Provable Non-convex Optimization for ML Prateek Jain Microsoft Research India

Overview

 $\min_{X} f(X)$
s.t. $rank(X) \le r$

- Projected gradient descent
- Alternating Minimization

Our Results

- RIP/RSC based Linear Regression $\min_{X} ||A(X) - b||_{2}^{2} \quad s.t. \quad rank(X) \leq r$
 - $A(\cdot)$: RIP operator
 - $A(\cdot)$: RSC operator (statistical setting)
- Matrix Completion

 $\min_{X} ||P_{\Omega}(X - M)||_{F}^{2} \quad s.t. \quad rank(X) \leq r$

- Ω: randomly sampled, *M*: incoherent matrix
- Non-convex Robust PCA

$$\min_{X} ||M - X||_0^2 \quad s.t. \ rank(X) \le r$$

• M = L + S, L: low-rank incoherent matrix, S: sparse matrix

Foreground/Background Separation

4

Non-convexity of Low-rank manifold

+

	1	0	0
0.5	0	0	0
	0	0	0

	0	0	0
0.5	0	1	0
	0	0	0

		0.5	0	0	
	=	0	0.5	0	
		0	0	0	

Projection onto set of Low-rank Matrices

- Non-convex projections: NP-hard in general
- But $P_{\gamma}(Z)$ can be computed efficiently: $Z = U\Sigma V^{T}$

• $P_r(Z) = U_r \Sigma_r V_r^T$

Convex-projections vs Non-convex Projections

- For non-convex sets, we only have: $\forall Y \in C, \qquad ||P_r(Z) - Z|| \le ||Y - Z||$
 - 0-th order condition
- But, for projection onto convex set C: $\forall Y \in C$, $||Z - P_C(Z)||^2 \le \langle Y - Z, P_C(Z) - Z \rangle$
 - 1-st order condition
- O order condition sufficient for convergence of Proj. Grad. Descent?
 - In general, NO ⊗
 - But, for certain *specially structured* problems, YES!!!

Low-rank Matrix Regression

Matrix Linear Regression

$$\mathbb{A}(M) = b$$

- A: $\mathbf{R}^{n \times n} \to \mathbf{R}^d$
 - Linear operator
 - $\mathbb{A} = \{\mathbb{A}_1, \mathbb{A}_2, \dots, \mathbb{A}_d\}$

$$\mathbb{A}(X) = \begin{bmatrix} \langle A_1, X \rangle \\ \langle A_2, X \rangle \\ \vdots \\ \langle A_d, X \rangle \end{bmatrix}$$

• Optimization Version:

$$\min_{X} ||\mathbb{A}(X) - b||_2^2$$

s.t. $rank(X) \le r$

Low-rank Matrix Estimation

 $\min_{X} ||\mathbb{A}(X) - b||_2^2$ s.t. $rank(X) \le r$

- NP-hard in general
 - Hard to even approximate within log(n + d) [Meka, J., Caramanis, Dhillon'08]
- Tractable solutions under certain conditions
 - RIP conditions

Restricted Isometry Property

- For all rank-r matrix (X): $(1 - \delta_r)||X||_F^2 \le ||\mathbb{A}(X)||_2^2 \le (1 + \delta_r)||X||_F^2$
- Examples:
 - \mathbb{A} : sampled from multivariate normal distribution
 - m = $O(\frac{r}{\delta_r^2} n \log n)$

Approach 1: Trace-norm minimization

 $\min_{X} ||A(X) - b||_{2}^{2}$ s.t. ||X||_{*} $\leq \tau_{r}$

- $||X||_*$: sum of singular values
- Provable recovery of *M*
 - RIP based Matrix Sensing: [Recht, Fazel, Parrilo'07]
 - For Gaussian distributed samples: $O(r n \log n)$
- However, convex optimization methods for this problem don't scale well
 - SVD computation per step
 - Intermediate iterates can have rank much larger than "r"

- Provable convergence to *M* [J., Netrapalli, Sanghavi'13]
 - RIP property satisfied
 - Gaussian distribution: $O(nr^3 \log n)$
 - Suboptimal bounds

Approach 3: Projected Gradient based Methods

- $X_0 = 0$
- For t=1:T

$$X_t = P_r \left(X_{t-1} - \eta \mathbb{A}^{\mathrm{T}} (\mathbb{A}(X_{t-1}) - \mathbf{b}) \right)$$

- $P_r(Z)$: projection onto set of rank-r projection
- Singular Value Projection
- Several other variants exist (ADMiRA [Lee, Bresler'09])

Guarantees

- SVP converges to global optima
 - $\delta_{2r} \leq 1/3$
 - For Gaussians: $O(r n \log n)$
 - Info. theoretically optimal
- Noisy case analysis also available
- Analysis: a simple extension of analysis of iterative hard thresholding [Garg, Khandekar'08]

[J., Meka, Dhillon 2009]

Extensions

• Optimize general f

 $\min_{X} f(X)$
s.t. rank(X) $\leq r$

- Assume RSC-style condition: $\forall X, s. t. rank(X) \leq r$ $(1 + \delta_r)I \geq \nabla^2 f(X) \geq (1 - \delta_r)I$
- SVP converges to the optima for such a case as well [J., Kar, Tewari'14]
- Extensions to the "statistical setting" as well

Summary

 $\min_{X} f(X)$
s.t. $rank(X) \le r$

- Projected gradient descent converges to the global optima
 - Assuming certain RSC/RIP style conditions
- Standard matrix sensing:
 - Information theoretic optimal bounds
- Analysis:
 - Only requires 0-th order property

$$||Y - Z|| \ge ||P_r(Z) - Z||, \qquad \forall Y \in C$$

Low-rank Matrix Completion

Low-rank Matrix Completion

- Task: Complete ratings matrix
- Applications: recommendation systems, PCA with missing entries

Low-rank

- M: characterized by U, V DoF: nr
- No. of variables:
 - U: $n \times r = nr$
 - V: $n \times r = nr$

Low-rank Matrix Completion

$$\min_{X} Error_{\Omega}(X) = \sum_{\substack{(i,j) \in \Omega \\ s.t}} \left(X_{ij} - M_{ij} \right)^2 = ||P_{\Omega}(X - M)||_F^2$$

• Ω : set of known entries

•
$$P_{\Omega}(X)_{ij} = X_{ij}, (i,j) \in \Omega$$

• 0 otherwise

1	0	0	0
0	0	2	0
0	0	1	0
0	4	0	0

Approach 1

- Convex relaxation: Replace rank(X) with $||X||_*$
- Provably recovers *M* if:
 - *M*:rank-*r* incoherent matrix (non-spiky matrix)

•
$$M = U\Sigma V^T$$
, $||U^i||_2 \le \frac{\mu\sqrt{r}}{\sqrt{n}}$

- Ω : sampled uniformly at random and $|\Omega| \ge O(r n \log^2 n)$
- Worst Computation time: $O(n^3)$
- Refs: [Candes, Recht 2008], [Candes, Tao 2008], [Recht 2010]

Incoherence?

Initialization [JNS'13]

- Initialization:
 - SVD($P_{\Omega}(M)$, r)

0	3	0
2	5	0
0	0	2

 $P_{\Omega}(M)$

Results [JNS'13]

- Assumptions: Ω : set of known entries
 - Ω is sampled uniformly s.t. $|\Omega| = O(k^7 n \log n \beta^6)$
 - $\beta = \sigma_1 / \sigma_r$
 - *M*: rank-k "incoherent" matrix
 - Most of the entries are similar in magnitude
- Then, $||M UV^T||_F \le \epsilon$ after only $O(\log(\frac{1}{\epsilon}))$ steps
- Improved analysis by Hardt-Wooters'14

Proof Sketch

- Assume Rank-1 case, i.e., $M = u^* v^{*^T}$
- Fixing *u*, update for *v* is given by:

$$v = \arg\min_{v} \sum_{(i,j)\in\Omega} (u_i v_j - u_i^* v_j^*)^2$$

$$v_j = \frac{\sum_{(i,j)\in\Omega} u_i u_i^*}{\sum_{(i,j)\in\Omega} u_i^2} \cdot v_j^*$$

• If $\Omega = [m]x[n]$,

$$v_j = \langle u, u^* \rangle v_j^*$$

• Power method update!

Proof Sketch

$$v = \underbrace{M^{T}u}_{\text{Power}} - \underbrace{B^{-1}(B < u, u^{*} > -C)v^{*}}_{\text{Error Term}}$$

Method Term

Problems:

- 1. Show error term decreases with iterations
- 2. Also, need to show "incoherence" of each v

Tools:

- 1. Spectral gap of random graphs
- 2. Bernstein-type concentration bounds

Bernstein?

Power Method?

Approach 3: Singular Value Projection

Sample
$$\Omega$$

 $X_t = P_r(X_t - P_\Omega(X_t - M))$

- Previous analysis applies only if $P_{\Omega}(\cdot)$ satisfies RIP
 - RIP holds but *only* for incoherent matrices
 - $X_t M$: need not be incoherent

1	1	1		1	1	1		0	0	0
1	1	1	_	1	1	1	=	0	0	0
1	1	1		.5	.5	.5		.5	.5	.5

• Require: $X_t \rightarrow M$ in L_{∞} norm
Guarantees

- Our approach:
 - Analyze $||X_t M||_{\infty}$ instead!
 - At first seems tricky: $P_r(\cdot)$ optimal only w.r.t. spectral norm or Frobenius norm
- Three key tricks:
 - Use a Taylor series expansion technique by [Erdos et al' 2013]
 - Convert L_{∞} -norm error bounds into $|| \cdot ||_2$ error bounds
 - Analyze $||H^a u||_{\infty}$

Setting up the proof (Rank-one Case)

$$\begin{aligned} X_t &= P_1 \big(X_{t-1} - P_\Omega (X_{t-1} - M) \big) \\ &= P_1 \big(M + X_{t-1} - M - P_\Omega (X_{t-1} - M) \big) \\ &= P_1 \big(M + E_t - P_\Omega (E_t) \big) \\ &= P_1 \big(M + H_t \big) \end{aligned}$$

•
$$H_t = E_t - P_{\Omega}(E_t)$$

• $E[H_t] = 0$: assuming Ω is independent of E_t

•
$$E[H_t(i,j)^2] \le \frac{||M - X_{t-1}||_{\infty}^2}{p}$$

- $||H_t||_2 \le \delta n ||M X_{t-1}||_{\infty}$ (assuming $p \ge \log n / \delta^2$)
- $||M X_t||_2 \le 2||H_t||_2$ (but only spectral norm bound)

Matrix Bernstein?

Matrix Perturbation?

Davis-Kahan?

Key Step 1

• Let v, λ be the largest eigenvector/value of $M + H_t$

$$(M + H_t)v = \lambda v$$

$$\left(I - \frac{H_t}{\lambda}\right)v = \frac{Mv}{\lambda}$$

$$v = \left(I - \frac{H_t}{\lambda}\right)^{-1}\frac{Mv}{\lambda} = \frac{Mv}{\lambda} + \sum_{a=1}^{\infty}\left(\frac{H_t}{\lambda}\right)^a\frac{Mv}{\lambda}$$

•
$$X_t = \lambda v v^T$$

 $M - X_t = M - \lambda v v^T$
 $= M - M \frac{v v^T}{\lambda} M - \sum_{a \ge 0, b \ge 0, a+b \ge 1}^{\infty} \left(\frac{H_t}{\lambda}\right)^a \frac{M v v^T M^T}{\lambda} \left(\frac{H_t}{\lambda}\right)^b$

$$\begin{array}{l} \text{Key Step 2} \\ \|M - X_t\|_{\infty} \\ \leq \|M - M \frac{vv^T}{\lambda} M\|_{\infty} + \sum_{a \geq 0, b \geq 0, a + b \geq 1}^{\infty} \left| \left(\frac{H_t}{\lambda}\right)^a \frac{Mvv^T M^T}{\lambda} \left(\frac{H_t}{\lambda}\right)^b \right|_{\infty} \end{array}$$

•
$$M = u^* u^{*^T}$$

 $||M - M \frac{vv^T}{\lambda} M||_{\infty} \le \max_{i,j} e_i^T u^* \left(1 - u^{*^T} \frac{vv^T}{\lambda} u^*\right) u^{*^T} e_j$
 $\le \max_{i,j} |e_i^T u^*| |e_j^T u^*| |1 - (u^{*^T} v)^2 / \lambda|$

$$\leq \frac{\mu^2}{n} 4 ||H_t||_2 \leq 8\mu^2 \delta ||M - X_{t-1}||_{\infty}$$

Key Step 3

Need to bound

$$||(H_t)^a u^*||_{\infty}$$

•
$$H_t = M - X_{t-1} - P_{\Omega}(M - X_{t-1})$$

- $(H_t)^a$ has several correlated entries
 - Use technique of [Erdos et al'2013]
 - Intuitively, counts the total no. of paths between any pair of nodes
- Bound: $||(H_t)^a u^*||_{\infty} \le \frac{\mu}{\sqrt{n}} (\delta ||M X_{t-1}||_{\infty} c \log n)^a$
- Sum up terms to bound $||M X_t||_2$

Guarantee for SVP

• At *t*-th step :

$$||M - X_t||_{\infty} \le .5 ||M - X_{t-1}||_{\infty}$$

- After $\log(\frac{\mu}{\epsilon})$ steps: $||M X_t||_{\infty} \le \epsilon$
- Sample complexity: $|\Omega| \ge nr^2 \mu^2 \left(\frac{\sigma_1}{\sigma_r}\right)^2 \log^2 n \log \frac{1}{\epsilon}$
 - Dependence on condition number!!!

[Netrapalli, J.'14]

Stagewise-SVP

- $\bullet X_0 = 0$
- For k=1...r
 - For t=1:T

•
$$X_t = P_r(X_{t-1} - P_{\Omega}(X_{t-1} - M))$$

- End For
- $X_0 = X_T$
- End For

Guarantees

• After t-th step of *k*-th stage:

$$||M - X_t||_{\infty} \le \frac{2\mu^2 r}{n} \left(\sigma_{k+1} + \left(\frac{1}{2}\right)^t \sigma_k\right)$$

- *M*: rank-*r* i.e. $\sigma_{r+1} = 0$
- After T = $\log(\frac{1}{\epsilon})$ steps of r-th stage: $||M X_T||_{\infty} \le \epsilon$
- Sample complexity: $|\Omega| \geq n r^4 \mu^2 \log n \log 1/\epsilon$
- Computation complexity: $O(nr^6\mu^2\log n \log \frac{1}{\epsilon})$
 - Linear in n
 - No explicit dependence on σ_1/σ_r

[Netrapalli, J.'14]

Simulations

Summary

- Study matrix completion problem
- Projected gradient descent works!
- With some tweaks, obtain a nearly linear time algorithm for matrix completion
 - No explicit dependence on condition number
- Future work:
 - Remove dependence on ϵ for sample complexity
 - AltMin: remove condition no. dependence using similar techniques?

Robust Principal Component Analysis

Principal Component Analysis

- $X = [x_1 x_2 \dots x_n]$
- PCA: find best rank-*r* approx. of *X*
 - Top *r* —singular components of *X*
 - $X_r = P_r(X)$
- $||X X_r||_2 = \sigma_{r+1}$
 - Frobenius norm guarantees

PCA with Corruption?

- $X = [x_1 \ x_2 \dots x_n] + E$
- $||X P_r(X + E)||_2 \le \sigma_{r+1} + 2||E||_2$

Sparse Corruptions?

- Can we do better?
 - If *E* is sparse?

• E.g.

• Each point can be corrupted in a few random co-ordinates

Robust PCA

- *M*: given matrix
 - *L*: low-rank matrix
 - S: sparse matrix

Foreground + Background Separation

Original Video

Background

Foreground

Foreground + Background Separation

• Each 64 × 64 frame: 4096-dimensional vector

Robust PCA

- $M \in \mathbb{R}^{n \times n}$: given matrix
 - *L*: low-rank matrix
 - S: sparse matrix
- NP-hard problem in general

Identifiability?

- Assumptions:
 - *L* is incoherent--- $L_{ij} \leq \mu ||L||_F / n$
 - *S* is row and column sparse

Existing Method

$$\min_{\hat{L},\hat{S}} rank(\hat{L}) + \lambda ||\hat{S}||_{0}$$

s.t. $M = \hat{L} + \hat{S}$

- $||\hat{L}||_* = \sum_i \sigma_i(\hat{L})$
- Convex program,
- Assumption
 - M• $s \leq \frac{n}{\mu^2 n}$

Question: PCA time complexity for Robust PCA? That is, $O(n^2r)$ algorithm?

• Recover L, S [Cha asekharan et al'2009, Candes et al'2009]

Our Approach: Alternating Projections

- Goal: M = L + S
 - *L*: low-rank matrix
 - S: sparse matrix
- $M=L_t + S_t$

Projection onto Low-rank Matrices

- Non-convex projections: NP-hard in general
- But $P_r(Z)$ can be computed efficiently: $Z = U\Sigma V^T$

• $P_r(Z) = U_r \Sigma_r V_r^T$ $P_1(Z) = I_1 \times I_1 \times I_1$ • Time complexity: $O(n^2 r)$

Projection onto Sparse Matrices

- Non-convex projection
- $HT_{\zeta}(Z)$: removes all elements with magnitude smaller than ζ

Non-convex RPCA

- $L_0 \rightarrow 0$
- $\zeta = \mu^2 r/n$
- For t=1, 2, ... T
 - $\zeta = \frac{1}{4} \cdot \zeta$
 - $S_t = HT_{\zeta}(M L_t)$
 - $L_{t+1} = P_r(M S_t)$
- Output, L_T , S_T

Computation Time

- Each round: 1 SVD + 1 Hard Thresholding
- Time complexity per round: $O(n^2 r)$
- No. of rounds?

Results

• After t-th step:

$$||L - L_{t+1}||_{\infty} \leq \frac{1}{2}||L - L_{t}||_{\infty}$$

• $T = \log\left(\frac{||L||_{\infty}}{\epsilon}\right), \qquad ||L_T - L||_{\infty} \leq \epsilon$

- Computation complexity: $O(n^2 r \log \frac{1}{\epsilon})$
 - $O(\log \frac{1}{\epsilon})$ more expensive than PCA
- Assumption: M = L + S
 - $S \leq \frac{n}{\mu^2 r} \cdot \frac{\sigma_r^2}{\sigma_1^2}$
 - Worse requirement than Hsu et al'2011

[NUSAJ'14]

Remove Condition No. Dependence?

- Stagewise procedure
 - k-th stage projects onto rank-k matrices
 - $1 \le k \le r$

2htd Stage

Result

- $T = \log(\frac{1}{\epsilon})$ $||L_T - L||_2 \le \epsilon$
- Assumption: $s \leq \frac{n}{\mu^2 r}$
 - s: number of corrupted entries in any row or column
 - Same as convex relaxation approach (Hsu et al'2011)
- Running time: $O(n^2 r^2 \log \frac{1}{\epsilon})$

Missing Entries?

- Assuming missing entries are corrupted entries
- Allows for $O(\frac{n^2}{r})$ missing entries

Proof Technique

•
$$L_{t+1} = P_r(M - S_t) = P_r(L + S - S_t) = P_r(L + E_t)$$

- Standard SVD guarantees:
 - $||L_{t+1} L||_2 \le ||E_t||_2 \sim O(1)$
 - $supp(S_{t+1}) \neq supp(S)$
 - Hence, $E_{t+1} = S S_{t+1}$ can be dense
- Goal: ensure
 - $\operatorname{supp}(S_{t+1}) \subseteq \operatorname{supp}(S)$
 - $||S S_{t+1}||_{\infty} \le .5 ||S S_t||_{\infty}$
- But for this, we need $||L_{t+1} L||_{\infty} \leq .5 ||E_t||_{\infty}$

A Novel Perturbation Lemma

$$||P_r(L+E_t) - L||_{\infty} \le .5 ||E_t||_{\infty}$$

- If:
 - *E_t*: sparse
 - *L*: incoherent
- Much tighter than the standard matrix perturbation results
 - $||P_r(L+E_t) L||_2 \le 2||E_t||_2$

Proof Sketch (Rank-1 case)

•
$$L = uu^{T}$$

• $L_{t+1} = P_{1}(L + E_{t}), \quad L_{t+1} = vv^{T}$
 $(L + E_{t})v = v$
 $(I - E_{t})v = Lv$
 $v = (I - E_{t})^{-1}Lv = Lv + \sum_{a=1}^{\infty} (E_{t})^{a}Lv$

$$L - L_{t+1} = L - vv^{T}$$

= $L - Lvv^{T}L - \sum_{a \ge 0, b \ge 0, a+b \ge 1}^{\infty} (E_{t})^{a} Lvv^{T}L^{T}(E_{t})^{b}$
Proof Sketch

- Using $L = uu^T$ $L - L_t = (1 - \langle u, v \rangle^2)L + \langle u, v \rangle^2 \sum_{a \ge 0, b \ge 0, a+b \ge 1}^{\infty} (E_t)^a uu^T (E_t)^b$
- $||(E_t)^a u||_{\infty}$: small
 - *E_t*: sparse
 - u: incoherent ($||u||_{\infty} \le \mu/\sqrt{n}$)
- Bound $||\cdot||_\infty$ of each term

Empirical Results (Synthetic Datasets)

Empirical Results

Convex Method. Runtime: 1700 sec

Non-Convex Method. Runtime: 70 sec

Summary

- Robust PCA
 - Low-rank+Sparse Decomposition
- Alternating Projection Method
- Under standard assumptions
 - Linear rate of convergence
 - Computation time: Recovery in O(PCA), for constant rank matrices
- Key analysis tool: a strong perturbation bound for SVD

Future Work

- RIP/RSC based Matrix sensing:
 - Necessity of the required RIP/RSC conditions?
- Matrix completion:
 - Remove dependence of $|\Omega|$ on error ϵ
 - Optimal dependence of $|\Omega|$ on r
- Robust PCA:
 - Extension to [Candes et al'09] style conditions
 - Can handle $O(\frac{n}{\mu^2})$ corruptions per row (currently, $O(\frac{n}{\mu^2 r})$)
- Develop a more generic framework to jointly analyze these problems
 - Similar to unified M-estimator technique of [Negahban et al'09]

Thanks!