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Figure 1: Description of figure on next slide.



Topic Summarization Caption

I On the left, we show many documents related to Apple.

I In the middle, a Wikipedia category hierarchy, shown as a topic
DAG, links these documents at the leaf level.

I On the right, we show the output of our summarization
process, which creates a set of summary topics (Plants,
Technology, Companies, Films, Music and Places in this
example) with the input documents classified under them.



Problem Formulation: Basic Notations

I G (V ,E ): DAG structured topic hierarchy with V topics. E
encodes parent-child (isa) relationship

I D: Set of documents associated (hard/soft) with one or more
of these topics.

I Γ(s): Set of documents (transitively) covered by a topic s.
Natural extension to set S is Γ(S) = ∪s∈SΓ(s)

I Γα(s) ⊆ Γ(t) has path length between a document and s upper
bounded by α



Goal

I Given a (ground set) collection V of topics organized in a
pre-existing hierarchical DAG structure, and a collection D of
documents, chose a size K ∈ Z+ representative subset of
topics.



Desirable properties

I Goal: Identify summary set of topic S ⊆ V with following
properties.

I Coverage: S should cover most of the documents. A
document d is said to be covered by a topic t if d ∈ Γ(t)

I Diversity: Summaries should be as diverse as possible, When a
document is covered by more than one topic, that document is
redundantly covered, e.g., “Finance” and “Banking” would be
unlikely members of the same summary.

I Summary qualities also involve “quality” notions, including:
Specificity/Clarity/Relevance/Coherence:
These quality measures help us choose
a set of topics that are neither too abstract nor overly specific.



Submodular Functions

I A set function f (.) is said to be submodular if for any element
v and sets A ⊆ B ⊆ V \ {v}, where V represents the ground
set of elements, f (A ∪ {v})− f (A) ≥ f (B ∪ {v})− f (B).

I All our functions are monotone submodular, unless stated
otherwise

I A simple greedy algorithm obtains a 1− 1
e approximation

guarantee for monotone submodular function maximization

I Formally, we solve the following discrete optimization problem:

S∗ ∈ argmax
S⊆V :|S |≤K

∑
i

wi fi (S) (1)

where, fi are monotone submodular mixture components and
wi ≥ 0 are the weights associated with those mixture
components. Set S∗ is the summary topics scored best.



Coverage Functions

I Weighted Set Cover Function: Given S ⊆ V ,
f (S) =

∑
d∈Γ(S) wd = w(Γ(S)), assigns weights to the

documents based on their relative importance (e.g., in
Wikipedia disambiguation, the different documents could be
ranked based on their priority)

I Feature-based Functions: Represent coverage in feature
space. Given S ⊆ V and a set of features U, mu(S) is the score
associated with the set of categories S for feature u ∈ U.

I U could represent TFIDF features over the documents.

f (S) =
∑

u∈U ψ(mu(S)), where ψ is a concave (e.g., the
square root)



Similarity-based Functions

I Defined through a similarity matrix: S = {sij}i ,j∈V . Given
i , j ∈ V , sij = |Γ(i) ∩ Γ(j)|, (number of documents commonly
covered)

I Facility Location: f (S) =
∑

i∈V maxj∈S sij , is a natural
model for k-medoids and exemplar based clustering.

I Penalty based diversity: A similarity matrix may be used to
express a form of coverage of a set S but penalized with a
redundancy term: f (S) =

∑
i∈V ,j∈S sij − λ

∑
i∈S

∑
j∈S , si ,j ;

here λ ∈ [0, 1].



Quality Control (QC) Functions

I We define the quality score of the set S as
Fq (S) =

∑
s∈S fq (s), where fq (s) is the quality score of topic

s for quality q. Therefore, Fq (S) is a modular function in S .

I Topic Specificity: The farther a topic is from the root of the
DAG, the more specific it becomes: fspecificity (s) = sh where sh
is the height of topic s in the DAG.

I Topic Clarity: The fraction of descendant topics that cover

one or more documents: fclarity(s) =
∑

t∈descendants(s)JΓ(t)>0K
|descendants(s)| ,

where J�K is the indicator function.

I Topic Relevance: A topic is considered to be better related
to a document if the number of hops needed to reach the
document from that topic is lower. Given any set A ⊆ D of
document, and any topic s ∈ V :
frelevance (s|A) = argminα{α : A ⊆ Γα(s)}.



QC Functions as Barrier Modular Mixtures

I A modular function for every QC function:

f αspecificity (s) =

{
1 if the height of topic s is at least α

0 otherwise
for every

possible value of α. This creates a submodular mixture with as
many components as the number of possible values of α. In
our experiments with Wikipedia, we had α varying from 1 to
120 stepping by 1, adding 120 modular mixture components.
Similarly, we define,

f βclarity (s) =

{
1 if the clarity of topic s is at least β

0 otherwise
for every

possible (discretized to make it countably finite) value of β.
And,
f γrelevance (s) = fcov (s|Γγ (s)), where fcov (�) is the coverage
submodular function and s|X indicates coverage of a topic s
over a set of documents X .



Fidelity Functions

I A function representing the fidelity of a set S to another
reference set R is one that gets a large value when the set S
represents the set R.

I R can be produced from other algorithms such as k-means,
LDA and its variants or from a manually tagged corpus.

I Topic Coherence: This function scores a set of topics S
high when Γ(S) resembles the clusters of documents produced
by an external source (k-means, LDA or manual). Given an
external source that clusters the documents, producing T
clusters L1, L2, ..., LT (for T topics), topic coherence is defined
as: f (S) =

∑
t∈T maxk∈S wk,t where

wk,t = harmonic mean(wp
k,t ,w

r
k,t) and wp

k,t = |Γ(k)∩Lt |
|Γ(k)| and

w r
k,t = |Γ(k)∩Lt |

|Lt | . Note that, wp
k,t ≥ 0 and w r

k,t ≥ 0 are the
precision and recall of the resemblance



Link to Demo

I http://10.129.1.102:

4020/facets/Pages/Demo/DisambFacetsGen.html

http://10.129.1.102:4020/facets/Pages/Demo/DisambFacetsGen.html
http://10.129.1.102:4020/facets/Pages/Demo/DisambFacetsGen.html
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