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Overview

* High-dimensional Machine Learning
* Many many parameters
* Impose structural assumptions

* Requires solving non-convex optimization
* In general NP-hard
* No provable generic optimization tools



Overview

* Most popular approach: convex relaxation
* Solvable in poly-time
* Guarantees under certain assumptions
* Slow in practice

Theoretically
Provable

Algorithms
For High-d ML Problems

Practical

Algorithms
For High-d ML Problems



Learning in Large No. of Dimensions
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Linear Model

FOO = ) wixi = (w,x)

 w: d —dimensional vector
* No. of training samples: n = 0(d)
* For bi-grams: n = 10008 documents!

* Prediction and storage: O(d)
* Prediction time per query: 1000 secs

e OQver-fitting
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Another Example
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- rating between 1to0 5

. Low-rank Matrix Completion

* Task: Complete ratings matrix
* No. of Parameters: d, X d,

e d; =1M,d, = 10K

e d, Xd, =10B



Key Issues

 Large no. of training samples required
* Large training time
* Large storage and prediction time



Learning with Structure

* Restrict the parameter space

* Linear classification/regression: f(x) = (w, x)
* Restrict no. of zerosinwtos < d

eSayd = 1M,s =100

* Need to learn only O(slog d) parameters



Learning with Structure contd...

* Matrix completion:
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W: characterized by U, V
No. of variables:

e Uidy Xr =dyr

e Vidy, Xr =d,r



Learning with structure

Data Fidelity
Function
min L(w)
w
s.t. wecl

* Linear classification/regression
* C={w, [|w]|o = s}
*slogd K d

* Matrix completion

e C ={W,rank(W) < r} |
e r(dy + dy) < dyd, * Comp. Complexity: NP-Hard
rank(W): Non-convex

* Comp. Complexity: NP-Hard
llw]|: Non-convex



Other Examples

* Complexity: undecidable

* Low-rank Tensor completion
P * tensor — rank (W ): Non-convex

e C ={W, tensor —rank(W) < r}
¢ T(dl + dz + d3) << d1d2d3

e Robust PCA

e C={W,W =L+ S,rank(L) <r,]||S||o < s}
*r(d; +d,) + slog(d, +d,) < d,d,
* Complexity: NP-Hard
e rank(W),||S||o: Non-convex



Convex Relaxations

* Linear classification/regression

*C={w, [[W]l[p <s} wmm) (={w,
* [Iwll1 < 2wy

* Matrix completion
cC={W,rank(W) < r}mmm) C ={W,
 [IW]||s £ X0, W =UZVT

[Iwll1 = A(s)}

W]l < A(r)}
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Convex Relaxations Contd...

* Low-rank Tensor completion
*C ={W, tensor —rank(W) < r}mm=) ¢ ={W, ||W||. < A1)}

* Robust PCA
e C={W,W=L+S,rank(L) <r,||S||o < s}

!

C={W,W=L+S,1IIL||. < A),[IS|l1 < A(s)}



Convex Relaxation

e Advantage:
e Convex optimization: Polynomial time
* Generic tools available for optimization
e Systematic analysis

e Disadvantage:
* Optimizes over a much bigger set
* Not scalable to large problems



This tutorial’s focus

Don’t Relax!

* Advantage: scalability

* Disadvantage: optimization and its analysis is much harder
* Local minima problems

* Two approaches:
* Projected gradient descent
* Alternating minimization



Approach 1: Projected Gradient Descent

min L(w)
w
s.t.weC(l

* Wity = We — ath(Wt)

* Wepr = Pc(Weiq) E ®

16



Efficient Projection

 Sparse linear regression/classification
* C=A{w, [[wl]|o = s}
. Supp(ProjC(z)) = {iy, ..., I}

| 2 7| 2 2 123,

* O(dlogd)

* Low-rank Matrix completion
o« C ={W,rank(W) <r}
e SVD (top-r singular components)
*0(dy-dy-1)



Approach 2: Alternating Minimization

min (U, V)

* Alternating Minimization:

* Fix U, optimize for V
Vt =arg min fUL V)

* Fix V, optimize for U
Uttt = arg min f (U, VS

* Generic technique
* If each individual problem is “easy”
* Generic technique, e.g., EM algorithms



Results for Several Problems

* Sparse regression
* Sparsity
* Robust Regression
* Sparsity+output sparsity

* Dictionary Learning
* Matrix Factorization + Sparsity

* Phase Sensing
» System of Quadratic Equations

* Vector-value Regression
» Sparsity+positive definite matrix



Results Contd...

* Low-rank Matrix Regression [Jain et al.’10, Jain et al.’13]
 Low-rank structure

* Low-rank Matrix Completion [Jain & Netrapalli’l5, Jain et al/13]
* Low-rank structure

* Robust PCA [Netrapalli et al’14]
* Low-rank N Sparse Matrices

* Tensor Completion [Jain and Oh’14]
* Low-tensor rank

* Low-rank matrix approximation [Bhojanapalli et al.15]
* Low-rank structure

20



Sparse Linear Regression

r0.17
0
n 1

-0:9-
y

e But: n K d
* W: s —sparse (s non-zeros)



Motivation: Single Pixel Camera

single photon
detector

o _ J)D

image
reconstruction
DMD or
processing
random (((
pattern on !
DMD array RNG [T]] Rovr DSP

* For 1Megapixel image, 1Million measurements would be required

Picture taken from Baranuik et al.



Sparsity

wavelet coeffs

1 megapixel image

* Most images are sparse in wavelet transform space
* Typically around 2.5% coefficients are significant

Picture taken from Baranuik et al.



Motivation: Multi-label Classification

* Formulate as C 1-vs-all binary problems

* Learnw;, 1 < i < C s.t. prediction is sign(wj - Z)
* Imagenet has 20,000 categories
* Problem: Train 20,000 SVM’s

* Prediction time: O(20,000 - d)



Sparsity

* Typically an image has only 5 — 10 objects
Label




Compressive Sensing of Labels

100

* Learn 100 classifiers/regression functions
e Use Recovery algorithms to map back to label space
* Proposed by Hsu et al and then later pursued by several works



Sparse Linear Regression

min ||y — Xw||?

W
st [wllp=s >

* ||y —XW”Z — Zi()’i — <xi;W>)2
* [[w||g: number of non-zeros

* NP-hard problem in general ®
* Ly: non-convex function



Non-convexity of Low-rank manifold

0.5 0 + 05 1
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Convex Relaxation

min ||y — Xw||?
w
s.t. [[w]||lp <s

e Relaxed Problem:
min ||y — Xw||?
w
s.t. |[[w||{ <s
° [lw]]1 = X [w]
 Known to promote sparsity

* Pros: a) Principled approach, b) Captures correlations between features
* Cons: Slow to optimize



Our Approach : Projected Gradient Descent

min £ (w) = [[y = Xw]|?
s.t. ||w]lg<s

* Wiy = W — awtf(Wt)

* Wiiq = Bs(Weyq) < >/

[Jain, Tewari, Kar’2014]



Projection onto Ly ball?

min ||x — z||5
X
s.t. ||x||lo < s



Important Properties



A Stronger Result?

d —
1P(2) = 2113 < ——— [IPs+(2) - 21




Our Approach : Projected Gradient Descent

min £ (w) = [[y = Xw]|?
s.t. ||w]lg<s

* Wiy = W — awtf(Wt)

* Wiiq = Bs(Weyq) < >/

[Jain, Tewari, Kar’2014]



Convex-projections vs Non-convex Projections

* For non-convex sets, we only have:
vy ec, |IRQZ)-Z|| <Y —-Z||

* O-th order condition

* But, for projection onto convex set C:
VY €C, ||Z—-Pc(DII* <Y -Z,P(Z) - Z)

e 1-st order condition

* 0 order condition sufficient for convergence of Proj. Grad. Descent?

* In general, NO ®
* But, for certain specially structured problems, YES!!!



Convex-Projected Gradient Descent Proof?

* Let f(w) = [|[X(W — w")]|5
* Leta'ldxd <XTX < L .IdXd

. 1
*letwiy1 = Pc(We — 711 9¢), ¢ =XTX(Wt_W ), 1 =7

e C:convexsetandw™ € C

a
[Wess = w'l] < (1=7) [Iwe =w'l]









Restricted Isometry Property (RIP)

» X satisfies RIP if, for all sparse vectors ® acts as an
Isometry

* Formally: For all s-sparse w

(1 =89l < [IXw][* < (1 + 85)Iw]|?

X

w )




Proof under RIP

* Let f(w) = [|[X(w — w3
* Let 434 _%
*letweyy = Pc(we =1 g0, ge=X"X(we—w"), n=1

* C: Ly ball with s non-zeros and w* € C

[[Werr = w7 = 2 [[we — w7
4









Variations

* Fully corrective version:

Ut+1 = PC(Wt__ 1N 9gt)
Wey1 = argmin f(w), s.t. supp(w) = supp(u)

* Two stage algorithms:






Summary so far...

* High-dimensional problems
nKd

* Need to impose structure on w

* Sparsity
* Projection easy!
* Projected Gradient works (if RIP is satisfied)
e Several variants exist



Which Matrices Satisfy RIP?
(1= 38)Iw|[* < [IXw]|* < (1 + &)|Iw]l?, [lw]lo <'s

e Several ensembles of random matrices
* Large enough m

* For example:n = O(s 108%)
¢ X;; ~ D

 D:0-mean distribution
 Bounded fourth moment

d
n=0(s log;) -




Popular RIP Ensembles

d
n=0(s logg) By

* Most popular examples:

* X;j ~ N(0,1/y/m)
1 1 1 1
* Xij = +\/—m (w.p.z) and T (W.p.;)



Proof of RIP for Gaussian Ensemble

e X € Rnxd
1
.Xij N\/—EN(O,].)

1

'n = (552)Slogd

* Then, X satisfies RIP at s-sparsity with constant o












Other structures?

* Group sparsity
* Tree sparsity
e Union of subspaces (polynomially many subspaces)

* Projection easy for each one of these problems
e Gaussian matrices satisfy RIP (because union of small no. of subspaces)



General Result

o Let f(w) = ||X(w —w*)]|5

" 1
.LetWt+1:PC(Wt_Tlgt)i gt=XTX(Wt_W )) n=

(1+035s)

* C: Any non-convex setand w* € C

(1= 8)[lw]|* < [IXw]|* < (1 + 8)]Iw]|?, weCl

[lwWers —wil < 2 llwe —wr]



Proof?



But what if RIP is not possible?



Statistical Guarantees

Vi = {x;,w') +1;
*x; ~N(0,X)
* i ~ N(0,0?)
* W*:S —sparse

O'°K°\/SlOgd
Vn

[fw—wT|| <

* k= Aq(2)/Aq ()

[Jain, Tewari, Kar’2014]



Proof?

¢ fwW) = [1X(w — w2
* X = [X1; X9} s X ]

* X NN(O,Z),C(‘Idxd <Z<L.Id>(d

2
* W1 = BE(We —n ge), L =

_ * |12 _ *|12
Wess =wilI3 < (1= 15— llwe —w'll3



Proof?









General Result for Any Function

* f:R* >R
* f: satisfies RSC/RSS, i.e.,
as - lgwg < Hw) < Lg - Igxqa, if, wllo < s

* |HT and several similar algorithm guarantee:

flwr) = f(W") + €

w0
After T = 0 log(f(e )) t
erT = (log(1—§—§)) steps
2
e If|[w*]| <s"ands = 10%5*

[Jain, Tewari, Kar’2014]



Runtime (sec)

Theory and Practice
Vi = (xiJW*>+T]i

*x; ~N(0,%),n; ~ N(0,0%)

200
150 * W*:S —sparse
100/ * Number of iterations: log(i)
N R R -t A
1 Dimens?dgality (p) X 1024'5 || W — W>I< || S € + O-K\/j%og d

* k= Aq(2)/Aq ()

[Jain, Tewari, Kar’2014] &2



Summary so far...

* High-dimensional problems
nKd

* Need to impose structure on w

* Sparsity
* Projection easy!
* Projected Gradient works (if RIP is satisfied)
e Several variants exist

* RIP/RSC style proof works for subgaussian data
e Other structures also allowed



Robust Regression
0.1
0
1] =
10.9-
y = X
y=Xw*+b
Typical b:
a) Deterministic error: [|[w — w*|| < ||b]]
[

. M — w* ] < Ll
b) Gaussian error : |[|[w —w*|| < N



Robust Regression

*[[bllo = p -n

* We want 3 to be a constant

* Entries of b can be unbounded!
* ||b||, can be arbitrarily large

e Still we want: [[w —w™|| =0



RR Algorithm

¢ SO — {1, 2, ,Tl}
* Fort=0, 1, ....
* Weyq = argmin |[Xg,w — ys,||5

* Teg1 =Y — AWy
* Stv1 = Top(|re441], B - )

* Algorithm: was vaguely proposed by Legendre-1805



Result

cy=Xw*+Db
*[|bllo = f - n
1
.ESE
*n=>dlogd
'XLJNN(O,l)

D5, 112 = 75 1165, 12



Proof?



Proof?



Empirical Results
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Empirical Results
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Empirical Results

p =500 n = 2000 alpha = 0.25 sigma = 0.2
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One-bit Compressive Sensing

 Compressed Sensing:
y = Xw’
* Require to know y exactly
* |In practice, finite bit representation, some quantization
required
* One-bit CS: extreme quantization
y = sign(Xw")

* Easily implementable through comparators
e Results in two categories:

* Support Recovery [HB12, GNJN13]

* Approximate Recovery [PV12, GNJN13]



Phase-Retrieval

* Another extreme:
y = [Xw’|
* Useful in several imaging applications
e Afield in itself

 |deas from sparse-vector and low-rank matrix estimation [C12, NJS13]



Dictionary Learning

r-dim, k-sparse
vector

m dXr
Data Point Dictionary




Dictionary Learning

Y

IR

 Overcomplete dictionaries: r > d
e Goal:GivenY, compute 4, X
* Using small number of samples n




Existing Results

* Generalization error bounds [VMB’11, MPR’12, MG’13, TRS'13]

* But assumes that the optimal solution is reached
* Do not cover exact recovery with finite many samples

* |dentifiability of A, X [HS'11]
* Require exponentially many samples

* Exact recovery [SWW’12]

* Restricted to square dictionary (d = 1)
* In practice, overcomplete dictionary (d < r) is more useful



Generating Model

* Generate dictionary A
* Assume A to be incoherent, i.e., (4;, 4;) < u/Nd
T >d

* Generate random samples X = [x{, x5, ..., x,,] € Raxn
* Each x; is k-sparse

e Generate observations: Y = AX



Algorithm

* Typically practical algorithm: alternating minimization
* Xpp1 = argming||Y — A X||7
* Apyq = argming||Y — AX 4|7

* Initialize A
* Using clustering+SVD method of [AAN’13] or [AGM’13]



Results [AAINT 13]

* Assumptions:
* Ais u —incoherent ({(4;,4;) < u/Nd 4l = 1)
- 1< |X;] <100
1
e Sparsity: k < d—i (better result by AGM’13)
13
n=0(r%logr)

* After log(i)-steps of AltMin:
|A7 —A'l|; < €



Proof Sketch

* Initialization step ensures that:
. . 1
147 451 <

* Lower bound on each element of X;; + above bound:
* supp(x;) is recovered exactly
* Robustness of compressive sensing!

* A, 1 can be expressed exactly as:
* Ay = A+ Errorgy, x)
* Use randomness in supp(X;)



Simulations

Error in A (log scale)

0

Error vs N (d=100, r=100, k=3, n=C k r log(r})

10 45

F

—

—

—

=¢=|nitialization

© Alternating Minimization

C (n=Ckrlog(r)

Prob. of success

d=200,k=5

Error in A (log scale)

107

Error vs lteration (d=100, r=200, k=3, n=1.5 k r log(r))

Iteration No.

Emirically: n = O(r)
Known result: n = 0(r?logr)




summary

* Consider high-dimensional structured problems
* Sparsity
* Block sparsity
* Tree-based sparsity
* Error sparsity

e lterative hard thresholding style method
* Practical/easy to implement
* Fast convergence

* RIP/RSC/subGaussian data: Provable guarantees

http://research.microsoft.com/en-us/people/prajain/
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Next Lecture

e Low-rank Structure
* Matrix Regression

* Matrix Completion
* Robust PCA

 Low-rank Tensor Structure
e Tensor completion



Block-sparse Signals

Vi = P1X1,¥2 = P2X3, ..., ¥y = P Xy
* Total no. of measurements: O(r - k - logn)
 Correlated signals: J = |x; Ux, ..x,.| < k-7
* Method--- Group norms: L, 1 or L,

* Improvement in sample complexity if
J<KLk-r



