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Recap: Set functions

Op5mize	  a	  set	  func5on	  
f(A)	  under	  constraints!	  

What’s	  common?	  
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Recap: Set functions

General	  Set	  func5on	  Op5miza5on	  –	   	  	  	  	  	  
	   	   	   	   	  very	  very	  hard!	  

What	  if	  there	  is	  some	  special	  structure?	  
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Recap: Submodular Functions

Special class of set functions.

f (A ∪ v)− f (A) ≥ f (B ∪ v)− f (B), if A ⊆ B (1)

f = # of distinct colors of balls in the urn.

Gain = 1 Gain = 0

Monotonicity: f(A) ≤ f(B), if A ⊆ B.

Modular function f(X) =
∑

i∈X f(i) analogous to linear functions.
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Recap: Alternate definition – Submodular Functions

A function f : 2V → R is submodular if:

++

+ +

f (A) f (B) f (A ∪ B)

= f (Ar ) +f (C ) + f (Br )

≥

≥
= f (A ∩ B)

f (A ∩ B)

= f (Ar ) + 2f (C ) + f (Br )

Submodularity has been widely used: non-additive measure theory,
economics, game theory, statistical physics and thermodynamics,
electrical networks, and operations research.
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Facets of Submodular functions (models in maximization)
Coverage	  

Inform
a2on	  	  

X1 

Y 

X2 X4 X3 

Diversity	  

F (A) = H(XA)

F (A) = log det(LA)

F (A) = [s2Aarea(s)
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Facets of Submodular functions (models in minimization)

Coopera2ve	  	  	  
A=
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Overview of this part of the tutorial

Submodularity, Convexity and Concavity.

Polyhedra associated with submodular functions.

Submodular Semigradients.

Convex and Concave extensions of Submodular Functions.
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Next Part of this tutorial

Unifying class of algorithms for submodular minimization,
submodular maximization, DS optimization and submodular
optimization subject to submodular constraints.

Most of these algorithms are based on the convex and concave
aspects of submodelar functions.

Extensions to Submodular Structures including Submodular
partitioning, Submodular metrics, Submodular Bregman and
Submodular Point Processes.
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Convexity and Gradients

Big training data in machine learning: computational biology, speech
and language processing, collaborative filtering, computer vision.

Motivates stochastic approximation/stochastic gradient methods,
often effective on large scale machine learning problems.

Readily applied now both to convex and non-convex problems.

Some Methods: Conditional Gradient, Subgradient/Mirror Descent,
Generalized Accelerated Gradient Ascent (GAGA), Incremental
Gradient, Nesterov’s Optimal Gradient, Proximal Gradient, Fast
Proximal Gradient, etc.
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Convex Functions and Tight Subgradients

b

fb(b) = f(b)
fb(a) ≤ f(a)

x

f(x) fb(x)

A convex function f has a subgradient at any in-domain point b,
namely there exists fb such that

f (x)− f (b) ≥ 〈fb, x − b〉, ∀x . (2)

we have fb(x) = f (b) + 〈fb, x − b〉

We have that f (x) is convex, fb(x) is affine, and can be a tight
subgradient (tight at b, affine lower bound on f (x)) for all b
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Concave Functions and Tight Supergradients

b

fb(b) = f(b)
fb(a) ≥ f(a)

x

f(x)

fb(x)

A concave f has a supergradient at any in-domain point b, namely
there exists f b such that

f (x)− f (b) ≤ 〈f b, x − b〉, ∀x . (3)

we have f b(x) = f (b) + 〈f b, x − b〉

We have that f (x) is concave, f b(x) is affine, and can be a tight
supergradient (tight at b, affine upper bound on f (x)) for all b
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Concave Functions and Tight Supergradients

b
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x

f(x)
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Two Sides of Submodularity

discrete	  convexity	  ….	  

…	  or	  concavity?	  

Submodular	  func8ons	  have	  proper8es	  related	  to	  both!	  
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Two sides of Submodularity

Convex aspects (Fujishige (1984,
2005), Frank (1982))

Minimization: Poly-time.

Convex continuous extension -
Lovász extension.

Subgradients and
Subdifferential.

Convex duality, discrete
seperation etc.

Concave aspects (Vondrak (2007),
I-Bilmes (2015))

Max: constant-factor approx!

Multilinear extension - concave
in a direction.

Supergradients and
Superdifferential.

Under restricted settings,
duality, separation etc.
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Submodular Semigradients and extensions

A submodular function f : 2V → R, has both tight subgradients and
supergradients, tight at a set Y ⊆ V :

1 Tight Subgradients: ∃mY ∈ RV and bY ∈ R such that
mY (Y ) + bY = f (Y ) and mY (X ) + bY ≤ f (X ) for all X ⊆ V .

2 Tight Supergradients: ∃mY ∈ RV and bY ∈ R such that
mY (Y ) + bY = f (Y ) and mY (X ) + bY ≤ f (X ) for all X ⊆ V .

Submodular functions also admit continuous extensions which are
convex, concave, and multilinear.
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Submodular (lower) Polyhedron

A submodular f : 2V → R, has a polyhedron called the submodular
(lower) polyhedron and a base (lower) polytope:

Pf = {x ∈ RV : x(S) ≤ f (S), ∀S ⊆ V } (4)

Bf = Pf ∩ {x : x(V ) = f (V )}. (5)

where x(S) =
∑

i∈S xi is seen as a modular function

x1

x2

(0, 0)

Pf

Bf
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e3
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Chains & Extreme Points of the Submodular Polyhedron

Notation: Given a permutation σ = (σ(1), σ(2), . . . , σ(n)) of V ,
define chain ∅ = Sσ0 ⊂ Sσ1 ⊂ · · · ⊂ Sσn = V where

Sσi = {σ(1), σ(2), . . . , σ(i)} (6)

These chains define all extreme points.

(Edmonds, 1970) Define hσ ∈ RV as,

hσ(σ(i)) = f (Sσi )− f (Sσi−1) (7)

Then, hσ is an extreme point of Pf .
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These chains define all extreme points.

(Edmonds, 1970) Define hσ ∈ RV as,

hσ(σ(i)) = f (Sσi )− f (Sσi−1) (7)

Then, hσ is an extreme point of Pf .
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Lovász extension of a submodular function

Given the submodular polyhedron, we can define a convex extension
of a submodular function as, f̆ (w) = maxs∈Pf

wᵀs.

Given vector w ∈ RV
+, define w -cognizant permutation σw such that

w [σw (1)] ≥ w [σw (2)] ≥ · · · ≥ w [σw (n)].

(Vitali’25, Choquet’54, Edmonds’70, Lovász’83): The Lovász
extension is,

f̆ (w) , max
s∈Pf

w>s =
n∑

i=1

w(σw (i))[f (Sσwi )− f (Sσwi−1)] =
n∑

i=1

λi f (Sσwi )

with
∑

i λi1Sσw
i

= w ,
∑

i λi = 1.
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Submodular Subdifferential

Analogous to convex functions, submodular functions have
subdifferential structure (Fujishige’84,’05) at each X ⊆ V .

∂f (X ) = {x ∈ Rn : f (Y )− x(Y ) ≥ f (X )− x(X ) ∀Y ⊆ V } (8)

x1

x2

∂f(∅) ∂f({v1})

∂f({v2})
∂
f
({v1, v2})

(0, 0)

Each hX ∈ ∂f (X ) defines modular lower bound of f tight at X :

∂f (X ) = {x ∈ Rn : f (Y ) ≥ f (X )− x(X ) + x(Y );∀Y ⊆ V }
so mX (Y ) , f (X )− hX (X ) + hX (Y ) ≤ f (Y ) and mX (X ) = f (X ).
mX is a (not necessarily normalized) modular function.
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Submodular Subdifferential Extreme Points

Given permutation σ with Sσ|X | = X , take hσX ∈ RV with entries

hσX (σ(i)) = f (Sσi )− f (Sσi−1).

Then hσX ∈ ∂f (X ) and is itself a normalized modular function with
hX (Y ) ≤ f (Y )∀Y and hX (X ) = f (X ).

Such hσX , for the various orders σ with property Sσ|X | = X , comprise

the extreme points of ∂f (X ) (Fujishige,’05).

Hence, ∂f (∅) and ∂f (V ) have the same set of extreme points, and
∂f (Y ) for ∅ ⊂ Y ⊂ V have fewer.

x1

x2

∂f(∅) ∂f({v1})

∂f({v2})
∂
f
({v1, v2})

(0, 0)
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Introduction Two sides of Submodularity Submodularity and Convexity Submodularity and Concavity

Submodular Subdifferential Redundancy

Define three polyhedra based on a partition of the constraints:

∂1
f (X ) = {x ∈ Rn : f (Y )− x(Y ) ≥ f (X )− x(X ),∀Y ⊆ X} (9)

∂2
f (X ) = {x ∈ Rn : f (Y )− x(Y ) ≥ f (X )− x(X ),∀Y ⊇ X} (10)

∂3
f (X ) = {x ∈ Rn : f (Y )− x(Y ) ≥ f (X )− x(X ),∀Y : Y 6⊆ X ,Y 6⊇ X}

(11)

Immediately ∂f (X ) = ∂1
f (X ) ∩ ∂2

f (X ) ∩ ∂3
f (X ) but more interestingly:

Lemma 1 (Fujishige’84)

Given a submodular function, ∂f (X ) = ∂1
f (X ) ∩ ∂2

f (X ) for all X ⊆ V .

So for X /∈ {∅,V } many of the subdifferen-
tial inequalities are redundant.

∅

V

X
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Introduction Two sides of Submodularity Submodularity and Convexity Submodularity and Concavity

Submodular Subdifferential Outer Bound

Hence, we can write the subdifferential as:

∂f (X ) = {{x ∈ Rn : f (Y )− x(Y ) ≥ f (X )− x(X ) ∀Y ∈ [∅,X ] ∪ [X ,V ]}

where [A,B] = {X ⊆ V : A ⊆ X ⊆ B} whenever A ⊆ B.

Also, submodular polyhedron Pf = ∂f (∅).

Consider polyhedron defined only for Y such that
|Y \ X | = |X \ Y | = 1:

∂
∆(1,1)
f (X ) = {x ∈ RV : ∀j ∈ X , f (j |X\j) ≤ x(j)

and ∀j /∈ X , f (j |X ) ≥ x(j)}. (12)

where f (j |A) = f (A + j)− f (A).

Immediately, ∂
∆(1,1)
f (X ) ⊇ ∂f (X ).
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Generalized (lower) Polyhedron

Define a generalization of the submodular polyhedron Pgen
f ⊆ R|V |+1:

Pgen
f = {(x , c), x ∈ Rn, c ∈ R : [x(X ) + c] ≤ f (X ),∀X ⊆ V } (13)

For normalized submodular functions (f (∅) = 0), we have c ≤ 0, so
extreme points exist, yielding Generalized Submodular (lower)
Polyhedron:

x1

x2

cPgen
f

Immediately, Pf × {0} =
{

(x , c) ∈ R|V |+1 : c = 0
}
∩ Pgen

f .
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Gen. (lower) Submodular Polyhedron: extreme points

Lemma 2

Given submodular f , (x , c) is an extreme point of Pgen
f if and only if x is

an extreme point of Pf and c = 0. Furthermore, for any y ∈ Rn,

max
(x ,c)∈Pgen

f

[〈x , y〉+ c] = max
x∈Pf

〈x , y〉 (14)

Proof.

Immediately, maxs∈Pf
w>s ≤ max(x ,c)∈Pgen

f
[〈x ,w〉+ c]. Also, for any

(x , c) ∈ Pgen
f ,

max
s∈Pf

w>s =
∑

i

λi f (Sσwi ) ≥
∑

i

λi [〈x , 1Sσw
i
〉+ c] ≥ 〈x ,w〉+ c , (15)

Also, membership x ∈ Pgen
f is still polytime via SFM.
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Also, membership x ∈ Pgen
f is still polytime via SFM.
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Convex Extensions via the Generalized Polyhedron

Convex envelope (Vondrák’07, Dughmi’11) of any set function f not
nec. submodular, for w ∈ [0, 1]n:

f̆ (w) = max
φ∈Φf

φ(w) = min
λ∈Λw

∑

S⊆V
λS f (S) (16)

where

Φf = {φ : φ is convex in [0, 1]V and φ(1X ) ≤ f (X ), ∀X ⊆ V } (17)

and (for the r.h.s., a distribution characterization),

Λw = {λS , S ⊆ V :
∑

S⊆V
λS1S = w ,

∑

S⊆V
λS = 1, λS ≥ 0}. (18)
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Lemma 3

Convex extension of f in equation (67) can be expressed as:

f̆ (w) = max
(x ,c)∈Pgen

f

[〈x ,w〉+ c],∀w ∈ [0, 1]n (19)
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∑

S⊆V
λS = 1, λS ≥ 0}. (18)

Proof.

The achieving convex function φ̂ has a tight subgradient (x , d) with
〈x , y〉+ d ≤ φ̂(y), ∀y and 〈x ,w〉+ d = φ̂(w). Then (x , d) ∈ Pgen

f since

x(X ) + d ≤ φ̂(1X ) ≤ f (X ), ∀X ⊆ V .
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Convex Extension Submodular Case

For submodular functions, the convex extension is the Lovász
extension and can be expressed:

f̆ (w) , max
s∈Pf

w>s = max
(s,c)∈Pgen

f

[w>s + c] (19)

=
n∑

i=1

w(σw (i))[f (Sσwi )− f (Sσwi−1] =
n∑

i=1

λi f (Sσwi )

with
∑

i λi1Sσw
i

= w ,
∑

i λi = 1.

For non-submodular functions, these easy expressions do not hold
and it is NP-hard to evaluate in general (Vondrák’07, Dughmi’11).
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Other convex aspects of submodular functions

Theorem 3 (Edmonds’70,Lovász’83)

For a submodular function f : 2V → R, we have

min
X⊆V

f (X ) = min
x∈[0,1]n

f̆ (x) (20)

r.h.s. solution has tight rounding algorithm using simple thresholding.

Lemma 4 (Fujishige’91,’05)

A set A ⊆ V is a minimizer of f : 2V → R if and only if:

0 ∈ ∂f (A) (21)

Lemma 5 (Fujishige’91,’05)

A set A minimizes a submodular function f if and only if f (A) ≤ f (B)
for all sets B such that B ⊆ A or A ⊆ B.
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Frank’s discrete separation theorem (DST)

Lemma 6 (Frank’82)

Given a submodular function f and a supermodular function g such that
f (X ) ≥ g(X ),∀X (and which satisfy f (∅) = g(∅) = 0), there exists a
modular function h such that f (X ) ≥ h(X ) ≥ g(X ). Furthermore, if f
and g are integral so may be h.

g(x)

x

f(x) m(x)
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Fenchel Duality Theorem (FDT)

Define the Fenchel duals f ∗ of f , and g∗ of g , are respectively
convex and concave functions.

f ∗(x) = max
X⊆V

[x(X )− f (X )], g∗(x) = min
X⊆V

[x(X )− g(X )]. (22)

Then we have:

Lemma 7 (Fujishige’05)

Given a submodular function f and a supermodular function g ,

min
X⊆V

[f (X )− g(X )] = max
x

[g∗(x)− f ∗(x)]. (23)

Further if f and g are integral, the maximum on the right hand side is
attained by an integral vector x .
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Submodularity and Concavity

We’ve summarized the convex aspects of a submodular function:
Lovász extension, efficient minimization, Franks’s DST,
subdifferentials and subgradients tight at any point, minimizers of a
submodular function form lattice, Fenchel Duality Theorem, all well
known.

There are well-known concave aspects of submodular functions as
well: The definition ∇j∇k f (X ) ≤ 0 where ∇j f (X ) = f (j |X ),
concave over modular is submodular, efficient approximate
maximization, 1− 1/e or 1/2 for many problems (Vondrák and
many others).

Question: Can one provide a principled theoretical characterization
(similar to the the convex aspects of submodular functions), from a
concave perspective?
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Submodular Upper Polyhedron

Define Submodular Upper Polyhedron as follows:

P f = {x ∈ Rn : x(S) ≥ f (S),∀S ⊆ V } (24)

Lemma 8

Given a submodular function f ,

P f = {x ∈ Rn : x(j) ≥ f (j)} (25)

Proof.

With x ∈ P f , for any S , we have

x(S) =
∑

i∈S
x(i) ≥

∑

i∈S
f (i) ≥ f (S) (26)

I.e., only the singleton inequalities are irredundant.
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Submodular Upper Polyhedron

P f = {x ∈ Rn : x(S) ≥ f (S),∀S ⊆ V }

= {x ∈ Rn : x(j) ≥ f (j)}

x1

x2

(0, 0)

Pf

Immediate facts:

Membership problem: x ∈ P f same as maxX⊆V f (X )− x(X ) ≤ 0,
submodular maximization which is hard,

but in fact same as
maxX⊆V

∑
i∈X f (i)− x(X ) ≤ 0, identical to checking singletons

f (i)− x(i) < 0.
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Submodular Superdifferentials

Analogous to concave functions, we define Submodular
Superdifferentials at each X ⊆ V :

∂f (X ) = {x ∈ Rn : f (Y )− x(Y ) ≤ f (X )− x(X ), ∀Y ⊆ V } (27)

x1

x2

∂f(∅)

∂f({v2})

∂f({v1})

∂f({v1, v2})

(0, 0)

Each gX ∈ ∂f (X ) defines modular upper bound of f tight at X :

∂f (X ) = {x ∈ Rn : f (Y ) ≤ f (X )− x(X ) + x(Y );∀Y ⊆ V }
so mX (Y ) , f (X )− gX (X ) + gX (Y ) ≥ f (Y ) and mX (X ) = f (X ).
mX is (typically not a normalized) modular function.

R. Iyer & J. Bilmes NOML: Submodularity in ML page 46 / 75



Introduction Two sides of Submodularity Submodularity and Convexity Submodularity and Concavity

Submodular Superdifferentials

Analogous to concave functions, we define Submodular
Superdifferentials at each X ⊆ V :

∂f (X ) = {x ∈ Rn : f (Y )− x(Y ) ≤ f (X )− x(X ), ∀Y ⊆ V } (27)

x1

x2

∂f(∅)

∂f({v2})

∂f({v1})

∂f({v1, v2})

(0, 0)

Each gX ∈ ∂f (X ) defines modular upper bound of f tight at X :

∂f (X ) = {x ∈ Rn : f (Y ) ≤ f (X )− x(X ) + x(Y );∀Y ⊆ V }
so mX (Y ) , f (X )− gX (X ) + gX (Y ) ≥ f (Y ) and mX (X ) = f (X ).
mX is (typically not a normalized) modular function.

R. Iyer & J. Bilmes NOML: Submodularity in ML page 46 / 75



Introduction Two sides of Submodularity Submodularity and Convexity Submodularity and Concavity

Submodular Superdifferentials

Analogous to concave functions, we define Submodular
Superdifferentials at each X ⊆ V :

∂f (X ) = {x ∈ Rn : f (Y )− x(Y ) ≤ f (X )− x(X ), ∀Y ⊆ V } (27)

x1

x2

∂f(∅)

∂f({v2})

∂f({v1})

∂f({v1, v2})

(0, 0)

Each gX ∈ ∂f (X ) defines modular upper bound of f tight at X :

∂f (X ) = {x ∈ Rn : f (Y ) ≤ f (X )− x(X ) + x(Y );∀Y ⊆ V }
so mX (Y ) , f (X )− gX (X ) + gX (Y ) ≥ f (Y ) and mX (X ) = f (X ).

mX is (typically not a normalized) modular function.

R. Iyer & J. Bilmes NOML: Submodularity in ML page 46 / 75



Introduction Two sides of Submodularity Submodularity and Convexity Submodularity and Concavity

Submodular Superdifferentials

Analogous to concave functions, we define Submodular
Superdifferentials at each X ⊆ V :

∂f (X ) = {x ∈ Rn : f (Y )− x(Y ) ≤ f (X )− x(X ), ∀Y ⊆ V } (27)

x1

x2

∂f(∅)

∂f({v2})

∂f({v1})

∂f({v1, v2})

(0, 0)

Each gX ∈ ∂f (X ) defines modular upper bound of f tight at X :

∂f (X ) = {x ∈ Rn : f (Y ) ≤ f (X )− x(X ) + x(Y );∀Y ⊆ V }
so mX (Y ) , f (X )− gX (X ) + gX (Y ) ≥ f (Y ) and mX (X ) = f (X ).
mX is (typically not a normalized) modular function.

R. Iyer & J. Bilmes NOML: Submodularity in ML page 46 / 75



Introduction Two sides of Submodularity Submodularity and Convexity Submodularity and Concavity

Submodular Superdifferential Redundancy

Define three polyhedra:

∂f1 (X ) = {x ∈ Rn : f (Y )− x(Y ) ≤ f (X )− x(X ), ∀Y ⊆ X} (28)

∂f2 (X ) = {x ∈ Rn : f (Y )− x(Y ) ≤ f (X )− x(X ), ∀Y ⊇ X} (29)

∂f3 (X ) = {x ∈ Rn : f (Y )− x(Y ) ≤ f (X )− x(X ), ∀Y : Y 6⊆ X ,Y 6⊇ X}

Immediately ∂f (X ) = ∂f1 (X ) ∩ ∂f2 (X ) ∩ ∂f3 (X ). Also, we have

Lemma 9

For submodular f , ∂f1 (X ) and ∂f2 (X )’s irredundant representation is:

∂f1 (X ) = {x ∈ Rn : f (j |X\j) ≥ x(j),∀j ∈ X} (30)

∂f2 (X ) = {x ∈ Rn : f (j |X ) ≤ x(j),∀j /∈ X}. (31)

Proof.

Eq. (28) ⇔ Eq. (30). Assuming only f (j |X\j) ≥ x(j), gives
x(X )− x(Y ) = x(X \Y ) =

∑
j∈X\Y x(j) ≤∑j∈X\Y f (j |X \ j) ≤ f (X |Y )

when X ⊇ Y . Eq. (29) ⇔ Eq. (31) similar.
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∂f2 (X ) = {x ∈ Rn : f (j |X ) ≤ x(j),∀j /∈ X}. (31)

Proof.

Eq. (28) ⇔ Eq. (30). Assuming only f (j |X\j) ≥ x(j), gives
x(X )− x(Y ) = x(X \Y ) =

∑
j∈X\Y x(j) ≤∑j∈X\Y f (j |X \ j) ≤ f (X |Y )

when X ⊇ Y . Eq. (29) ⇔ Eq. (31) similar.
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Introduction Two sides of Submodularity Submodularity and Convexity Submodularity and Concavity

Submodular Superdifferential 2D extreme points

In 2D, superdifferential at v1 takes the form:

∂f (v1) = {x ∈ R2 :x1 ≤ f (v1), (32)

x2 ≥ f (v2|v1), (33)

x1 − x2 ≤ f (v1)− f (v2)} (34)

so extreme points are at indicated below:

x1

x2

(0, 0)

∂f ({1}) ∂f (∅)

∂f ({1, 2}) ∂f ({2})

(f({1}|∅), f({2}|∅))

(f({1}|{2}), f({2}|{1}))

Can analytically characterize superdifferential structure in 2D.
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Introduction Two sides of Submodularity Submodularity and Convexity Submodularity and Concavity

Submodular Superdifferential 3D extreme points

3D (with V = {a, b, c}, superdifferential at a irredundantly expressed:

∂f (a) = {x ∈ R3 :x(a) ≤ f (a), (Y = ∅) (35)

x(b) ≥ f (b|a), (Y = {a, b}) (36)

x(b)− x(a) ≥ f (b)− f (a), (Y = {b}) (37)

x(c) ≥ f (c |a), (Y = {a, c}) (38)

x(c)− x(a) ≥ f (c)− f (a), (Y = {c}) (39)

x(b) + x(c)− x(a) ≥ f (b, c)− f (a), (Y = {b, c})}
(40)

Immediately, (f (a), f (b), f (c)) is an extreme point.

Other extreme points not possible to identify without knowing more
about the function (e.g., if f (b|c) < f (b|a) or if f (b|c) > f (b|a)).

Superdifferential much harder to characterize than subdifferential.
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Introduction Two sides of Submodularity Submodularity and Convexity Submodularity and Concavity

Superdifferential membership problem is hard

Lemma 10

Given a submodular function f and a set Y : ∅ ⊂ Y ⊂ V , the
membership problem y ∈ ∂f (Y ) is NP hard.

Proof.

y ∈ ∂f (Y ) same as asking maxX⊆V [f (X )− y(X )] ≤ f (Y )− y(Y ), i.e.,
is Y is a maximizer of f (X )− y(X ) for a given vector y? Decision
version of submodular maximization, NP hard when ∅ ⊂ Y ⊂ V .

Hence, since membership problem is hard, linear program over it is
hard (Grotschel, Lovász, Schrijver,’84).
Empty set and ground set easy, however, and are characterized as:

∂f (∅) = {x ∈ Rn : f (j) ≤ x(j),∀j ∈ V } (41)

∂f (V ) = {x ∈ Rn : f (j |V \j) ≥ x(j),∀j ∈ V } (42)

with ∂f (∅) = P f and ∂f (V ) = P f #
where

f #(X ) = f (V )− f (V \X ) is the submodular dual of f .
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Superdifferential outer bounds

Recall from Lemma 9 that ∂f1 (X ) = {x ∈ Rn : f (j |X\j) ≥ x(j),∀j ∈ X}
and ∂f2 (X ) = {x ∈ Rn : f (j |X ) ≤ x(j), ∀j /∈ X} are easily characterized,
and
∂f3 (X ) = {x ∈ Rn : f (Y )−x(Y ) ≤ f (X )−x(X ), }∀Y : Y 6⊆ X ,Y 6⊇ X}
is what makes ∂f (X ) hard.

Define outer bound ∂f3,∆(k,l)(X ) ⊇ ∂f3 (X ):

∂f3,∆(k,l)(X ) = {x ∈ Rn : f (Y )− x(Y ) ≤ f (X )− x(X ),

∀Y : Y 6⊆ X ,Y 6⊇ X , |Y \X | ≤ k − 1, |X\Y | ≤ l − 1}
(43)

and then

∂f∆(k,l)(X ) = ∂f1 (X ) ∩ ∂f2 (X ) ∩ ∂f3,∆(k,l)(X ). (44)
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Introduction Two sides of Submodularity Submodularity and Convexity Submodularity and Concavity

Superdifferential outer bound containment

Theorem 11

For a submodular function f :

1 ∂f∆(1,1)(X ) = ∂f1 (X ) ∩ ∂f2 (X )

2 ∀1 ≤ k ′ ≤ k , 1 ≤ l ′ ≤ l , ∂f (X ) ⊆ ∂f∆(k,l)(X ) ⊆ ∂f∆(k ′,l ′)(X ) ⊆
∂f∆(1,1)(X )

3 ∂f∆(n,n)(X ) = ∂f (X ).

We call ∂f∆(1,1)(X ) = {x ∈ Rn : x(j) ≤ f (j |X\j)∀j ∈ X , x(j) ≥
f (j |X )∀j /∈ X} the local superdifferential approximation.
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Visualization of the Superdifferential its outer bounds
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Figure: A visualization of the outer bounds of the superdifferential. The first
figure (top left) is the submodular supergradient ∂f (X ), while the second one
(top) is the outer bound ∂f∆(1,1)(X ).
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Introduction Two sides of Submodularity Submodularity and Convexity Submodularity and Concavity

Achievable Submodular Tight Supergradients

Nemhauser, Wolsey, & Fisher’78 characterized submodularity with
either of the following, ∀X ,Y :

f (Y ) ≤ f (X )−
∑

j∈X\Y

f (j |X\j) +
∑

j∈Y \X

f (j |X ∩ Y ), (45)

f (Y ) ≤ f (X )−
∑

j∈X\Y

f (j |X ∪ Y \j) +
∑

j∈Y \X

f (j |X ) (46)

Using submodularity, these can be further loosened as follows
(Ahmed & Atamtürk,’09; Jegelka & B.’09; Iyer, Jegelka, B.’12,’13):

f (Y ) ≤ f (X )−
∑

j∈X\Y

f (j |X − {j}) +
∑

j∈Y \X

f (j |∅) (47)

f (Y ) ≤ f (X )−
∑

j∈X\Y

f (j |V − {j}) +
∑

j∈Y \X

f (j |X ) (48)

f (Y ) ≤ f (X )−
∑

j∈X\Y

f (j |V − {j}) +
∑

j∈Y \X

f (j |∅). (49)
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Achievable Submodular Tight Supergradients

Each of the bounds above offers a supergradient.

For example, starting from Equation (47),

f (Y ) ≤ f (X )−
∑

j∈X\Y

f (j |X \ {j}) +
∑

j∈Y \X

f (j |∅) (50)

= f (X )−
∑

j∈X
f (j |X \ {j}) +

∑

j∈X∩Y
f (j |X \ {j}) +

∑

j∈Y \X

f (j |∅)

(51)

= f (X )− ĝX (X ) + ĝX (Y ) (52)

where ĝX is defined as:

ĝX (j) =

{
f (j |X − j) if j ∈ X

f (j) if j /∈ X
(53)

Thus, ĝX ∈ ∂f (X ), proving the non-emptiness of ∂f (X ) for any
X ⊆ V .
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where ĝX is defined as:

ĝX (j) =

{
f (j |X − j) if j ∈ X

f (j) if j /∈ X
(53)
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The Three Supergradients (Iyer et al, 2013)

Define three vectors ∈ RV as follows:

ĝX (j) =

{
f (j |X − j) if j ∈ X

f (j) if j /∈ X
(54)

ǧX (j) =

{
f (j |V − j) if j ∈ X

f (j |X ) if j /∈ X
(55)

ḡX (j) =

{
f (j |V − j) if j ∈ X

f (j) if j /∈ X
(56)

Theorem 12

For a submodular function f , ĝX , ǧX , ḡX ∈ ∂f (X ). Hence for every
submodular function f and set X , ∂f (X ) is non-empty.
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Visualization of the Three Supergradients

We call these supergradients grow, shrink, and bar

Modular upper bound: mgY (X ) = f (Y ) + gY (X )− gY (Y ) ≤ f (X ).
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X Y
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ǧY (j) =

{
f (j |∅) for j /∈ Y

f (j |Y \{j}) for j ∈ Y

X Y
V

f(j|Y \ j)f(j|∅)

Modular upper bound: mgY (X ) = f (Y ) + gY (X )− gY (Y ) ≤ f (X ).

R. Iyer & J. Bilmes NOML: Submodularity in ML page 57 / 75



Introduction Two sides of Submodularity Submodularity and Convexity Submodularity and Concavity

Visualization of the Three Supergradients

We call these supergradients grow, shrink, and bar

Bar:
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Single Extreme Superdifferential Inner Bounds

First, define the following two polyhedra:

∂f∅(X ) = {x ∈ Rn : f (j) ≤ x(j),∀j /∈ X}, (57)

∂fV (X ) = {x ∈ Rn : f (j |V \j) ≥ x(j),∀j ∈ X}. (58)

Define:

∂fi ,1(X ) = ∂f1 (X ) ∩ ∂fV (X ) (59)

= {x ∈ Rn : f (j |X\j) ≥ x(j),∀j ∈ X and f (j) ≤ x(j),∀j /∈ X}
∂fi ,2(Y ) = ∂f2 (Y ) ∩ ∂f∅(Y ) (60)

= {x ∈ Rn : f (j |V \j) ≥ x(j),∀j ∈ X and f (j |X ) ≤ x(j), ∀j /∈ X}
∂fi ,3(Y ) = ∂fV (Y ) ∩ ∂f∅(Y ) (61)

= {x ∈ Rn : f (j |V \j) ≥ x(j),∀j ∈ X and f (j) ≤ x(j),∀j /∈ X}.
We have: ĝY is an extreme point of ∂fi ,1(Y ), ǧY and extreme point of

∂fi ,2(Y ), and ḡY an extreme point of ∂fi ,3(Y ).
All are simple polyhedra, with a single extreme point.
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Superdifferential Inner Bounds

Define a combination of polyhedra as follows:

∂fi ,(1,2)(Y ) = conv(∂fi ,1(Y ), ∂fi ,2(Y )) (62)

where conv(., .) is the convex combination of two polyhedra.

Then we have a simple DAG of inclusory properties:

Lemma 13

Given a submodular function f ,

∂f
i,3(Y ) ⊆ ∂f

i,2(Y ) ⊆
⊆ ∂f

i,1(Y )
∂f

i,(1,2)(Y ) ⊆ ∂f(Y )⊆
(63)
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Superdifferentials and M \-concave functions

Lemma 14

Given a submodular function f which is M\-concave (Murota,’96,’97,’03)
on {0, 1}V , its superdifferential satisfies,

∂f (X ) = ∂f∆(2,2)(X ) (64)

In particular, it can be characterized via O(n2) inequalities.

Proof.

Theorem 6.61 in Murota’03,’10 for an M\ convex function (which is
supermodular), its subdifferential can be expressed considering only sets
Y satisfying |X\Y | ≤ 1, |Y \X | ≤ 1 (Hamming distance less than 2).
Superdifferential of a M\ concave function (which is supermodular) can
be expressed with the same number of inequalities, and the
corresponding polyhedron is ∂f∆(2,2)(X ).
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Visualization of the Superdifferential its inner and outer
bounds
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Figure: A visualization of the inner and outer bounds of the superdifferential.
The first figure is the submodular supergradient ∂f (X ), while the next three
figures show the inner bounds ∂fi,1(X ), ∂fi,2(X ) and ∂fi,3(X ) (marked as inner
bounds 1, 2 and 3 respectively).
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Outline

1 Introduction

2 Submodularity, Convexity and Concavity

3 Submodularity and Convexity
Submodular Polyhedron
Convex extension
Submodular Subdifferential
Generalized lower Submodular Polyhedron
Convex aspects of a submodular function

4 Submodularity and Concavity
Submodular Upper Polyheron
Submodular Superdifferentials
Generalized Upper Polyhedron
Continuous extensions of a submodular function
Concave Aspects of a Submodular Function
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Generalized Upper Polyhedron

Define a generalization of the submodular upper polyhedron
P f

gen ⊆ R|V |+1:

P f
gen = {(x , c), x ∈ Rn, c ∈ R : x(X ) + c ≥ f (X ), ∀X ⊆ V } (65)

For normalized submodular functions (f (∅) = 0), we have c ≥ 0.

Example: |V | = 2, f (X ) =
√
|X |, two slices c = 0 and c = 1.

c = 1

Pf
gen

x1

x2

(0, 0)
(1,0)

(0,1)

x1

x2

(0, 0)
(0.414,0)

(0,1)

(0,0.414)

c = 0

Pf
gen

c = 0

Pf
gen
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Visualization of the Generalized Upper Submodular
Polyhedron
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Generalized Upper v.s Lower Submodular Polyhedron

Generalized Upper (Blue) and Lower (Red) Submodular Polyhedron
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Generalized Upper Polyhedron: LP and Membership

Lemma 15

For submodular function f , and a y ∈ Rn,

min
(x ,c)∈P f

gen

〈x , y〉+ c = min{ min
x∈∂f (X )

〈x , y〉+ f (X )− x(X ) | X ⊆ V }.

(66)

So characterizing generalized submodular upper polyhedron is cast in
terms of characterizing the superdifferential.

Moreover,

Lemma 16

The generalized submodular upper polyhedron membership problem for
submodular f , i.e., is (x , c) ∈ P f

gen, is NP hard for c > 0. Furthermore,
the LP min(x ,c)∈P f

gen
〈x , y〉+ c is also NP hard.

Proof.

Reduce to submodular max, and use Grotschel, Lovász, Schrijver,’84.
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Concave Extension

Concave extension (Vondrák’07, Dughmi’11) of any set function f not
nec. submodular, for w ∈ [0, 1]n:

f̆ (w) = min
φ∈Φf

φ(w) (67)

where

Ψf = {ψ : ψ is concave in [0, 1]V and ψ(1X ) ≥ f (X ),∀X ⊆ V } (68)

We can express this using the generalized submodular upper
polyhedron:

Lemma 17

The concave extension of any set function f can be expressed as:

f̂ (w) = min
(y ,c)∈P f

gen

〈y ,w〉+ c ,∀w ∈ [0, 1]|V | (69)

Unfortunately, the concave extension is NP hard to evaluate and
optimize! /
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An equivalent distributional characterization of the
concave extension

An equivalent characterization of the concave extension is from the
distributional perspective.

Denote Λw as the set:

Λw = {λS ,S ⊆ V :
∑

S⊆V
λS1S = w ,

∑

S⊆V
λS = 1 (70)

The concave extension above can also be represented as:

f̂ (w) = max
λ∈Λw

λS f (S) (71)

This is still NP hard to evaluate and optimize! /
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Multilinear Extension

A near-concave extension, used practically in algorithms is the
multilinear extension!

f̃ (x) =
∑

X⊆V
f (X )

∏

i∈X
xi
∏

i /∈X

(1− xi ) (72)

Can be seen to be related to the distributional perspective, since it
is defined via a specific distribution pX .

Requires an exponential sum /, but can be approximated through
sampling (Vondrak, 2007).

For subclasses of submodular functions, one can compute the exact
multilinear extension! (I-Jegelka-Bilmes, 2014) ,
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Some Optimality Conditions

Lemma 18

For a submodular function f , a set A is a maximizer of f , if 0 ∈ ∂f (A).

Proposition 19

For a submodular function f , if 0 ∈ ∂f(1,1)(A) then A is a local maxima of

f . By (Feige, Mirrokni, Vondrák,’07), this can also offer us a solution
S = argmaxX∈{A,V \A} f (X ) with f (S) ≥ 1

3OPT .

Lemma 20

Given A s.t. 0 ∈ ∂fi ,(1,2)(A), then A is the global maxima f .

Proof.

Immediate from the fact that ∂fi ,(1,2)(A) ⊆ ∂f (A).

For various varieties of superdifferentials, other optimality conditions
possible, including matroid constraints, etc.
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Concave Discrete Separation Theorem

Lemma 21

Given submodular f and supermodular g , with f (X ) ≤ g(X ),∀X ⊆ V ,
and f (∅) = g(∅) or f (V ) = g(V ). There exists modular h such that
f (X ) ≤ h(X ) ≤ g(X ),∀X ⊆ V . When f and g are also integral, there
exists an integral h satisfying the above.

Proof.

Assume f (∅) = g(∅). Then the following chain of inequalities hold:

f (X ) ≤ f (∅) +
∑

j∈X
f (j |∅) ≤ g(∅) +

∑

j∈X
g(j |∅) ≤ g(X ) (73)

Since f (j |∅) = f (j)− f (∅) ≤ g(j)− g(∅) = g(j |∅). The rest of the
inequalities follow from submodularity (and supermodularity) of f (and
g). f (V ) = g(V ) holds analogously via functions f (V \X ) and
g(V \X ).
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Fenchel from Concave Perspective

Lemma 22

Given submodular f and supermodular g such that the discrete
separation theorem holds,

max
X⊆V

f (X )− g(X ) = min
x

g∗(x)− f∗(x) (74)

Further if f and g are integral (and satisfy the DST), the maximum on
the right hand side is attained by an integral vector x .

Proof.

The proof follows immediately from Theorem 4 of
Fujishige&Narayanan’05, stating that Fenchel duality follows from
discrete separation, if the same conditions hold.

Murota’03 proved that for M\-concave and M\-convex functions
respectively, the above form of Fenchel duality always holds.
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