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Optimizing Multivariate Performance Measures for Learning Relation Extraction Models

Introduction

Relation Extraction

Xerox Corporation is an American multinational company
headquartered in Norwalk, Connecticut. On May 21, 2009, it was
announced that Ursula Burns would be the CEO of Xerox.

Headquarters(Xerox Corp., Norwalk)

Contains(Norwalk, Connecticut)

CEO(Xerox Corp., Ursula Burns)

Traditionally: supervised learning

Limitations: not scalable (expensive and time consuming to create
labeled data)

Can we leverage already existing high quality databases (e.g.
Freebase) to learn good relation extractors ?
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Introduction

Distant Supervision for Relation Extraction
Mintz et al. (2009)

Knowledge base
r e1 e2

BornIn Barack Obama U. S.
PresidentOf Barack Obama U. S.

Sentences

- Barack Obama was born in Honolulu,
Hawaii, United States.
- Obama left United States this Saturday
for a UN summit in Geneva.
- President Obama defended his administrations’
collection of phone records in the U.S.
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Introduction

Distant Supervision based Relation Extraction
Mintz et al. (2009)

Knowledge base
r e1 e2

BornIn Barack Obama U. S.
PresidentOf Barack Obama U. S.

Sentences Latent Label

- Barack Obama was born in Honolulu, BornIn

Hawaii, United States.
- Obama left United States this Saturday none

for a UN summit in Geneva.
- President Obama defended his administrations’ PresidentOf

collection of phone records in the U.S.
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Introduction

Multiple instance, multiple label
Riedel et al. (2010); Hoffmann et al. (2011); Surdeanu et al. (2012)

Figure: Multi-instance Multi-label Relation Extraction
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Introduction

Motivation

I In existing approaches, model parameters are often learnt by
optimizing performance measures (e.g.: conditional
log-likelihood, error rate)

I However, these are not directly related to evaluation measures
(e.g.: F1-score, area under ROC curve)

I Training Objective < Evaluation Measure
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Introduction

Motivation (cont.)

I Can we train better models by directly optimizing task specific
performance measures while allowing latent variables to adapt
their values

I Further, can we provide a knob in the training algorithm to
favor precision more than recall
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Introduction

Introduction

I Our work: large margin method to learn parameters of models
I That contain latent variables
I Optimize performance measures that are non-linear (e.g. : Fβ)

I Outline of our approach: Interleaves concave-convex
procedure (CCCP) with dual decomposition

I CCCP : used to populate latent variables
I Dual decomposition: factorizes the hard optimization problem

(during training) into independent sub-problems
I We present linear programming (LP) and local search methods

to solve the sub-problems
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Preliminaries

Figure: Graphical model instantiated for entity pair x :=
(
Barack

Obama, United States
)
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Preliminaries

Structured Prediction Learning

I Goal: To find w ∈ Rd that minimizes risk

R∆
fw := ∆

((
fw(x1), .., fw(xN)

)
,
(
y1, .., yN

))

I Most large margin learning algorithms assume that loss is
decomposable. So R∆

fw
is simplified to,

R∆
fw :=

N∑
i=1

δ(fw(x), y)

I However, for non-decomposable loss functions like −F1,
∆ cannot be expressed in terms of δ
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Max-margin method for Optimizing Multi-variate Performance Measures

Multi-variate Structured Prediction

I In decomposable structure prediction task, our aim is to learn
w ∈ Rd such that for a new entity pair x, we can find:

fw(x) := arg max
y

max
h

w · Φ(x,h, y)

I Instead of learning a mapping function from an individual
instance to its label, we learn a mapping from all instances to
their labels

I We define the best labeling using the following linear
discriminant function

f(X) := arg max
Y′∈Y

max
H∈H

{
w ·Ψ(X,H,Y′)

}
where Ψ(X,H,Y′) :=

∑N
i=1 Φ(xi ,hi , y

′
i )
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Max-margin method for Optimizing Multi-variate Performance Measures

Training Objective

I Based on margin re-scaling formulation of structured
prediction problems, our training objective is:

min
w

1

2
||w||22 + C max

y′1,..,y
′
N

{
∆

(
(y1, .., yN), (y′1, .., y

′
N)

)

+
N∑
i=1

max
h

w · Φ(xi ,h, y
′
i )−

N∑
i=1

max
h

w · Φ(xi ,h, yi )

}

I The above objective is non-convex since it is the difference of
two convex functions
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Max-margin method for Optimizing Multi-variate Performance Measures

Convex-concave Procedure (CCCP)
I Refer to Yuille and Rangarajan (2001) and Sriperumbudur and

Lanckriet (2012)
I CCCP is a special example of Majorization-Minimization

(class of) algorithm(s)
I Elaborate Convergence proof for constrained version by

Sriperumbudur and Lanckriet (2012) using Zangwill’s global
convergence framework

Figure: CCCP Algorithm
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Max-margin method for Optimizing Multi-variate Performance Measures

Convex Step: Loss Augmented Inference

I Convex step (via cutting plane) to find the best w

I Involves solving the following “loss-augmented inference”

max
y′1,..,y

′
N

∆

(
(y1, .., yN), (y′1, .., y

′
N)

)

+
N∑
i=1

max
h

w · Φ(xi ,h, y
′
i )

I We employ dual decomposition to decouple the two terms and
efficiently find an approximate solution
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Max-margin method for Optimizing Multi-variate Performance Measures

Dual Decomposition

max
y′1,..,y

′
N

∆

(
(y1, .., yN), (y′1, .., y

′
N)

)

+
N∑
i=1

max
h

w · Φ(xi ,h, y
′
i )
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Max-margin method for Optimizing Multi-variate Performance Measures

Dual Decomposition (cont.)

I After forming lagrangian, the dual objective function is
derived as:

I Since L(Λ) is an upper-bound on the original loss-augmented
inference, we find the tightest upper-bound as an approximate
solution: minΛ L(Λ)

I This is solved via sub-gradient descent method
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Max-margin method for Optimizing Multi-variate Performance Measures

Optimization of the Dual - Multivariate Loss

Y
′
∗ := arg max

Y′
∆(Y,Y′) +

∑
i

∑
`

λ
(t−1)
i (`)y ′i ,`

I Optimizing the multivariate loss is also a hard problem since
we have search over entire space of Y′ ∈ Y (exponential)

I However, loss term can be expressed in terms of aggregate
statistics over Y′ (false positives (FPs) and false negatives
(FNs) )

I Since FPs and FNs are integral it can take finite values which
can be represented on a two-dimensional grid and efficiently
searched via a local search algorithm
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Max-margin method for Optimizing Multi-variate Performance Measures

Local Search Algorithm

Figure: Local Search Algorithm : An Illustration
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Max-margin method for Optimizing Multi-variate Performance Measures

Optimization of the Dual - Model Lagrangian

Y
′′
∗ := arg max

Y′′

N∑
i=1

max
h

w · Φ(xi ,h, yi
′′)

−
∑
i

∑
`

λ
(t−1)
i (`)y ′′i ,`

I This problem is as difficult as the MAP inference in the
underlying graphical model (NP-hard for loopy graphs)

I We use ILP formulations (relaxed to LP) to solve this
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Experiments

Experimental Setup

I Dataset: We used the benchmark dataset created by Riedel
et. al. (2010)

I Baseline: Hoffmann et. al.’s (2011) state-of-the-art distantly
supervised relation extractor

I Our approaches:
I Max-margin which optimizes simple decomposable (Hamming)

loss
I Max-margin which optimizes non-decomposable −Fβ loss

Fβ :=
1

β
Precision + 1−β

Recall

28/37



Optimizing Multivariate Performance Measures for Learning Relation Extraction Models

Experiments

Experimental Setup

I Dataset: We used the benchmark dataset created by Riedel
et. al. (2010)

I Baseline: Hoffmann et. al.’s (2011) state-of-the-art distantly
supervised relation extractor

I Our approaches:
I Max-margin which optimizes simple decomposable (Hamming)

loss
I Max-margin which optimizes non-decomposable −Fβ loss

Fβ :=
1

β
Precision + 1−β

Recall

28/37



Optimizing Multivariate Performance Measures for Learning Relation Extraction Models

Experiments

Experimental Setup

I Dataset: We used the benchmark dataset created by Riedel
et. al. (2010)

I Baseline: Hoffmann et. al.’s (2011) state-of-the-art distantly
supervised relation extractor

I Our approaches:
I Max-margin which optimizes simple decomposable (Hamming)

loss
I Max-margin which optimizes non-decomposable −Fβ loss

Fβ :=
1

β
Precision + 1−β

Recall

28/37



Optimizing Multivariate Performance Measures for Learning Relation Extraction Models

Experiments

Training on sub-samples of data

Figure: Experiments on 10% Riedel datasets.
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Experiments

Tuning towards Precision/Recall

Figure: Weighting of Precision and Recall (β = 0.833)
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Accuracies on the entire dataset

Figure: Overall accuracies Riedel dataset
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Conclusion

I Described a novel max-margin approach to optimize
non-linear performance measures, such as Fβ, in distant
supervision of information extraction models

I Our approach is general and can be applied to other latent
variable models in NLP

I Our approach involves solving the hard-optimization problem
in learning by interleaving Concave-Convex Procedure with
dual decomposition
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I Under several conditions, we have shown our technique
outperforms very strong baselines, and results in up to 8.5%
improvement in F1-score

I For future work:
I Maximize other performance measures, such as area under the

curve, for information extraction models
I Explore our approach for other latent variable models in NLP,

such as those in machine translation
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Thank You!

Code present at :
https://github.com/ajaynagesh/lsvm_relationextraction
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