Provable Non-convex Optimization for ML Prateek Jain Microsoft Research India

http://research.microsoft.com/en-us/people/prajain/

Overview

- High-dimensional Machine Learning
 - Many many parameters
 - Impose structural assumptions
- Requires solving non-convex optimization
 - In general NP-hard
 - No provable generic optimization tools

Overview

- Most popular approach: convex relaxation
 - Solvable in poly-time
 - Guarantees under certain assumptions
 - Slow in practice

Learning in Large No. of Dimensions

Linear Model

$$f(x) = \sum_{i} w_{i} x_{i} = \langle w, x \rangle$$

- w: d -dimensional vector
- No. of training samples: n = O(d)
 - For bi-grams: n = 1000B documents!
- Prediction and storage: O(d)
 - Prediction time per query: 1000 secs
- Over-fitting

Another Example: Low-rank Matrix Completion

- Task: Complete ratings matrix
- No. of Parameters: $d_1 \times d_2$

•
$$d_1 = 1M$$
, $d_2 = 10K$

•
$$d_1 \times d_2 = 10B$$

- Large no. of training samples required
- Large training time
- Large storage and prediction time

Learning with Structure

- Restrict the parameter space
- Linear classification/regression: $f(x) = \langle w, x \rangle$
 - Restrict no. of zeros in w to $s \ll d$

• Say
$$d = 1M$$
, $s = 100$

• Need to learn only $O(s \log d)$ parameters

Learning with Structure contd...

• Matrix completion:

• V: $d_2 \times r = d_2 r$

- Linear classification/regression
 - $C = \{w, ||w||_0 \le s\}$
 - $s \log d \ll d$
- Matrix completion
 - $C = \{W, rank(W) \le r\}$
 - $r(d_1 + d_2) \ll d_1 d_2$

- Comp. Complexity: NP-Hard
- $||w||_0$: Non-convex

- Comp. Complexity: NP-Hard
- *rank(W)*: Non-convex

Other Examples

- Low-rank Tensor completion
 - $C = \{W, tensor rank(W) \le r\}$
 - $r(d_1 + d_2 + d_3) \ll d_1 d_2 d_3$

- Complexity: undecidable
- tensor rank(W): Non-convex

- Robust PCA
 - $C = \{W, W = L + S, rank(L) \le r, ||S||_0 \le s\}$
 - $r(d_1 + d_2) + s \log(d_1 + d_2) \ll d_1 d_2$
 - Complexity: NP-Hard
 - rank(W), $||S||_0$: Non-convex

Convex Relaxations

• Linear classification/regression

- Matrix completion
 - $C = \{W, rank(W) \le r\} \longrightarrow \tilde{C} = \{W, ||W||_* \le \lambda(r)\}$

•
$$||W||_* \leq \sum_i \sigma_i$$
 , $W = U\Sigma V^T$

Convex Relaxations Contd...

• Low-rank Tensor completion

•
$$C = \{W, tensor - rank(W) \le r\} \longrightarrow \tilde{C} = \{W, ||W||_* \le \lambda(r)\}$$

• Robust PCA
•
$$C = \{W, W = L + S, rank(L) \le r, ||S||_0 \le s\}$$

 $\tilde{C} = \{W, W = L + S, ||L||_* \le \lambda(r), ||S||_1 \le \lambda(s)\}$

Convex Relaxation

- Advantage:
 - Convex optimization: Polynomial time
 - Generic tools available for optimization
 - Systematic analysis
- Disadvantage:
 - Optimizes over a much bigger set
 - Not scalable to large problems

This tutorial's focus

Don't Relax!

- Advantage: scalability
- Disadvantage: optimization and its analysis is much harder
 - Local minima problems
- Two approaches:
 - Projected gradient descent
 - Alternating minimization

Approach 1: Projected Gradient Descent

 $\min_{w} L(w)$
s.t. $w \in C$

•
$$w_{t+1} = w_t - \partial_{w_t} L(w_t)$$

•
$$w_{t+1} = P_C(w_{t+1})$$

Efficient Projection

- Sparse linear regression/classification
 - $C = \{w, ||w||_0 \le s\}$
 - $supp(Proj_C(z)) = \{i_1, \dots, i_s\}$
 - $|z_{i_1}| \ge |z_{i_2}| \ge \dots \ge |z_{i_d}|$
 - $O(d \log d)$
- Low-rank Matrix completion
 - $C = \{W, rank(W) \le r\}$
 - SVD (top-*r* singular components)
 - $O(d_1 \cdot d_2 \cdot r)$

Approach 2: Alternating Minimization

$$\min_{U,V} f(U,V)$$

- Alternating Minimization:
 - Fix U, optimize for V

$$V^t = arg \min_V f(U^t, V)$$

• Fix V, optimize for U

 $U^{t+1} = \arg\min_{U} f(U, V^t)$

- Generic technique
 - If each individual problem is "easy"
 - Generic technique, e.g., EM algorithms

Results for Several Problems

- Sparse regression [Jain et al.'14, Garg and Khandekar'09]
 - Sparsity
- Robust Regression [Bhatia et al.'15]
 - Sparsity+output sparsity
- Dictionary Learning [Agarwal et al.'14]
 - Matrix Factorization + Sparsity
- Phase Sensing [Netrapalli et al.'13]
 - System of Quadratic Equations
- Vector-value Regression [Jain & Tewari'15]
 - Sparsity+positive definite matrix

Results Contd...

- Low-rank Matrix Regression [Jain et al.'10, Jain et al.'13]
 - Low-rank structure
- Low-rank Matrix Completion [Jain & Netrapalli'15, Jain et al.'13]
 - Low-rank structure
- Robust PCA [Netrapalli et al.'14]
 - Low-rank ∩ Sparse Matrices
- Tensor Completion [Jain and Oh'14]
 - Low-tensor rank
- Low-rank matrix approximation [Bhojanapalli et al.'15]
 - Low-rank structure

Sparse Linear Regression

- But: $n \ll d$
- w: s sparse (s non-zeros)

Motivation: Single Pixel Camera

• For 1Megapixel image, 1Million measurements would be required

Picture taken from Baranuik et al.

Sparsity

- Most images are *sparse* in wavelet transform space
 - Typically around 2.5% coefficients are significant

Picture taken from Baranuik et al.

Motivation: Multi-label Classification

- Formulate as C 1-vs-all binary problems
 - Learn $\mathbf{w_i}$, $1 \le i \le C$ s.t. prediction is $sign(\mathbf{w_i} \cdot \mathbf{z})$
- Imagenet has 20,000 categories
- Problem: Train 20,000 SVM's
 - Prediction time: $O(20,000 \cdot d)$

Sparsity

- Typically an image has only 5-10 objects

Label

Compressive Sensing of Labels

- Learn 100 classifiers/regression functions
- Use Recovery algorithms to map back to label space
- Proposed by Hsu et al and then later pursued by several works

Sparse Linear Regression

$$\min_{w} ||y - Xw||^2$$

s.t. ||w||_0 \le s

•
$$||y - Xw||^2 = \sum_i (y_i - \langle x_i, w \rangle)^2$$

- $||w||_0$: number of non-zeros
- NP-hard problem in general $\ensuremath{\mathfrak{S}}$
 - L_0 : non-convex function

Non-convexity of Low-rank manifold

Convex Relaxation

$$\min_{w} ||y - Xw||^2$$

s.t. ||w||_0 \le s

• Relaxed Problem:

 $\min_{w} ||y - Xw||^2$ s.t. $||w||_1 \le s$

- $||w||_1 = \sum_i |w_i|$
 - Known to promote sparsity
- Pros: a) Principled approach, b) Captures correlations between features
- Cons: Slow to optimize

Our Approach : Projected Gradient Descent

[Jain, Tewari, Kar'2014]

Projection onto L_0 ball?

 $\min_{x} ||x - z||_{2}^{2}$ s.t. ||x||_{0} \le s

Important Properties

A Stronger Result? $||P_{s}(z) - z||_{2}^{2} \leq \frac{d - s}{d - s^{*}}||P_{s^{*}}(z) - z||_{2}^{2}$

Our Approach : Projected Gradient Descent

[Jain, Tewari, Kar'2014]

Convex-projections vs Non-convex Projections

- For non-convex sets, we only have: $\forall Y \in C, \qquad ||P_r(Z) - Z|| \le ||Y - Z||$
 - 0-th order condition
- But, for projection onto convex set C: $\forall Y \in C$, $||Z - P_C(Z)||^2 \le \langle Y - Z, P_C(Z) - Z \rangle$
 - 1-st order condition
- O order condition sufficient for convergence of Proj. Grad. Descent?
 - In general, NO ⊗
 - But, for certain *specially structured* problems, YES!!!

Convex-Projected Gradient Descent Proof?

- Let $f(w) = ||X(w w^*)||_2^2$
- Let $\alpha \cdot I_{d \times d} \preccurlyeq X^T X \preccurlyeq L \cdot I_{d \times d}$
- Let $w_{t+1} = P_C(w_t \eta g_t)$, $g_t = X^T X(w_t w^*)$, $\eta = \frac{1}{L}$
- C: convex set and $w^* \in C$

$$||w_{t+1} - w^*|| \le \left(1 - \frac{\alpha}{L}\right) ||w_t - w^*||$$
Restricted Isometry Property (RIP)

- X satisfies RIP if, for all **sparse** vectors Φ acts as an Isometry
- Formally: For all *s*-sparse *w*

$$(1 - \delta_s) ||\mathbf{w}||^2 \le ||\mathbf{X}\mathbf{w}||^2 \le (1 + \delta_s) ||\mathbf{w}||^2$$

$$W$$

$$X$$

$$X$$

Proof under RIP

- Let $f(w) = ||X(w w^*)||_2^2$
- Let $\delta_{3s} \leq \frac{1}{2}$
- Let $w_{t+1} = P_C(w_t \eta g_t)$, $g_t = X^T X(w_t w^*)$, $\eta = 1$
- $C: L_0$ ball with s non-zeros and $w^* \in C$

$$||w_{t+1} - w^*|| \le \frac{3}{4} ||w_t - w^*||$$

[Blumensath & Davies'09, Garg & Khandekar'09]

Variations

• Fully corrective version:

$$u_{t+1} = P_C(w_t - \eta g_t)$$

$$w_{t+1} = \arg\min_w f(w),$$

$$s.t. supp(w) = supp(u)$$

• Two stage algorithms:

Summary so far...

- High-dimensional problems
 - $n \ll d$
- Need to impose structure on w
- Sparsity
 - Projection easy!
 - Projected Gradient works (if RIP is satisfied)
 - Several variants exist

Which Matrices Satisfy RIP?

$$(1 - \delta_s) ||\mathbf{w}||^2 \le ||\mathbf{X}\mathbf{w}||^2 \le (1 + \delta_s) ||\mathbf{w}||^2, \qquad ||w||_0 \le s$$

- Several ensembles of random matrices
 - Large enough m
- For example: $n = O(s \log \frac{d}{s})$
 - $X_{ij} \sim D$
 - D: 0-mean distribution
 - Bounded fourth moment

$$n = O(s \log \frac{a}{s})$$

J

Popular RIP Ensembles

X

• Most popular examples:

•
$$X_{ij} \sim N(0, 1/\sqrt{m})$$

• $X_{ij} = +\frac{1}{\sqrt{m}} \left(w. p. \frac{1}{2} \right) and -\frac{1}{\sqrt{m}} \left(w. p. \frac{1}{2} \right)$

Proof of RIP for Gaussian Ensemble

- $X \in \mathbb{R}^{n \times d}$
- $X_{ij} \sim \frac{1}{\sqrt{n}} N(0,1)$ • $n \ge \left(\frac{1}{\delta_s^2}\right) s \log d$
- Then, X satisfies RIP at s-sparsity with constant δ_s

Other structures?

- Group sparsity
- Tree sparsity
- Union of subspaces (polynomially many subspaces)

- Projection easy for each one of these problems
- Gaussian matrices satisfy RIP (because union of small no. of subspaces)

General Result

• Let
$$f(w) = ||X(w - w^*)||_2^2$$

• Let
$$w_{t+1} = P_C(w_t - \eta g_t)$$
, $g_t = X^T X(w_t - w^*)$, $\eta = \frac{1}{(1 + \delta_{3s})}$

• C: Any non-convex set and $w^* \in C$

$$(1 - \delta_s) ||\mathbf{w}||^2 \le ||\mathbf{X}\mathbf{w}||^2 \le (1 + \delta_s) ||\mathbf{w}||^2, \qquad w \in C$$

$$||w_{t+1} - w^*|| \le \frac{3}{4} ||w_t - w^*||$$

Proof?

But what if RIP is not possible?

Statistical Guarantees

$$y_i = \langle x_i, w^* \rangle + \eta_i$$

- $x_i \sim N(0, \Sigma)$
- $\eta_i \sim N(0, \sigma^2)$
- w*: s sparse

$$||\widehat{w} - w^*|| \le \frac{\sigma \cdot \kappa \cdot \sqrt{s \log d}}{\sqrt{n}}$$

• $\kappa = \lambda_1(\Sigma) / \lambda_d(\Sigma)$

[Jain, Tewari, Kar'2014]

Proof?
•
$$f(w) = \frac{1}{2} ||X(w - w^*)||^2$$

• $X = [x_1; x_2; ...; x_n]$
• $x_i \sim N(0, \Sigma), \alpha \cdot I_{d \times d} \leq \Sigma \leq L \cdot I_{d \times d}$
• $w_{t+1} = P_s(w_t - \eta g_t), L = \frac{2}{3L}$
• $s = \left(\frac{L}{\alpha}\right)^2 s^*$

$$||w_{t+1} - w^*||_2^2 \le \left(1 - \frac{\alpha}{10 \cdot L}\right) ||w_t - w^*||_2^2$$

Proof?

General Result for Any Function

- $f: \mathbb{R}^d \to \mathbb{R}$
- f: satisfies RSC/RSS, i.e., $\alpha_{s} \cdot I_{d \times d} \leq H(w) \leq L_{s} \cdot I_{d \times d}, \quad if, ||w||_{0} \leq s$
- IHT and several similar algorithm guarantee: $f(w_T) \le f(w^*) + \epsilon$ After $T = O(\frac{\log(\frac{f(w^0)}{\epsilon})}{\log(1 - \frac{L_s}{\alpha_s})})$ steps • If $||w^*|| \le s^*$ and $s \ge 10 \frac{L_s^2}{\alpha_s^2} s^*$

[Jain, Tewari, Kar'2014]

Theory and Practice

$$y_i = \langle x_i, w^* \rangle + \eta_i$$

•
$$x_i \sim N(0, \Sigma), \eta_i \sim N(0, \sigma^2)$$

• Number of iterations:
$$\log(\frac{1}{\epsilon})$$

$$\begin{split} || \widehat{w} - w^* || &\leq \epsilon + \frac{\sigma \kappa \sqrt{s \log d}}{\sqrt{n}} \\ \kappa &= \lambda_1(\Sigma) / \lambda_d(\Sigma) \end{split}$$

[Jain, Tewari, Kar'2014] 62

Summary so far...

- High-dimensional problems
 - $n \ll d$
- Need to impose structure on w
- Sparsity
 - Projection easy!
 - Projected Gradient works (if RIP is satisfied)
 - Several variants exist
- RIP/RSC style proof works for subgaussian data
- Other structures also allowed

Robust Regression

b) Gaussian error : $||w - w^*|| \le \frac{||b||}{\sqrt{n}}$

Robust Regression

- $||b||_0 \le \beta \cdot n$
 - We want β to be a constant
- Entries of *b* can be unbounded!
 - $||b||_2$ can be arbitrarily large
- Still we want: $||w w^*|| = 0$

RR Algorithm

- $S_0 = \{1, 2, \dots, n\}$
- For t=0, 1,
 - $w_{t+1} = \arg\min ||X_{S_t}w y_{S_t}||_2^2$
 - $r_{t+1} = y Xw_{t+1}$
 - $S_{t+1} = Top(|r_{t+1}|, \beta \cdot n)$
- Algorithm: was vaguely proposed by Legendre-1805

Result

- $y = Xw^* + b$
- $||b||_0 \le \beta \cdot n$
- $\beta \leq \frac{1}{100}$
- $n \ge d \log d$
- $X_{ij} \sim N(0,1)$

$$||b_{S_{t+1}}||_2 \le \frac{9}{10} ||b_{S_t}||_2$$

Proof?

Proof?

Empirical Results

Empirical Results

Empirical Results

p = 500 n = 2000 alpha = 0.25 sigma = 0.2

One-bit Compressive Sensing

• Compressed Sensing:

$$\mathbf{y} = \mathbf{X}\mathbf{w}^*$$

- Require to know y exactly
- In practice, finite bit representation, some quantization required
- One-bit CS: extreme quantization
 y = sign(Xw*)
 - Easily implementable through comparators
- Results in two categories:
 - Support Recovery [HB12, GNJN13]
 - Approximate Recovery [PV12, GNJN13]

Phase-Retrieval

• Another extreme:

 $\mathbf{y} = |\mathbf{X}\mathbf{w}^*|$

- Useful in several imaging applications
- A field in itself
- Ideas from sparse-vector and low-rank matrix estimation [C12, NJS13]

Dictionary Learning

- Overcomplete dictionaries: $r \gg d$
- Goal: Given *Y*, compute *A*, *X*
 - Using small number of samples *n*

Existing Results

- Generalization error bounds [VMB'11, MPR'12, MG'13, TRS'13]
 - But assumes that the optimal solution is reached
 - Do not cover exact recovery with finite many samples
- Identifiability of A, X [HS'11]
 - Require exponentially many samples
- Exact recovery [SWW'12]
 - Restricted to square dictionary (d = r)
 - In practice, overcomplete dictionary ($d \ll r$) is more useful

Generating Model

- Generate dictionary A
 - Assume A to be incoherent, i.e., $\langle A_i, A_j \rangle \leq \mu / \sqrt{d}$
 - $r \gg d$
- Generate random samples $X = [x_1, x_2, ..., x_n] \in \mathbb{R}^{d \times n}$
 - Each x_i is k-sparse
- Generate observations: Y = AX

Algorithm

- Typically practical algorithm: alternating minimization
 - $X_{t+1} = argmin_X ||Y A_t X||_F^2$
 - $A_{t+1} = argmin_A ||Y AX_{t+1}||_F^2$
- Initialize A_0
 - Using clustering+SVD method of [AAN'13] or [AGM'13]

Results [AAJNT'13]

- Assumptions:
 - A is μ incoherent ($\langle A_i, A_j \rangle \le \mu / \sqrt{d}$, $||A_i|| = 1$)
 - $1 \le |X_{ij}| \le 100$ • Sparsity: $k \le \frac{d^{\frac{1}{6}}}{\mu^{\frac{1}{3}}}$ (better result by AGM'13) • $n \ge O(r^2 \log r)$
- After $log(\frac{1}{\epsilon})$ -steps of AltMin:

 $||A_T^i - A^i||_2 \le \epsilon$

Proof Sketch

• Initialization step ensures that:

$$||A^{i} - A_{0}^{i}|| \le \frac{1}{k^{2}}$$

- Lower bound on each element of X_{ij} + above bound:
 - $supp(x_i)$ is recovered exactly
 - Robustness of compressive sensing!
- A_{t+1} can be expressed exactly as:
 - $A_{t+1} = A + Error_{(A_t, X_t)}$
 - Use randomness in $supp(X_t)$

Simulations

Summary

- Consider high-dimensional structured problems
 - Sparsity
 - Block sparsity
 - Tree-based sparsity
 - Error sparsity
- Iterative hard thresholding style method
 - Practical/easy to implement
 - Fast convergence
- RIP/RSC/subGaussian data: Provable guarantees

http://research.microsoft.com/en-us/people/prajain/

Purushottam Kar

PostDoc MSR, India

Kush Bhatia

Research Fellow MSR, India

Asst. Prof. Univ of Michigan

Next Lecture

- Low-rank Structure
 - Matrix Regression
 - Matrix Completion
 - Robust PCA
- Low-rank Tensor Structure
 - Tensor completion

Block-sparse Signals

$$\mathbf{y}_1 = \Phi_1 \mathbf{x}_1, \mathbf{y}_2 = \Phi_2 \mathbf{x}_2, \dots, \mathbf{y}_r = \Phi_r \mathbf{x}_r$$

- Total no. of measurements: $O(r \cdot k \cdot \log n)$
- Correlated signals: $J = |x_1 \cup x_2 \dots x_r| \le k \cdot r$
- Method--- Group norms: $L_{2,1}$ or $L_{2,\infty}$
- Improvement in sample complexity if $J \ll k \cdot r$