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Outline 

•  Why Neural Networks 
•  Training Neural Networks  
•  Making Neural Networks Work for Speech Recognition 
•  Optimization challenges: Training time 
•  Optimization challenges: New architectures 
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Pattern Recognition System 

•  The goal of any pattern recognition system is to 
o  determine an appropriate feature representation 
o  classify these features effectively Spectrograms of the Cardinal Vowels
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Example from Speech Recognition 
•  For example, in speech recognition, we first create features by hand 
•  Then we build a discriminative classifier (Gaussian Mixture Model) 

to distinguish between classes 
•  Features are not directly designed for classification objective 

Spectrograms of the Cardinal Vowels
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End-to-End Recognition System 
•  Black box which takes simple features + labels does the feature 

extraction jointly with the classification 
•  Features are trained to the classification objective 
•  Big non-linear system trained to map from simple features to labels 

Spectrograms of the Cardinal Vowels
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Intuition Behind Deep Neural Networks 
•  Each block produces a higher level feature representation and better 

classifier than its input 
•  By combining simple building blocks, we can design more and more 

complex, non-linear systems  
 

“bat” 
Spectrograms of the Cardinal Vowels
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Representation at Each Stage  

•  Within each building block, we want the following properties: 
o  Create a higher level representation of input 
o  Better separate input into classes 
o  Can be combined with previous layers 
o  Can be trained jointly with other layers 

•  Using a mathematical model of a biological neuron is an appropriate 
choice 
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Neurons 

•  A neuron takes a weighted sum of inputs a and feeds 
the result through an activation function σ 

•  Output of the activation function produces decision 
boundary which can be used in classification 
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Combining Neurons 
•  Each neuron splits the feature space with a hyperplane 
•  1-layer of trainable weights cannot handle XOR 
•  2-layers of trainable weights gives a convex polygon region 
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Combining Neurons 
•  3 layers of trainable weights gives a 

composition of polygons: convex regions 
•  More layers can handle more complicated 

spaces – but require more parameters 
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Multi-Layer Neural Network 

“bat” Spectrograms of the Cardinal Vowels
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•  Each simple building block is a connection of neurons which produces 
a higher-order, more complex representation of the input 

•  Neurons in one layer are connected to neurons in the next layer 
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Outline 

•  Why Neural Networks 
•  Training Neural Networks  
•  Making Neural Networks Work for Speech Recognition 
•  Optimization challenges: Training time 
•  Optimization challenges: New architectures 
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MulAlayer'Networks'
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Training Neural Networks 

•  Most common approach to train neural networks is via stochastic 
gradient descent 

o  Propagate input forward 
o  Compute gradient of objective function 
o  Propagate error gradient backwards 
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Feed-Forward Networks 

•  Predictions are fed forward through the network to classify 
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Feed-Forward Networks 

•  Predictions are fed forward through the network to classify 
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Feed-Forward Networks 

•  Predictions are fed forward through the network to classify 
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Feed-Forward Networks 

•  Predictions are fed forward through the network to classify 
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Feed-Forward Networks 

•  Predictions are fed forward through the network to classify 
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Feed-Forward Networks 

•  Predictions are fed forward through the network to classify 
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•  For regression problems, sum-of-squared error is used 
 
•  For classification problems, cross-entropy is used 
 !, ! !,! ∈ 0,1 ! !

!!
!

!!!
= 1!

!!(!,!)
!

!!!
= 1!

Define Objective Function 

 
Error 

ref=y 

! = − !! log !!(!,!)
!

!!!
!

! = 1
2 !! − !!(!,!) !

!

!!!
!
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Error Backpropagation 

•  Introduce variables over the neural network  
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Error Backpropagation 

•  Introduce variables over the neural network 
o  Define a to be the input of each non-linearity 
o  Define z to be the output of each non-linearity 

x0

x1
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xP

f(x,
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✓)

~✓ = {wij , wjk, wkl}

wij wjk
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zj zkzi
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Error Backpropagation 

x0
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Error Backpropagation 
~✓ = {wij , wjk, wkl}

aj =
X

i

wijzi

x0

x1

x2

xP

f(x,

~

✓)

wij wjk

wkl

zj zkzi
aj ak zlal

ak =
X

j

wjkzj al =
X

k

wklzk

zj = g(aj) zk = g(ak) zl = g(al)

Training: Take the gradient of the last component and iterate backwards 
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Error Backpropagation 
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Empirical Risk Function 
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∑

n is number of training points 
Composition of 
weights + 
nonlinearity 
creates a nonconvex 
objective function 
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Error Backpropagation 
•  Compute the gradient with respect to objective function and propagate the 

gradient backwards to update each layer 
•  Stochastic Gradient Descent (SGD) is the most popular optimization strategy 

!!" = !!" − !
!"
!!!"

!

!!" = !!" − !
!"
!!!"

!

!!" = !!" − !
!"
!!!"
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Outline 

•  Why Neural Networks 
•  Training Neural Networks  
•  Making Neural Networks Work for Speech Recognition 
•  Optimization challenges: Training time 
•  Optimization challenges: New architectures 
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Acoustic Modeling for Speech Recognition 
•  Speech recognition problem characterized as follows: 
 
•  Acoustic modeling is the process of modeling a set of sub-word units 

which make up words 
•  Acoustic realization of a phoneme depends strongly on context 
•  We model sub-word units as triphones (context-dependent states)  

! = arg!max
!

! ! ! = arg!max
!

! ! ! !(!)!
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Acoustic Modeling for Speech Recognition 
•  Each sub-word unit is modeled by a 3-state Hidden Markov Model  
 
 
 
 
 
 
 
 

•  5 years ago, a popular acoustic modeling technique is to model the 
output distribution in each state by Gaussian Mixture Models (GMM)  

•  Neural Networks (alternatively called Multi Layer Perceptrons – MLPs) 
can also be used for acoustic modeling 

 



Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization 

Neural Network Acoustic Models 
•  Final non-linearity is represented by softmax 
 
 
•  Each class ci will be the same sub-word units we build GMMs for 

s   
o   
f    
t 
m  
a  
x 

x0

x1

x2

xP

!!(!!|!) = !
exp!(−!!)
exp!(−!!)!

!!!
!

p(c0|x) 

p(c1|x) 

p(c2|x) 

W01 W12 W12 a0 

a1 

a2 
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Neural Network Acoustic Models 

•  Neural networks are trained to minimize cross-entropy objective 
function (i.e. frame error rate) 

 
 
 

•  NN gives posterior p(ci|x) so divide by class prior to get 
likelihood 

 
•  NN likelihood replaces GMM likelihood as output distribution in 

HMM 
 
 
 
 
 
 
 

!!!"# ,!(!!|!) ∈ 0,1 ! !
!!!"#

!

!!!
= 1!

!(!!|!)
!

!!!
= 1!

! = − !!!"# !log!(!!|!)
!

!!!
!

!!!(!|!!) = ! !(!!|!)!(!!)
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Early Performance of Neural Networks 
•  Previous LVCSR performance with MLPs 

o  shallow network (3 layers), small output targets (46) - [Zhu et al, ICSLP 2004] 
•  On a Switchboard telephony task, gains with MLPs only observed when 

combined with baseline  
 
 
 
 

•  Training neural networks is difficult! 
o  Objective function is non-convex 
o  Training is done SGD serially one one machine, can be slow on CPUs 

•  These difficulties pose challenges to have deep networks with many 
output targets 

Method WER 
Baseline GMM/HMM 30.8 

+ MLP 28.6 
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Making DNNs Successful for Acoustic Modeling 

3 advances made DNNs successful for acoustic modeling 
1.  Pre-training 
2.  Improved Hardware with GPUs 
3.  Sequence training [B. Kingsbury et al, Interspeech 2012] 

 
This encouraged 
o  Deeper networks 
o  Networks with more output targets (i.e., classes) 
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(1) Pre-Training via Unsupervised Learning 
•  The goal of unsupervised learning is to put the weights in a good initial space 

to encourage deeper and larger networks during superivsed fine-tuning 
•  Unsupervised learning systems can be designed using the encoder-decoder 

paradigm 
o  Encoder: transform input v into code representation h 
o  Decoder: reconstructs input from the code by minimizing 

reconstruction error 
•  Encoder-decoder paradigm learns weights such that the code captures 

higher-order relevant information from input signal, these weights are used to 
initialize network for fine-tuning 

•  Unsupervised learning 
o  Restricted Boltzmann Machine (RBM) [Hinton – Toronto] 
o  Sparse Encoding Symmetric Machine (SESM) [Lecun – NYU] 
o  De-noising Auto-Encoder [Bengio – Montreal] 

W 

v 

h 

6/17/15 
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Greedy Layer-wise Pre-training 

•  First train a layer of features that receive input directly from the speech 
features 

•  Then treat the activations of the trained features as if they were speech 
features and learn features of features in a second hidden layer. 

•  After pre-training is done, use weights and train network using cross-entropy 
objective 
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(2) GPU training 
•  DNN training is slow is due to the large number of dense matrix 

multiplications and large amount of training data 
•  GPUs help SGD DNN training by parallelizing this matrix multiplication 

over thousands of cores 
•  GPU training can achieve over a 9x speedup with a K20x speedup to a 

compared to a 8-core CPU  
 

Method WER (50-hr BN) Training Time (hrs) 

SGD (CPU) 17.8 35 

SGD (GPU) – K20x 17.8 3.8 
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Results with PT+CE: Deepness 

•  Experimentally, we see that network depth improves WER 
•  Generally 6-7 hidden layers is used for speech tasks 

W
E

R
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•  We know with GMM/HMMs, increasing the number of context-
dependent states (i.e., classes) improves performance 

•  In the past, MLPs typically trained with small number of outputs 
o  increasing output targets becomes a harder optimization problem 

and does not always improve WER 
o  increases parameters à increases training time 

•  With DNNs, pre-training putting weights in better space, and thus 
we can increase output targets effectively 

Results with PT+CE: Increased Output Targets 

Number of Targets WER 
384 21.3 
512 20.8 

1024 19.4 
2,220 18.5 
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DNN Acoustic Modeling Results 
•  DNNs provide between a 8-25% relative improvement in word error 

rate over GMM/HMM systems across a variety of tasks and 
languages 

•  Results confirmed by many, many research labs 
 

300 hour SWB 
Conversational  
Telephony 

400 hour 
Broadcast News 

2000 hour 
Voice Search 

GMM/HMM 14.3 16.5 16.0 
DNN 12.2 15.2 12.2 

% Relative  
Improvement 

14.7 7.9 23.8 
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Historical Performance in Speech Recognition  
•  Few techniques we explore consistently show gains of this magnitude 
 

Performance with 
Deep Neural Networks 



Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization 

Outline 

•  Why Neural Networks 
•  Training Neural Networks  
•  Making Neural Networks Work for Speech Recognition 
•  Optimization challenges: Training time 
•  Optimization challenges: New architectures 
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The Revolution 
•  The 2007 launch of smartphones (iPhone and Android) 

was a revolution and dramatically changed the status of 
speech processing 

•  Google’s current suite of mobile applications is 
launched in 48 languages and processes about a 
decade of speech each day 
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Mobile Speech Will Grow 

•  Speech becomes the primary input modality 
•  Training data will continue to grow 
•  With this, we need efficient algorithms to train these networks 



Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization 

Stochastic Gradient Descent 
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GPU training 
•  DNN training is slow is due to the large number of dense matrix 

multiplications and large amount of training data 
•  GPUs help SGD DNN training by parallelizing this matrix multiplication 

over thousands of cores 
•  GPU training can achieve over a 9x speedup with a K20x speedup to a 

compared to a 8-core CPU  
•  In reality applications of speech, text and NLP thousands of hours of 

labeled training data, even more unlabeled data 
•  It is critical for DNN success to speed up training 
 

Method WER (50-hr BN) Training Time (hrs) 

SGD (CPU) 17.8 35 

SGD (GPU) – K20x 17.8 3.8 
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Approaches to Speed up DNN Training 

•  Parallel SGD on GPUs [Microsoft] 
•  Asynchronous SGD [Google] 
•  Hessian-free training on Blue Gene [IBM] 
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(1) Parallel SGD 

•  BP steps: 
o  forward propagation 
o  error back propagation 
o  model update 

softmax(.) 
. (W2)T,+a2    . v1 
                         .W2 

σ(.)                  σ’(.) 
. (W1)T,+a1   . v1 
                        .W1 

σ(.)                  σ’(.) 
. (W0), + a0   . v0 
                            

v2 = E{h1|v1} 

v1 = E{h0|v1} 

v0 = obs 

e1 

e2 

e0 

P{s|v2} 

ground truth 
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Parallel SGD 

•  BP steps: 
o  forward propagation 
o  error back propagation 
o  model update 

•  To improve efficiency of        
data parallelism, reduce how 
much data gets exchanged      
by quantizing sub-gradients      
to one bit/value 

•  Key trick is to keep quantization 
error from one mini-batch and 
add it to the next 

softmax(.) 
. WT, + a       . v 
                         .W 

σ(.)                  σ’(.) 
. (W1)T,+a1   . v0 
                        .W1 

σ(.)                  σ’(.) 
. WT, + a      . v 
                            

ΔW2 
Δa2 

v0 = obs 

e2 P{s|v2} 
GPU 2 

softmax(.) 
. WT, + a       . v 
                         .W 

σ(.)                  σ’(.) 
. (W1)T,+a1   . v0 
                        .W1 

σ(.)                  σ’(.) 
. WT, + a      . v 
                            

v2 = E{h1|v1} 

v1 = E{h0|v1} 

1/3 

e1 

e2 

e0 

P{s|v2} 
softmax(.) 
. WT, + a       . v 
                         .W 

σ(.)                  σ’(.) 
. (W1)T,+a1   . v0 
                        .W1 

σ(.)                  σ’(.) 
. WT, + a      . v 
                            

1/3 

e2 P{s|v2} 

ΔW2 
Δa2 

ΔW1 

Δa1 
ΔW1 
Δa1 

ΔW0 
Δa0 

ΔW0 
Δa0 

1/3 

GPU 1 GPU 3 
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Results 

•  SWBD 309h (46M): total reduction from 41 to 6.3h  à 6.5 x (8-GPU server) 
 
 
 
 
 
 

•  3300h S2S/MAVIS model (160M): 312 to 45.5h à 6.9 x (20 GPUs GCD) 
 

[F. Seide et al, Interspeech 2014] 
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(2) Asynchronous SGD - DistBelief Parallel Trainer 

Data 
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Asynchronous SGD - DistBelief Parallel Trainer 

Data 
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Asynchronous SGD - DistBelief Parallel Trainer 

Data Data Data 



Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization 

Asynchronous SGD - DistBelief Parallel Trainer 
Parameter Server 

Data Data Data 
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Asynchronous SGD - DistBelief Parallel Trainer 
Parameter Server 
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ASGD Training Time [J. Dean et al, NIPS 2012] 

•  DistBelief CPU training allows speed ups of 70 times over a single 
CPU and 5 times over a GPU.  

•  Train a 85M parameter system on 2,000 hours, 10 epochs in about 
10 days. 

Task 
 

Model  
Type 

WER Training  
Size 
(hours) 

GPU Training 
Time (hours 
/epoch) 

Hidden  
Layers 

Number 
 of States 

Voice  
Search 

GMM 16.0 5780 321 4x2560 7969 
DNN 12.2 

You  
Tube 

GMM 52.3 1400 55 4x2560 17552 
DNN 46.2 
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IBM Research Interspeech 2012

Generic second-order optimization

1 Approximate

L(wn + dn)≠ L(wn) ¥ ÒL(wn)
T dn +

1
2dT

n B(wn)dn

© qwn(dn)

2 Search
Find dn such that qwn(dn) < qwn(0).

3 Update
wn+1

Ω wn + –dn

4 Iterate

c� 2012 IBM Corporation

(3) 2nd Order Optimization via Hessian-free 
•  Distributed optimization techniques, such as 2nd order methods, 

use large data batches for gradient and curvature information, 
which can be parallelized across machines 

1.  Minimize the following objective function 

2.  Find the best search direction dn 

 
3.  Update parameters 
 
4.  Iterate 

IBM Research Interspeech 2012

Generic second-order optimization

1 Approximate

L(wn + dn)≠ L(wn) ¥ ÒL(wn)
T dn +

1
2dT

n B(wn)dn

© qwn(dn)

2 Search
Find dn such that qwn(dn) < qwn(0).

3 Update
wn+1

Ω wn + –dn

4 Iterate

c� 2012 IBM Corporation

IBM Research Interspeech 2012

Generic second-order optimization

1 Approximate

L(wn + dn)≠ L(wn) ¥ ÒL(wn)
T dn +

1
2dT

n B(wn)dn

© qwn(dn)

2 Search
Find dn such that qwn(dn) < qwn(0).

3 Update
wn+1

Ω wn + –dn

4 Iterate

c� 2012 IBM Corporation

[B. Kingsbury et al,  
Interspeech 2012] 
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Hessian-free Training 

Data Data Data 
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Hessian-free Training 
Master 

Data Data Data 
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Further Speedups with Blue Gene/Q 

•  A major problem with parallel architectures is communication 
bottlenecks between workers 

•  Having a specialized hardware/software architecture to minimize 
these bottlenecks is critical 

•  The Blue Gene/Q architecture is perfect for 2nd order parallel HF 
training 

o  Massively parallel architecture with thousands of cores 
o  Minimal communication cost between processors 
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Overall Speedups with BG/Q –  300 hrs SWB 
•  Experiments run on two BG/Q rack (2,048 nodes, 16 cores/node, 

4 threads/core) 
•  On 300-hr SWB, BG/Q is  

o  4x faster for CE compared to SGD GPU 
o  10x faster for ST compared to SGD GPU 
o  No loss in WER compared to HF CPU 

Algorithm Cross-Entropy (CE) Sequence Training (ST) 

Time (hrs) WER Time (hrs) WER 

HF CPU - - - 12.4 

SGD GPU 121.5 14.1 47.6 12.7 

HF BG/Q 28.0 14.1 4.6 12.4 
Speedup 4 - 10.3 

[T. N. Sainath et al,  
Interspeech 2014] 
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Overall Speedups with BG/Q – 400 hrs BN 

•  On 400 hours BN with 2 racks, HF BG/Q shows 
o  3x faster for CE compared to SGD GPU 
o  11.6x faster for ST compared to SGD GPU 
o  No loss in WER compared to HF CPU 

•  A specialized architecture such as BG/Q makes HF the fastest 
approach for CE and Sequence training 

 
Hardware Cross-Entropy Sequence Training 

Time (hrs) WER Time (hrs) WER 

HF CPU - - - 15.1 

SGD GPU 77.9 16.5 42.1 15.8 

BG/Q 21.7 16.5 3.6 15.1 
Speedup 3 - 11.6 
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Outline 

•  Why Neural Networks 
•  Training Neural Networks  
•  Making Neural Networks Work for Speech Recognition 
•  Optimization challenges: Training time 
•  Optimization challenges: New architectures 
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(1) Recurrent Neural Networks 
•  Activation from previous time step is fed as input to network at 

current time step 
•  Recurrent layer encodes “state” and can encode long-term 

temporal information 
•  RNNs good at modeling non-linear temporal sequence data 

[Robinson, 1993] 
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Training RNNs 
•  An RNN can be made to look like a feed forward network by unrolling the 

RNN through time 
•  During training, activations are forward propagated for a fixed time-step T 
•  Gradients are computed and then backpropagated to start (backpropagation 

through time) 

Simple RNN

Simple RNN architecture in two alternative representations:

xt

ht

yt

input

hidden

output

Whx

Wyh Whh

(a) RNN

xt

ht

yt

xt�1

ht�1

yt�1

. . .
Whx

Wyh

Whh

Whx

Wyh

(b) RNN unrolled in time

RNN hidden and output layer activations:

ht = �(Whxxt +Whhht�1 + bh)

yt = �(Wyhht + by )
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Backpropagation Through Time Backpropagation through time
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RNN Architectures [G. Saon et al, Interspeech 2014] 

•  Explore using RNNs for temporal modeling and 
     DNNs for depth in a unified framework 
•  RNN is unfolded for 6 time steps 

•  RNN can achieve a 4% relative improvement over DNN 

Model SWB-300 
Baseline GMM/HMM 14.5 
DNN 12.5 
RNN 12.0 input

RNN

DNN

output

DNN

DNN

DNN

Model WER 
RNN – unfolded 6 13.5 
RNN – unfolded 11 13.8 
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(2) Long Short-Term Memory RNNs 
•  Modeling long-term dependencies with RNNs is difficult due to 

vanishing gradient problem 
•  This limits modeling capability of RNNs to small time steps (5-10) 
•  LSTMs were developed to address these issues [Hochreiter and 

Schmidhuber, 1997] 
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LSTM architecture 

•  Memory cells store temporal state of network 
•  Multiplicative gates control information flow 

o  Input gate: controls flow of input activations into cell 
o  Output gate: controls output flow of cell activations 
o  Forget gate: Process continuous input streams 

•  These gates allow LSTM to store and access long-term information 
in

pu
t

g
cell h

i
t

f
t

c
t

o
t

re
cu

rr
en

t

ou
tp

ut

x
t

m
t

r
t

r
t�1

y
t

LSTM memory blocks

Figure 1: LSTMP RNN architecture. A single memory block is
shown for clarity.

was added to the memory block [16]. This addressed a weak-
ness of LSTM models preventing them from processing contin-
uous input streams that are not segmented into subsequences.
The forget gate scales the internal state of the cell before adding
it as input to the cell through the self-recurrent connection of
the cell, therefore adaptively forgetting or resetting the cell’s
memory. In addition, the modern LSTM architecture contains
peephole connections from its internal cells to the gates in the
same cell to learn precise timing of the outputs [17].

An LSTM network computes a mapping from an input
sequence x = (x1, ..., xT

) to an output sequence y =
(y1, ..., yT ) by calculating the network unit activations using
the following equations iteratively from t = 1 to T :
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where the W terms denote weight matrices (e.g. W
ix

is the ma-
trix of weights from the input gate to the input), W

ic

,W
fc

,W
oc

are diagonal weight matrices for peephole connections, the b
terms denote bias vectors (b

i

is the input gate bias vector), � is
the logistic sigmoid function, and i, f , o and c are respectively
the input gate, forget gate, output gate and cell activation vec-
tors, all of which are the same size as the cell output activation
vector m, � is the element-wise product of the vectors, g and h
are the cell input and cell output activation functions, generally
and in this paper tanh, and � is the network output activation
function, softmax in this paper.

2.2. Deep LSTM

As with DNNs with deeper architectures, deep LSTM RNNs
have been successfully used for speech recognition [8, 13, 14].
Deep LSTM RNNs are built by stacking multiple LSTM lay-
ers. Note that LSTM RNNs are already deep architectures in
the sense that they can be considered as a feed-forward neu-
ral network unrolled in time where each layer shares the same
model parameters. One can see that the inputs to the model
go through multiple non-linear layers as in DNNs, however the
features from a given time instant are only processed by a sin-
gle nonlinear layer before contributing the the output for that
time instant. Therefore, the depth in deep LSTM RNNs has an
additional meaning. The input to the network at a given time

input

LSTM

output

(a) LSTM

input

LSTM

LSTM

output

(b) DLSTM

input

LSTM

recurrent

output

(c) LSTMP

input

LSTM

recurrent

LSTM

recurrent

output

(d) DLSTMP

Figure 2: LSTM RNN architectures.

step goes through multiple LSTM layers in addition to propa-
gation through time and LSTM layers. It has been argued that
deep layers in RNNs allow the network to learn at different time
scales over the input [18]. Deep LSTM RNNs offer another
benefit over standard LSTM RNNs: They can make better use
of parameters by distributing them over the space through mul-
tiple layers. For instance, rather than increasing the memory
size of a standard model by a factor of 2, one can have 4 lay-
ers with approximately the same number of parameters. This
results in inputs going through more non-linear operations per
time step.

2.3. LSTMP - LSTM with Recurrent Projection Layer

The standard LSTM RNN architecture has an input layer, a re-
current LSTM layer and an output layer. The input layer is con-
nected to the LSTM layer. The recurrent connections in the
LSTM layer are directly from the cell output units to the cell
input units, input gates, output gates and forget gates. The cell
output units are also connected to the output layer of the net-
work. The total number of parameters N in a standard LSTM
network with one cell in each memory block, ignoring the bi-
ases, can be calculated as N = n

c

⇥ n
c

⇥ 4 + n
i

⇥ n
c

⇥ 4 +
n
c

⇥ n
o

+ n
c

⇥ 3, where n
c

is the number of memory cells
(and number of memory blocks in this case), n

i

is the number
of input units, and n

o

is the number of output units. The com-
putational complexity of learning LSTM models per weight and
time step with the stochastic gradient descent (SGD) optimiza-
tion technique is O(1). Therefore, the learning computational
complexity per time step is O(N). The learning time for a net-
work with a moderate number of inputs is dominated by the
n
c

⇥ (4 ⇥ n
c

+ n
o

) factor. For the tasks requiring a large
number of output units and a large number of memory cells to
store temporal contextual information, learning LSTM models
become computationally expensive.

As an alternative to the standard architecture, we proposed
the Long Short-Term Memory Projected (LSTMP) architec-
ture to address the computational complexity of learning LSTM
models [15]. This architecture, shown in Figure 1 has a sepa-
rate linear projection layer after the LSTM layer. The recurrent
connections now connect from this recurrent projection layer to
the input of the LSTM layer. The network output units are con-
nected to this recurrent layer. The number of parameters in this
model is n

c

⇥n
r

⇥4+n
i

⇥n
c

⇥4+n
r

⇥n
o

+n
c

⇥n
r

+n
c

⇥3,
where n

r

is the number of units in the recurrent projection layer.
In this case, the model size and the learning computational com-
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Preserving Gradient Information with LSTMs 

•  Memory cell remembers first input as long as the forget gate is open 
and then input gate is closed 

 CHAPTER 4. LONG SHORT-TERM MEMORY 35

Figure 4.4: Preservation of gradient information by LSTM. As in Fig-
ure 4.1 the shading of the nodes indicates their sensitivity to the inputs at time
one; in this case the black nodes are maximally sensitive and the white nodes
are entirely insensitive. The state of the input, forget, and output gates are
displayed below, to the left and above the hidden layer respectively. For sim-
plicity, all gates are either entirely open (‘O’) or closed (‘—’). The memory cell
‘remembers’ the first input as long as the forget gate is open and the input gate
is closed. The sensitivity of the output layer can be switched on and o↵ by the
output gate without a↵ecting the cell.

4.2 Influence of Preprocessing

The above discussion raises an important point about the influence of prepro-
cessing. If we can find a way to transform a task containing long range con-
textual dependencies into one containing only short-range dependencies before
presenting it to a sequence learning algorithm, then architectures such as LSTM
become somewhat redundant. For example, a raw speech signal typically has a
sampling rate of over 40 kHz. Clearly, a great many timesteps would have to
be spanned by a sequence learning algorithm attempting to label or model an
utterance presented in this form. However when the signal is first transformed
into a 100 Hz series of mel-frequency cepstral coe�cients, it becomes feasible to
model the data using an algorithm whose contextual range is relatively short,
such as a hidden Markov model.

Nonetheless, if such a transform is di�cult or unknown, or if we simply
wish to get a good result without having to design task-specific preprocessing
methods, algorithms capable of handling long time dependencies are essential.

4.3 Gradient Calculation

Like the networks discussed in the last chapter, LSTM is a di↵erentiable function
approximator that is typically trained with gradient descent. Recently, non
gradient-based training methods of LSTM have also been considered (Wierstra
et al., 2005; Schmidhuber et al., 2007), but they are outside the scope of this
book.

Input Gate 

Forget Gate 

Output Gate 
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LSTM Results 

Number of Layers WER, CE 
1 11.3 
2 10.7 
3 10.7 

Model 
Training 

WER-
DNN 

WER-
LSTM 

Cross-
Entropy 

11.1 10.0 

Sequence 10.0 8.9 

[H. Sak et al, Interspeech 2014] 

•  Explore LSTMs on 2,000 
Voice Search Task 

•  LSTM gives a 10% 
relative improvement 
over the DNN 

•  Optimization challenges: 
o  LSTM is unrolled for 

20 time steps 
o  Performance seems to 

saturate after 2 LSTM 
layers 
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(3) CLDNN 
•  We combine convolutional neural networks, LSTMs and deep 

neural networks in a unified framework (CLDNN) 
•  Architecture uses 1 CNN, 3 LSTM and 1 DNN layer 
•  CLDNNs give an 8% relative improvement over LSTMs 

•  Optimization Challenges: 
•  Increasing number of layers saturates performance 
•  Can only unroll LSTM for 20 time steps 

fConv

LSTM

LSTM

LSTM

DNN

output targets

log-mel

xt 2 <P

Method WER – Seq 
LSTM 8.9 

CLDNN 8.2 

[T.N. Sainath et al,  
ICASSP 2015] 
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Conclusions 

•  DNN performance 
o  Pre-training strategies and GPUs 
o  This encouraged deeper networks with more output targets 

•  Training improvements 
o  Parallel GPU training via 1-bit GPU 
o  Asynchronous SGD via CPUs 
o  2nd order Hessian-free via Blue Gene 

•  Architecture challenges 
o  LSTMs and their variants are popular but still have optimization issues 
o  Can only unroll for limited time steps 
o  Can only make the architectures so deep 
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(1) Error Backpropagation 

Introduce variables over the neural network  
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Error Backpropagation 

Introduce variables over the neural network 
Define a to be the input of each non-linearity 
Define z to be the output of each non-linearity 
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Error Backpropagation 
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Error Backpropagation 
~✓ = {wij , wjk, wkl}

aj =
X

i
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x0
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ak =
X

j
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X
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Training: Take the gradient of the last component and iterate backwards 
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Error Backpropagation 

x0

x1

x2

xP

f(x,

~

✓)

wij wjk

wkl

zj zkzi
aj ak zlal

Empirical Risk Function R(θ ) = 1
N

Ln (yn, f (xn,θ ))
n=1

N

∑

=
1
N

1
2
(yn − f (xn,θ ))

2

n=1

N

∑

=
1
N

1
2
yn − g wk l g wjkg wij xn,i

i
∑
#

$
%

&

'
(

j
∑
#

$
%%

&

'
((

k
∑
#

$
%
%

&

'
(
(

#

$

%
%

&

'

(
(

2

n=1

N

∑

n is number of training points 



Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization 

Error Backpropagation 
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Error Backpropagation 
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Error Backpropagation 
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Error Backpropagation 
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Error Backpropagation 
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Error Backpropagation 

x0

x1

x2

xP

f(x,

~

✓)

wij wjk

wkl

zj zkzi
aj ak zlal

Optimize last hidden weights wjk 
@R

@wjk
=

1
N

X

n


@Ln

@ak,n

� 
@ak,n

@wjk

�

@R

@wkl
=

1
N

X

n

�l,nzk,n

Ln =
1
2

(yn � f(xn))2



Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization 

Error Backpropagation 
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Error Backpropagation 
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Error Backpropagation 
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Error Backpropagation 
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Error Backpropagation 
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Error Backpropagation 
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Now that we have well defined gradients for each parameter,  
update using Gradient Descent 
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Error Back-propagation 

Error backprop unravels the multivariate chain rule and solves the 
gradient for each layer separately. 
The error δ is backpropagated along the network from one layer to the 
next 
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(2) Pre-Training via Unsupervised Learning 
•  The goal of unsupervised learning is to put the weights in a good initial space 

to encourage deeper and larger networks during fine-tuning 
•  Unsupervised learning systems can be designed using the encoder-decoder 

paradigm 
o  Encoder: transform input v into code representation h 
o  Decoder: reconstructs input from the code by minimizing 

reconstruction error 
•  Encoder-decoder paradigm learns weights such that the code captures 

higher-order relevant information from input signal, these weights are used to 
initialize network for fine-tuning 

•  Unsupervised learning 
o  Restricted Boltzmann Machine (RBM) [Hinton – Toronto] 
o  Sparse Encoding Symmetric Machine (SESM) [Lecun – NYU] 
o  De-noising Auto-Encoder [Bengio – Montreal] 

W 

v 

h 
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Restricted Boltzmann Machines 
Consider a one layer RBM 
 Weights are fully connected between hidden and visible 
units 

 No connections between hidden units 
Hidden units are conditionally independent given the 
visible states.   
Relationship between v and h for Bernoulli-Bernoulli 
RBMs given as: 

hidden 

i 

j 

visible 

HLT, IBM T.J. Watson Research Center 

Restricted Boltzmann Machines
• We restrict the connectivity to 

make learning easier.
– Only one layer of hidden units.
– No connections between hidden 

units.
• In an RBM, the hidden units are 

hidden

j

• In an RBM, the hidden units are 
conditionally independent given 
the visible states.  
– So we can quickly get an unbiased 

sample from the posterior 
distribution when given a data-
vector.

– This is a big advantage over 
directed belief nets
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§ Each possible joint configuration of the 
visible and hidden units (ignoring 
biases) has an energy 

 

§ The energy of a joint configuration of 
the visible and hidden units determines 
its probability: 

 

The Energy of Joint Configuration 

E(v,h) = − vihjwij
i, j
∑

hidden 

i 

j 

Visible  

wij  

p(v, h)∝ e−E (v,h)
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Using energies to define probabilities 

The probability of a joint configuration 
over both v and h depends on the 
energy E of that joint configuration 
compared with the energy of all other 
joint configurations. 
 
The probability of a configuration of the 
visible units is the sum of the 
probabilities of all the joint configurations 
that contain it. 
 
 

p(v,h) = e−E (v,h)

e−E (u,g)
u,g
∑

partition 
function 

p(v) = p(v,h)
h
∑ =

e−E (v,h)
h
∑
e−E (u,g)

u,g
∑
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How to maximize p(v) 
Goal of supervised fine-tuning is to maximize log p(class|v) 
It follows that  the goal of unsupervised learning is to maximize log p(v) 
 
 
Define free-energy as 
 
Gradient given as 

F(v) = − log e−E (v,h)
h
∑

w := w−ε ∂ log p(v)
∂w

−
∂ log p(v)
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=
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∂w

− p( v)∂F( v)
∂wv

∑

E(v,h) = − vihjwij
i, j
∑

Positive phase term  
easy to compute directly 

Negative phase term difficult 
to analytically compute 

p(v) =
e−E (v,h)

h
∑
e−E (u,g)

u,g
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Computing Derivative of Negative Phase 

Negative phase term can be represented as              , the expectation 
over all possible configurations of the input (under the distribution 
formed by the model), which is difficult to estimate analytically 
Estimate the expectation using a fixed number of model samples 
 
 
Obtain samples of p(v) using Gibbs sampling 
 

−
∂ log p(v)

∂w
=

∂F(v)
∂w

− p( v)∂F( v)
∂wv

∑

Ep
∂F(v)
∂w

"

#$
%

&'

−
∂ log p(v)

∂w
≈

∂F(v)
∂w

−
1
| N |

∂F( v)
∂wv∈N

∑



Google Confidential and Proprietary Tara N. Sainath – Deep Learning and Optimization 

HLT, IBM T.J. Watson Research Center 

Restricted Boltzmann Machines
• We restrict the connectivity to 

make learning easier.
– Only one layer of hidden units.
– No connections between hidden 

units.
• In an RBM, the hidden units are 

hidden

j

• In an RBM, the hidden units are 
conditionally independent given 
the visible states.  
– So we can quickly get an unbiased 

sample from the posterior 
distribution when given a data-
vector.

– This is a big advantage over 
directed belief nets
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Sampling in an RBM 

i 

j 

i 

j 

i 

j 

i 

j 

t = 0                 t = 1                  t = 2                               t = infinity 

a fantasy 

•  In the RBM structure, v and h are conditionally independent 
•  To obtain samples of p(v,h): 
 Start with a training vector on the visible units. 
 Sample hidden units given fixed visible units 
 Then sample visible units given fixed hidden units 
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Contrastive Divergence 

i 

j 

i 

j 

t = 0                 t = 1    

1.  Start with a training vector on 
the visible units. 

2.  Update all the hidden units in 
parallel 

3.  Update the all the visible units 
in parallel to get a 
“reconstruction”. 

4.  Update the hidden units again.  reconstruction data 

With contrastive divergence, just one step of Gibbs sampling is run 
While this approximates -log p(v), it seems to work well in practice 
(Carreira-Perpinan & Hinton, 2005). 
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Constructing Deep Belief Networks 

First train a layer of features that receive input directly from the speech features 
Then treat the activations of the trained features as if they were speech features and 
learn features of features in a second hidden layer. 
Why greedy? 
 It can be proved that each time we add another layer of features we improve a 
variational lower bound on the log probability of the training data. 
 Simplicity of training 
 


