Google

Deep Learning and

Optimization,

With Applications to
Google gneech Recognition

Tara N. Sainath
June 15, 2015

Google

Acknowledgements

e Google
o Michiel Bacchiani
o Hasim Sak
o Andrew Senior

e IBM

o Brian Kingsbury
o George Saon

e Microsoft
o LiDeng

o Frank Seide
o Dong Yu

Google

Outline

 Why Neural Networks

« Training Neural Networks

» Making Neural Networks Work for Speech Recognition
* Optimization challenges: Training time

* Optimization challenges: New architectures

Google

Pattern Recognition System

* The goal of any pattern recognition system is to
o determine an appropriate feature representation
o classify these features effectively

13 bat” —l

Feature e Classifier
Extractor

Google

Example from Speech Recognition

« For example, in speech recognition, we first create features by hand

« Then we build a discriminative classifier (Gaussian Mixture Model)
to distinguish between classes

« Features are not directly designed for classification objective

Zero Crossing Rate
8

13 bat” —l

Classifier

Feature
Extractor

—)

Google

End-to-End Recognition System

» Black box which takes simple features + labels does the feature
extraction jointly with the classification

« Features are trained to the classification objective

« Big non-linear system trained to map from simple features to labels

,,,,,

“ 5 Feature Classifier

Extractor

—)

|

Google

Intuition Behind Deep Neural Networks
« Each block produces a higher level feature representation and better

classifier than its input
« By combining simple building blocks, we can design more and more

complex, non-linear systems

1] th)
bat” ===

Reduce signal Class discrimination
variance characteristics

Google

Representation at Each Stage

» Within each building block, we want the following properties:
o Create a higher level representation of input
o Better separate input into classes
o Can be combined with previous layers

o Can be trained jointly with other layers
« Using a mathematical model of a biological neuron is an appropriate
choice

Google

Neurons

* A neuron takes a weighted sum of inputs a and feeds
the result through an activation function o

« QOutput of the activation function produces decision
boundary which can be used in classification

w,

n
Az W o (b + E a,-wz-)
=1

>

~
0
g
W

Google

Combining Neurons

« Each neuron splits the feature space with a hyperplane
« 1-layer of trainable weights cannot handle XOR
« 2-layers of trainable weights gives a convex polygon region

Xe—>e-
o<

Tara N. Sainath — Deep Learning and Optimization Google Confidential and Proprietary

Google

Combining Neurons

« 3 layers of trainable weights gives a
composition of polygons: convex regions

* More layers can handle more complicated
spaces — but require more parameters

Tara N. Sainath — Deep Learning and Optimization Google Confidential and Proprietary

Google
Multi-Layer Neural Network

« Each simple building block is a connection of neurons which produces
a higher-order, more complex representation of the input
* Neurons in one layer are connected to neurons in the next layer

“bat”

S N -] S

Tara N. Sainath — Deep Learning and Optimization Google Confidential and Proprietary

Google

Outline

« Training Neural Networks

Tara N. Sainath — Deep Learning and Optimization Google Confidential and Proprietary

Google
Training Neural Networks

 Most common approach to train neural networks is via stochastic
gradient descent
o Propagate input forward
o Compute gradient of objective function
o Propagate error gradient backwards

Tara N. Sainath — Deep Learning and Optimization Google Confidential and Proprietary

Google
Feed-Forward Networks

* Predictions are fed forward through the network to classify

Tara N. Sainath — Deep Learning and Optimization Google Confidential and Proprietary

Google

Feed-Forward Networks

* Predictions are fed forward through the network to classify

Tara N. Sainath — Deep Learning and Optimization Google Confidential and Proprietary

Google

Feed-Forward Networks

Predictions are fed forward through the network to classify

Tara N. Sainath — Deep Learning and Optimization Google Confidential and Proprietary

Google
Feed-Forward Networks

* Predictions are fed forward through the network to classify

xO\ 90729 / ~
X 1e) n_ . -
< Pon
- » = | f I P
g™ N :
L o A ™ g

Tara N. Sainath — Deep Learning and Optimization Google Confidential and Proprietary

Google
Feed-Forward Networks

* Predictions are fed forward through the network to classify

Lo 90_)50'/\ 91_:9 e
T :90_:1 < e ¢

< Ve < 11 _S
o o . - -

> 90 2 N 9_)

Tara N. Sainath — Deep Learning and Optimization Google Confidential and Proprietary

Google
Feed-Forward Networks

 Predictions are fed forward through the network to classify

o 90720/\ 91?0 / p

.) 2.0
L1 064 : = 6

% , 21

XS) < O S 0. L (x.8)
To)) 2.2

Google

Define Objective Function

f(z,0)

ref=y

* Forregression problems, sum-of—lsqgvared error is used
v, fGe,0) € RV L=3D On— fulx0))?

* For classification problems, cross-entropy is used

v, f(x,0) € [0,1]V

N N
D> =1 L==>" y.logfi(x,0)
N n=1 n=1
D faxe) =1
n=1

Tara N. Sainath — Deep Learning and Optimization Google Confidential and Proprietary

Google
Error Backpropagation

* Introduce variables over the neural network

52 {wz_j7 Wik, wk‘l}

’U)jk

f(zx,0)

Tara N. Sainath — Deep Learning and Optimization Google Confidential and Proprietary

GO;gle

Error Backpropagation -
p p g Hz{wzjvw]kawkl}
 |ntroduce variables over the neural network

o Define a to be the input of each non-linearity

o Define z to be the output of each non-linearity
Z a.j ZJ aj Zk a 21

f Wij l l Wik l l

xr

WEl

€1

v —
f(x,0)

T

Z

Tara N. Sainath — Deep Learning and Optimization Google Confidential and Proprietary

Google
Error Backpropagation 0 = {w;;, Wir, Wi}
— 17 9 JK»
i J k

z; = g(aj) zr = g(ag) z1 = g(ap)

Z; a’.? ZJ ar. Zk ap 21

l

v

f(x, 0)

X

Tara N. Sainath — Deep Learning and Optimization Google Confidential and Proprietary

Google

Error Backpropagation

JZ {wz_ja Wik, wk:l}

Training: Take the gradient of the last component and iterate backwards

a; = E Wij 2 Ak = E :wjkzj a; = E W 2k

7 J Ik
z; = g(aj) =z = g(ak) z1 = g(ar)

ar. 2k aj 2l

v —
f(z,0)

0y

95

Tara N. Sainath — Deep Learning and Optimization Google Confidential and Proprietary

Google
Error Backpropagatlon
R(O) = —EL (¥, f(x,,,0))

Empirical Risk Function

n is number of training points

Composition of
weights +
nonlinearity

creates a nonconvex
objective function

Tara N. Sainath — Deep Learning and Optimization

Google Confidential and Proprietary

Google

Error Backpropagation

« Compute the gradient with respect to objective function and propagate the
gradient backwards to update each layer
« Stochastic Gradient Descent (SGD) is the rggst popular optimization strategy

f(z,0)

Tara N. Sainath — Deep Learning and Optimization Google Confidential and Proprietary

Google

Outline

« Making Neural Networks Work for Speech Recognition

Google

Acoustic Modeling for Speech Recognition
 Speech recognition problem characterized as follows:

W = argmr/naxP(W|A) = argmr/nax P(A{WHP(W)
* Acoustic modeling is the process of modeling a set of sub-word units
which make up words
* Acoustic realization of a phoneme depends strongly on context
 We model sub-word units as triphones (context-dependent states)

: i
L . !
i II :i 1

sy s ‘"_ﬁ_

4+ Freqguency .

 anhac

BEATEN

Tara N. Sainath — Deep Learning and Optimization Google Confidential and Proprietary

Google

Acoustic Modeling for Speech Recognition
« Each sub-word unit is modeled by a 3-state Hidden Markov Model

841

222 B33
by } by
; 'l \,)
" 3 " \“ ‘: L\\ ’, ” \\~
v s . ‘. ’ \‘

b

1

« 5 years ago, a popular acoustic modeling technique is to model the
output distribution in each state by Gaussian Mixture Models (GMM)

« Neural Networks (alternatively called Multi Layer Perceptrons — MLPs)
can also be used for acoustic modeling

Google

Neural Network Acoustic Models

* Final non-linearity is represented by softmax
__ exp(—a)
p(cilx) = ?:1 exp (—a;)

« [Each class c; will be the same sub-word units we build GMMs for

W01 W1 2

W’I?

ont

o

a, p(C,lx)

Tara N. Sainath — Deep Learning and Optimization Google Confidential and Proprietary

Google

Neural Network Acoustic Models

* Neural networks are trained to minimize cross-entropy objective
function (i e. frame error rate)

P(Czlx) € [0,1]"

i
ref _ — N ref
L =— y; = logp(cilx)
l 1 i=1
E C pal) =1
i1=1

* NN gives posterior p(c|x) so divide by class prior to get
likelihood _ pCeilo
p(x|c;) = ==
* NN likelihood replaces GMM likelihood as output distribution in
HMM

Google

Early Performance of Neural Networks

* Previous LVCSR performance with MLPs
o shallow network (3 layers), small output targets (46) - [Zhu et al, ICSLP 2004]

* On a Switchboard telephony task, gains with MLPs only observed when
combined with baseline

Method WER
Baseline GMM/HMM 30.8
+ MLP 28.6

« Training neural networks is difficult!
o Objective function is non-convex

o Training is done SGD serially one one machine, can be slow on CPUs
« These difficulties pose challenges to have deep networks with many
output targets

Google

Making DNNs Successful for Acoustic Modeling

3 advances made DNNs successful for acoustic modeling
1. Pre-training
2. Improved Hardware with GPUs
3. Sequence training [B. Kingsbury et al, Interspeech 2012]

This encouraged
o Deeper networks
o Networks with more output targets (i.e., classes)

Google

(1) Pre-Training via Unsupervised Learning

» The goal of unsupervised learning is to put the weights in a good initial space
to encourage deeper and larger networks during superivsed fine-tuning

* Unsupervised learning systems can be designed using the encoder-decoder
paradigm

o Encoder: transform input v into code representation h

o Decoder: reconstructs input from the code by minimizing

reconstruction error
* Encoder-decoder paradigm learns weights such that the code captures
higher-order relevant information from input signal, these weights are used to
initialize network for fine-tuning
* Unsupervised learning

o Restricted Boltzmann Machine (RBM) [Hinton — Toronto]
o Sparse Encoding Symmetric Machine (SESM) [Lecun — NYU]
o De-noising Auto-Encoder [Bengio — Montreal]

Tara N. Sainath — Deep Learning and Optimization Google Confidential and Proprietary

Google

Greedy Layer-wise Pre-training

' QOOOOOD hy

I RBM I
| I

— e - e e - - — -

lelolelololel® N gCD@OOOOO@Mg
S 1:::::: ' rem oy 1
:©00000®m: :@Qooqqqg: QOOQOOD A
I RBM | EV
.©ooooo©x' ©00000®x QOO0 *
RBM for x RBM for Ay RBM for y and h>

» First train a layer of features that receive input directly from the speech

features
« Then treat the activations of the trained features as if they were speech

features and learn features of features in a second hidden layer.
» After pre-training is done, use weights and train network using cross-entropy

objective

Google
(2) GPU training

* DNN training is slow is due to the large number of dense matrix
multiplications and large amount of training data

* GPUs help SGD DNN training by parallelizing this matrix multiplication
over thousands of cores

« GPU training can achieve over a 9x speedup with a K20x speedup to a
compared to a 8-core CPU

Method WER (50-hr BN) Training Time (hrs)

SGD (GPU) — K20x 17.8 3.8

Tara N. Sainath — Deep Learning and Optimization Google Confidential and Proprietary

Google

Results with PT+CE: Deepness

28

DT O S S SRR SRR
= “

2 25

g .
H \
1 24 A
]

T 23F

WER

22

21
1 4
MNumber of layers

« Experimentally, we see that network depth improves WER
* Generally 6-7 hidden layers is used for speech tasks

Google

Results with PT+CE: Increased Output Targets

* We know with GMM/HMMSs, increasing the number of context-
dependent states (i.e., classes) improves performance
* In the past, MLPs typically trained with small number of outputs

o increasing output targets becomes a harder optimization problem
and does not always improve WER

o increases parameters - increases training time
« With DNNs, pre-training putting weights in better space, and thus
we can increase output targets effectively

Number of Targets WER
384 21.3

512 20.8

1024 19.4

2,220 18.5

Google
DNN Acoustic Modeling Results

* DNNs provide between a 8-25% relative improvement in word error
rate over GMM/HMM systems across a variety of tasks and
languages

» Results confirmed by many, many research labs

300 hour SWB 400 hour 2000 hour
Conversational Broadcast News Voice Search
Telephony

GMM/HMM 14.3 16.5 16.0
DNN 12.2 15.2 12.2
% Relative 14.7 7.9 23.8

Improvement

Tara N. Sainath — Deep Learning and Optimization Google Confidential and Proprietary

Google

Historical Performance in Speech Recognition

* Few techniques we explore consistently show gains of this magnitude

100%
Conversational Speech
Meeting Speech
.
e A emm_ B
\. A . I ‘
= X A
S Broadcast —
o Speech - '\
L —e
= ® @
10% ~—
a Q\
1992 ' 19937 1994" 1995' 1996' 1997 199%' 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

Performance with
Deep Neural Networks

Tara N. Sainath — Deep Learning and Optimization Google Confidential and Proprietary

Google

Outline

* Optimization challenges: Training time

Tara N. Sainath — Deep Learning and Optimization Google Confidential and Proprietary

Google

The Revolution

« The 2007 launch of smartphones (iPhone and Android)
was a revolution and dramatically changed the status of
speech processing

* Google’s current suite of mobile applications is
launched in 48 languages and processes about a
decade of speech each day

Google

Mobile Speech Will Grow

S
-
R
-
~ {
-)/ -
1Y 4 ol
= Tz 27
. |

« Speech becomes the primary input modality
* Training data will continue to grow
« With this, we need efficient algorithms to train these networks

Error(P(SY | A, zV), SY)

Stochastic Gradient Descent
N | A"

Google

— K
/N

W ;
LA/
/ «}s

A

%)
AN
i@V
Ly
QD)
SO

K XAX
O
DRI

-'vr“w\
(o

J
»4.%\»’»4«‘

A = A — nV Error

(zN,SN)

(z1,851) ..

Google Confidential and Proprietary

Tara N. Sainath — Deep Learning and Optimization

Google

GPU training

DNN training is slow is due to the large number of dense matrix
multiplications and large amount of training data

GPUs help SGD DNN training by parallelizing this matrix multiplication
over thousands of cores

GPU training can achieve over a 9x speedup with a K20x speedup to a
compared to a 8-core CPU

In reality applications of speech, text and NLP thousands of hours of
labeled training data, even more unlabeled data

It is critical for DNN success to speed up training

Method WER (50-hr BN) Training Time (hrs)

SGD (CPU) 17.8 35
SGD (GPU) — K20x 17.8 3.8

Tara N. Sainath — Deep Learning and Optimization Google Confidential and Proprietary

Google
Approaches to Speed up DNN Training

» Parallel SGD on GPUs [Microsoft]
» Asynchronous SGD [Google]
» Hessian-free training on Blue Gene [IBM]

Google
(1) Parallel SGD

 BP steps:
o forward propagation
o error back propagation
o model update

Tara N. Sainath — Deep Learning and Optimization

ground truth
P{s|»*} e?
softmax(’)
()T +a? -l
Al w
v:= E{h1|v1}T ¢ el
o() o'()
. (WI)T’+a -l
é l W
vl= E{h°|v1}T el
0y v 0
. ,+al -y
A__

W= obsT

Google Confidential and Proprietary

Google
Parallel SGD

GPU GPU
BPoSt?opr\?v.ard propagation P {SW}H ¢ Pish?) e’ P {S|V2}1L$
ftmax(- ftmax(- ftm

o error back propagation -S(;VT ixj) ‘ A2 -S(V)VT, ixfg) ‘ AW? ‘ SCV)VT ix;)

o model update Al wlnre| AL W
To improve efficiency of szE{hlrl)} Ge(l) o0 ‘1'0, 5 = 1‘ ‘1'
data parallelism, reduce how (W“T +aJ’ v (WYT, +al 0 N4 -(WI)T,+a
much data gets exchanged ‘1’ | A | ‘1'
by quantizing sub-gradients V' E{h"zl)}'r e(”) . " . 1‘

(0] O o\ o o\

to one bit/value .pﬁ_w _ W +a 'VZ&”
Key trick is to keep quantization - e A
error from one mini-batch and 173 13 173
add it to the next W0 = obs

Tara N. Sainath — Deep Learning and Optimization

Google Confidential and Proprietary

Google
Results

[F. Seide et al, Interspeech 2014]

« SWBD 309h (46M): total reduction from 41 to 6.3h > 6.5 x (8-GPU server)

| AdaGrad applied to... | WER [%] | GPUs
momentum-smoothed gradient 16.5 (57.4) 1
raw gradient (not parallelized) 16.2 (58.2) 1
partial gradients (parallel, 4 nodes) | 16.1 (57.4) 4x2
aggregate gradient (4 nodes) 15.8 (59.1) 4x2
+ MB size tuning 3 x less often 15.9 (59.2) 4x2
+ double buffering (DB) 15.8 (59.4) 4x2
vs. no DB for MB-size selection 15.9 (59.1) 4x2

data X model | Hub-5 RTO3S IWSLT| tele-
parallelism 00 FSH | SWB all conf.
1 x1 14.5 15.1 21.2 15.0 19.4
+ realign 13.2 14.1 19.8 14.1 18.5
10 x 2 14.2 14.8 20.8 14.9 19.1
+ realign 13.2 14.1 19.8 14.2 18.6
20 x 2 14.3 14.9 20.8 15.1 19.2
+ realign 13.1 14.4 20.1 14.5 18.7

(2) Asynchronous SGD - DistBelief Parallel Trainer

Google

AW
SRR
Sy
LR~
X

.«&«%’.&40 7
D

YT AAY
Y

Google Confidential and Proprietary

Tara N. Sainath — Deep Learning and Optimization

Google

Asynchronous SGD - DistBelief Parallel Trainer

Google Confidential and Proprietary

Tara N. Sainath — Deep Learning and Optimization

Google

Asynchronous SGD - DistBelief Parallel Trainer

|
W wre
AAY
elne
o i
i
o

| [N y
Wiy

o
X
]

0
N A
N Oxiedvye Il
LI
LA WNEALNY
YN

Data

Google

Asynchronous SGD - DistBelief Parallel Trainer

Parameter Server

|w

N

A

CEACED
4’\4 ‘ S —

i

.%N‘ AW} £\

<Qﬁ».. 64\ .

it
0

| &vw»,«\\»«\s//.

QI
AN
FNNY
Qs
foligaingateg!
IR
a4 . .

v

|

|
AN
P A ¥ I
Qiniaye!
RSS9 N0
P
_.tﬁ‘we« %\%4.%\"4. |
PN O
0!
e
e L |

Google Confidential and Proprietary

Tara N. Sainath — Deep Learning and Optimization

Google

Asynchronous SGD - DistBelief Parallel Trainer

Parameter Server

S

| |
AYAYAYY
unkian !
ru!% VSN0, =

XON ~ R~ XKD
%»..N..,,.%D". 25
e

|
Y
PRI |
r-,.%%@« N0
AR AR
RS

e Oqrs
AN
_.»%?. vr@-.»s.. |

AR D).
BRI

»«‘ﬁé
A

Google Confidential and Proprietary

Tara N. Sainath — Deep Learning and Optimization

Google

Asynchronous SGD - DistBelief Parallel Trainer

Parameter Server

A0 \-.r

XA (X
_“vr».w .%:'. »0»"
FAORIER

A0
AN

ot
Pir i R
o VY
PvERa

|
e Oy 9
DR ASTAN
QUK |
N W\ !
i YaYaN

%

Y ANAYY
LA A S
XROK~ KR XKD
L
vt

Y1 NN

Google Confidential and Proprietary

Tara N. Sainath — Deep Learning and Optimization

Google

Asynchronous SGD - DistBelief Parallel Trainer

Parameter Server

| |
AYAYAYY
unkian !
ru!% VSN0, =

XON ~ R~ XKD
%»..N..,,.%D". 25
e

|
Y
PRI |
r-,.%%@« N0
AR AR
RS

e Oqrs
AN
_.»%?. vr@-.»s.. |

AR D).
BRI

»«‘ﬁé
A

Google Confidential and Proprietary

Tara N. Sainath — Deep Learning and Optimization

Google

ASGD Training Time
Task | Model Training
Type Size
(hours)
Voice GMM 16.0 5780
Search pNN 122
You GMM 523 1400
Tube pNN 462

[J. Dean et al, NIPS 2012]

GPU Training Number
Time (hours of States
lepoch)

321 4x2560 7969

95 4x2560 17552

» DistBelief CPU training allows speed ups of 70 times over a single

CPU and 5 times over a GPU.

* Train a 85M parameter system on 2,000 hours, 10 epochs in about

10 days.

Tara N. Sainath — Deep Learning and Optimization

Google Confidential and Proprietary

Google

(3) 2nd Order Optimization via Hessian-free f5. Kingsbury ot al
nterspeech 2012]

« Distributed optimization techniques, such as 2" order methods,
use large data batches for gradient and curvature information,
which can be parallelized across machines

1. Minimize the following objective functlon

L(w,+d,)— L(w,) ~VL(w,) d, + dTB(w,,)d
= qw.(dn)

2. Find the best search direction d,

Find d,, such that gu,(d,) < gw,(0).

3. Update parameters
wn—|—1 <— W, _|_ adn

4. lterate

Google

Hessian-free Tra

Google Confidential and Proprietary

ining

Tara N. Sainath — Deep Learning and Optimization

Master

ining

W
R M el
-t
SIS0
%\ww@,..\ﬂda‘.»)
YA

N
SRR
dinTao
ey
Ahisoberine
NN, "

WS
NN AN7AY
AKX
KK KX XK
SIS

\\% h A NV A/

Google Confidential and Proprietary

Google

Hessian-free Tra

Tara N. Sainath — Deep Learning and Optimization

Google

Hessian-free Train

Google Confidential and Proprietary

ing

Tara N. Sainath — Deep Learning and Optimization

ining

N a0
ORS00
B
AR

N
A
Mo
A
S0
RYAY

\00

YA
42, AN AN
ARV

Google Confidential and Proprietary

Google

Hessian-free Tra

Tara N. Sainath — Deep Learning and Optimization

Google

ing

Hessian-free Train

Master

%o.,.«»o»«
AKX
RN XX XKD
KX
WV
YA

y.ﬁ.ﬁ
A

\

54

i glig
ol Lkl
e ey
[AP
TAYAWA

2

A

CAI0E

A /vd.‘.‘
Wef! w&)w&

Google Confidential and Proprietary

Tara N. Sainath — Deep Learning and Optimization

Google
Further Speedups with Blue Gene/Q

* A major problem with parallel architectures is communication
bottlenecks between workers
» Having a specialized hardware/software architecture to minimize
these bottlenecks is critical
« The Blue Gene/Q architecture is perfect for 2" order parallel HF
training
o Massively parallel architecture with thousands of cores
o Minimal communication cost between processors

Google
[T. N. Sainath et al,
Overall Speedups with BG/Q — 300 hrs SWB Interspeech 2014]

« Experiments run on two BG/Q rack (2,048 nodes, 16 cores/node,
4 threads/core)
e On 300-hr SWB, BG/Q is
o 4x faster for CE compared to SGD GPU
o 10x faster for ST compared to SGD GPU
o No loss in WER compared to HF CPU

m
Time (hrs) Time (hrs)
HF CPU - - - 12.4
SGD GPU 121.5 14.1 47.6 12.7
HF BG/Q 28.0 14.1 4.6 12.4
Speedup 4 - 10.3

Tara N. Sainath — Deep Learning and Optimization Google Confidential and Proprietary

Google

Overall Speedups with BG/Q — 400 hrs BN

 On 400 hours BN with 2 racks, HF BG/Q shows
o 3x faster for CE compared to SGD GPU
o 11.6x faster for ST compared to SGD GPU
o No loss in WER compared to HF CPU
» A specialized architecture such as BG/Q makes HF the fastest

approach for CE and Sequence training

Time (hrs) WER Time (hrs) WER

HF CPU - - - 15.1

SGD GPU 77.9 16.5 421 15.8

BG/Q 21.7 16.5 3.6 15.1
Speedup 3 - 11.6

Tara N. Sainath — Deep Learning and Optimization Google Confidential and Proprietary

Google

Outline

Optimization challenges: New architectures

Tara N. Sainath — Deep Learning and Optimization Google Confidential and Proprietary

Google

(1) Recurrent Neural Networks

Activation from previous time step is fed as input to network at
current time step

Recurrent layer encodes “state” and can encode long-term
temporal information

RNNs good at modeling non-linear temporal sequence data
[Robinson, 1993]

r(t-1)

r(t t
input x(t) y recurrent (), output ﬂ,

Google
Training RNNs

An RNN can be made to look like a feed forward network by unrolling the
RNN through time
During training, activations are forward propagated for a fixed time-step T

Gradients are computed and then backpropagated to start (backpropagation
through time)

input Xt Xe_ 1 X;
Wh i Whx i Whx
hidden hy] her =] b |- he=0(Whote + Winhi1 +)
Wy Whh v vh
" " Yt = Cb(Wyhht + by)
output Yt Yt—1 Yt

(a) RNN (b) RNN unrolled in time

Google

Backpropagation Through Time

Tara N. Sainath — Deep Learning and Optimization

Acoustic features

%%%%

y State posteriors

Y External gradlents

&, f—— - — | o

nternal gradients
—_— —— —— —

+ o+ o+ o+

o b o b

Google Confidential and Proprietary

Google

. [G. Saon et al, Interspeech 2014]
RNN Architectures output

« Explore using RNNSs for temporal modeling and T

DNNs for depth in a unified framework DNN

« RNN is unfolded for 6 time steps I
RNN — unfolded 6 13.5 t

RNN — unfolded 11 13.8 DNN

 RNN can achieve a 4% relative improvement over DNN D:lN
Model [SWB-300 _ |

Baseline GMM/HMM 14.5 RNN
DNN 12.5 f

RNN 12.0 input

Tara N. Sainath — Deep Learning and Optimization

Google Confidential and Proprietary

Google
(2) Long Short-Term Memory RNNs

* Modeling long-term dependencies with RNNs is difficult due to
vanishing gradient problem

» This limits modeling capability of RNNs to small time steps (5-10)

« LSTMs were developed to address these issues [Hochreiter and
Schmidhuber, 1997]

< L5500 ',-' '-._‘ P SN '..-' '~._‘

Cutputs ’ ’ ()) | I | L=y
T T L) 1y T

Hidden L3 £\ (o o0\ P
x X i i I

Google
LSTM architecture

« Memory cells store temporal state of network
Multiplicative gates control information flow

o Input gate: controls flow of input activations into cell
o Output gate: controls output flow of cell activations
o Forget gate: Process continuous input streams

These gates allow LSTM to store and access long-term information

b3

LSTM memory blocks

Google

Preserving Gradient Information with LSTMs

« Memory cell remembers first input as long as the forget gate is open
and then input gate is closed

N9 P7991¢

E;‘;ti_f" &&&&&&O

/ L 50000 5

Input Gate

Google

LSTM Results [H. Sak et al, Interspeech 2014]

| output |
o Model WER-

Voice Search Task =
. ross- 11.1 10.0 LSTM
« LSTM gives a 10% Entropy
relative improvement Sequence 10.0 8.9 f
over the DNN ;
* Optimization challenges: 4
o LSTM is unrolled for 1 113 G
20 time steps 5 10.7
o Performance seems to p 10'7 T
saturate after 2 LSTM '

| input |

layers

Tara N. Sainath — Deep Learning and Optimization Google Confidential and Proprietary

Google
(3) CLDNR Grssezors

We combine convolutional neural networks, LSTMs and deep
neural networks in a unified framework (CLDNN)

Architecture uses 1 CNN, 3 LSTM and 1 DNN layer
CLDNNSs give an 8% relative improvement over LSTMs

Method | WER - Seq
LSTM 8.9
CLDNN 8.2

Optimization Challenges:
* Increasing number of layers saturates performance
« Can only unroll LSTM for 20 time steps

output targets

f
?
LSTM :)
?
LSTM D
?
LSTM :)
?
f z; € RP

log-mel

Go gle
Conclusions

 DNN performance
o Pre-training strategies and GPUs
o This encouraged deeper networks with more output targets
« Training improvements
o Parallel GPU training via 1-bit GPU
o Asynchronous SGD via CPUs
o 2" order Hessian-free via Blue Gene
« Architecture challenges
o LSTMs and their variants are popular but still have optimization issues
o Can only unroll for limited time steps
o Can only make the architectures so deep

Google

References — Neural Network Architectures

« G. Hinton, L. Deng, D. Yu, G. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke,
P. Nguyen, T. N. Sainath, and B. Kingsbury, “Deep Neural Networks for Acoustic
Modeling in Speech Recognition,” IEEE Signal Processing Magazine, vol. 29, no. 6,
pp. 82-97, 2012.

« T. N. Sainath, B. Kingsbury, G. Saon, H. Soltau, A. Mohamed, G. Dahl and B.
Ramabhadran, "Deep Convolutional Neural Networks for Large-Scale Speech Tasks,”
in Elsevier, Special Issue in Deep Learning, November 2014.

« H. Soltau, G. Saon and T.N. Sainath, “Joint Training of Convolutional and Non-
Convolutional Neural Networks,” in Proc. ICASSP, 2014.

« H. Sak, A. Senior, and F. Beaufays, “Long Short-Term Memory Recurrent Neural
Network Architectures for Large Scale Acoustic Modeling,” in Proc. Interspeech, 2014.

« T.N. Sainath, O. Vinyals, A. Senior and H. Sak, “Convolutional, Long Short-Term
Memory, Fully Connected Deep Neural Networks ” in Proc. ICASSP, 2015.

Google

References — Training Improvements

« Jeff Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc Le, Mark Mao,
Marc’Aurelio Ranzato, Antrew Senior, Paul Tucker, Ke Yang, Andrew Ng Large Scale
Distributed Deep Networks. NIPS 2012.

« B. Kingsbury, T. N. Sainath, and H. Soltau, "Scalable Minimum Bayes Risk Training of
Deep Neural Network Acoustic Models Using Distributed Hessian-free Optimization,” in
Proc. Interspeech, 2012.

« G. Saon and H. Soltau, “A comparison of Two Optimization Techniques for Sequence
Training of Deep Neural Networks,” in Proc. ICASSP 2014.

« T.N. Sainath, I. Chung, B. Ramabhadran, M. Picheny, J. Gunnels, B. Kingsbury, G.
Saon, V. Austel, U. Chaudhri, “Parllel Deep Neural Network Training for LVCSR using
Blue Gene/Q,” in Proc. Interspeech, September 2014.

 F. Seide, H. Fu, J. Droppo, G. Liand D. Yu, “1-Bit Stochastic Gradient Descent and
Application to Data-Parallel Distributed Training of Speech DNNs,” in Interspeech 2014.

Google
Backup Slides

Tara N. Sainath — Deep Learning and Optimization Google Confidential and Proprietary

Google
(1) Error Backpropagation

Introduce variables over the neural network

52 {wz_j7 Wik, wk‘l}

’U)jk

f(zx,0)

Tara N. Sainath — Deep Learning and Optimization Google Confidential and Proprietary

GO;gle

Error Backpropagation -
p p g Hz{wzjvw]kawkl}
Introduce variables over the neural network

Define a to be the input of each non-linearity

Define z to be the output of each non-linearity
Z a.j ZJ aj Zk a 21

f Wij l l Wik l l

xr

€1

v —
f(x,0)

T

Z

Tara N. Sainath — Deep Learning and Optimization Google Confidential and Proprietary

Google
Error Backpropagation 0 = {w;;, Wir, Wi}
— 17 9 JK»
i J k

z; = g(aj) zr = g(ag) z1 = g(ap)

Z; a’.? ZJ ar. Zk ap 21

l

v

f(x, 0)

X

Tara N. Sainath — Deep Learning and Optimization Google Confidential and Proprietary

Google

Error Backpropagation

JZ {wz_ja Wik, wk:l}

Training: Take the gradient of the last component and iterate backwards

a; = E Wij 2 Ak = E :wjkzj a; = E W 2k

7 J Ik
z; = g(aj) =z = g(ak) z1 = g(ar)

ar. 2k aj 2l

v —
f(z,0)

0y

95

Tara N. Sainath — Deep Learning and Optimization Google Confidential and Proprietary

Google
Error Backpropagatlon
R(O) = —EL (¥, f(x,,,0))

Empirical Risk Function

1 N 1
WEE v, — f(x,.0))° n is number of training points

Tara N. Sainath — Deep Learning and Optimization Google Confidential and Proprietary

Google

Error Backpropagation

Optimize last layer weights w,,

Tara N. Sainath — Deep Learning and Optimization

L= 5 (yn — f(@))?

a4, = Eiwklzk

f(xn) = Zl,n k= g(al,n)

Calculus chain rule

f(z,0)

Google Confidential and Proprietary

Google

Error Backpropagation

Lo = 5 (n — f(an))?

Optimize last layer weights Wy

822 = Z {&” = [giﬁ;] Calculus chain rule
a,, =Ewklzk
OR _ 1 Z [8%(yn_g(al,n))2:| [aal,n] f(x,)= k= g(a,,,)
Wy N < oay n Owy |

f(x, 0)

Tara N. Sainath — Deep Learning and Optimization Google Confidential and Proprietary

Google

Error Backpropagation

Lo = 5 (yn — f(an))?

Optimize last layer weights w,,

OR 1 oL, oay :
dwr N Zni {] [] Calculus chain rule

8al,n 8wkl
1 . a,, = D Wuz
OR 1 5= 95 (Yn — g(ain)) D2k, n Wi fx)=2z,=ga,)
Wi N oay n Owp ’ |

Tara N. Sainath — Deep Learning and Optimization Google Confidential and Proprietary

Google

Error Backpropagation

Lo = 5 (n — f(an)?

Optimize last layer weights W,

OR 8al,n -
S = N Z {{ml n] [awkl} Calculus chainrule , _S., .,
fx) =z, =g,

] = % Z [—(yn — Zl,n)g/(al,’n)] Zk,n

OR 1 S [8%(yn—g(az,n))2] [8zk,nwkz

8wkl B N 6al,n kal

2 a; <j ag 2k aj zy

f(x, 0)

Tara N. Sainath — Deep Learning and Optimization Google Confidential and Proprietary

Google

Error Backpropagation
Optimize last Iayer welghts Wy

L, =

8wkl

(az n))?

1

f@n))®

.+ Z dlL ., Gal,n_
o {8&1 n 8wkl i

Calculus chain rule

8wkl

——z[o

8wkl

] [3Zk,nwkz |

Tara N. Sainath — Deep Learning and Optimization

— . [_

(o — 2. N0 @),

f(x, 0)

Google Confidential and Proprietary

Zk,n

Google

1
Error Backpropagation . 2)
Optimize last hidden weights w;, own, N En 81,n%k,n

IR 8a'k:,'n
8wgk N Z |:8Clk- n:| [8w3k]

f(z,0)

Tara N. Sainath — Deep Learning and Optimization Google Confidential and Proprietary

Google

rror Backpropagation 2
J OR 1
Optimize last hidden weights w;, own, N D Oinzkm
Or _ 1 x~[5~ 0Ly daiy [aak,n] - c
dw — — Day, Dag, | | Ow;y Multivariate chain rule

Google Confidential and Proprietary

Tara N. Sainath — Deep Learning and Optimization

Google

Error Backpropagation .)
Optimize last hidden weights w;, Swr, N 2 Stnzrn
OR 1 OL, dai, | [Dayn — :
Ow;r N Zn: {Zl: day aa,i,n [aui.k] Multivariate chain rule

aw

e sl

aak n

f(x, 0)

Tara N. Sainath — Deep Learning and Optimization Google Confidential and Proprietary

Google

Error Backpropagation OR 1

Optimize last hidden weights w;, owrn, N D OinZkn

OR o iz Z OL,, 8al,'n [aak,n
Owsr N < — day,, Dax,n | | Ow;y | | Multivariate chain rule

oR 1 da, a,, = > wyela,,)
on 1 5la 2 g

l.n
/ da, ,,

f(x, 0)

Tara N. Sainath — Deep Learning and Optimization Google Confidential and Proprietary

Google

Error Backpropagation SR L

Optimize last hidden weights w, Dwn T N 2 Ctnhn
OR . 1 Z Z 8Ln 80,[’” _3ak,n]
Owsr N < { — Day,y, aak,nJ | Ow,p Multivariate chain rule
OR 1 |) 1
SRR Dl SETHPIOS| SRS SICHI SN

Ain = E wu8(a,,)
3

f(x, 0)

Tara N. Sainath — Deep Learning and Optimization Google Confidential and Proprietary

Google

Error Backpropagation
Repeat for all previous layers

O.['f OL’I’L Oal " 1 1
awkl - N Z [aal J lawli - N Z [_<yn T Zl,n)g/(al,n)] Zk,n — N Z 5l7nzk7n
OR 1 <= [8L, 1 [Oam.n 1 <« / L

8wjk — ﬁ Z |:8a,k " 8w3k:| - ﬁ Z |:Z 5l,nwklg (ak,n)] Zjn — ﬁ Z 5k,nzj,n
n v 1 L . 7 | —~
8R 1 8Ln] _8a’j,7’b 1 1
[1) S IR
n AL . % | —~

2 &y <3 ar Zk a; 2

l Wi l ‘L Wik \L l
xr

Wkl
L1
()

X

Tara N. Sainath — Deep Learning and Optimization Google Confidential and Proprietary

Google

Error Backpropagation
Now that we have well defined gradients for each parameter,

update using Gradient Descent
t41 ¢ oL

w,LJ — wzj - 77

Tara N. Sainath — Deep Learning and Optimization Google Confidential and Proprietary

Google
Error Back-propagation

Error backprop unravels the multivariate chain rule and solves the

gradient for each layer separately.
The error 0 is backpropagated along the network from one layer to the

next

f(z,0)

Tara N. Sainath — Deep Learning and Optimization Google Confidential and Proprietary

Google

(2) Pre-Training via Unsupervised Learning

» The goal of unsupervised learning is to put the weights in a good initial space
to encourage deeper and larger networks during fine-tuning

* Unsupervised learning systems can be designed using the encoder-decoder
paradigm

o Encoder: transform input v into code representation h

o Decoder: reconstructs input from the code by minimizing

reconstruction error
* Encoder-decoder paradigm learns weights such that the code captures
higher-order relevant information from input signal, these weights are used to
initialize network for fine-tuning
* Unsupervised learning

o Restricted Boltzmann Machine (RBM) [Hinton — Toronto]
o Sparse Encoding Symmetric Machine (SESM) [Lecun — NYU]
o De-noising Auto-Encoder [Bengio — Montreal]

Tara N. Sainath — Deep Learning and Optimization Google Confidential and Proprietary

Google

Restricted Boltzmann Machines
Consider a one layer RBM
Weights are fully connected between hidden and visible hidden
units
No connections between hidden units

Hidden units are conditionally independent given the
visible states.
Relationship between v and h for Bernoulli-Bernoulli

RBMs given as: visible

ph,=1|v)=1/1+ eXp(—(Zvl.wij +b))

p(v,=11h)=1/1+exp(—>_h,w, + b))
J

Tara N. Sainath — Deep Learning and Optimization Google Confidential and Proprietary

Google
The Energy of Joint Configuration

= Each possible joint configuration of the hidden
visible and hidden units (ignoring
biases) has an energy

E(v,h) = -— Evihjwl.j
i.Jj

= The energy of a joinf configuration of Visible
the visible and hidden units determines
its probability:

p(v,my o e B

Tara N. Sainath — Deep Learning and Optimization Google Confidential and Proprietary

Q?sﬁﬁ; energies to define probabilities

The probability of a joint configuration e "

Jh) =
over both v and h depends on the pv r)_> Ee—Ew,g)
energy E of that joint configuration . 1.g

. partition
compared with the energy of all other function
joint configurations.

Ee—E(V,h)

The probability of a configuration of the

PO = p(v.h) = ie‘“”’g’

u.g

visible units is the sum of the
probabilities of all the joint configurations
that contain it.

Google

How to maximize p(v)

Goal of supervised fine-tuning is to maximize log p(class|v)

It follows that the goal of unsupervised learning is to maximize log p(v)

wWi=w-—§g alo§p(v)
w
—E(v.,h)
Define free-energy as Fv) = —logze_E("’h) ;e
h p(v) = W
, : E(w,h) = -— h
Gradient given as 1) EJ" Wi e
olo 1% oF (v - OF (v
_dlogp(v) _ ()_zp(v))
ow ow = ow
r\
Positive phase term Negative phase term difficult

easy to compute directly to analytically compute

Google

Computing Derivative of Negative Phase

_dlogp(v) _ IF() - OF (V)
ow ow EP(V) ow

oF (v
Negative phase term can be represented as " [ﬁ]the expectation
over all possible configurations of the input (under the distribution
formed by the model), which is difficult to estimate analytically
Estimate the expectatlon using a fixed number of model §amples

olog p(v) oF(v) 1 E oF (v
ow ow I N & ow

Obtain samples of p(v) using Gibbs sampling

Google
Sampling in an RBM

yantasy

t=0 t=1 t=2 t = infinity

* In the RBM structure, v and h are conditionally independent
« To obtain samples of p(v,h): Pl =11v) = 1/1+exp(=(Xviw, +b))

Start with a training vector on the visible units. PO =1 =1/14exp(=2 hyw; + b))
Sample hidden units given fixed visible units
Then sample visible units given fixed hidden units

Tara N. Sainath — Deep Learning and Optimization Google Confidential and Proprietary

‘Confrastive Divergence

1. Start with a training vector on
the visible units.

2. Update all the hidden units in
parallel

3. Update the all the visible units
in parallel to get a

t=0 t=1 _ “reconstruction”.

data reconstruction 4. Update the hidden units again.

With contrastive divergence, just one step of Gibbs sampling is run
While this approximates -log p(v), it seems to work well in practice
(Carreira-Perpinan & Hinton, 2005).

Tara N. Sainath — Deep Learning and Optimization Google Confidential and Proprietary

Google

Constructing Deep Belief Networks

: QOO h3|
I RBM '
I
I

y (OO ©OOOOOO) hz'

P e - - e— - — — —

1O OOCO) A2l
----- >» 1 _____>-—————— — e —— o ol
_____________) 2 RBM i |====s)
(@lelolelelele) h,. elelelelelele) hr | ©oopooo) hy
I RBM | ' IV
|©OOOOO@ x ! @OOOOO@ x QOO *
- _RBI_/If(;' x_ - T RBM for Ap RBM for y and h2

First train a layer of features that receive input directly from the speech features
Then treat the activations of the trained features as if they were speech features and
learn features of features in a second hidden layer.

Why greedy?

It can be proved that each time we add another layer of features we improve a
variational lower bound on the log probability of the training data.

Simplicity of training

