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Recap: Submodular Functions

Special class of set functions.

f (A ∪ v)− f (A) ≥ f (B ∪ v)− f (B), if A ⊆ B (1)

f = # of distinct colors of balls in the urn.

Gain = 1 Gain = 0

Monotonicity: f(A) ≤ f(B), if A ⊆ B.

Modular function f(X) =
∑

i∈X f(i) analogous to linear functions.
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Recap: Alternate definition – Submodular Functions

A function f : 2V → R is submodular if:

++

+ +

f (A) f (B) f (A ∪ B)

= f (Ar ) +f (C ) + f (Br )

≥

≥
= f (A ∩ B)

f (A ∩ B)

= f (Ar ) + 2f (C ) + f (Br )

Submodularity has been widely used: non-additive measure theory,
economics, game theory, statistical physics and thermodynamics,
electrical networks, and operations research.
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Facets of Submodular functions (models in maximization)
Coverage	  

R. Iyer & J. Bilmes NOML: Submodularity in ML page 7 / 81



Introduction Main Ideas Unconstrained Min Constrained Min Submodular Max DS Optimization Submodular Constraints

Facets of Submodular functions (models in maximization)
Coverage	  

R. Iyer & J. Bilmes NOML: Submodularity in ML page 7 / 81



Introduction Main Ideas Unconstrained Min Constrained Min Submodular Max DS Optimization Submodular Constraints

Facets of Submodular functions (models in maximization)
Coverage	  

R. Iyer & J. Bilmes NOML: Submodularity in ML page 7 / 81



Introduction Main Ideas Unconstrained Min Constrained Min Submodular Max DS Optimization Submodular Constraints

Facets of Submodular functions (models in maximization)
Coverage	  

Diversity	  

R. Iyer & J. Bilmes NOML: Submodularity in ML page 7 / 81



Introduction Main Ideas Unconstrained Min Constrained Min Submodular Max DS Optimization Submodular Constraints

Facets of Submodular functions (models in maximization)
Coverage	  

Diversity	  

R. Iyer & J. Bilmes NOML: Submodularity in ML page 7 / 81



Introduction Main Ideas Unconstrained Min Constrained Min Submodular Max DS Optimization Submodular Constraints

Facets of Submodular functions (models in maximization)
Coverage	  

Diversity	  

R. Iyer & J. Bilmes NOML: Submodularity in ML page 7 / 81



Introduction Main Ideas Unconstrained Min Constrained Min Submodular Max DS Optimization Submodular Constraints

Facets of Submodular functions (models in maximization)
Coverage	  

Inform
a2on	  	  

Diversity	  

R. Iyer & J. Bilmes NOML: Submodularity in ML page 7 / 81



Introduction Main Ideas Unconstrained Min Constrained Min Submodular Max DS Optimization Submodular Constraints

Facets of Submodular functions (models in maximization)
Coverage	  

Inform
a2on	  	  

X1 

Y 

X2 X4 X3 

Diversity	  

F (A) = H(XA)

F (A) = log det(LA)

F (A) = [s2Aarea(s)
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Facets of Submodular functions (models in minimization)

Coopera2ve	  	  	  
A=

rac2ve	  
Poten2als	  

McDonalds	  

Starbucks	  
Costs	  

s

t
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0	   0	  

0	  0	  
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E(x; z) =
X

i
Ei(xi) +

X
ij

Eij(xi, xj)

F (A) =
3X

i=1

s X

j2A\Pi
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Recap: Submodular Optimization

Submodular Optimization Problems:

maximize
S ⊆ V

f (S)

subject to S ∈ C (2)

minimize
S ⊆ V

f (S)

subject to S ∈ C (3)
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maximize
S ⊆ V

f (S)

subject to S ∈ C (2)

minimize
S ⊆ V

f (S)

subject to S ∈ C (3)

Unconstrained: C = 2V , Constrained: C ⊆ 2V .

Bounded size C = {S ⊆ V : |S | ≤ k}, knapsack bounded budget{
S ⊆ V :

∑
s∈S w(s) ≤ b

}

Matroid independence constraints, or independence in multiple
matroids, or matroids + knapsack.
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Recap: Submodular Optimization

Submodular Optimization Problems:

maximize
S ⊆ V

f (S)

subject to S ∈ C (2)

minimize
S ⊆ V

f (S)

subject to S ∈ C (3)

Combinatorial constraint (i.e., feasible C might be trees, matchings,
paths, vertex covers, or cuts).

cuts paths matchings

Sub-level sets of g , C = {S ⊆ V : g(S) ≤ α}, sup-level sets
C = {S ⊆ V : g(S) ≥ α}).

When f (and g) are submodular, there is hope to solve these
problems with guarantees, practically and scalably!
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Recap: Submodular Optimization

Minimizing	  
Coopera2ve	  Costs	  

Maximizing	  
Coverage/	  Diversity	  

Minimizing	  
coopera2ve	  
costs	  and	  
Maximizing	  
Coverage/	  
Diversity	  

Unifying	  Algorithmic	  Framework	  
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Approximation Algorithms

Most of these problems are NP-hard!

Use the notion of approximation algorithms!

Minimization: OPT ≤ f (X ) ≤ ρOPT, ρ > 1

Maximization: ρOPT ≤ f (X ) ≤ OPT, ρ < 1

R. Iyer & J. Bilmes NOML: Submodularity in ML page 11 / 81



Introduction Main Ideas Unconstrained Min Constrained Min Submodular Max DS Optimization Submodular Constraints

Recap: Submodular Subgradients (Fujishige 2005)

Like convex functions, a submodular function g has subgradients.
Defined at any Y ⊆ V .

An ordering σ of the ground set.

Corresponding subgradient hσY is:

hσY (σ(i)) = g(σ(i)|Si−1)

Modular lower bound: mhY (X ) = g(Y ) + hY (X )− hY (Y ) ≤ g(X ).
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Recap: Submodular Supergradients (Iyer et al, 2013)

Define gain of j in context of A: f (j |A) , f (A ∪ j)− f (A)

Unlike convex functions, surprisingly, we show that submodular
functions also have super-gradients. Defined at any Y ⊆ V .

Three of these supergradients (which we call grow, shrink, and bar)
are in fact easy to obtain.

Modular upper bound: mgY (X ) = f (Y ) + gY (X )− gY (Y ) ≤ f (X ).
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ĝY (j) =
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f (j |Y ) for j /∈ Y
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X Y
V

f(j|Y ) f(j|V \ j)
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Recap: Continuous Extensions of Submodular Functions

A natural convex extension of a submodular function is the Lovász
extension (Lovász, 1983).

This extension is easy to evaluate and optimize! ,

A natural (near-concave) extension is the multilinear extension!

f̃ (x) =
∑

X⊆V
f (X )

∏

i∈X
xi
∏

i /∈X
(1− xi ) (4)

Requires an exponential sum /, but can be approximated through
sampling (Vondrak, 2007).

For subclasses of submodular functions, one can compute the exact
multilinear extension! (I-Jegelka-Bilmes, 2014) ,
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Submodular Optimization Survey

Combinatorial Algorithms Continuous Relaxations
• Ellipsoidal Approximation
and Exact SFM Algorithms

• Use the convex or multilin-
ear relaxations and rounding

Slow but tight

Fast and Scalable

• Majorization-Minimization
Framework

Fast and Scalable, and in-
cludes techniques like the greedy
algorithm.
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Unconstrained Submodular Minimization (USMin) Survey

Unconstrained setting (C = 2V ) is poly-time.

Combinatorial Algorithms Iwata/Fleischer/Fujishige’00, Schrijver’00,
Orlin’07, strongly polynomial O(n5γ + n6) but high order (we shall
very briefly touch upon these in this tutorial)

Relaxations: Subgradient Descent using Lovász extension, and
Minimum Norm point algorithm (Fujishige/Isotani’11, Wolfe’76,
Chakrabarty’14, Bach’13, I-Jegelka-Bilmes, 2014) – We shall cover
this in this tutorial.

Special cases: graph cuts/low-order (Kolmogorov), decomposable
case (Stobbe & Krause, Jegelka et. al. 2011), etc.
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this in this tutorial.

Special cases: graph cuts/low-order (Kolmogorov), decomposable
case (Stobbe & Krause, Jegelka et. al. 2011), etc.
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Constrained Submodular Minimization

Combinatorial Algorithms: Ellipsoidal Algorithms (Goemans, 2009)
based on approximating the submodular function (only briefly touch
on this)

Majorization-Minimization, MMin (I-Jegelka-Bilmes 2013, I-Bilmes,
2013) – we shall cover this extensively.

Relaxation based algorithms, using the Lovász extension (Nagano &
Iwata, 2009, I-Jegelka-Bilmes, 2014). We shall also cover this
extensively.
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Submodular Maximization

Submodular maximization: discrete algorithms, greedy, accelerated
greedy, bidirectional greedy, randomized local search etc.
(Nemhauser et al 1978, Buchbinder et al, 2012, 2014)

Relaxations, using the Multilinear extension: continuous greedy,
accelerated cont. greedy, continuous greedy with multiplicative
weight updates, etc. in constrained settings (see Vondrák et al 2008
etc.),

The combinatorial algorithms for submodular maximization, can be
unified within a Minorization-Maximization framework.
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Overview of this part of the tutorial

Relaxation based algorithms for submodular minimization and
maximization.

Majorization-Minimization (and Minorization-Maximization)
framework.

Greedy and Local search based techniques for submodular
maximization.
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Outline

1 Introduction

2 Main Ideas

3 Unconstrained Submodular Minimization
Relaxation based Algorithms
Majorization-Minimization

4 Constrained Submodular Minimization
Relaxation based techniques
Combinatorial Algorithms

5 Submodular Maximization
Relaxation Based Techniques
Combinatorial Greedy & Local Search
Minorization-Maximization

6 DS Optimization

7 Submodular Optimization Subject to Submodular Constraints
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Relaxation Algorithms

Relaxation algorithms for minimization and maximization follow the
two stage protocol:

1 Find the optimal (or approximate) solution x̂ to the problem
minx∈PC f̆ (x) (or maxx∈PC f̃ (x)).

2 Round the continuous solution x̂ to obtain the discrete indicator
vector of set X̂ .

PC denotes the polytope corresponding to the family C of feasible set
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Combinatorial Algorithms

In this tutorial, we shall study a class of majorization-minimization
based algorithms which use the supergradients of a submodular
function (for submodular minimization), and
minorization-maximization algorithms which use the subgradients
(for submodular maximization).

The latter class of algorithms for submodular maximization subsume
several greedy and local search algorithms.
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Majorization-Minimization (MMin) Framework

Idea: For minimization problems, use an upper bound of the objective
function.

Minimiza'on	  

f(S)

S0
f̂0(S)

Always improves the objective value at every iteration!
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Submodular Function Minimization (SFM)

This is an important problem concerning submodular functions, and
can be defined as:

min
X⊆V

f (X ) (5)

A number of combinatorial algorithms exist which can solve this
problem in polynomial time. However the complexity of the best
known combinatorial algorithm is O(n6).

These techniques are slow and hard to implement /

In this tutorial, we shall study algorithms based on convex
relaxations.

Uses a lot of the nice connections between convexity and
submodularity.
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SFM and convex programming

The problem of minimizing submodular functions on the boolean
hypercube (without constraints) is equivalent to minimizing the
Lovász extention.

Theorem 1

min
X⊆V

f (X ) = min
x∈[0,1]n

f̂ (x) (6)

Furthermore, from a minimizer w of the Lovász extention, the minimizers
of the submodular function f can be obtained as the support sets
Si : w(Si )− w(Si−1) 6= 0. Hence each minimizer of the Lovász extention
produces a chain of minimizers of the corresponding submodular function.
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Algorithms in this section

1 Minimum Norm Point Algorithm.

2 Sub-gradient descent algorithm.

3 Conditional gradient descent algorithm.

4 Smoothing in special cases of decomposable functions.
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The Minimum Norm Point Algorithm (Fujishige, 2005)

We have the followng duality relationship:

Theorem 2

For a submodular function f ,
min
X⊆V

f (X ) = max
y∈Pf ,y≤0

y(E ) (7)

Further consider the following quadratic program over the base polytope.

min
x∈Bf

‖x‖2
2 (8)

Let x∗ be the minimizer of equation (8), then we can obtain the minimizer of the right hand side of equation (7) by defining

y∗(j) = min{x∗(j), 0}, ∀j ∈ V . (9)

Further define:

A− = {j ∈ V : x∗(j) < 0

A0 = {j ∈ V : x∗(j) ≤ 0. (10)

Then A0 and A− are the unique maximal and minimal minimizers of the left hand side of equation (7).
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The Minimum Norm Point Algorithm (cont)...

From the above theorem we see that SFM is equivalent to finding
the minimum norm point in the base polytope.

Further from the minimizers of the minimum norm problem we can
obtain the lattice of minimizers of the submodular program.

We can use the minimum norm point algorithm (Wolfe, 1976), to
find the minimum norm point on a polytope.

This is an exact algorithm and for the base polytope every iteration
can be computed efficiently.

Though this algorithm is known to converge in a finite number of
iterations, its convergence rate is still an open question.
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find the minimum norm point on a polytope.

This is an exact algorithm and for the base polytope every iteration
can be computed efficiently.

Though this algorithm is known to converge in a finite number of
iterations, its convergence rate is still an open question.
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Sub-gradient Descent (Bach, 13)

Recall that the Lovász extention of a submodular function is a
convex function but is non-smooth.

However the sub-gradient can directly be evaluated. In particular at
a point w ∈ [0, 1]n, the sub-gradient h is exactly the maximizer
h = argmaxs∈Pf

s>w .

Furthermore, the sub-gradients h satisfies
∀k , f (V )− f (V \k) ≤ hk ≤ f (k). This directly follows from the
submodularity of f .

It is easy to show that f̂ is Lipschitz continuous with constant
L =

∑
k∈V α

2
k where αk = f (k)− f (V ) + f (V \k).
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Sub-gradient Descent Analysis (Bach, 2013)

The hypercube [0, 1]n is contained in an l2 ball of radius D =
√
n/2.

Correspondingly we can use projected sub-gradient descent, to
minimize f̂ (w) on the boolean hypercube and use a step size

γt = D
√

2√
nt

.

The algorithm basically takes the sub-gradient step and projects the
point to [0, 1]n. Further the projection is simple and can be done by
component wise rounding.

Theorem 3

After t steps of projected subgradient descent, among the p sup-level

sets of wt , there is a set B such that F (B)−minF (A) ≤ D
√
n√

2t
.
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Conditional gradient descent (Bach, 2013)

Note that the minimum norm point problem is equivalent to the
proximal problem using an l2 regularizer.

Lemma 4

For a submodular function f ,

min
y∈Bf
‖y‖ = min

y∈Rn
‖y‖+ f̂ (y) (11)
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Conditional gradient descent (Bach, 2013)

Recall that the minimum norm point problem is equivalent to SFM
in that from the solution of the minimum norm problem, we can
obtain the minimizers of SFM.

However from the solution of the minimum norm point problem we
can obtain the solutions of a much larger family of combinatorial
problems.
We can solve the minimum norm problem using the conditional
gradient algorithm.
Start with any point w0 in the base and iterate-
To find the next iterate, we minimize the linear lower bound at wt−1

on the base polytope, which is equivalent to finding
wt = argmins∈Bf 〈s,wt−1〉 which can easily be performed through
the greedy algorithm
We perform line search with respect to a weight β. In other words
define w(β) = wtβ + wt−1(1− β). Further find
minβ∈[0,1] w(β)>w(β).
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Conditional gradient descent analysis

Correspondingly we can give the convergence rates of the conditional gradient
descent algorithm for submodular function minimization.

Theorem 5

After t steps of the conditional gradient method described above, among the p
sub-level sets of wt , there is a set B such that F (B)−minF (A) ≤ 1√

t

√∑p
k=1 α

2
k .

The conditional gradient descent itself has an error proportional to 1
t+1

. However
due to the rounding an additional factor is added, and the error rates of the
submodular functions are the same order as sub-gradient descent methods.
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Smoothing in a special case of decomposable functions

A smoothing based method was proposed by (Stobbe and Krause,
2010) for a class of functions known as decomposable functions.

The class of decomposable functions are submodular functions
which can be expressed as a sum of concave over modular functions.

For this class of functions smoothing the Lovász extention followed
by the optimal algorithm of Nesterov gives convergence rates of 1

ε .

Recall that the convergence rates of the sub-gradient descent and
conditional gradient descent have convergence rates of 1

ε2 .
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Majorization-Minimization (MMin) for minS⊆V f (S)

S0 = ∅;
for i = 0, 1, . . . do

compute modular upper bound f̂i (S) = mf
Si

(S) ≥ f (S) based on Si ;

Set Si+1 = argminS∈C f̂i (S) - modular minimization;

; // only need to solve linear-cost problem! ,

Always improves the objective value!

Highly scalable and practical!

(I-Jegelka-Bilmes (2013a))
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Unconstrained Minimization

MMin-IIIa MMin-IIIb MMin-I MMin-II

g ḡ ḡ ĝ ǧ
S0 ∅ V ∅ V
Sc A B A+ B+

MMin-IIIa and IIIb are first iterations of MMin-I and MMin-II.

A and B obtainable in O(n) oracle calls.

A+ and B+ are local minimizers obtainable in O(n2) calls.

A ⊆ A+ ⊆ X ∗ ⊆ B+ ⊆ B
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Illustrating Unconstrained Minimization

V

MMin-I

V

MMin-II
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Illustrating Unconstrained Minimization
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V BB+A+A X*

MMin-II
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Constrained Submodular Minimization

compute S∗ ∈ argmin
S∈C

f (S)

Constraints include cardinality constraint,

Card: C = {S ⊆ V : |S | ≥ k}

or combinatorial...

cuts paths matchings
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Relaxation based Algorithm (I-Jegelka-Bilmes, 2014)

Define a class of constraints:
C = {X | |X ∩W | ≥ bW , for all W ∈ W}.
A large class of constraints including matroid spans, covers, paths,
matchings and cuts.

Resultant polytope:

P̂C =
{
x ∈ [0, 1]n

∣∣∣
∑

i∈W xi ≥ bW for all W ∈ W
}

Algorithm: Solve a convex optimization problem, using generic
convex solvers (e.g ADMM etc.)

Rounding: Round using threshold rounding: Xθ = {i : x(i) ≥ θ}.
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Relaxation Based Algorithm (I-Jegelka-Bilmes, 2014)

Theorem: The θ-rounding scheme for constraints C = {X | |X ∩W | ≥ bW , for all W ∈ W} achieves a worst
case approximation bound of maxW∈W |W | − bW + 1.

Unifies a number of results for matroid spans, covers cuts, matchings etc.

Matroid Constraints Set Covers Paths, Cuts and Matchings

Cardinality Trees Vertex Covers Edge Covers Cuts Paths Matchings

CR. n − k + 1 m − n + 1 2 deg(G ) ≤ n Pmax ≤ n Cmax ≤ m O(n)

IG Ω(n − k + 1) Ω(m − n + 1) 2 Ω(n) Ω(n) Ω(m) Ω(n)

Hard Ω(
√
n) Ω(n) 2− ε Ω(n) Ω(

√
m) Ω(n2/3) Ω(n)

Table: Comparison of the results of the Continuous Relaxations (CR), the
hardness, and the integrality gaps (IG) of the corresponding constrained
submodular minimization problems.
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Majorization-Minimization, MMin (I-Jegelka-Bilmes, 2013)

S0 = ∅;
for i = 0, 1, . . . do

compute modular upper bound f̂i (S) = mf
Si

(S) ≥ f (S) based on Si ;

Set Si+1 = argminS∈C f̂i (S) - find best cut/path/matching. . . ;

; // only need to solve linear-cost problem! ,

Always improves the objective value!

Highly scalable and practical!

(I-Jegelka-Bilmes (2013a))
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Ellipsoidal Approximation (Goemans et al, 2009)

Ellipsoidal Approximation gives the tightest approximation to a
submodular function.

Based on a neat idea, that one can express a submodular function as
a linear program over the submodular polyhedron

f (X ) = max
x∈Pf

x(X ) (12)

The idea is then to approximate Pf by an inner and outer John’s
ellipsoid.

This construction gives a O(
√
n log n) approximation.

This approximation f̂ is of the form, f̂ (X ) =
√

wf (X ), where wf is
a modular function constructed using f .
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Theoretical Results

minimize F (S) : S ∈ C = cut/path/matching/cardinality constraint. . .

For graph based problems, m = number of edges, n = number of
vertices.

How good are these algorithms? f (S) ≤ αf (S∗)

Constraint: MMin EA Lower bound
trees/matchings n O(

√
m) Ω(n)

cuts m O(
√
m) Ω(

√
m)

paths n O(
√
m) Ω(n2/3)

cardinality(k) k O(
√
n) Ω(

√
n)

Worst case polynomial upper/lower bounds /

(Goel et al (09), Goemans et al (2009), Jegelka-Bilmes (11) ...)
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Empirical Results

CM CCM BS WC
0

1

2

3

4

5
(b) Spanning Tree

em
p.

 a
pp

ro
x.

 fa
ct

or

 

 

EA
MMin−I
MU

(MU = Mod. Upper bound Heuristic, and the first iteration of MMin)

Observations:
Empirical Results always better than worst case bounds
MMin performs comparably to the more complicated EA!

Can we say more?

(I-Jegelka-Bilmes (2013a))
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Theory meets Practice (Curvature)



cardinality   |S|

F(S)

κf = 1−min
j

f (j |V \j)
f (j)

tighter analysis for submodular max (Vondrák 08)

Lemma (I-Jegelka-Bilmes‘13) Tightened bounds for submodular min:

Upper: Lower: .

For large n, both EA and MMin are O(1/(1− κ)).
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.
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Improved Curvature Based Bounds

minimize F (S) : S ∈ C = cut/path/matching/cardinality constraint. . .

For graph based problems, m = number of edges, n = number of
vertices.

How good are these algorithms? f (S) ≤ αf (S∗)

Constraint: MMin EA Lower bound

trees/matchings n
1+(n−1)(1−κf ) O(

√
m

1+
√
m−1)(1−κf )

) Ω( n
1+(n−1)(1−κf ) )

cuts m
1+(m−1)(1−κf ) O(

√
m

1+
√
m−1)(1−κf )

) Ω(
√
m

1+
√
m−1)(1−κf )

)

paths n
1+(n−1)(1−κf ) O(

√
m

1+
√
m−1)(1−κf )

) Ω( n2/3

1+(n2/3−1)(1−κf )
)

cardinality(k) k
1+(k−1)(1−κf ) O(

√
n

1+
√
n−1)(1−κf )

) Ω(
√
n

1+
√
n−1)(1−κf )

)

Worst case upper/lower bounds bounded by O( 1
(1−κf )

) ,

((I-Jegelka-Bilmes, 2013))
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Comparison of the Relaxation based techniques, and the
Combinatorial Algorithms

Unlike the Ellipsoidal Approximation based algorithm, and MMin, the Continuous Relaxation based algorithms do not seem to
admit curvature dependent approximation guarantees.

Matroid Constraints Set Covers Paths, Cuts and Matchings

Cardinality Trees Vertex Covers Edge Covers Cuts Paths Matchings

CR. n − k + 1 m − n + 1 2 deg(G ) ≤ n Pmax ≤ n Cmax ≤ m O(n)

MMin k n |VC | ≤ n |EC | ≤ n Cmax ≤ m Pmax ≤ n O(n)

EA
√
n

√
m

√
n

√
m

√
m

√
m

√
m

IG Ω(n − k + 1) Ω(m − n + 1) 2 Ω(n) Ω(n) Ω(m) Ω(n)

Hard Ω(
√
n) Ω(n) 2− ε Ω(n) Ω(

√
m) Ω(n2/3) Ω(n)

Table: Comparison of the results of the Continuous Relaxation, with the
semigradient framework (MMin), the Ellipsoidal Approximation (EA) algorithm,
hardness, and the integrality gaps (IG) of the corresponding constrained
submodular minimization problems.
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Submodular Function Maximization

compute S∗ ∈ argmax
S∈C

g(S)

Unconstrained submodular maximization, C = 2V .

Other constraints include cardinality or knapsack constraints,

Cardinality: C = {S ⊆ V : |S | ≤ k}, Knapsack: C = {S ⊆ V : w(S) ≤ b}

or matroid constraints...
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Multilinear Extension and Rounding

Use the Multilinear extension:

f̄ (x) =
∑

X⊆V
f (X )

∏

i∈X
xi
∏

i /∈X
(1− xi ), (13)

Algorithm: Solve a continuous optimization problem, using
continuous greedy algorithms (akin to the conditional gradient
algorithm).

Rounding: Round using a pipage rounding scheme
(Vondrak-2007).

These techniques work for both constrained and unconstrained
maximization.
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Multilinear Extension and Rounding

The main challenge in using these algorithms in real world problems
is the complexity of evaluating the multilinear extension.

Requires repeated sampling of the submodular function!

However, the multilinear extension can be efficiently computed for
several subclasses of submodular functions, including Facility
Location, Set Covers, Log-Determinants etc.
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Bidirectional Greedy for Unconstrained Maximization
(Buchbinder, 2012)

Algorithm 1: Bidirectional Greedy Algorithm

Start with A0 = ∅,B0 = V , and an initial ordering of
V : τ = {τ1, τ2, · · · , τn}
for i = 1 to n do

ai ← f (Ai−1 ∪ τi )− f (Ai−1)
bi ← f (Bi−1\τi )− f (Bi−1)
if ai ≥ bi then

Ai = Ai−1 ∪ τi ,Bi = Bi−1

else
Ai = Ai−1,Bi = Bi−1\τi

return An (or Bn)

This is a deterministic algorithm, and provides a 1/3 approximation
for unconstrained submodular maximization.
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Local Search for Unconstrained Maximization (Vondrak,
2007)

Algorithm 2: Deterministic Local Search Algorithm

Start with Y0 = ∅, n← 0
repeat

Y1 = argmaxv∈V f (v);
while f (Yn+1) ≥ (1 + η)f (Yn) do

y = argmaxv∈V \Yn
f (v |Yn), Yn+1 = Yn ∪ y ;

n← n + 1;

while f (Yn+1) ≥ (1 + η)f (Yn) do
y = argmaxv∈Yn

f (v |Yn\v), Yn+1 = Yn\y ;
n← n + 1;

until convergence (Yn = Yn−1);
return the better amongst Yn and V \Yn.

Again, a deterministic algorithm, and a 1/3 approximation.
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Randomized Bidirectional Greedy for Unconstrained
Submodular Maximization (Buchbinder, 2012)

Algorithm 3: Randomized Bidirectional Greedy Algorithm

Start with A0 = ∅,B0 = V , and an initial ordering of
V : τ = {τ1, τ2, · · · , τn}
for i = 1 to n do

ai ← f (Ai−1 ∪ τi )− f (Ai−1)
bi ← f (Bi−1\τi )− f (Bi−1)
a′i ← max{ai , 0}, b′i ← max{bi , 0}
with probability

a′i
a′i+b′i

: Ai = Ai−1 ∪ τi ,Bi = Bi−1

else with probability
b′i

a′i+b′i
: Ai = Ai−1,Bi = Bi−1\τi

return An (or Bn)

A randomized algorithm, and a 1/2 approximation in expectation.
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Greedy Algorithm for Constrained Submodular
Maximization (Nemhauser, 1978)

Algorithm 4: Greedy Algorithm for maxX∈C f (X )

Start with Y0 = ∅, n← 0
repeat

y = argmaxv∈V \Yn
f (v |Yn);

Yn+1 = Yn ∪ y ;
n← n + 1;

until Yn /∈ C;
return Yn−1.

Under cardinality constraints, this is a 1− 1/e approximation for
monotone submodular functions.

Variants of this also extend to other constraints like knapsack and
Matroid constraints.
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Minorization-Maximization Subgradient Ascent

S0 = ∅;
for i = 0, 1, . . . do

compute modular lower bound ǧi = hgSi
≤ g based on Si ;

Set Si+1 = argmaxS∈C ǧi (S);

; // only need to solve linear-cost problem! ,

Always improve the objective value at every iteration!

A number of maximization algorithms can be unified with this framework!

(I-Jegelka-Bilmes (2013a))
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≤ g based on Si ;

Set Si+1 = argmaxS∈C ǧi (S);
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Unconstrained Maximization (I-Jegelka-Bilmes, 2013)

different subgradients ... yield known algorithms ,

Random Subgradient ⇒ 1/4 Approx!

Randomized / Deterministic local search based subgradient ⇒ 1/3
Approx (FMV’07)!

Bi-directional Greedy subgradient ⇒ 1/3 Approx (BFNS’12)!

Randomized Greedy subgradient ⇒ 1/2 Approx! (BFNS’12)!

(I-Jegelka-Bilmes (2013))
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Constrained Maximization (max{f (X ) : |X | ≤ k})

Random subgradient ⇒ k/n Approx (Filmus’13)!

Greedy and variants: Pick next, what looks best
Monotone submodular functions - ⇒ 1− 1/e Approx. (NWF’78)!
Randomized Greedy (non-monotone) ⇒ 1/e Approx. (BFNS’14)!
Simple variants extend to Matroid, knapsack constraints.
Possible to scale greedy to massive datasets through acceleration/
approximations!

(Nemhauser et al (78), Minoux (82), I-Jegelka-Bilmes (2013), Wei-I-Bilmes (14))
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Outline

1 Introduction

2 Main Ideas

3 Unconstrained Submodular Minimization
Relaxation based Algorithms
Majorization-Minimization

4 Constrained Submodular Minimization
Relaxation based techniques
Combinatorial Algorithms

5 Submodular Maximization
Relaxation Based Techniques
Combinatorial Greedy & Local Search
Minorization-Maximization

6 DS Optimization

7 Submodular Optimization Subject to Submodular Constraints
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Difference of submodular functions

E.g:	  

Feature	  Subset	  selec6on	  
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Difference of submodular functions

Unfortunately this NP hard and inapproximable /

Theorem (I-Bilmes, 2012, 2015) DS minimization is NP
hard to approximate, and DS maximization is information
theoretic hard to approximate upto any poly-factor.

Resort to heuristics: Majorize-Minimize style algorithms!

(Narasimhan-Bilmes (2005), I-Bilmes (2012))
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Majorization-Minimization semigradient alg. for DS opt.

S0 = ∅;
for i = 0, 1, . . . do

compute modular lower bound of g : ǧi = hgSi
≤ g and modular upper

bound of f : f̂i = mf
Si
≥ f based on Si ;

SubSup: Si+1 = argminS∈C f (S)− ǧi (S);

SupSub: Si+1 = argminS∈C f̂i (S)− g(S);

ModMod: Si+1 = argminS∈C f̂i (S)− ǧi (S);
; // Every iteration is submodular min, submodular max or

modular min! ,

Improve the objective value at every iteration!

(Narasimhan-Bilmes (2005), I-Bilmes (2012))
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Submodular optimization with submodular cover and
submodular knapsack constraints
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Submodular optimization with submodular cover and
submodular knapsack constraints

Co-‐opera6ve	  Costs	  

Coverage/	  Diversity	  

R. Iyer & J. Bilmes NOML: Submodularity in ML page 74 / 81



Introduction Main Ideas Unconstrained Min Constrained Min Submodular Max DS Optimization Submodular Constraints
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submodular knapsack constraints

Co-‐opera6ve	  Costs	  

Coverage/	  Diversity	  

Op6mize	  one	  of	  the	  func6ons,	  the	  other	  one	  	  occurs	  as	  constraints	  

More	  natural	  in	  many	  applica6ons!	  
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Submodular optimization with submodular cover and
submodular knapsack constraints

Co-‐opera6ve	  Costs	  

Coverage/	  Diversity	  

Op6mize	  one	  of	  the	  func6ons,	  the	  other	  one	  	  occurs	  as	  constraints	  

More	  natural	  in	  many	  applica6ons!	  
E.g:	  

Limited	  vocabulary	  and	  	  
diverse	  corpus	  selec6on	  

Sensor	  Placement	  with	  	  
Coopera6ve	  costs	  
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Special Case-I (Modular f and Submodular g)

Addi6ve	  Costs	  

Coverage/	  Diversity	  

Maximize	  coverage/	  diversity	  but	  with	  addi6ve	  costs	  on	  items	  

E.g:	  

….	  

Sensor	  Placement	   Summariza6on	  
Data	  Subset	  Selec6on	  
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Special Case-II: Submodular f and Modular g

Addi6ve	  func6ons	  

Co-‐opera6ve	  Costs	  

Minimize	  coopera6ve	  costs	  but	  with	  addi6ve	  cover	  

E.g:	  

Subway	   Safeway	  

Limited	  vocabulary	  	  
corpus	  selec6on	  

Modeling	  supermarket	  purchasing	  
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Connections between SCSC and SCSK

Bi-criterion factors:

min{f (X ) : g(X ) ≥ c}:
[σ, ρ] approximation for
SCSC is a set
X : f (X ) ≤ σf (X ∗) and
g(X ) ≥ ρc .

max{g(X ) : f (X ) ≤ b}:
[ρ, σ] approximation for
SCSK is a set
X : g(X ) ≥ ρg(X ∗) and
f (X ) ≤ σb.

[σ > 1, ρ < 1]

Approximate Solution Range

Approximate Feasible Range

Feasible Range

Approximate Solution Range

Feasible Range

Approximate Feasible Range

Theorem: Given a [σ, ρ] bi-criterion approx. algorithm for SCSC (or
SCSK), we can obtain a [(1 + ε)ρ, σ] bi-criterion approx. algorithm for
the other, by running the given algorithm, O(log 1

ε ) times.
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Majorization-Minimization algorithm

SCSC: min{f (X ) : g(X ) ≥ c}, SCSK: max{g(X ) : f (X ) ≤ b},

S0 = ∅;
for i = 0, 1, . . . do

compute modular lower bound of g : ǧi = hgSi
≤ g and modular upper

bound of f : f̂i = mf
Si
≥ f based on Si ;

SCSC: Si+1 = argmin{f̂i (S) : ǧi (S) ≥ c};
SCSK: Si+1 = argmax{ǧi (S) : f̂i (S) ≤ b};
; // Every iteration is knapsack problem! ,

(I-Bilmes (2013))
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Majorization-Minimization algorithm

SCSC: min{f (X ) : g(X ) ≥ c}, SCSK: max{g(X ) : f (X ) ≤ b},

S0 = ∅;
for i = 0, 1, . . . do

compute modular lower bound of g : ǧi = hgSi
≤ g and modular upper

bound of f : f̂i = mf
Si
≥ f based on Si ;

SCSC: Si+1 = argmin{f̂i (S) : ǧi (S) ≥ c};
SCSK: Si+1 = argmax{ǧi (S) : f̂i (S) ≤ b};
; // Every iteration is knapsack problem! ,

Highly scalable and practical!
(I-Bilmes (2013))
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Theoretical Results (I-Bilmes (2013))

SCSC: min{f (X ) : g(X ) ≥ c}, SCSK: max{g(X ) : f (X ) ≤ b},

Submodular Set Cover and Submodular Knapsack – Modular f ,
submodular g

Majorize-Minimize ⇒ Greedy Algorithm ⇒ 1− 1/e Approx!

Submod. Cost Submod. Cover (SCSC) and Submod. Cost Submod.
Knapsack (SCSK) – Submodular f , Modular/Submodular g

Majorize-Minimize (MMin) ⇒ σ
ρ = n

1+(n−1)(1−κf ) Approx!

Ellipsoidal Approx. (EA) ⇒ σ
ρ = O(

√
n

1+(
√
n−1)(1−κf )

) Approx!
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Hardness (Lower bounds) of the problems

Modular g Submodular g
(κg = 0) (0 < κg < 1) (κg = 1)

Modular f
(κf = 0)
Submod f
(0 < κf < 1)
Submod f
(κf = 1)

Hardness depends (mainly) on κf and not (so much) on that of κg .
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FPTAS
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Modular g Submodular g
(κg = 0) (0 < κg < 1) (κg = 1)

Modular f
FPTAS
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Submod f

Ω(
√

n
1+(

√
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)
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Ω(
√
n)

(κf = 1)

Knapsack SSC/SK
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√
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Conclusions/ Future Work

A review of algorithms for submodular minimization, submodular
maximization, DS optimization and submodular optimization subject
to submodular constraints.

Scalable framework of algorithms.

Theoretical guarantees and hardness results.

Thank You!
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