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Overview

• High-dimensional Machine Learning
• Many many parameters

• Impose structural assumptions

• Requires solving non-convex optimization
• In general NP-hard

• No provable generic optimization tools
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Overview

• Most popular approach: convex relaxation
• Solvable in poly-time

• Guarantees under certain assumptions

• Slow in practice
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Learning in Large No. of Dimensions

4

(f ) {Learning, Optimization}

0 3 0 … … … … ... 0 91 0 … … 2

𝑑



Linear Model

• 𝑤: 𝑑 −dimensional vector

• No. of training samples: 𝑛 = 𝑂(𝑑)
• For bi-grams: 𝑛 = 1000𝐵 documents!

• Prediction and storage: O(d)
• Prediction time per query: 1000 secs

• Over-fitting
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Another Example: Low-rank Matrix Completion

• Task: Complete ratings matrix
• No. of Parameters: 𝑑1 × 𝑑2

• 𝑑1 = 1𝑀, 𝑑2 = 10𝐾
• 𝑑1 × 𝑑2 = 10𝐵
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Key Issues

• Large no. of training samples required

• Large training time

• Large storage and prediction time
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Learning with Structure

• Restrict the parameter space

• Linear classification/regression: 𝑓 𝑥 = 〈𝑤, 𝑥〉

• Restrict no. of zeros in 𝑤 to 𝑠 ≪ 𝑑

• Say 𝑑 = 1𝑀, 𝑠 = 100

• Need to learn only 𝑂(𝑠 log 𝑑) parameters
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Learning with Structure contd…

• Matrix completion:
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≅ ×

𝑊 𝑈 𝑉𝑇≅ × • W: characterized by U, V
• No. of variables: 

• U: d1 × 𝑟 = 𝑑1𝑟
• V: d2 × 𝑟 = 𝑑2𝑟
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Learning with structure

• Linear classification/regression
• 𝐶 = {𝑤, ||𝑤||0 ≤ 𝑠}

• 𝑠 log 𝑑 ≪ 𝑑

• Matrix completion
• 𝐶 = {𝑊, 𝑟𝑎𝑛𝑘 𝑊 ≤ 𝑟}

• 𝑟(𝑑1 + 𝑑2) ≪ 𝑑1𝑑2

min
𝑤

𝐿(𝑤)

𝑠. 𝑡. 𝑤 ∈ 𝐶
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Data Fidelity 
Function

• Comp. Complexity: NP-Hard
• ||𝑤||0: Non-convex

• Comp. Complexity: NP-Hard
• 𝑟𝑎𝑛𝑘(𝑊): Non-convex



Other Examples

• Low-rank Tensor completion

• 𝐶 = {𝑊, 𝑡𝑒𝑛𝑠𝑜𝑟 − 𝑟𝑎𝑛𝑘 𝑊 ≤ 𝑟}

• 𝑟(𝑑1 + 𝑑2 + 𝑑3) ≪ 𝑑1𝑑2𝑑3

• Robust PCA

• 𝐶 = {𝑊, 𝑊 = 𝐿 + 𝑆, 𝑟𝑎𝑛𝑘 𝐿 ≤ 𝑟, ||𝑆||0 ≤ 𝑠}

• 𝑟 𝑑1 + 𝑑2 + 𝑠 log(𝑑1 + 𝑑2) ≪ 𝑑1𝑑2
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• Complexity: undecidable
• 𝑡𝑒𝑛𝑠𝑜𝑟 − 𝑟𝑎𝑛𝑘 𝑊 : Non-convex

• Complexity: NP-Hard
• 𝑟𝑎𝑛𝑘 𝑊 , ||𝑆||0: Non-convex



Convex Relaxations

• Linear classification/regression

• 𝐶 = {𝑤, ||𝑤||0 ≤ 𝑠}

• ||𝑤||1 ≤  𝑖 𝑤𝑖

• Matrix completion

• 𝐶 = {𝑊, 𝑟𝑎𝑛𝑘 𝑊 ≤ 𝑟}

• ||𝑊||∗ ≤  𝑖 𝜎𝑖 , 𝑊 = 𝑈Σ𝑉𝑇
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 𝐶 = {𝑤, ||𝑤||1 ≤ 𝜆(𝑠)}

 𝐶 = {𝑊, ||𝑊||∗ ≤ 𝜆 𝑟 }



Convex Relaxations Contd…

• Low-rank Tensor completion

• 𝐶 = {𝑊, 𝑡𝑒𝑛𝑠𝑜𝑟 − 𝑟𝑎𝑛𝑘 𝑊 ≤ 𝑟}

• Robust PCA

• 𝐶 = {𝑊, 𝑊 = 𝐿 + 𝑆, 𝑟𝑎𝑛𝑘 𝐿 ≤ 𝑟, ||𝑆||0 ≤ 𝑠}
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 𝐶 = {𝑊, | 𝑊| ∗ ≤ 𝜆 𝑟 }

 𝐶 = {𝑊, 𝑊 = 𝐿 + 𝑆, ||𝐿||∗ ≤ 𝜆 𝑟 , ||𝑆||1 ≤ 𝜆 𝑠 }



Convex Relaxation

• Advantage: 

• Convex optimization: Polynomial time

• Generic tools available for optimization

• Systematic analysis

• Disadvantage:

• Optimizes over a much bigger set

• Not scalable to large problems
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This tutorial’s focus

• Advantage: scalability

• Disadvantage: optimization and its analysis is much harder
• Local minima problems

• Two approaches:
• Projected gradient descent

• Alternating minimization
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Don’t Relax!



Approach 1: Projected Gradient Descent

min
𝑤

𝐿 𝑤

𝑠. 𝑡. 𝑤 ∈ 𝐶

• 𝑤𝑡+1 = 𝑤𝑡 − 𝜕𝑤𝑡
𝐿(𝑤𝑡)

• 𝑤𝑡+1 = 𝑃𝐶(𝑤𝑡+1)
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Efficient Projection

• Sparse linear regression/classification
• 𝐶 = {𝑤, ||𝑤||0 ≤ 𝑠}

• 𝑠𝑢𝑝𝑝 𝑃𝑟𝑜𝑗𝐶 𝑧 = {𝑖1, … , 𝑖𝑠}

• 𝑧𝑖1 ≥ 𝑧𝑖2 ≥ ⋯ ≥ |𝑧𝑖𝑑|

• 𝑂(𝑑 log 𝑑)

• Low-rank Matrix completion
• 𝐶 = {𝑊, 𝑟𝑎𝑛𝑘 𝑊 ≤ 𝑟}

• SVD (top-𝑟 singular components)

• 𝑂(𝑑1 ⋅ 𝑑2 ⋅ 𝑟)
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Approach 2: Alternating Minimization

min
𝑈,𝑉

𝑓(𝑈, 𝑉)

• Alternating Minimization: 
• Fix U, optimize for V 

𝑉𝑡 = 𝑎𝑟𝑔 min
𝑉

𝑓(𝑈𝑡 , 𝑉)

• Fix V, optimize for U
𝑈𝑡+1 = 𝑎𝑟𝑔 min

𝑈
𝑓(𝑈, 𝑉𝑡)

• Generic technique
• If each individual problem is “easy”

• Generic technique, e.g., EM algorithms



Results for Several Problems

• Sparse regression [Jain et al.’14, Garg and Khandekar’09]
• Sparsity

• Robust Regression [Bhatia et al.’15]
• Sparsity+output sparsity

• Dictionary Learning [Agarwal et al.’14]
• Matrix Factorization + Sparsity

• Phase Sensing [Netrapalli et al.’13]
• System of Quadratic Equations

• Vector-value Regression [Jain & Tewari’15]
• Sparsity+positive definite matrix
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Results Contd…

• Low-rank Matrix Regression [Jain et al.’10, Jain et al.’13]
• Low-rank structure

• Low-rank Matrix Completion [Jain & Netrapalli’15, Jain et al.’13]
• Low-rank structure

• Robust PCA [Netrapalli et al.’14]
• Low-rank ∩ Sparse Matrices 

• Tensor Completion [Jain and Oh’14]
• Low-tensor rank

• Low-rank matrix approximation [Bhojanapalli et al.’15]
• Low-rank structure
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Sparse Linear Regression

• But: 𝑛 ≪ 𝑑

• 𝑤: 𝑠 −sparse (𝑠 non-zeros)

0.1
0
1
⋮

0.9

𝑋 𝑤

=

=

n

⋮

d

𝑦
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Motivation: Single Pixel Camera

• For 1Megapixel image, 1Million measurements would be required

Picture taken from Baranuik et al.



Sparsity

Picture taken from Baranuik et al.

• Most images are sparse in wavelet transform space
• Typically around 2.5% coefficients are significant



Motivation: Multi-label Classification

• Formulate as C 1-vs-all binary problems
• Learn 𝐰𝐢, 1 ≤ 𝑖 ≤ 𝐶 s.t. prediction is 𝑠𝑖𝑔𝑛(𝐰𝐢 ⋅ 𝐳 )

• Imagenet has 20,000 categories
• Problem: Train 20,000 SVM’s

• Prediction time: O(20,000 ⋅ d)



Sparsity

• Typically an image has only 5 − 10 objects

Label



Compressive Sensing of Labels

Label

×=

20000

100

• Learn 100 classifiers/regression functions
• Use Recovery algorithms to map back to label space
• Proposed by Hsu et al and then later pursued by several works

𝑦 𝑋



Sparse Linear Regression

min
𝑤

||𝑦 − 𝑋𝑤||2

𝑠. 𝑡. ||𝑤||0 ≤ 𝑠

• ||𝑦 − 𝑋𝑤||2 =  𝑖 𝑦𝑖 − 𝑥𝑖 , 𝑤
2

• ||𝑤||0: number of non-zeros

• NP-hard problem in general 

• 𝐿0: non-convex function
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Non-convexity of Low-rank manifold
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Convex Relaxation

min
𝑤

||𝑦 − 𝑋𝑤||2

𝑠. 𝑡. ||𝑤||0 ≤ 𝑠

• Relaxed Problem: 
min

𝑤
||𝑦 − 𝑋𝑤||2

𝑠. 𝑡. ||𝑤||1 ≤ 𝑠

• ||𝑤||1 =  𝑖 |𝑤𝑖|
• Known to promote sparsity

• Pros: a) Principled approach, b) Captures correlations between features

• Cons: Slow to optimize
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Our Approach : Projected Gradient Descent

min
𝑤

𝑓 𝑤 = ||𝑦 − 𝑋𝑤||2

𝑠. 𝑡. ||𝑤||0 ≤ 𝑠

• 𝑤𝑡+1 = 𝑤𝑡 − 𝜕𝑤𝑡
𝑓(𝑤𝑡)

• 𝑤𝑡+1 = 𝑃𝑠(𝑤𝑡+1)

[Jain, Tewari, Kar’2014]30



Projection onto 𝐿0 ball?

min
𝑥

||𝑥 − 𝑧||2
2

𝑠. 𝑡. ||𝑥||0 ≤ 𝑠



Important Properties



A Stronger Result?

||𝑃𝑠 𝑧 − 𝑧||2
2 ≤

𝑑 − 𝑠

𝑑 − 𝑠∗
||𝑃𝑠∗ 𝑧 − 𝑧||2

2



Our Approach : Projected Gradient Descent

min
𝑤

𝑓 𝑤 = ||𝑦 − 𝑋𝑤||2

𝑠. 𝑡. ||𝑤||0 ≤ 𝑠

• 𝑤𝑡+1 = 𝑤𝑡 − 𝜕𝑤𝑡
𝑓(𝑤𝑡)

• 𝑤𝑡+1 = 𝑃𝑠(𝑤𝑡+1)

[Jain, Tewari, Kar’2014]34



Convex-projections vs Non-convex Projections

• For non-convex sets, we only have: 
∀𝑌 ∈ 𝐶, ||𝑃𝑟 𝑍 − 𝑍|| ≤ ||𝑌 − 𝑍||

• 0-th order condition

• But, for projection onto convex set 𝐶:
∀𝑌 ∈ 𝐶, ||𝑍 − 𝑃𝐶 𝑍 ||2 ≤ 〈𝑌 − 𝑍, 𝑃𝐶 𝑍 − 𝑍〉

• 1-st order condition

• 0 order condition sufficient for convergence of Proj. Grad. Descent? 
• In general, NO 

• But, for certain specially structured problems, YES!!!



Convex-Projected Gradient Descent Proof?

• Let 𝑓 𝑤 = ||𝑋 𝑤 − 𝑤∗ ||2
2

• Let 𝛼 ⋅ 𝐼𝑑×𝑑 ≼ 𝑋𝑇𝑋 ≼ 𝐿 ⋅ 𝐼𝑑×𝑑

• Let 𝑤𝑡+1 = 𝑃𝐶 𝑤𝑡 − 𝜂 𝑔𝑡 , 𝑔𝑡 = 𝑋𝑇𝑋 𝑤𝑡 − 𝑤∗ , 𝜂 =
1

𝐿

• 𝐶: convex set and 𝑤∗ ∈ 𝐶

||𝑤𝑡+1 − 𝑤∗|| ≤ 1 −
𝛼

𝐿
||𝑤𝑡 − 𝑤∗||







Restricted Isometry Property (RIP)

• X satisfies RIP if, for all sparse vectors Φ acts as an 
Isometry

• Formally: For all 𝑠-sparse 𝒘

𝑋
𝑤

Xw

(1 − 𝛿𝑠)||𝐰||2 ≤ ||𝐗𝐰||2 ≤ (1 + 𝛿𝑠)||𝐰||2



Proof under RIP

• Let 𝑓 𝑤 = ||𝑋 𝑤 − 𝑤∗ ||2
2

• Let 𝛿3𝑠 ≤
1

2

• Let 𝑤𝑡+1 = 𝑃𝐶 𝑤𝑡 − 𝜂 𝑔𝑡 , 𝑔𝑡 = 𝑋𝑇𝑋 𝑤𝑡 − 𝑤∗ , 𝜂 = 1

• 𝐶: 𝐿0 ball with 𝑠 non-zeros and 𝑤∗ ∈ 𝐶

||𝑤𝑡+1 − 𝑤∗|| ≤
3

4
||𝑤𝑡 − 𝑤∗||

[Blumensath & Davies’09, Garg & Khandekar’09]







Variations

• Fully corrective version:
𝑢𝑡+1 = 𝑃𝐶 𝑤𝑡 − 𝜂 𝑔𝑡
𝑤𝑡+1 = arg min

𝑤
𝑓(𝑤) , 𝑠. 𝑡. supp w = supp(u)

• Two stage algorithms: 





Summary so far…

• High-dimensional problems
• 𝑛 ≪ 𝑑

• Need to impose structure on 𝑤

• Sparsity
• Projection easy!

• Projected Gradient works (if RIP is satisfied)

• Several variants exist



Which Matrices Satisfy RIP?

• Several ensembles of random matrices 
• Large enough 𝑚

• For example: n = 𝑂(𝑠 log
𝑑

𝑠
)

• X𝑖𝑗 ∼ 𝐷

• 𝐷: 0-mean distribution 
• Bounded fourth moment

𝑛 = 𝑂(𝑠 log
𝑑

𝑠
)

𝑛

𝑋

1 − 𝛿𝑠 | 𝐰||2 ≤ ||𝐗𝐰||2 ≤ 1 + 𝛿𝑠 | 𝐰||2, ||𝑤||0 ≤ 𝑠



Popular RIP Ensembles

• Most popular examples:
• X𝑖𝑗 ∼ 𝑁(0,1/ 𝑚)

• X𝑖𝑗 = +
1

𝑚
𝑤. 𝑝.

1

2
𝑎𝑛𝑑 −

1

𝑚
(𝑤. 𝑝.

1

2
)

𝑛 = 𝑂(𝑠 log
𝑑

𝑠
)

𝑛

𝑋



Proof of RIP for Gaussian Ensemble

• 𝑋 ∈ 𝑅𝑛×𝑑

• 𝑋𝑖𝑗 ∼
1

𝑛
𝑁(0,1)

• 𝑛 ≥
1

𝛿𝑠
2 𝑠 log 𝑑

• Then, 𝑋 satisfies RIP at 𝑠-sparsity with constant 𝛿𝑠









Other structures?

• Group sparsity

• Tree sparsity

• Union of subspaces (polynomially many subspaces)

• Projection easy for each one of these problems
• Gaussian matrices satisfy RIP (because union of small no. of subspaces)



General Result

• Let 𝑓 𝑤 = ||𝑋 𝑤 − 𝑤∗ ||2
2

• Let 𝑤𝑡+1 = 𝑃𝐶 𝑤𝑡 − 𝜂 𝑔𝑡 , 𝑔𝑡 = 𝑋𝑇𝑋 𝑤𝑡 − 𝑤∗ , 𝜂 =
1

(1+𝛿3𝑠)

• 𝐶: Any non-convex set and 𝑤∗ ∈ 𝐶

||𝑤𝑡+1 − 𝑤∗|| ≤
3

4
||𝑤𝑡 − 𝑤∗||

1 − 𝛿𝑠 | 𝐰||2 ≤ ||𝐗𝐰||2 ≤ 1 + 𝛿𝑠 | 𝐰||2, 𝑤 ∈ 𝐶



Proof?



But what if RIP is not possible?



Statistical Guarantees

𝑦𝑖 = 〈𝑥𝑖 , 𝑤
∗〉 + 𝜂𝑖

• 𝑥𝑖 ∼ 𝑁(0, Σ)

• 𝜂𝑖 ∼ 𝑁(0, 𝜎2)

• 𝑤∗: 𝑠 −sparse

||  𝑤 − 𝑤∗|| ≤
𝜎 ⋅ 𝜅 ⋅ 𝑠 log 𝑑

𝑛

• 𝜅 = 𝜆1(Σ)/𝜆𝑑(Σ)

[Jain, Tewari, Kar’2014]56



Proof?
• 𝑓 𝑤 =

1

2
||𝑋 𝑤 − 𝑤∗ ||2

• 𝑋 = [𝑥1; 𝑥2; … ; 𝑥𝑛]

• 𝑥𝑖 ∼ 𝑁 0, Σ , 𝛼 ⋅ 𝐼𝑑×𝑑 ≼ Σ ≼ 𝐿 ⋅ 𝐼𝑑×𝑑

• 𝑤𝑡+1 = 𝑃𝑠 𝑤𝑡 − 𝜂 𝑔𝑡 , 𝐿 =
2

3𝐿

• 𝑠 =
𝐿

𝛼

2
𝑠∗

||𝑤𝑡+1 − 𝑤∗||2
2 ≤ 1 −

𝛼

10 ⋅ 𝐿
||𝑤𝑡 − 𝑤∗||2

2



Proof?







General Result for Any Function

• 𝑓: 𝑅𝑑 → 𝑅

• 𝑓: satisfies RSC/RSS, i.e., 
𝛼𝑠 ⋅ 𝐼𝑑×𝑑 ≼ 𝐻 𝑤 ≼ 𝐿𝑠 ⋅ 𝐼𝑑×𝑑 , 𝑖𝑓, ||𝑤||0 ≤ 𝑠

• IHT and several similar algorithm guarantee: 
𝑓 𝑤𝑇 ≤ 𝑓 𝑤∗ + 𝜖

After 𝑇 = 𝑂(
log

𝑓 𝑤0

𝜖

log(1−
𝐿𝑠
𝛼𝑠

)
) steps

• If ||𝑤∗|| ≤ 𝑠∗ and 𝑠 ≥ 10
𝐿𝑠
2

𝛼𝑠
2 𝑠∗

[Jain, Tewari, Kar’2014]



Theory and Practice
𝑦𝑖 = 〈𝑥𝑖 , 𝑤

∗〉 + 𝜂𝑖

• 𝑥𝑖 ∼ 𝑁(0, Σ), 𝜂𝑖 ∼ 𝑁(0, 𝜎2)

• 𝑤∗: 𝑠 −sparse

• Number of iterations: log(
1

𝜖
)

||  𝑤 − 𝑤∗|| ≤ 𝜖 +
𝜎𝜅 𝑠 log 𝑑

𝑛

• 𝜅 = 𝜆1(Σ)/𝜆𝑑(Σ)

[Jain, Tewari, Kar’2014] 62

Convex

Non-Convex



Summary so far…

• High-dimensional problems
• 𝑛 ≪ 𝑑

• Need to impose structure on 𝑤

• Sparsity
• Projection easy!

• Projected Gradient works (if RIP is satisfied)

• Several variants exist

• RIP/RSC style proof works for subgaussian data

• Other structures also allowed



Robust Regression
0.1
0
1
⋮

0.9

𝑋 𝑤

=

=

n

⋮

d

𝑦

+ n

𝑏+

Typical b:
a) Deterministic error : | 𝑤 − 𝑤∗| ≤ ||𝑏||

b) Gaussian error : | 𝑤 − 𝑤∗| ≤
||𝑏||

𝑛

𝑦 = 𝑋𝑤∗ + 𝑏



Robust Regression 

• ||𝑏||0 ≤ 𝛽 ⋅ 𝑛
• We want 𝛽 to be a constant 

• Entries of 𝑏 can be unbounded!
• | 𝑏| 2 can be arbitrarily large

• Still we want: ||𝑤 − 𝑤∗|| = 0



RR Algorithm

• 𝑆0 = {1, 2, … , 𝑛}

• For t=0, 1, ….
• 𝑤𝑡+1 = argmin ||𝑋𝑆𝑡

𝑤 − 𝑦𝑆𝑡
||2

2

• 𝑟𝑡+1 = 𝑦 − 𝑋𝑤𝑡+1

• 𝑆𝑡+1 = 𝑇𝑜𝑝(|𝑟𝑡+1|, 𝛽 ⋅ 𝑛)

• Algorithm: was vaguely proposed by Legendre-1805



Result

• 𝑦 = 𝑋𝑤∗ + 𝑏

• ||𝑏||0 ≤ 𝛽 ⋅ 𝑛

• 𝛽 ≤
1

100

• 𝑛 ≥ 𝑑 log 𝑑

• 𝑋𝑖𝑗 ∼ 𝑁(0,1)

||𝑏𝑆𝑡+1
||2 ≤

9

10
||𝑏𝑆𝑡

||2



Proof?



Proof?



Empirical Results



Empirical Results



Empirical Results



One-bit Compressive Sensing
• Compressed Sensing: 

𝐲 = X𝐰∗

• Require to know 𝐲 exactly

• In practice, finite bit representation, some quantization 
required

• One-bit CS: extreme quantization
𝐲 = 𝑠𝑖𝑔𝑛(X𝐰∗)

• Easily implementable through comparators 

• Results in two categories:
• Support Recovery [HB12, GNJN13]

• Approximate Recovery [PV12, GNJN13]



Phase-Retrieval

• Another extreme:

𝐲 = |X𝐰∗|
• Useful in several imaging applications

• A field in itself

• Ideas from sparse-vector and low-rank matrix estimation [C12, NJS13]



Dictionary Learning

𝑟-dim, k-sparse
vector

𝑑 × 𝑟
Dictionary 

≅

𝑚
Data Point

×

A



Dictionary Learning

A

≅ ×

Y X

𝑛

𝑟
𝑑

• Overcomplete dictionaries: 𝑟 ≫ 𝑑
• Goal: Given 𝑌, compute 𝐴, 𝑋

• Using small number of samples 𝑛

𝑟



Existing Results

• Generalization error bounds [VMB’11, MPR’12, MG’13, TRS’13]
• But assumes that the optimal solution is reached

• Do not cover exact recovery with finite many samples

• Identifiability of 𝐴, 𝑋 [HS’11]
• Require exponentially many samples

• Exact recovery [SWW’12]
• Restricted to square dictionary (𝑑 = 𝑟)

• In practice, overcomplete dictionary (𝑑 ≪ 𝑟) is more useful



Generating Model

• Generate dictionary 𝐴

• Assume 𝐴 to be incoherent, i.e., 𝐴𝑖 , 𝐴𝑗 ≤ 𝜇/ 𝑑

• 𝑟 ≫ 𝑑

• Generate random samples 𝑋 = 𝑥1, 𝑥2, … , 𝑥𝑛 ∈ 𝑅𝑑×𝑛

• Each 𝑥𝑖 is 𝑘-sparse

• Generate observations: 𝑌 = 𝐴𝑋



Algorithm

• Typically practical algorithm: alternating minimization
• 𝑋𝑡+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑋||𝑌 − 𝐴𝑡𝑋||𝐹

2

• 𝐴𝑡+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝐴||𝑌 − 𝐴𝑋𝑡+1||𝐹
2

• Initialize 𝐴0

• Using clustering+SVD method of [AAN’13] or [AGM’13]



Results [AAJNT’13]

• Assumptions: 

• 𝐴 is 𝜇 − incoherent ( 𝐴𝑖 , 𝐴𝑗 ≤ 𝜇/ 𝑑, ||𝐴𝑖|| = 1)

• 1 ≤ 𝑋𝑖𝑗 ≤ 100

• Sparsity: 𝑘 ≤
𝑑

1
6

𝜇
1
3

(better result by AGM’13)

• 𝑛 ≥ 𝑂(𝑟2 log 𝑟)

• After log(
1

𝜖
)-steps of AltMin: 

||𝐴𝑇
𝑖 − 𝐴𝑖||2 ≤ 𝜖



Proof Sketch

• Initialization step ensures that: 

||𝐴𝑖 − 𝐴0
𝑖 || ≤

1

𝑘2

• Lower bound on each element of 𝑋𝑖𝑗 + above bound: 
• 𝑠𝑢𝑝𝑝(𝑥𝑖) is recovered exactly

• Robustness of compressive sensing!

• 𝐴𝑡+1 can be expressed exactly as: 
• 𝐴𝑡+1 = 𝐴 + 𝐸𝑟𝑟𝑜𝑟(𝐴𝑡, 𝑋𝑡)

• Use randomness in 𝑠𝑢𝑝𝑝(𝑋𝑡)



Simulations

Emirically: 𝑛 = 𝑂(𝑟)
Known result: 𝑛 = 𝑂 𝑟2 log 𝑟



Summary

• Consider high-dimensional structured problems
• Sparsity

• Block sparsity

• Tree-based sparsity

• Error sparsity

• Iterative hard thresholding style method
• Practical/easy to implement

• Fast convergence

• RIP/RSC/subGaussian data: Provable guarantees

http://research.microsoft.com/en-us/people/prajain/
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Next Lecture

• Low-rank Structure
• Matrix Regression

• Matrix Completion

• Robust PCA

• Low-rank Tensor Structure
• Tensor completion



Block-sparse Signals

𝐲1 = Φ1𝐱1, 𝐲2 = Φ2𝒙2, … , 𝐲𝑟 = Φ𝑟𝐱𝑟

• Total no. of measurements: 𝑂(𝑟 ⋅ 𝑘 ⋅ log 𝑛)

• Correlated signals:  J = 𝑥1 ∪ 𝑥2 … 𝑥𝑟 ≤ 𝑘 ⋅ 𝑟

• Method--- Group norms: 𝐿2,1 or 𝐿2,∞

• Improvement in sample complexity if
𝐽 ≪ 𝑘 ⋅ 𝑟


