
Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Deep Learning and
Optimization,
With Applications to
Speech Recognition
Tara N. Sainath
June 15, 2015

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Acknowledgements

● Google
o  Michiel Bacchiani
o  Hasim Sak
o  Andrew Senior

●  IBM
o  Brian Kingsbury
o  George Saon

● Microsoft
o  Li Deng
o  Frank Seide
o  Dong Yu

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Outline

•  Why Neural Networks
•  Training Neural Networks
•  Making Neural Networks Work for Speech Recognition
•  Optimization challenges: Training time
•  Optimization challenges: New architectures

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Pattern Recognition System

•  The goal of any pattern recognition system is to
o  determine an appropriate feature representation
o  classify these features effectively Spectrograms of the Cardinal Vowels

kHz kHz

Wide Band Spectrogram

kHz kHz

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

Time (seconds)
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

kHz kHz

0 0

8 8

16 16Zero Crossing Rate

dB dB
Total Energy

dB dB
Energy -- 125 Hz to 750 Hz

Waveform

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

kHz kHz

Wide Band Spectrogram

kHz kHz

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

Time (seconds)
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

kHz kHz

0 0

8 8

16 16Zero Crossing Rate

dB dB
Total Energy

dB dB
Energy -- 125 Hz to 750 Hz

Waveform

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

kHz kHz

Wide Band Spectrogram

kHz kHz

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

Time (seconds)
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

kHz kHz

0 0

8 8

16 16Zero Crossing Rate

dB dB
Total Energy

dB dB
Energy -- 125 Hz to 750 Hz

Waveform

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

kHz kHz

Wide Band Spectrogram

kHz kHz

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

Time (seconds)
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

kHz kHz

0 0

8 8

16 16Zero Crossing Rate

dB dB
Total Energy

dB dB
Energy -- 125 Hz to 750 Hz

Waveform

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

beet bat bott boot
/bi¤ t/ /b@t/ /bat/ /but/

6.345 Automatic Speech Recognition Speech Sounds 4

Feature
Extractor

Classifier

“bat”

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Example from Speech Recognition
•  For example, in speech recognition, we first create features by hand
•  Then we build a discriminative classifier (Gaussian Mixture Model)

to distinguish between classes
•  Features are not directly designed for classification objective

Spectrograms of the Cardinal Vowels

kHz kHz

Wide Band Spectrogram

kHz kHz

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

Time (seconds)
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

kHz kHz

0 0

8 8

16 16Zero Crossing Rate

dB dB
Total Energy

dB dB
Energy -- 125 Hz to 750 Hz

Waveform

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

kHz kHz

Wide Band Spectrogram

kHz kHz

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

Time (seconds)
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

kHz kHz

0 0

8 8

16 16Zero Crossing Rate

dB dB
Total Energy

dB dB
Energy -- 125 Hz to 750 Hz

Waveform

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

kHz kHz

Wide Band Spectrogram

kHz kHz

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

Time (seconds)
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

kHz kHz

0 0

8 8

16 16Zero Crossing Rate

dB dB
Total Energy

dB dB
Energy -- 125 Hz to 750 Hz

Waveform

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

kHz kHz

Wide Band Spectrogram

kHz kHz

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

Time (seconds)
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

kHz kHz

0 0

8 8

16 16Zero Crossing Rate

dB dB
Total Energy

dB dB
Energy -- 125 Hz to 750 Hz

Waveform

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

beet bat bott boot
/bi¤ t/ /b@t/ /bat/ /but/

6.345 Automatic Speech Recognition Speech Sounds 4

Feature
Extractor

Classifier

“bat”

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

End-to-End Recognition System
•  Black box which takes simple features + labels does the feature

extraction jointly with the classification
•  Features are trained to the classification objective
•  Big non-linear system trained to map from simple features to labels

Spectrograms of the Cardinal Vowels

kHz kHz

Wide Band Spectrogram

kHz kHz

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

Time (seconds)
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

kHz kHz

0 0

8 8

16 16Zero Crossing Rate

dB dB
Total Energy

dB dB
Energy -- 125 Hz to 750 Hz

Waveform

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

kHz kHz

Wide Band Spectrogram

kHz kHz

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

Time (seconds)
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

kHz kHz

0 0

8 8

16 16Zero Crossing Rate

dB dB
Total Energy

dB dB
Energy -- 125 Hz to 750 Hz

Waveform

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

kHz kHz

Wide Band Spectrogram

kHz kHz

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

Time (seconds)
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

kHz kHz

0 0

8 8

16 16Zero Crossing Rate

dB dB
Total Energy

dB dB
Energy -- 125 Hz to 750 Hz

Waveform

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

kHz kHz

Wide Band Spectrogram

kHz kHz

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

Time (seconds)
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

kHz kHz

0 0

8 8

16 16Zero Crossing Rate

dB dB
Total Energy

dB dB
Energy -- 125 Hz to 750 Hz

Waveform

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

beet bat bott boot
/bi¤ t/ /b@t/ /bat/ /but/

6.345 Automatic Speech Recognition Speech Sounds 4

Feature
Extractor

Classifier

“bat”

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Intuition Behind Deep Neural Networks
•  Each block produces a higher level feature representation and better

classifier than its input
•  By combining simple building blocks, we can design more and more

complex, non-linear systems

“bat”
Spectrograms of the Cardinal Vowels

kHz kHz

Wide Band Spectrogram

kHz kHz

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

Time (seconds)
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

kHz kHz

0 0

8 8

16 16Zero Crossing Rate

dB dB
Total Energy

dB dB
Energy -- 125 Hz to 750 Hz

Waveform

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

kHz kHz

Wide Band Spectrogram

kHz kHz

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

Time (seconds)
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

kHz kHz

0 0

8 8

16 16Zero Crossing Rate

dB dB
Total Energy

dB dB
Energy -- 125 Hz to 750 Hz

Waveform

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

kHz kHz

Wide Band Spectrogram

kHz kHz

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

Time (seconds)
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

kHz kHz

0 0

8 8

16 16Zero Crossing Rate

dB dB
Total Energy

dB dB
Energy -- 125 Hz to 750 Hz

Waveform

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

kHz kHz

Wide Band Spectrogram

kHz kHz

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

Time (seconds)
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

kHz kHz

0 0

8 8

16 16Zero Crossing Rate

dB dB
Total Energy

dB dB
Energy -- 125 Hz to 750 Hz

Waveform

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

beet bat bott boot
/bi¤ t/ /b@t/ /bat/ /but/

6.345 Automatic Speech Recognition Speech Sounds 4

Reduce signal
variance

Class discrimination
characteristics

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Representation at Each Stage

•  Within each building block, we want the following properties:
o  Create a higher level representation of input
o  Better separate input into classes
o  Can be combined with previous layers
o  Can be trained jointly with other layers

•  Using a mathematical model of a biological neuron is an appropriate
choice

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Neurons

•  A neuron takes a weighted sum of inputs a and feeds
the result through an activation function σ

•  Output of the activation function produces decision
boundary which can be used in classification

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Combining Neurons
•  Each neuron splits the feature space with a hyperplane
•  1-layer of trainable weights cannot handle XOR
•  2-layers of trainable weights gives a convex polygon region

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Combining Neurons
•  3 layers of trainable weights gives a

composition of polygons: convex regions
•  More layers can handle more complicated

spaces – but require more parameters

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Multi-Layer Neural Network

“bat” Spectrograms of the Cardinal Vowels

kHz kHz

Wide Band Spectrogram

kHz kHz

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

Time (seconds)
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

kHz kHz

0 0

8 8

16 16Zero Crossing Rate

dB dB
Total Energy

dB dB
Energy -- 125 Hz to 750 Hz

Waveform

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

kHz kHz

Wide Band Spectrogram

kHz kHz

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

Time (seconds)
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

kHz kHz

0 0

8 8

16 16Zero Crossing Rate

dB dB
Total Energy

dB dB
Energy -- 125 Hz to 750 Hz

Waveform

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

kHz kHz

Wide Band Spectrogram

kHz kHz

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

Time (seconds)
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

kHz kHz

0 0

8 8

16 16Zero Crossing Rate

dB dB
Total Energy

dB dB
Energy -- 125 Hz to 750 Hz

Waveform

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

kHz kHz

Wide Band Spectrogram

kHz kHz

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

Time (seconds)
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

kHz kHz

0 0

8 8

16 16Zero Crossing Rate

dB dB
Total Energy

dB dB
Energy -- 125 Hz to 750 Hz

Waveform

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

beet bat bott boot
/bi¤ t/ /b@t/ /bat/ /but/

6.345 Automatic Speech Recognition Speech Sounds 4

•  Each simple building block is a connection of neurons which produces
a higher-order, more complex representation of the input

•  Neurons in one layer are connected to neurons in the next layer

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Outline

•  Why Neural Networks
•  Training Neural Networks
•  Making Neural Networks Work for Speech Recognition
•  Optimization challenges: Training time
•  Optimization challenges: New architectures

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

MulAlayer'Networks'

x0

x1

x2

xP

f(x,

~

✓)

6'

~✓0,0

~✓0,1

~✓0,2 ~✓1,2

~✓1,1

~✓1,0

✓2,0

✓2,1

✓2,2

Training Neural Networks

•  Most common approach to train neural networks is via stochastic
gradient descent

o  Propagate input forward
o  Compute gradient of objective function
o  Propagate error gradient backwards

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Feed-Forward Networks

•  Predictions are fed forward through the network to classify

x0

x1

x2

xP

~✓0,0

~✓0,1

~✓0,2 ~✓1,2

~✓1,1

~✓1,0

✓2,0

✓2,1

✓2,2

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Feed-Forward Networks

•  Predictions are fed forward through the network to classify

x0

x1

x2

xP

~✓0,0

~✓0,1

~✓0,2 ~✓1,2

~✓1,1

~✓1,0

✓2,0

✓2,1

✓2,2

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Feed-Forward Networks

•  Predictions are fed forward through the network to classify

x0

x1

x2

xP

~✓0,0

~✓0,1

~✓0,2 ~✓1,2

~✓1,1

~✓1,0

✓2,0

✓2,1

✓2,2

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Feed-Forward Networks

•  Predictions are fed forward through the network to classify

x0

x1

x2

xP

~✓0,0

~✓0,1

~✓0,2 ~✓1,2

~✓1,1

~✓1,0

✓2,0

✓2,1

✓2,2

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Feed-Forward Networks

•  Predictions are fed forward through the network to classify

x0

x1

x2

xP

~✓0,0

~✓0,1

~✓0,2 ~✓1,2

~✓1,1

~✓1,0

✓2,0

✓2,1

✓2,2

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Feed-Forward Networks

•  Predictions are fed forward through the network to classify

x0

x1

x2

xP

~✓0,0

~✓0,1

~✓0,2 ~✓1,2

~✓1,1

~✓1,0

✓2,0

✓2,1

✓2,2
f(x,θ)

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

•  For regression problems, sum-of-squared error is used

•  For classification problems, cross-entropy is used
 !, ! !,! ∈ 0,1 ! !

!!
!

!!!
= 1!

!!(!,!)
!

!!!
= 1!

Define Objective Function

Error

ref=y

! = − !! log !!(!,!)
!

!!!
!

! = 1
2 !! − !!(!,!) !

!

!!!
!

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Error Backpropagation

•  Introduce variables over the neural network

x0

x1

x2

xP

f(x,

~

✓)

~✓ = {wij , wjk, wkl}

wij wjk

wkl

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Error Backpropagation

•  Introduce variables over the neural network
o  Define a to be the input of each non-linearity
o  Define z to be the output of each non-linearity

x0

x1

x2

xP

f(x,

~

✓)

~✓ = {wij , wjk, wkl}

wij wjk

wkl

zj zkzi
aj zlalak

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Error Backpropagation

x0

x1

x2

xP

f(x,

~

✓)

~✓ = {wij , wjk, wkl}

wij wjk

wkl

zj zkzi
aj ak zl

aj =
X

i

wijzi

al

ak =
X

j

wjkzj al =
X

k

wklzk

zj = g(aj) zk = g(ak) zl = g(al)

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Error Backpropagation
~✓ = {wij , wjk, wkl}

aj =
X

i

wijzi

x0

x1

x2

xP

f(x,

~

✓)

wij wjk

wkl

zj zkzi
aj ak zlal

ak =
X

j

wjkzj al =
X

k

wklzk

zj = g(aj) zk = g(ak) zl = g(al)

Training: Take the gradient of the last component and iterate backwards

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Error Backpropagation

x0

x1

x2

xP

f(x,

~

✓)

wij wjk

wkl

zj zkzi
aj ak zlal

Empirical Risk Function
R(θ) = 1

N
Ln (yn, f (xn,θ))

n=1

N

∑

=
1
N

1
2
(yn − f (xn,θ))

2

n=1

N

∑

=
1
N

1
2
yn − g wk l g wjkg wij xn,i

i
∑
#

$
%

&

'
(

j
∑
#

$
%%

&

'
((

k
∑
#

$
%
%

&

'
(
(

#

$

%
%

&

'

(
(

2

n=1

N

∑

n is number of training points
Composition of
weights +
nonlinearity
creates a nonconvex
objective function

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Error Backpropagation
•  Compute the gradient with respect to objective function and propagate the

gradient backwards to update each layer
•  Stochastic Gradient Descent (SGD) is the most popular optimization strategy

!!" = !!" − !
!"
!!!"

!

!!" = !!" − !
!"
!!!"

!

!!" = !!" − !
!"
!!!"

!

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Outline

•  Why Neural Networks
•  Training Neural Networks
•  Making Neural Networks Work for Speech Recognition
•  Optimization challenges: Training time
•  Optimization challenges: New architectures

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Acoustic Modeling for Speech Recognition
•  Speech recognition problem characterized as follows:

•  Acoustic modeling is the process of modeling a set of sub-word units

which make up words
•  Acoustic realization of a phoneme depends strongly on context
•  We model sub-word units as triphones (context-dependent states)

! = arg!max
!

! ! ! = arg!max
!

! ! ! !(!)!

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Acoustic Modeling for Speech Recognition
•  Each sub-word unit is modeled by a 3-state Hidden Markov Model

•  5 years ago, a popular acoustic modeling technique is to model the
output distribution in each state by Gaussian Mixture Models (GMM)

•  Neural Networks (alternatively called Multi Layer Perceptrons – MLPs)
can also be used for acoustic modeling

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Neural Network Acoustic Models
•  Final non-linearity is represented by softmax

•  Each class ci will be the same sub-word units we build GMMs for

s
o
f
t
m
a
x

x0

x1

x2

xP

!!(!!|!) = !
exp!(−!!)
exp!(−!!)!

!!!
!

p(c0|x)

p(c1|x)

p(c2|x)

W01 W12 W12 a0

a1

a2

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Neural Network Acoustic Models

•  Neural networks are trained to minimize cross-entropy objective
function (i.e. frame error rate)

•  NN gives posterior p(ci|x) so divide by class prior to get
likelihood

•  NN likelihood replaces GMM likelihood as output distribution in

HMM

!!!"# ,!(!!|!) ∈ 0,1 ! !
!!!"#

!

!!!
= 1!

!(!!|!)
!

!!!
= 1!

! = − !!!"# !log!(!!|!)
!

!!!
!

!!!(!|!!) = ! !(!!|!)!(!!)
!

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Early Performance of Neural Networks
•  Previous LVCSR performance with MLPs

o  shallow network (3 layers), small output targets (46) - [Zhu et al, ICSLP 2004]
•  On a Switchboard telephony task, gains with MLPs only observed when

combined with baseline

•  Training neural networks is difficult!
o  Objective function is non-convex
o  Training is done SGD serially one one machine, can be slow on CPUs

•  These difficulties pose challenges to have deep networks with many
output targets

Method WER
Baseline GMM/HMM 30.8

+ MLP 28.6

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Making DNNs Successful for Acoustic Modeling

3 advances made DNNs successful for acoustic modeling
1.  Pre-training
2.  Improved Hardware with GPUs
3.  Sequence training [B. Kingsbury et al, Interspeech 2012]

This encouraged
o  Deeper networks
o  Networks with more output targets (i.e., classes)

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

(1) Pre-Training via Unsupervised Learning
•  The goal of unsupervised learning is to put the weights in a good initial space

to encourage deeper and larger networks during superivsed fine-tuning
•  Unsupervised learning systems can be designed using the encoder-decoder

paradigm
o  Encoder: transform input v into code representation h
o  Decoder: reconstructs input from the code by minimizing

reconstruction error
•  Encoder-decoder paradigm learns weights such that the code captures

higher-order relevant information from input signal, these weights are used to
initialize network for fine-tuning

•  Unsupervised learning
o  Restricted Boltzmann Machine (RBM) [Hinton – Toronto]
o  Sparse Encoding Symmetric Machine (SESM) [Lecun – NYU]
o  De-noising Auto-Encoder [Bengio – Montreal]

W

v

h

6/17/15

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Greedy Layer-wise Pre-training

•  First train a layer of features that receive input directly from the speech
features

•  Then treat the activations of the trained features as if they were speech
features and learn features of features in a second hidden layer.

•  After pre-training is done, use weights and train network using cross-entropy
objective

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

(2) GPU training
•  DNN training is slow is due to the large number of dense matrix

multiplications and large amount of training data
•  GPUs help SGD DNN training by parallelizing this matrix multiplication

over thousands of cores
•  GPU training can achieve over a 9x speedup with a K20x speedup to a

compared to a 8-core CPU

Method WER (50-hr BN) Training Time (hrs)

SGD (CPU) 17.8 35

SGD (GPU) – K20x 17.8 3.8

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Results with PT+CE: Deepness

•  Experimentally, we see that network depth improves WER
•  Generally 6-7 hidden layers is used for speech tasks

W
E

R

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

•  We know with GMM/HMMs, increasing the number of context-
dependent states (i.e., classes) improves performance

•  In the past, MLPs typically trained with small number of outputs
o  increasing output targets becomes a harder optimization problem

and does not always improve WER
o  increases parameters à increases training time

•  With DNNs, pre-training putting weights in better space, and thus
we can increase output targets effectively

Results with PT+CE: Increased Output Targets

Number of Targets WER
384 21.3
512 20.8

1024 19.4
2,220 18.5

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

DNN Acoustic Modeling Results
•  DNNs provide between a 8-25% relative improvement in word error

rate over GMM/HMM systems across a variety of tasks and
languages

•  Results confirmed by many, many research labs

300 hour SWB
Conversational
Telephony

400 hour
Broadcast News

2000 hour
Voice Search

GMM/HMM 14.3 16.5 16.0
DNN 12.2 15.2 12.2

% Relative
Improvement

14.7 7.9 23.8

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Historical Performance in Speech Recognition
•  Few techniques we explore consistently show gains of this magnitude

Performance with
Deep Neural Networks

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Outline

•  Why Neural Networks
•  Training Neural Networks
•  Making Neural Networks Work for Speech Recognition
•  Optimization challenges: Training time
•  Optimization challenges: New architectures

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

The Revolution
•  The 2007 launch of smartphones (iPhone and Android)

was a revolution and dramatically changed the status of
speech processing

•  Google’s current suite of mobile applications is
launched in 48 languages and processes about a
decade of speech each day

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Mobile Speech Will Grow

•  Speech becomes the primary input modality
•  Training data will continue to grow
•  With this, we need efficient algorithms to train these networks

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Stochastic Gradient Descent

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

GPU training
•  DNN training is slow is due to the large number of dense matrix

multiplications and large amount of training data
•  GPUs help SGD DNN training by parallelizing this matrix multiplication

over thousands of cores
•  GPU training can achieve over a 9x speedup with a K20x speedup to a

compared to a 8-core CPU
•  In reality applications of speech, text and NLP thousands of hours of

labeled training data, even more unlabeled data
•  It is critical for DNN success to speed up training

Method WER (50-hr BN) Training Time (hrs)

SGD (CPU) 17.8 35

SGD (GPU) – K20x 17.8 3.8

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Approaches to Speed up DNN Training

•  Parallel SGD on GPUs [Microsoft]
•  Asynchronous SGD [Google]
•  Hessian-free training on Blue Gene [IBM]

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

(1) Parallel SGD

•  BP steps:
o  forward propagation
o  error back propagation
o  model update

softmax(.)
. (W2)T,+a2 . v1
 .W2

σ(.) σ’(.)
. (W1)T,+a1 . v1
 .W1

σ(.) σ’(.)
. (W0), + a0 . v0

v2 = E{h1|v1}

v1 = E{h0|v1}

v0 = obs

e1

e2

e0

P{s|v2}

ground truth

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Parallel SGD

•  BP steps:
o  forward propagation
o  error back propagation
o  model update

•  To improve efficiency of
data parallelism, reduce how
much data gets exchanged
by quantizing sub-gradients
to one bit/value

•  Key trick is to keep quantization
error from one mini-batch and
add it to the next

softmax(.)
. WT, + a . v
 .W

σ(.) σ’(.)
. (W1)T,+a1 . v0
 .W1

σ(.) σ’(.)
. WT, + a . v

ΔW2
Δa2

v0 = obs

e2 P{s|v2}
GPU 2

softmax(.)
. WT, + a . v
 .W

σ(.) σ’(.)
. (W1)T,+a1 . v0
 .W1

σ(.) σ’(.)
. WT, + a . v

v2 = E{h1|v1}

v1 = E{h0|v1}

1/3

e1

e2

e0

P{s|v2}
softmax(.)
. WT, + a . v
 .W

σ(.) σ’(.)
. (W1)T,+a1 . v0
 .W1

σ(.) σ’(.)
. WT, + a . v

1/3

e2 P{s|v2}

ΔW2
Δa2

ΔW1

Δa1
ΔW1
Δa1

ΔW0
Δa0

ΔW0
Δa0

1/3

GPU 1 GPU 3

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Results

•  SWBD 309h (46M): total reduction from 41 to 6.3h à 6.5 x (8-GPU server)

•  3300h S2S/MAVIS model (160M): 312 to 45.5h à 6.9 x (20 GPUs GCD)

[F. Seide et al, Interspeech 2014]

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

(2) Asynchronous SGD - DistBelief Parallel Trainer

Data

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Asynchronous SGD - DistBelief Parallel Trainer

Data

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Asynchronous SGD - DistBelief Parallel Trainer

Data Data Data

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Asynchronous SGD - DistBelief Parallel Trainer
Parameter Server

Data Data Data

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Asynchronous SGD - DistBelief Parallel Trainer
Parameter Server

Data Data Data

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Asynchronous SGD - DistBelief Parallel Trainer
Parameter Server

Data Data Data

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Asynchronous SGD - DistBelief Parallel Trainer
Parameter Server

Data Data Data

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

ASGD Training Time [J. Dean et al, NIPS 2012]

•  DistBelief CPU training allows speed ups of 70 times over a single
CPU and 5 times over a GPU.

•  Train a 85M parameter system on 2,000 hours, 10 epochs in about
10 days.

Task

Model
Type

WER Training
Size
(hours)

GPU Training
Time (hours
/epoch)

Hidden
Layers

Number
 of States

Voice
Search

GMM 16.0 5780 321 4x2560 7969
DNN 12.2

You
Tube

GMM 52.3 1400 55 4x2560 17552
DNN 46.2

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

IBM Research Interspeech 2012

Generic second-order optimization

1 Approximate

L(wn + dn)≠ L(wn) ¥ ÒL(wn)
T dn +

1
2dT

n B(wn)dn

© qwn(dn)

2 Search
Find dn such that qwn(dn) < qwn(0).

3 Update
wn+1

Ω wn + –dn

4 Iterate

c� 2012 IBM Corporation

(3) 2nd Order Optimization via Hessian-free
•  Distributed optimization techniques, such as 2nd order methods,

use large data batches for gradient and curvature information,
which can be parallelized across machines

1.  Minimize the following objective function

2.  Find the best search direction dn

3.  Update parameters

4.  Iterate

IBM Research Interspeech 2012

Generic second-order optimization

1 Approximate

L(wn + dn)≠ L(wn) ¥ ÒL(wn)
T dn +

1
2dT

n B(wn)dn

© qwn(dn)

2 Search
Find dn such that qwn(dn) < qwn(0).

3 Update
wn+1

Ω wn + –dn

4 Iterate

c� 2012 IBM Corporation

IBM Research Interspeech 2012

Generic second-order optimization

1 Approximate

L(wn + dn)≠ L(wn) ¥ ÒL(wn)
T dn +

1
2dT

n B(wn)dn

© qwn(dn)

2 Search
Find dn such that qwn(dn) < qwn(0).

3 Update
wn+1

Ω wn + –dn

4 Iterate

c� 2012 IBM Corporation

[B. Kingsbury et al,
Interspeech 2012]

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Hessian-free Training

Data Data Data

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Hessian-free Training
Master

Data Data Data

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Hessian-free Training
Master

Data Data Data

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Hessian-free Training
Master

Data Data Data

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Hessian-free Training
Master

Data Data Data

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Further Speedups with Blue Gene/Q

•  A major problem with parallel architectures is communication
bottlenecks between workers

•  Having a specialized hardware/software architecture to minimize
these bottlenecks is critical

•  The Blue Gene/Q architecture is perfect for 2nd order parallel HF
training

o  Massively parallel architecture with thousands of cores
o  Minimal communication cost between processors

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Overall Speedups with BG/Q – 300 hrs SWB
•  Experiments run on two BG/Q rack (2,048 nodes, 16 cores/node,

4 threads/core)
•  On 300-hr SWB, BG/Q is

o  4x faster for CE compared to SGD GPU
o  10x faster for ST compared to SGD GPU
o  No loss in WER compared to HF CPU

Algorithm Cross-Entropy (CE) Sequence Training (ST)

Time (hrs) WER Time (hrs) WER

HF CPU - - - 12.4

SGD GPU 121.5 14.1 47.6 12.7

HF BG/Q 28.0 14.1 4.6 12.4
Speedup 4 - 10.3

[T. N. Sainath et al,
Interspeech 2014]

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Overall Speedups with BG/Q – 400 hrs BN

•  On 400 hours BN with 2 racks, HF BG/Q shows
o  3x faster for CE compared to SGD GPU
o  11.6x faster for ST compared to SGD GPU
o  No loss in WER compared to HF CPU

•  A specialized architecture such as BG/Q makes HF the fastest
approach for CE and Sequence training

Hardware Cross-Entropy Sequence Training

Time (hrs) WER Time (hrs) WER

HF CPU - - - 15.1

SGD GPU 77.9 16.5 42.1 15.8

BG/Q 21.7 16.5 3.6 15.1
Speedup 3 - 11.6

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Outline

•  Why Neural Networks
•  Training Neural Networks
•  Making Neural Networks Work for Speech Recognition
•  Optimization challenges: Training time
•  Optimization challenges: New architectures

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

(1) Recurrent Neural Networks
•  Activation from previous time step is fed as input to network at

current time step
•  Recurrent layer encodes “state” and can encode long-term

temporal information
•  RNNs good at modeling non-linear temporal sequence data

[Robinson, 1993]

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Training RNNs
•  An RNN can be made to look like a feed forward network by unrolling the

RNN through time
•  During training, activations are forward propagated for a fixed time-step T
•  Gradients are computed and then backpropagated to start (backpropagation

through time)

Simple RNN

Simple RNN architecture in two alternative representations:

xt

ht

yt

input

hidden

output

Whx

Wyh Whh

(a) RNN

xt

ht

yt

xt�1

ht�1

yt�1

. . .
Whx

Wyh

Whh

Whx

Wyh

(b) RNN unrolled in time

RNN hidden and output layer activations:

ht = �(Whxxt +Whhht�1 + bh)

yt = �(Wyhht + by)

Google Speech LVCSR with LSTM RNNs 5/37

Simple RNN

Simple RNN architecture in two alternative representations:

xt

ht

yt

input

hidden

output

Whx

Wyh Whh

(a) RNN

xt

ht

yt

xt�1

ht�1

yt�1

. . .
Whx

Wyh

Whh

Whx

Wyh

(b) RNN unrolled in time

RNN hidden and output layer activations:

ht = �(Whxxt +Whhht�1 + bh)

yt = �(Wyhht + by)

Google Speech LVCSR with LSTM RNNs 5/37

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Backpropagation Through Time Backpropagation through time

���������	
����
�

���
�����
�����

���
����������
���

���
����������
���

�� ������������

�� ������������

������������

�

��

�� �

��������������

� � ��
Google Speech LVCSR with LSTM RNNs 7/37

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

RNN Architectures [G. Saon et al, Interspeech 2014]

•  Explore using RNNs for temporal modeling and
 DNNs for depth in a unified framework
•  RNN is unfolded for 6 time steps

•  RNN can achieve a 4% relative improvement over DNN

Model SWB-300
Baseline GMM/HMM 14.5
DNN 12.5
RNN 12.0 input

RNN

DNN

output

DNN

DNN

DNN

Model WER
RNN – unfolded 6 13.5
RNN – unfolded 11 13.8

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

(2) Long Short-Term Memory RNNs
•  Modeling long-term dependencies with RNNs is difficult due to

vanishing gradient problem
•  This limits modeling capability of RNNs to small time steps (5-10)
•  LSTMs were developed to address these issues [Hochreiter and

Schmidhuber, 1997]

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

LSTM architecture

•  Memory cells store temporal state of network
•  Multiplicative gates control information flow

o  Input gate: controls flow of input activations into cell
o  Output gate: controls output flow of cell activations
o  Forget gate: Process continuous input streams

•  These gates allow LSTM to store and access long-term information
in

pu
t

g
cell h

i
t

f
t

c
t

o
t

re
cu

rr
en

t

ou
tp

ut

x
t

m
t

r
t

r
t�1

y
t

LSTM memory blocks

Figure 1: LSTMP RNN architecture. A single memory block is
shown for clarity.

was added to the memory block [16]. This addressed a weak-
ness of LSTM models preventing them from processing contin-
uous input streams that are not segmented into subsequences.
The forget gate scales the internal state of the cell before adding
it as input to the cell through the self-recurrent connection of
the cell, therefore adaptively forgetting or resetting the cell’s
memory. In addition, the modern LSTM architecture contains
peephole connections from its internal cells to the gates in the
same cell to learn precise timing of the outputs [17].

An LSTM network computes a mapping from an input
sequence x = (x1, ..., xT

) to an output sequence y =
(y1, ..., yT) by calculating the network unit activations using
the following equations iteratively from t = 1 to T :

i
t

= �(W
ix

x
t

+W
im

m
t�1 +W

ic

c
t�1 + b

i

) (1)
f
t

= �(W
fx

x
t

+W
fm

m
t�1 +W

fc

c
t�1 + b

f

) (2)
c
t

= f
t

� c
t�1 + i

t

� g(W
cx

x
t

+W
cm

m
t�1 + b

c

) (3)
o
t

= �(W
ox

x
t

+W
om

m
t�1 +W

oc

c
t

+ b
o

) (4)
m

t

= o
t

� h(c
t

) (5)
y
t

= �(W
ym

m
t

+ b
y

) (6)

where the W terms denote weight matrices (e.g. W
ix

is the ma-
trix of weights from the input gate to the input), W

ic

,W
fc

,W
oc

are diagonal weight matrices for peephole connections, the b
terms denote bias vectors (b

i

is the input gate bias vector), � is
the logistic sigmoid function, and i, f , o and c are respectively
the input gate, forget gate, output gate and cell activation vec-
tors, all of which are the same size as the cell output activation
vector m, � is the element-wise product of the vectors, g and h
are the cell input and cell output activation functions, generally
and in this paper tanh, and � is the network output activation
function, softmax in this paper.

2.2. Deep LSTM

As with DNNs with deeper architectures, deep LSTM RNNs
have been successfully used for speech recognition [8, 13, 14].
Deep LSTM RNNs are built by stacking multiple LSTM lay-
ers. Note that LSTM RNNs are already deep architectures in
the sense that they can be considered as a feed-forward neu-
ral network unrolled in time where each layer shares the same
model parameters. One can see that the inputs to the model
go through multiple non-linear layers as in DNNs, however the
features from a given time instant are only processed by a sin-
gle nonlinear layer before contributing the the output for that
time instant. Therefore, the depth in deep LSTM RNNs has an
additional meaning. The input to the network at a given time

input

LSTM

output

(a) LSTM

input

LSTM

LSTM

output

(b) DLSTM

input

LSTM

recurrent

output

(c) LSTMP

input

LSTM

recurrent

LSTM

recurrent

output

(d) DLSTMP

Figure 2: LSTM RNN architectures.

step goes through multiple LSTM layers in addition to propa-
gation through time and LSTM layers. It has been argued that
deep layers in RNNs allow the network to learn at different time
scales over the input [18]. Deep LSTM RNNs offer another
benefit over standard LSTM RNNs: They can make better use
of parameters by distributing them over the space through mul-
tiple layers. For instance, rather than increasing the memory
size of a standard model by a factor of 2, one can have 4 lay-
ers with approximately the same number of parameters. This
results in inputs going through more non-linear operations per
time step.

2.3. LSTMP - LSTM with Recurrent Projection Layer

The standard LSTM RNN architecture has an input layer, a re-
current LSTM layer and an output layer. The input layer is con-
nected to the LSTM layer. The recurrent connections in the
LSTM layer are directly from the cell output units to the cell
input units, input gates, output gates and forget gates. The cell
output units are also connected to the output layer of the net-
work. The total number of parameters N in a standard LSTM
network with one cell in each memory block, ignoring the bi-
ases, can be calculated as N = n

c

⇥ n
c

⇥ 4 + n
i

⇥ n
c

⇥ 4 +
n
c

⇥ n
o

+ n
c

⇥ 3, where n
c

is the number of memory cells
(and number of memory blocks in this case), n

i

is the number
of input units, and n

o

is the number of output units. The com-
putational complexity of learning LSTM models per weight and
time step with the stochastic gradient descent (SGD) optimiza-
tion technique is O(1). Therefore, the learning computational
complexity per time step is O(N). The learning time for a net-
work with a moderate number of inputs is dominated by the
n
c

⇥ (4 ⇥ n
c

+ n
o

) factor. For the tasks requiring a large
number of output units and a large number of memory cells to
store temporal contextual information, learning LSTM models
become computationally expensive.

As an alternative to the standard architecture, we proposed
the Long Short-Term Memory Projected (LSTMP) architec-
ture to address the computational complexity of learning LSTM
models [15]. This architecture, shown in Figure 1 has a sepa-
rate linear projection layer after the LSTM layer. The recurrent
connections now connect from this recurrent projection layer to
the input of the LSTM layer. The network output units are con-
nected to this recurrent layer. The number of parameters in this
model is n

c

⇥n
r

⇥4+n
i

⇥n
c

⇥4+n
r

⇥n
o

+n
c

⇥n
r

+n
c

⇥3,
where n

r

is the number of units in the recurrent projection layer.
In this case, the model size and the learning computational com-

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Preserving Gradient Information with LSTMs

•  Memory cell remembers first input as long as the forget gate is open
and then input gate is closed

 CHAPTER 4. LONG SHORT-TERM MEMORY 35

Figure 4.4: Preservation of gradient information by LSTM. As in Fig-
ure 4.1 the shading of the nodes indicates their sensitivity to the inputs at time
one; in this case the black nodes are maximally sensitive and the white nodes
are entirely insensitive. The state of the input, forget, and output gates are
displayed below, to the left and above the hidden layer respectively. For sim-
plicity, all gates are either entirely open (‘O’) or closed (‘—’). The memory cell
‘remembers’ the first input as long as the forget gate is open and the input gate
is closed. The sensitivity of the output layer can be switched on and o↵ by the
output gate without a↵ecting the cell.

4.2 Influence of Preprocessing

The above discussion raises an important point about the influence of prepro-
cessing. If we can find a way to transform a task containing long range con-
textual dependencies into one containing only short-range dependencies before
presenting it to a sequence learning algorithm, then architectures such as LSTM
become somewhat redundant. For example, a raw speech signal typically has a
sampling rate of over 40 kHz. Clearly, a great many timesteps would have to
be spanned by a sequence learning algorithm attempting to label or model an
utterance presented in this form. However when the signal is first transformed
into a 100 Hz series of mel-frequency cepstral coe�cients, it becomes feasible to
model the data using an algorithm whose contextual range is relatively short,
such as a hidden Markov model.

Nonetheless, if such a transform is di�cult or unknown, or if we simply
wish to get a good result without having to design task-specific preprocessing
methods, algorithms capable of handling long time dependencies are essential.

4.3 Gradient Calculation

Like the networks discussed in the last chapter, LSTM is a di↵erentiable function
approximator that is typically trained with gradient descent. Recently, non
gradient-based training methods of LSTM have also been considered (Wierstra
et al., 2005; Schmidhuber et al., 2007), but they are outside the scope of this
book.

Input Gate

Forget Gate

Output Gate

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

LSTM Results

Number of Layers WER, CE
1 11.3
2 10.7
3 10.7

Model
Training

WER-
DNN

WER-
LSTM

Cross-
Entropy

11.1 10.0

Sequence 10.0 8.9

[H. Sak et al, Interspeech 2014]

•  Explore LSTMs on 2,000
Voice Search Task

•  LSTM gives a 10%
relative improvement
over the DNN

•  Optimization challenges:
o  LSTM is unrolled for

20 time steps
o  Performance seems to

saturate after 2 LSTM
layers

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

(3) CLDNN
•  We combine convolutional neural networks, LSTMs and deep

neural networks in a unified framework (CLDNN)
•  Architecture uses 1 CNN, 3 LSTM and 1 DNN layer
•  CLDNNs give an 8% relative improvement over LSTMs

•  Optimization Challenges:
•  Increasing number of layers saturates performance
•  Can only unroll LSTM for 20 time steps

fConv

LSTM

LSTM

LSTM

DNN

output targets

log-mel

xt 2 <P

Method WER – Seq
LSTM 8.9

CLDNN 8.2

[T.N. Sainath et al,
ICASSP 2015]

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Conclusions

•  DNN performance
o  Pre-training strategies and GPUs
o  This encouraged deeper networks with more output targets

•  Training improvements
o  Parallel GPU training via 1-bit GPU
o  Asynchronous SGD via CPUs
o  2nd order Hessian-free via Blue Gene

•  Architecture challenges
o  LSTMs and their variants are popular but still have optimization issues
o  Can only unroll for limited time steps
o  Can only make the architectures so deep

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

References – Neural Network Architectures
•  G. Hinton, L. Deng, D. Yu, G. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke,

P. Nguyen, T. N. Sainath, and B. Kingsbury, “Deep Neural Networks for Acoustic
Modeling in Speech Recognition,” IEEE Signal Processing Magazine, vol. 29, no. 6,
pp. 82–97, 2012.

•  T. N. Sainath, B. Kingsbury, G. Saon, H. Soltau, A. Mohamed, G. Dahl and B.
Ramabhadran, "Deep Convolutional Neural Networks for Large-Scale Speech Tasks,”
in Elsevier, Special Issue in Deep Learning, November 2014.

•  H. Soltau, G. Saon and T.N. Sainath, “Joint Training of Convolutional and Non-
Convolutional Neural Networks,” in Proc. ICASSP, 2014.

•  H. Sak, A. Senior, and F. Beaufays, “Long Short-Term Memory Recurrent Neural
Network Architectures for Large Scale Acoustic Modeling,” in Proc. Interspeech, 2014.

•  T. N. Sainath, O. Vinyals, A. Senior and H. Sak, “Convolutional, Long Short-Term
Memory, Fully Connected Deep Neural Networks ” in Proc. ICASSP, 2015.

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

References – Training Improvements

•  Jeff Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc Le, Mark Mao,
Marc’Aurelio Ranzato, Antrew Senior, Paul Tucker, Ke Yang, Andrew Ng Large Scale
Distributed Deep Networks. NIPS 2012.

•  B. Kingsbury, T. N. Sainath, and H. Soltau, "Scalable Minimum Bayes Risk Training of
Deep Neural Network Acoustic Models Using Distributed Hessian-free Optimization,” in
Proc. Interspeech, 2012.

•  G. Saon and H. Soltau, “A comparison of Two Optimization Techniques for Sequence
Training of Deep Neural Networks,” in Proc. ICASSP 2014.

•  T. N. Sainath, I. Chung, B. Ramabhadran, M. Picheny, J. Gunnels, B. Kingsbury, G.
Saon, V. Austel, U. Chaudhri, “Parllel Deep Neural Network Training for LVCSR using
Blue Gene/Q,” in Proc. Interspeech, September 2014.

•  F. Seide, H. Fu, J. Droppo, G. Li and D. Yu, “1-Bit Stochastic Gradient Descent and
Application to Data-Parallel Distributed Training of Speech DNNs,” in Interspeech 2014.

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Backup Slides

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

(1) Error Backpropagation

Introduce variables over the neural network

x0

x1

x2

xP

f(x,

~

✓)

~✓ = {wij , wjk, wkl}

wij wjk

wkl

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Error Backpropagation

Introduce variables over the neural network
Define a to be the input of each non-linearity
Define z to be the output of each non-linearity

x0

x1

x2

xP

f(x,

~

✓)

~✓ = {wij , wjk, wkl}

wij wjk

wkl

zj zkzi
aj zlalak

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Error Backpropagation

x0

x1

x2

xP

f(x,

~

✓)

~✓ = {wij , wjk, wkl}

wij wjk

wkl

zj zkzi
aj ak zl

aj =
X

i

wijzi

al

ak =
X

j

wjkzj al =
X

k

wklzk

zj = g(aj) zk = g(ak) zl = g(al)

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Error Backpropagation
~✓ = {wij , wjk, wkl}

aj =
X

i

wijzi

x0

x1

x2

xP

f(x,

~

✓)

wij wjk

wkl

zj zkzi
aj ak zlal

ak =
X

j

wjkzj al =
X

k

wklzk

zj = g(aj) zk = g(ak) zl = g(al)

Training: Take the gradient of the last component and iterate backwards

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Error Backpropagation

x0

x1

x2

xP

f(x,

~

✓)

wij wjk

wkl

zj zkzi
aj ak zlal

Empirical Risk Function R(θ) = 1
N

Ln (yn, f (xn,θ))
n=1

N

∑

=
1
N

1
2
(yn − f (xn,θ))

2

n=1

N

∑

=
1
N

1
2
yn − g wk l g wjkg wij xn,i

i
∑
#

$
%

&

'
(

j
∑
#

$
%%

&

'
((

k
∑
#

$
%
%

&

'
(
(

#

$

%
%

&

'

(
(

2

n=1

N

∑

n is number of training points

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Error Backpropagation

x0

x1

x2

xP

f(x,

~

✓)

wij wjk

wkl

zj zkzi
aj ak zlal

Optimize last layer weights wkl
Ln =

1
2

(yn � f(xn))2

@R

@wkl
=

1
N

X

n

@Ln

@al,n

�
@al,n

@wkl

�

Calculus chain rule

al,n = wklzk
k
∑

f (xn) = zl,n = g(al,n)

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Error Backpropagation

x0

x1

x2

xP

f(x,

~

✓)

wij wjk

wkl

zj zkzi
aj ak zlal

Optimize last layer weights wkl
Ln =

1
2

(yn � f(xn))2

@R

@wkl
=

1
N

X

n

@Ln

@al,n

�
@al,n

@wkl

�
Calculus chain rule

@R

@wkl
=

1
N

X

n

@ 1

2 (yn � g(al,n))2

@al,n

�
@al,n

@wkl

� al,n = wklzk
k
∑

f (xn) = zl,n = g(al,n)

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Error Backpropagation

x0

x1

x2

xP

f(x,

~

✓)

wij wjk

wkl

zj zkzi
aj ak zlal

Optimize last layer weights wkl
Ln =

1
2

(yn � f(xn))2

@R

@wkl
=

1
N

X

n

@Ln

@al,n

�
@al,n

@wkl

�
Calculus chain rule

@R

@wkl
=

1
N

X

n

@ 1

2 (yn � g(al,n))2

@al,n

�
@zk,nwkl

@wkl

� al,n = wklzk
k
∑

f (xn) = zl,n = g(al,n)

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Error Backpropagation

x0

x1

x2

xP

f(x,

~

✓)

wij wjk

wkl

zj zkzi
aj ak zlal

Optimize last layer weights wkl
Ln =

1
2

(yn � f(xn))2

@R

@wkl
=

1
N

X

n

@Ln

@al,n

�
@al,n

@wkl

�
Calculus chain rule

@R

@wkl
=

1
N

X

n

@ 1

2 (yn � g(al,n))2

@al,n

�
@zk,nwkl

@wkl

�
=

1
N

X

n

[�(yn � zl,n)g0(al,n)] zk,n

al,n = wklzk
k
∑

f (xn) = zl,n = g(al,n)

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Error Backpropagation

x0

x1

x2

xP

f(x,

~

✓)

wij wjk

wkl

zj zkzi
aj ak zlal

Optimize last layer weights wkl
Ln =

1
2

(yn � f(xn))2

@R

@wkl
=

1
N

X

n

@Ln

@al,n

�
@al,n

@wkl

�
Calculus chain rule

@R

@wkl
=

1
N

X

n

@ 1

2 (yn � g(al,n))2

@al,n

�
@zk,nwkl

@wkl

�
=

1
N

X

n

[�(yn � zl,n)g0(al,n)] zk,n

=
1
N

X

n

�l,nnzk,n

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Error Backpropagation

x0

x1

x2

xP

f(x,

~

✓)

wij wjk

wkl

zj zkzi
aj ak zlal

Optimize last hidden weights wjk
@R

@wjk
=

1
N

X

n

@Ln

@ak,n

�
@ak,n

@wjk

�

@R

@wkl
=

1
N

X

n

�l,nzk,n

Ln =
1
2

(yn � f(xn))2

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Error Backpropagation

x0

x1

x2

xP

f(x,

~

✓)

wij wjk

wkl

zj zkzi
aj ak zlal

Optimize last hidden weights wjk

Multivariate chain rule
@R

@wjk
=

1
N

X

n

"
X

l

@Ln

@al,n

@al,n

@ak,n

@ak,n

@wjk

�

@R

@wkl
=

1
N

X

n

�l,nzk,n

Ln =
1
2

(yn � f(xn))2

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Error Backpropagation

x0

x1

x2

xP

f(x,

~

✓)

wij wjk

wkl

zj zkzi
aj ak zlal

Optimize last hidden weights wjk

Multivariate chain rule
@R

@wjk
=

1
N

X

n

"
X

l

@Ln

@al,n

@al,n

@ak,n

@ak,n

@wjk

�

@R

@wkl
=

1
N

X

n

�l,nzk,n

∂Ln
∂al,n

= δl,n∂R
∂wjk

=
1
N

δl,n
l
∑ ∂al,n

∂ak,n

#

$
%

&

'
(zj,n#$ &'

n
∑

ak,n = wjkz j,n
j
∑

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Error Backpropagation

x0

x1

x2

xP

f(x,

~

✓)

wij wjk

wkl

zj zkzi
aj ak zlal

Optimize last hidden weights wjk

Multivariate chain rule
@R

@wjk
=

1
N

X

n

"
X

l

@Ln

@al,n

@al,n

@ak,n

@ak,n

@wjk

�

@R

@wkl
=

1
N

X

n

�l,nzk,n

∂R
∂wjk

=
1
N

δl,n
l
∑ ∂al,n

∂ak,n

#

$
%

&

'
(zj,n#$ &'

n
∑

al,n = wklg(ak,n)
k
∑

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Error Backpropagation

x0

x1

x2

xP

f(x,

~

✓)

wij wjk

wkl

zj zkzi
aj ak zlal

Optimize last hidden weights wjk

Multivariate chain rule
@R

@wjk
=

1
N

X

n

"
X

l

@Ln

@al,n

@al,n

@ak,n

@ak,n

@wjk

�

@R

@wjk
=

1
N

X

n

"
X

l

�lwklg
0(ak,n)

#
[zj,n] =

1
N

X

n

[�k,n] [zj,n]

@R

@wkl
=

1
N

X

n

�l,nzk,n

al,n = wklg(ak,n)
k
∑

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Error Backpropagation

x0

x1

x2

xP

f(x,

~

✓)

wij wjk

wkl

zj zkzi
aj ak zlal

Repeat for all previous layers
@R

@wkl
=

1
N

X

n

@Ln

@al,n

�
@al,n

@wkl

�
=

1
N

X

n

[�(yn � zl,n)g0(al,n)] zk,n =
1
N

X

n

�l,nzk,n

@R

@wjk
=

1
N

X

n

@Ln

@ak,n

�
@ak,n

@wjk

�
=

1
N

X

n

"
X

l

�l,nwklg
0(ak,n)

#
zj,n =

1
N

X

n

�k,nzj,n

@R

@wij
=

1
N

X

n

@Ln

@aj,n

�
@aj,n

@wij

�
=

1
N

X

n

"
X

k

�k,nwjkg0(aj,n)

#
zi,n =

1
N

X

n

�j,nzi,n

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Error Backpropagation

x0

x1

x2

xP

f(x,

~

✓)

wij wjk

wkl

zj zkzi
aj ak zlal

Now that we have well defined gradients for each parameter,
update using Gradient Descent

wt+1
ij = wt

ij � ⌘
@R

wij

wt+1
jk = wt

jk � ⌘
@R

wkl

wt+1
kl = wt

kl � ⌘
@R

wkl

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Error Back-propagation

Error backprop unravels the multivariate chain rule and solves the
gradient for each layer separately.
The error δ is backpropagated along the network from one layer to the
next

x0

x1

x2

xP

f(x,

~

✓)

wij wjk

wkl

zj zkzi
aj ak zlal

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

(2) Pre-Training via Unsupervised Learning
•  The goal of unsupervised learning is to put the weights in a good initial space

to encourage deeper and larger networks during fine-tuning
•  Unsupervised learning systems can be designed using the encoder-decoder

paradigm
o  Encoder: transform input v into code representation h
o  Decoder: reconstructs input from the code by minimizing

reconstruction error
•  Encoder-decoder paradigm learns weights such that the code captures

higher-order relevant information from input signal, these weights are used to
initialize network for fine-tuning

•  Unsupervised learning
o  Restricted Boltzmann Machine (RBM) [Hinton – Toronto]
o  Sparse Encoding Symmetric Machine (SESM) [Lecun – NYU]
o  De-noising Auto-Encoder [Bengio – Montreal]

W

v

h

6/17/15

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Restricted Boltzmann Machines
Consider a one layer RBM
 Weights are fully connected between hidden and visible
units

 No connections between hidden units
Hidden units are conditionally independent given the
visible states.
Relationship between v and h for Bernoulli-Bernoulli
RBMs given as:

hidden

i

j

visible

HLT, IBM T.J. Watson Research Center

Restricted Boltzmann Machines
• We restrict the connectivity to

make learning easier.
– Only one layer of hidden units.
– No connections between hidden

units.
• In an RBM, the hidden units are

hidden

j

• In an RBM, the hidden units are
conditionally independent given
the visible states.
– So we can quickly get an unbiased

sample from the posterior
distribution when given a data-
vector.

– This is a big advantage over
directed belief nets

i

visible

))exp(1/1)|1(

))(exp(1/1)|1(

i
j

ijji

j
i

ijij

bwhvp

bwvhp

+−+==

+−+==

∑

∑
h

v

6/17/15

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

§ Each possible joint configuration of the
visible and hidden units (ignoring
biases) has an energy

§ The energy of a joint configuration of
the visible and hidden units determines
its probability:

The Energy of Joint Configuration

E(v,h) = − vihjwij
i, j
∑

hidden

i

j

Visible

wij

p(v, h)∝ e−E (v,h)

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Using energies to define probabilities

The probability of a joint configuration
over both v and h depends on the
energy E of that joint configuration
compared with the energy of all other
joint configurations.

The probability of a configuration of the
visible units is the sum of the
probabilities of all the joint configurations
that contain it.

p(v,h) = e−E (v,h)

e−E (u,g)
u,g
∑

partition
function

p(v) = p(v,h)
h
∑ =

e−E (v,h)
h
∑
e−E (u,g)

u,g
∑

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

How to maximize p(v)
Goal of supervised fine-tuning is to maximize log p(class|v)
It follows that the goal of unsupervised learning is to maximize log p(v)

Define free-energy as

Gradient given as

F(v) = − log e−E (v,h)
h
∑

w := w−ε ∂ log p(v)
∂w

−
∂ log p(v)

∂w
=

∂F(v)
∂w

− p(v)∂F(v)
∂wv

∑

E(v,h) = − vihjwij
i, j
∑

Positive phase term
easy to compute directly

Negative phase term difficult
to analytically compute

p(v) =
e−E (v,h)

h
∑
e−E (u,g)

u,g
∑

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Computing Derivative of Negative Phase

Negative phase term can be represented as , the expectation
over all possible configurations of the input (under the distribution
formed by the model), which is difficult to estimate analytically
Estimate the expectation using a fixed number of model samples

Obtain samples of p(v) using Gibbs sampling

−
∂ log p(v)

∂w
=

∂F(v)
∂w

− p(v)∂F(v)
∂wv

∑

Ep
∂F(v)
∂w

"

#$
%

&'

−
∂ log p(v)

∂w
≈

∂F(v)
∂w

−
1
| N |

∂F(v)
∂wv∈N

∑

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

HLT, IBM T.J. Watson Research Center

Restricted Boltzmann Machines
• We restrict the connectivity to

make learning easier.
– Only one layer of hidden units.
– No connections between hidden

units.
• In an RBM, the hidden units are

hidden

j

• In an RBM, the hidden units are
conditionally independent given
the visible states.
– So we can quickly get an unbiased

sample from the posterior
distribution when given a data-
vector.

– This is a big advantage over
directed belief nets

i

visible

))exp(1/1)|1(

))(exp(1/1)|1(

i
j

ijji

j
i

ijij

bwhvp

bwvhp

+−+==

+−+==

∑

∑
h

v

Sampling in an RBM

i

j

i

j

i

j

i

j

t = 0 t = 1 t = 2 t = infinity

a fantasy

•  In the RBM structure, v and h are conditionally independent
•  To obtain samples of p(v,h):
 Start with a training vector on the visible units.
 Sample hidden units given fixed visible units
 Then sample visible units given fixed hidden units

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Contrastive Divergence

i

j

i

j

t = 0 t = 1

1.  Start with a training vector on
the visible units.

2.  Update all the hidden units in
parallel

3.  Update the all the visible units
in parallel to get a
“reconstruction”.

4.  Update the hidden units again. reconstruction data

With contrastive divergence, just one step of Gibbs sampling is run
While this approximates -log p(v), it seems to work well in practice
(Carreira-Perpinan & Hinton, 2005).

Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization

Constructing Deep Belief Networks

First train a layer of features that receive input directly from the speech features
Then treat the activations of the trained features as if they were speech features and
learn features of features in a second hidden layer.
Why greedy?
 It can be proved that each time we add another layer of features we improve a
variational lower bound on the log probability of the training data.
 Simplicity of training

