaneous batch active-learning/semi-supervised learning
(Guillory & Bilmes).

Rank-order based divergences (Submodular Bregman Divergence,
and the Lovász-Bregman Divergences) (Iyer & Bilmes, 2013).

Feature and dictionary selection (Krause & Guestrin, Das & Kempe)

Computer vision (Kolmogorov, Boykov, Kohli, Ladicky, Torr, etc.).

Data subset (or core set) selection in machine learning (Lin &
Bilmes, Wei & Bilmes). Data summarization, summarizing big
redundant data.

Influence determination in social networks (Kempe, Kleinberg, &
Tardos)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 116 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Outline: Part 2

5 Submodular Applications in Machine Learning
Where is submodularity useful?

6 As a model of diversity, coverage, span, or information

7 As a model of cooperative costs, complexity, roughness, and
irregularity

8 As a Parameter for an ML algorithm

9 Itself, as a target for learning

10 Surrogates for optimization and analysis

11 Reading
Refs

J. Bilmes & R. Iyer NOML: Submodularity in ML page 117 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Learning Submodular Functions

Learning submodular functions is hard

Goemans et al. (2009): “can one make only polynomial number of
queries to an unknown submodular function f and constructs a f̂
such that f̂ (S) ≤ f (S) ≤ g(n)f̂ (S) where g : N→ R?”

Many
results, including that even with adaptive queries and monotone
functions, can’t do better than Ω(

√
n/ log n).

Balcan & Harvey (2011): submodular function learning problem
from a learning theory perspective, given a distribution on subsets.
Negative result is that can’t approximate in this setting to within a
constant factor.

But can we learn a subclass, perhaps non-negative weighted
mixtures of submodular components?

J. Bilmes & R. Iyer NOML: Submodularity in ML page 118 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Learning Submodular Functions

Learning submodular functions is hard

Goemans et al. (2009): “can one make only polynomial number of
queries to an unknown submodular function f and constructs a f̂
such that f̂ (S) ≤ f (S) ≤ g(n)f̂ (S) where g : N→ R?”

Many
results, including that even with adaptive queries and monotone
functions, can’t do better than Ω(

√
n/ log n).

Balcan & Harvey (2011): submodular function learning problem
from a learning theory perspective, given a distribution on subsets.
Negative result is that can’t approximate in this setting to within a
constant factor.

But can we learn a subclass, perhaps non-negative weighted
mixtures of submodular components?

J. Bilmes & R. Iyer NOML: Submodularity in ML page 118 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Learning Submodular Functions

Learning submodular functions is hard

Goemans et al. (2009): “can one make only polynomial number of
queries to an unknown submodular function f and constructs a f̂
such that f̂ (S) ≤ f (S) ≤ g(n)f̂ (S) where g : N→ R?” Many
results, including that even with adaptive queries and monotone
functions, can’t do better than Ω(

√
n/ log n).

Balcan & Harvey (2011): submodular function learning problem
from a learning theory perspective, given a distribution on subsets.
Negative result is that can’t approximate in this setting to within a
constant factor.

But can we learn a subclass, perhaps non-negative weighted
mixtures of submodular components?

J. Bilmes & R. Iyer NOML: Submodularity in ML page 118 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Learning Submodular Functions

Learning submodular functions is hard

Goemans et al. (2009): “can one make only polynomial number of
queries to an unknown submodular function f and constructs a f̂
such that f̂ (S) ≤ f (S) ≤ g(n)f̂ (S) where g : N→ R?” Many
results, including that even with adaptive queries and monotone
functions, can’t do better than Ω(

√
n/ log n).

Balcan & Harvey (2011): submodular function learning problem
from a learning theory perspective, given a distribution on subsets.
Negative result is that can’t approximate in this setting to within a
constant factor.

But can we learn a subclass, perhaps non-negative weighted
mixtures of submodular components?

J. Bilmes & R. Iyer NOML: Submodularity in ML page 118 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Learning Submodular Functions

Learning submodular functions is hard

Goemans et al. (2009): “can one make only polynomial number of
queries to an unknown submodular function f and constructs a f̂
such that f̂ (S) ≤ f (S) ≤ g(n)f̂ (S) where g : N→ R?” Many
results, including that even with adaptive queries and monotone
functions, can’t do better than Ω(

√
n/ log n).

Balcan & Harvey (2011): submodular function learning problem
from a learning theory perspective, given a distribution on subsets.
Negative result is that can’t approximate in this setting to within a
constant factor.

But can we learn a subclass, perhaps non-negative weighted
mixtures of submodular components?

J. Bilmes & R. Iyer NOML: Submodularity in ML page 118 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Structured Prediction in Machine Learning

Given: a finite set of training pairs D =
{

(x(i), y(i))
}
i

where

x(i) ∈ X , y(i) ∈ Y.

f : X × Y → RM is a (fixed) vector of functions, and w ∈ RM is a
vector of parameters to learn.

Score function: s(x, y) = wᵀf(x, y) =
∑

i wi fi (x, y).

Decision making (inference) for a given x̄ is based on:

ŷ ∈ hw(x̄) = argmax
y∈Y

s(x̄, y) = argmax
y∈Y

wᵀf(x̄, y) (107)

Goal of learning: optimize w so that such decision making is “good”

Let ` : Y × Y → R+ be a loss function. I.e., `y(ŷ) is cost of
deciding ŷ when truth is y.

Empirical risk minimization: adjust w so that
∑

i `y(hw(x(i))) is
small subject to other conditions (e.g., regularization).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 119 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Structured Learning of Submodular Mixtures

Constraints specified in inference form:

minimize
w,ξt

1

T

∑

t

ξt +
λ

2
‖w‖2 (108)

subject to w>ft(y(t)) ≥ max
y∈Yt

(
w>ft(y) + `t(y)

)
− ξt ,∀t (109)

ξt ≥ 0,∀t. (110)

Exponential set of constraints reduced to an embedded optimization
problem, “loss-augmented inference.”

w>ft(y) is a mixture of submodular components.

If loss is also submodular, then loss-augmented inference is
submodular optimization.

If loss is supermodular, this is a difference-of-submodular (DS)
function optimization.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 120 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Structured Learning of Submodular Mixtures

Constraints specified in inference form:

minimize
w,ξt

1

T

∑

t

ξt +
λ

2
‖w‖2 (108)

subject to w>ft(y(t)) ≥ max
y∈Yt

(
w>ft(y) + `t(y)

)
− ξt ,∀t (109)

ξt ≥ 0,∀t. (110)

Exponential set of constraints reduced to an embedded optimization
problem, “loss-augmented inference.”

w>ft(y) is a mixture of submodular components.

If loss is also submodular, then loss-augmented inference is
submodular optimization.

If loss is supermodular, this is a difference-of-submodular (DS)
function optimization.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 120 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Structured Learning of Submodular Mixtures

Constraints specified in inference form:

minimize
w,ξt

1

T

∑

t

ξt +
λ

2
‖w‖2 (108)

subject to w>ft(y(t)) ≥ max
y∈Yt

(
w>ft(y) + `t(y)

)
− ξt ,∀t (109)

ξt ≥ 0,∀t. (110)

Exponential set of constraints reduced to an embedded optimization
problem, “loss-augmented inference.”

w>ft(y) is a mixture of submodular components.

If loss is also submodular, then loss-augmented inference is
submodular optimization.

If loss is supermodular, this is a difference-of-submodular (DS)
function optimization.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 120 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Structured Learning of Submodular Mixtures

Constraints specified in inference form:

minimize
w,ξt

1

T

∑

t

ξt +
λ

2
‖w‖2 (108)

subject to w>ft(y(t)) ≥ max
y∈Yt

(
w>ft(y) + `t(y)

)
− ξt ,∀t (109)

ξt ≥ 0,∀t. (110)

Exponential set of constraints reduced to an embedded optimization
problem, “loss-augmented inference.”

w>ft(y) is a mixture of submodular components.

If loss is also submodular, then loss-augmented inference is
submodular optimization.

If loss is supermodular, this is a difference-of-submodular (DS)
function optimization.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 120 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Structured Learning of Submodular Mixtures

Constraints specified in inference form:

minimize
w,ξt

1

T

∑

t

ξt +
λ

2
‖w‖2 (108)

subject to w>ft(y(t)) ≥ max
y∈Yt

(
w>ft(y) + `t(y)

)
− ξt ,∀t (109)

ξt ≥ 0,∀t. (110)

Exponential set of constraints reduced to an embedded optimization
problem, “loss-augmented inference.”

w>ft(y) is a mixture of submodular components.

If loss is also submodular, then loss-augmented inference is
submodular optimization.

If loss is supermodular, this is a difference-of-submodular (DS)
function optimization.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 120 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Learning Submodular Mixtures: Unconstrained Form

Unconstrained form uses a generalized hinge-loss (Taskar 2004),
which is amenable to sub-gradient descent optimization:

min
w≥0

1

T

∑

t

[
max
y∈Yt

(
w>ft(y) + `t(y)

)
−w>ft(y(t))

]
+
λ

2
‖w‖2 (111)

Note, w ≥ 0 critical to preserve submodularity.
To compute a subgradient, must solve the following embedded
optimization problem (“loss augmented inference”):

max
y∈Yt

(
w>ft(y) + `t(y)

)
(112)

The problem is convex in w, and w>ft(y) is submodular
(polymatroidal in fact), but what about `t(y)?
Often one uses Hamming loss (in general structured prediction
problems) which is submodular (modular in fact).
If loss `t(y), more generally, is submodular, then Eq. (112) can be
solved at least approximately well.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 121 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Structured Prediction: Subgradient

Subgradient, evaluated at w, of the following

max
y∈Yt

(
w>ft(y) + `t(y)

)
−w>ft(y(t)) +

λ

2
‖w‖2 (113)

can be found by computing or approximating

y∗ ∈ argmax
y∈Yt

(
w>ft(y) + `t(y)

)
−w>ft(y(t)) (114)

and then finding subgradient of

w>ft(y∗) + `t(y∗)−w>ft(y(t)) +
λ

2
‖w‖2 (115)

which has the form

ft(y∗)− ft(y(t)) + λw. (116)

J. Bilmes & R. Iyer NOML: Submodularity in ML page 122 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Structured Prediction: Subgradient Learning

Solvable with simple sub-gradient descent algorithm using structured
variant of hinge-loss (Taskar, 2004).

Loss-augmented inference is either submodular optimization (Lin &
B. 2012) or DS optimization (Tschiatschek, Iyer, & B. 2014).

Algorithm 7: Subgradient descent learning

Input : S = {(x(t), y(t))}Tt=1 and a learning rate sequence {ηt}Tt=1.
w0 = 0;
for t = 1, · · · ,T do

Loss augmented inference: y∗t ∈ argmaxy∈Yt w>t−1ft(y) + `t(y);

Compute the subgradient: gt = λwt−1 + ft(y∗)− ft(y(t));
Update the weights: wt = wt−1 − ηtgt ;

Return : the averaged parameters 1
T

∑
t wt .

J. Bilmes & R. Iyer NOML: Submodularity in ML page 123 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Outline: Part 2

5 Submodular Applications in Machine Learning
Where is submodularity useful?

6 As a model of diversity, coverage, span, or information

7 As a model of cooperative costs, complexity, roughness, and
irregularity

8 As a Parameter for an ML algorithm

9 Itself, as a target for learning

10 Surrogates for optimization and analysis

11 Reading
Refs

J. Bilmes & R. Iyer NOML: Submodularity in ML page 124 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Submodular Relaxation

We often are unable to optimize an objective. E.g., high tree-width
graphical models (as we saw).

If potentials are submodular, we can solve them.

When potentials are not, we might resort to factorization (e.g., the
marginal polytope in variational inference, were we optimize over a
tree-constrained polytope).

An alternative is submodular relaxation. I.e., given

Pr(x) =
1

Z
exp(−E (x)) (117)

where E (x) = Ef (x)− Eg (x) and both of Ef (x) and Eg (x) are
submodular.

Any function can be expressed as the difference between two
submodular functions.

Hence, rather than minimize E (x) (hard), we can minimize
Ef (x) ≥ E (x) (relatively easy), which is an upper bound.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 125 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Submodular Relaxation

We often are unable to optimize an objective. E.g., high tree-width
graphical models (as we saw).

If potentials are submodular, we can solve them.

When potentials are not, we might resort to factorization (e.g., the
marginal polytope in variational inference, were we optimize over a
tree-constrained polytope).

An alternative is submodular relaxation. I.e., given

Pr(x) =
1

Z
exp(−E (x)) (117)

where E (x) = Ef (x)− Eg (x) and both of Ef (x) and Eg (x) are
submodular.

Any function can be expressed as the difference between two
submodular functions.

Hence, rather than minimize E (x) (hard), we can minimize
Ef (x) ≥ E (x) (relatively easy), which is an upper bound.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 125 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Submodular Relaxation

We often are unable to optimize an objective. E.g., high tree-width
graphical models (as we saw).

If potentials are submodular, we can solve them.

When potentials are not, we might resort to factorization (e.g., the
marginal polytope in variational inference, were we optimize over a
tree-constrained polytope).

An alternative is submodular relaxation. I.e., given

Pr(x) =
1

Z
exp(−E (x)) (117)

where E (x) = Ef (x)− Eg (x) and both of Ef (x) and Eg (x) are
submodular.

Any function can be expressed as the difference between two
submodular functions.

Hence, rather than minimize E (x) (hard), we can minimize
Ef (x) ≥ E (x) (relatively easy), which is an upper bound.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 125 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Submodular Relaxation

We often are unable to optimize an objective. E.g., high tree-width
graphical models (as we saw).

If potentials are submodular, we can solve them.

When potentials are not, we might resort to factorization (e.g., the
marginal polytope in variational inference, were we optimize over a
tree-constrained polytope).

An alternative is submodular relaxation. I.e., given

Pr(x) =
1

Z
exp(−E (x)) (117)

where E (x) = Ef (x)− Eg (x) and both of Ef (x) and Eg (x) are
submodular.

Any function can be expressed as the difference between two
submodular functions.

Hence, rather than minimize E (x) (hard), we can minimize
Ef (x) ≥ E (x) (relatively easy), which is an upper bound.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 125 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Submodular Relaxation

We often are unable to optimize an objective. E.g., high tree-width
graphical models (as we saw).

If potentials are submodular, we can solve them.

When potentials are not, we might resort to factorization (e.g., the
marginal polytope in variational inference, were we optimize over a
tree-constrained polytope).

An alternative is submodular relaxation. I.e., given

Pr(x) =
1

Z
exp(−E (x)) (117)

where E (x) = Ef (x)− Eg (x) and both of Ef (x) and Eg (x) are
submodular.

Any function can be expressed as the difference between two
submodular functions.

Hence, rather than minimize E (x) (hard), we can minimize
Ef (x) ≥ E (x) (relatively easy), which is an upper bound.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 125 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Submodular Relaxation

We often are unable to optimize an objective. E.g., high tree-width
graphical models (as we saw).

If potentials are submodular, we can solve them.

When potentials are not, we might resort to factorization (e.g., the
marginal polytope in variational inference, were we optimize over a
tree-constrained polytope).

An alternative is submodular relaxation. I.e., given

Pr(x) =
1

Z
exp(−E (x)) (117)

where E (x) = Ef (x)− Eg (x) and both of Ef (x) and Eg (x) are
submodular.

Any function can be expressed as the difference between two
submodular functions.

Hence, rather than minimize E (x) (hard), we can minimize
Ef (x) ≥ E (x) (relatively easy), which is an upper bound.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 125 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Submodular Analysis for Non-Submodular Problems

Sometimes the quality of solutions to non-submodular problems can
be analyzed via submodularity.

For example, “deviation from submodularity” can be measured using
the submodularity ratio (Das & Kempe):

γU,k(f) = min
L⊆U,S:|S |≤k,S∩L=∅

∑
s∈S f (x |L)

f (S |L)
(118)

f is submodular if γU,k ≥ 1 for all U and k .

For some variable selection problems, can get bounds of the form:

Solution ≥ (1− 1

eγU∗,k
)OPT (119)

where U∗ is the solution set of a variable selection algorithm.

This gradually get worse as we move away from an objective being
submodular (see Das & Kempe, 2011).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 126 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Submodular Analysis for Non-Submodular Problems

Sometimes the quality of solutions to non-submodular problems can
be analyzed via submodularity.

For example, “deviation from submodularity” can be measured using
the submodularity ratio (Das & Kempe):

γU,k(f) = min
L⊆U,S:|S |≤k,S∩L=∅

∑
s∈S f (x |L)

f (S |L)
(118)

f is submodular if γU,k ≥ 1 for all U and k .

For some variable selection problems, can get bounds of the form:

Solution ≥ (1− 1

eγU∗,k
)OPT (119)

where U∗ is the solution set of a variable selection algorithm.

This gradually get worse as we move away from an objective being
submodular (see Das & Kempe, 2011).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 126 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Submodular Analysis for Non-Submodular Problems

Sometimes the quality of solutions to non-submodular problems can
be analyzed via submodularity.

For example, “deviation from submodularity” can be measured using
the submodularity ratio (Das & Kempe):

γU,k(f) = min
L⊆U,S:|S |≤k,S∩L=∅

∑
s∈S f (x |L)

f (S |L)
(118)

f is submodular if γU,k ≥ 1 for all U and k .

For some variable selection problems, can get bounds of the form:

Solution ≥ (1− 1

eγU∗,k
)OPT (119)

where U∗ is the solution set of a variable selection algorithm.

This gradually get worse as we move away from an objective being
submodular (see Das & Kempe, 2011).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 126 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Submodular Analysis for Non-Submodular Problems

Sometimes the quality of solutions to non-submodular problems can
be analyzed via submodularity.

For example, “deviation from submodularity” can be measured using
the submodularity ratio (Das & Kempe):

γU,k(f) = min
L⊆U,S:|S |≤k,S∩L=∅

∑
s∈S f (x |L)

f (S |L)
(118)

f is submodular if γU,k ≥ 1 for all U and k .

For some variable selection problems, can get bounds of the form:

Solution ≥ (1− 1

eγU∗,k
)OPT (119)

where U∗ is the solution set of a variable selection algorithm.

This gradually get worse as we move away from an objective being
submodular (see Das & Kempe, 2011).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 126 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Submodular Analysis for Non-Submodular Problems

Sometimes the quality of solutions to non-submodular problems can
be analyzed via submodularity.

For example, “deviation from submodularity” can be measured using
the submodularity ratio (Das & Kempe):

γU,k(f) = min
L⊆U,S:|S |≤k,S∩L=∅

∑
s∈S f (x |L)

f (S |L)
(118)

f is submodular if γU,k ≥ 1 for all U and k .

For some variable selection problems, can get bounds of the form:

Solution ≥ (1− 1

eγU∗,k
)OPT (119)

where U∗ is the solution set of a variable selection algorithm.

This gradually get worse as we move away from an objective being
submodular (see Das & Kempe, 2011).

J. Bilmes & R. Iyer NOML: Submodularity in ML page 126 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Outline: Part 2

5 Submodular Applications in Machine Learning
Where is submodularity useful?

6 As a model of diversity, coverage, span, or information

7 As a model of cooperative costs, complexity, roughness, and
irregularity

8 As a Parameter for an ML algorithm

9 Itself, as a target for learning

10 Surrogates for optimization and analysis

11 Reading
Refs

J. Bilmes & R. Iyer NOML: Submodularity in ML page 127 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Classic References

Jack Edmonds’s paper “Submodular Functions, Matroids, and
Certain Polyhedra” from 1970.

Nemhauser, Wolsey, Fisher, “A Analysis of Approximations for
Maximizing Submodular Set Functions-I”, 1978

Lovász’s paper, “Submodular functions and convexity”, from 1983.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 128 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Classic Books

Fujishige, “Submodular Functions and Optimization”, 2005

Narayanan, “Submodular Functions and Electrical Networks”, 1997

Welsh, “Matroid Theory”, 1975.

Oxley, “Matroid Theory”, 1992 (and 2011).

Lawler, “Combinatorial Optimization: Networks and Matroids”,
1976.

Schrijver, “Combinatorial Optimization”, 2003

Gruenbaum, “Convex Polytopes, 2nd Ed”, 2003.

J. Bilmes & R. Iyer NOML: Submodularity in ML page 129 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

Recent online material with an ML slant

My class, most proofs for above are given. http://j.ee.

washington.edu/~bilmes/classes/ee596b_spring_2014/.
Lectures available on youtube!

Andreas Krause’s web page http://submodularity.org.
Stefanie Jegelka and Andreas Krause’s ICML 2013 tutorial
http://techtalks.tv/talks/

submodularity-in-machine-learning-new-directions-part-i/

58125/

Francis Bach’s updated 2013 text.
http://hal.archives-ouvertes.fr/docs/00/87/06/09/PDF/

submodular_fot_revised_hal.pdf

Tom McCormick’s overview paper on submodular minimization
http://people.commerce.ubc.ca/faculty/mccormick/

sfmchap8a.pdf

Georgia Tech’s 2012 workshop on submodularity: http:

//www.arc.gatech.edu/events/arc-submodularity-workshop

J. Bilmes & R. Iyer NOML: Submodularity in ML page 130 / 123

Applications Diversity Complexity Parameter ML Target Surrogate Refs

The End: Thank you!

Submodularity

Greedily choose your data sets
1 − 1/e guarantee!

Minimize your functions in
polynomial time!

Draw beautiful polyhedra!
Solve exponentialy large
linear programs in polynomial
time!

Paul E. Matroid
Moniton Submodularanian
Wonmy Neuswon Overee

+

f (A) + f (B)

f (A ∪ B)

≥
f (A ∩ B)

with a

J. Bilmes & R. Iyer NOML: Submodularity in ML page 131 / 123

	One
	Introduction
	Goals of the Tutorial

	Basics
	Set Functions
	Economic applications
	Set Cover Like Functions
	Submodular Definitions
	Other Background, sets, vectors, gain, other defs

	Other examples of submodular functs
	Traditional combinatorial and graph functions
	Concave over modular, and sums thereof
	Matrix Rank
	Venn Diagrams
	Information Theory Functions

	Optimization
	Submodular Applications in Machine Learning
	Where is submodularity useful?

	As a model of diversity, coverage, span, or information
	As a model of cooperative costs, complexity, roughness, and irregularity
	As a Parameter for an ML algorithm
	Itself, as a target for learning
	Surrogates for optimization and analysis
	Reading
	Refs

