1

Learning, Inference and Supervision for

Structured Prediction Tasks

Dan Roth

Department of Computer Science
University of Illinois at Urbana-Champaign

June 2015

NOML Summer School, Mumbai, India

Learning, Inference and Supervision for Structured Prediction Tasks

Dan Roth

Department of Computer Science
University of Illinois at Urbana-Champaign
With thanks to:
Collaborators: Kai-Wei Chang, Ming-Wei Chang, Xiao Chen, Dan Goldwasser, Gourab Kundu, Lev Ratinov, Vivek Srikumar; Many others
Funding: NSF; DHS; NIH; DARPA; IARPA, ARL, ONR
DASH Optimization (Xpress-MP); Gurobi.

Nice to Meet You

Learning and Inference in NLP

- Natural Language Decisions are Structured
\square Global decisions in which several local decisions play a role but there are mutual dependencies on their outcome.

Learning and Inference in NLP

- Natural Language Decisions are Structured
\square Global decisions in which several local decisions play a role but there are mutual dependencies on their outcome.
- It is essential to make coherent decisions in a way that takes the interdependencies into account. Joint, Global Inference.

Learning and Inference in NLP

- Natural Language Decisions are Structured
\square Global decisions in which several local decisions play a role but there are mutual dependencies on their outcome.
- It is essential to make coherent decisions in a way that takes the interdependencies into account. Joint, Global Inference.
- TODAY:

Learning and Inference in NLP

- Natural Language Decisions are Structured
\square Global decisions in which several local decisions play a role but there are mutual dependencies on their outcome.
- It is essential to make coherent decisions in a way that takes the interdependencies into account. Joint, Global Inference.
- TODAY:
\square How to support real, high level, natural language decisions

Learning and Inference in NLP

- Natural Language Decisions are Structured
\square Global decisions in which several local decisions play a role but there are mutual dependencies on their outcome.
- It is essential to make coherent decisions in a way that takes the interdependencies into account. Joint, Global Inference.
- TODAY:
\square How to support real, high level, natural language decisions
\square How to learn models that are used, eventually, to make global decisions

Learning and Inference in NLP

- Natural Language Decisions are Structured
\square Global decisions in which several local decisions play a role but there are mutual dependencies on their outcome.
- It is essential to make coherent decisions in a way that takes the interdependencies into account. Joint, Global Inference.
- TODAY:
\square How to support real, high level, natural language decisions
\square How to learn models that are used, eventually, to make global decisions
\square A framework that allows one to exploit interdependencies among decision variables both in inference (decision making) and in learning.
\square Inference: A formulation for incorporating expressive declarative knowledge in decision making.
\square Learning: Ability to learn simple models; amplify its power by exploiting interdependencies.

Comprehension

(ENGLAND, June, 1989) - Christopher Robin is alive and well. He lives in England. He is the same person that you read about in the book, Winnie the Pooh. As a boy, Chris lived in a pretty home called Cotchfield Farm. When Chris was three years old, his father wrote a poem about him. The poem was printed in a magazine for others to read. Mr. Robin then wrote a book. He made up a fairy tale land where Chris lived. His friends were animals. There was a bear called Winnie the Pooh. There was also an owl and a young pig, called a piglet. All the animals were stuffed toys that Chris owned. Mr. Robin made them come to life with his words. The places in the story were all near Cotchfield Farm. Winnie the Pooh was written in 1925. Children still love to read about Christopher Robin and his animal friends. Most people don't know he is a real person who is grown now. He has written two books of his own. They tell what it is like to be famous.

Comprehension

(ENGLAND, June, 1989) - Christopher Robin is alive and well. He lives in England. He is the same person that you read about in the book, Winnie the Pooh. As a boy, Chris lived in a pretty home called Cotchfield Farm. When Chris was three years old, his father wrote a poem about him. The poem was printed in a magazine for others to read. Mr. Robin then wrote a book. He made up a fairy tale land where Chris lived. His friends were animals. There was a bear called Winnie the Pooh. There was also an owl and a young pig, called a piglet. All the animals were stuffed toys that Chris owned. Mr. Robin made them come to life with his words. The places in the story were all near Cotchfield Farm. Winnie the Pooh was written in 1925. Children still love to read about Christopher Robin and his animal friends. Most people don't know he is a real person who is grown now. He has written two books of his own. They tell what it is like to be famous.

2. Winnie the Pooh is a title of a book.
4. Christopher Robin must be at least 65 now.

Comprehension

(ENGLAND, June, 1989) - Christopher Robin is alive and well. He lives in England. He is the same person that you read about in the book, Winnie the Pooh. As a boy, Chris lived in a pretty home called Cotchfield Farm. When Chris was three years old, his father wrote a poem about him. The poem was printed in a magazine for others to read. Mr. Robin then wrote a book. He made up a fairy tale land where Chris lived. His friends were animals. There was a bear called Winnie the Pooh. There was also an owl and a young pig, called a piglet. All the animals were stuffed toys that Chris owned. Mr. Robin made them come to life with his words. The places in the story were all near Cotchfield Farm. Winnie the Pooh was written in 1925. Children still love to read about Christopher Robin and his animal friends. Most people don't know he is a real person who is grown now. He has written two books of his own. They tell what it is like to be famous.

1. Christopher Robin was born in England.
2. Christopher Robin's dad was a magician.
3. Winnie the Pooh is a title of a book.
4. Christopher Robin must be at least 65 now.

Comprehension

(ENGLAND, June, 1989) - Christopher Robin is alive and well. He lives in England. He is the same person that you read about in the book, Winnie the Pooh. As a boy, Chris lived in a pretty home called Cotchfield Farm. When Chris was three years old, his father wrote a poem about him. The poem was printed in a magazine for others to read. Mr. Robin then wrote a book. He made up a fairy tale land where Chris lived. His friends were animals. There was a bear called Winnie the Pooh. There was also an owl and a young pig, called a piglet. All the animals were stuffed toys that Chris owned. Mr. Robin made them come to life with his words. The places in the story were all near Cotchfield Farm. Winnie the Pooh was written in 1925. Children still love to read about Christopher Robin and his animal friends. Most people don't know he is a real person who is grown now. He has written two books of his own. They tell what it is like to be famous.

2. Winnie the Pooh is a title of a book.
4. Christopher Robin must be at least 65 now.

Comprehension

(ENGLAND, June, 1989) - Christopher Robin is alive and well. He lives in England. He is the same person that you read about in the book, Winnie the Pooh. As a boy, Chris lived in a pretty home called Cotchfield Farm. When Chris was three years old, his father wrote a poem about him. The poem was printed in a magazine for others to read. Mr. Robin then wrote a book. He made up a fairy tale land where Chris lived. His friends were animals. There was a bear called Winnie the Pooh. There was also an owl and a young pig, called a piglet. All the animals were stuffed toys that Chris owned. Mr. Robin made them come to life with his words. The places in the story were all near Cotchfield Farm. Winnie the Pooh was written in 1925. Children still love to read about Christopher Robin and his animal friends. Most people don't know he is a real person who is grown now. He has written two books of his own. They tell what it is like to be famous.

2. Winnie the Pooh is a title of a book.
4. Christopher Robin must be at least 65 now.

Comprehension

(ENGLAND, June, 1989) - Christopher Robin is alive and well. He lives in England. He is the same person that you read about in the book, Winnie the Pooh. As a boy, Chris lived in a pretty home called Cotchfield Farm. When Chris was three years old, his father wrote a poem about him. The poem was printed in a magazine for others to read. Mr. Robin then wrote a book. He made up a fairy tale land where Chris lived. His friends were animals. There was a bear called Winnie the Pooh. There was also an owl and a young pig, called a piglet. All the animals were stuffed toys that Chris owned. Mr. Robin made them come to life with his words. The places in the story were all near Cotchfield Farm. Winnie the Pooh was written in 1925. Children still love to read about Christopher Robin and his animal friends. Most people don't know he is a real person who is grown now. He has written two books of his own. They tell what it is like to be famous.

1. Christopher Robin was born in England.
2. Christopher Robin's dad was a magician.
3. Winnie the Pooh is a title of a book.
4. Christopher Robin must be at least 65 now.

Comprehension

(ENGLAND, June, 1989) - Christopher Robin is alive and well. He lives in England. He is the same person that you read about in the book, Winnie the Pooh. As a boy, Chris lived in a pretty home called Cotchfield Farm. When Chris was three years old, his father wrote a poem about him. The poem was printed in a magazine for others to read. Mr. Robin then wrote a book. He made up a fairy tale land where Chris lived. His friends were animals. There was a bear called Winnie the Pooh. There was also an owl and a young pig, called a piglet. All the animals were stuffed toys that Chris owned. Mr. Robin made them come to life with his words. The places in the story were all near Cotchfield Farm. Winnie the Pooh was written in 1925. Children still love to read about Christopher Robin and his animal friends. Most people don't know he is a real person who is grown now. He has written two books of his own. They tell what it is like to be famous.

1. Christopher Robin was born in England.
2. Christopher Robin's dad was a magician.
3. Winnie the Pooh is a title of a book.
4. Christopher Robin must be at least 65 now.

Learning and Inference

- Natural language understanding decisions are global decisions in which several local decisions play a role, but there are mutual dependencies on their outcome.

Learning and Inference

- Natural language understanding decisions are global decisions in which several local decisions play a role, but there are mutual dependencies on their outcome.
\square We need to think about:
- (Learned) models for different sub-problems
- Reasoning with knowledge relating sub-problems
- Knowledge that may appear only at evaluation time

Learning and Inference

- Natural language understanding decisions are global decisions in which several local decisions play a role, but there are mutual dependencies on their outcome.
\square We need to think about:
- (Learned) models for different sub-problems
- Reasoning with knowledge relating sub-problems
- Knowledge that may appear only at evaluation time
- Goal: Incorporate models' information, along with knowledge (constraints) in making coherent decisions
\square Decisions that respect the local models as well as domain \& context specific knowledge/constraints.

Learning and Inference

- Natural language understanding decisions are global decisions in which several local decisions play a role, but there are mutual dependencies on their outcome.
Natural Language Interpretation is an Inference Problem that is best thought of as a knowledge constrained optimization problem, done on top of multiple statistically learned models.
\square We need to think about:
- (Learned) models for different sub-problems
- Reasoning with knowledge relating sub-problems
- Knowledge that may appear only at evaluation time
- Goal: Incorporate models' information, along with knowledge (constraints) in making coherent decisions
\square Decisions that respect the local models as well as domain \& context specific knowledge/constraints.

Learning and Inference

- Natural language understanding decisions are global decisions in which several local decisions play a role, but there are mutual dependencies on their outcome.
Natural Language Interpretation is an Inference Problem that is best thought of as a knowledge constrained optimization problem, done on top of multiple statistically learned models.
\square We need to think about:
- (Learned) models for different sub-problems
- Reasoning with knowledge relating sub-problems
- Knowledge that may appear only at evaluation time
- Goal: Incorporate models' information, along with knowledge (constraints) in making coherent decisions
\square Decisions that respect the local models as well as domain \& context specific knowledge/constraints.
Many forms of Inference; a lot boil down to determining best assignment

Outline

- Constrained Conditional Models
\square A formulation for global inference with knowledge modeled as expressive structural constraints
\square Some examples
- Learning with Constrained Latent Representation
- Constraints Driven Learning
\square Training Paradigms for Constrained Conditional Models
\square Constraints Driven Learning (CoDL)
\square Unified (Constrained) Expectation Maximization
- Amortized Integer Linear Programming Inference
\square Exploiting Previous Inference Results
- In Inference and in Structured Learning

Three Ideas Underlying Constrained Conditional Models

- Idea 1:

Separate modeling and problem formulation from algorithms
\square Similar to the philosophy of probabilistic modeling

- Idea 2:

Keep models simple, make expressive decisions (via constraints)
\square Unlike probabilistic modeling, where models become more expressive

- Idea 3:

Expressive structured decisions can be supported by simply
learned models
\square Global Inference can be used to amplify simple models (and even allow training with minimal supervision).

Three Ideas Underlying Constrained Conditional Models

- Idea 1:

Modeling

Separate modeling and problem formulation from algorithms
\square Similar to the philosophy of probabilistic modeling

- Idea 2:

Keep models simple, make expressive decisions (via constraints)
\square Unlike probabilistic modeling, where models become more expressive

- Idea 3:

Expressive structured decisions can be supported by simply
learned models
\square Global Inference can be used to amplify simple models (and even allow training with minimal supervision).

Three Ideas Underlying Constrained Conditional Models

- Idea 1:

Modeling

Separate modeling and problem formulation from algorithms
\square Similar to the philosophy of probabilistic modeling

- Idea 2:

Inference

Keep models simple, make expressive decisions (via constraints)
\square Unlike probabilistic modeling, where models become more expressive

- Idea 3:

Expressive structured decisions can be supported by simply
learned models
\square Global Inference can be used to amplify simple models (and even allow training with minimal supervision).

Three Ideas Underlying Constrained Conditional Models

- Idea 1:

Modeling

Separate modeling and problem formulation from algorithms
\square Similar to the philosophy of probabilistic modeling

- Idea 2:

Inference

Keep models simple, make expressive decisions (via constraints)
\square Unlike probabilistic modeling, where models become more expressive

- Idea 3:

Learning
Expressive structured decisions can be supported by simply
learned models
\square Global Inference can be used to amplify simple models (and even allow training with minimal supervision).

Inference with General Constraint Structure [Roth\&Vih'04,07]
Recognizing Entities and Relations

Dole 's wife, Elizabeth, is a native of N.C.

Inference with General Constraint Structure [Roth\&Vih'o4,07]

Recognizing Entities and Relations

other	0.05
per	0.85
loc	0.10

other	0.10
per	0.60
loc	0.30

other	0.05
per	0.50
loc	0.45

Dole 's wife, Elizabeth, is a native of N.C.

irrelevant	0.05
spouse_of	0.45
born_in	0.50

irrelevant	0.10
spouse_of	0.05
born_in	0.85

Inference with General Constraint Structure [Roth\&Vih'o4,07]

Recognizing Entities and Relations

other	0.05
per	0.85
loc	0.10

other	0.10
per	0.60
loc	0.30

other	0.05
per	0.50
loc	0.45

Dole 's wife, Elizabeth, is a native of N.C.

irrelevant	0.05
spouse_of	0.45
born_in	$\mathbf{0 . 5 0}$

irrelevant	0.10
spouse_of	0.05
born_in	$\mathbf{0 . 8 5}$

Inference with General Constraint Structure [Roth\&yih'04,07]
Recognizing Entities and Relations

other	0.05
per	0.85
loc	0.10

other	0.10
per	0.60
loc	0.30

other	0.05
per	0.50
loc	0.45

Dole 's wife, Elizabeth, is a native of N.C.

irrelevant	0.05
spouse_of	0.45
born_in	$\mathbf{0 . 5 0}$

irrelevant	0.10
spouse_of	0.05
born_in	$\mathbf{0 . 8 5}$

Inference with General Constraint Structure [Roth\&yih'04,07]
Recognizing Entities and Relations

other	0.05
per	0.50
loc	$\mathbf{0 . 4 5}$

Dole 's wife, Elizabeth, is a native of N.C.

irrelevant	0.05
spouse_of	0.45
born_in	$\mathbf{0 . 5 0}$

irrelevant	0.10
spouse_of	0.05
born_in	$\mathbf{0 . 8 5}$

Inference with General Constraint Structure [Roth\&yih'04,07]

Recognizing Entities and Relations

other	0.05
per	0.85
loc	0.10

other	0.10
per	0.60
loc	0.30

other	0.05
per	0.50
loc	0.45

Dole 's wife, Elizabeth, is a native of N.C.

Inference with General Constraint Structure [Roth\&yih'04,07]
Recognizing Entities and Relations

other	0.05
per	0.85
loc	0.10

other	0.10
per	0.60
loc	0.30

other	0.05
per	0.50
loc	0.45

Dole 's wife, Elizabeth, is a native of N.C.

Inference with General Constraint Structure [Roth\&Yih Recognizing Entities and Relations

other	0.05
per	0.85
loc	0.10

other	0.10
per	0.60
loc	0.30

Dole 's wife, Elizabeth, is a native of N.C.

Inference with General Constraint Structure [Roth\&Yih
Recognizing Entities and Relations

other	0.05
per	0.85
loc	0.10

other	0.10
per	0.60
loc	0.30

Dole 's wife, Elizabeth, is a native of N.C.

Inference with General Constraint Structure [Roth\&Yih Recognizing Entities and Relations

Improvement over no inference: 2-5\%

other	0.05
per	0.85
loc	0.10

other	0.10
per	0.60
loc	0.30

Dole 's wife, Elizabeth, is a na
$\cdots \quad$ Key Questions:

How to guide the global inference?
How to learn? Why not Jointly?

irrelevant	0.05
spouse_of	0.45
born_in	0.50

irrelevant	0.10
spouse_of	0.05
born_in	$\mathbf{0 . 8 5}$

Inference with General Constraint Structure [Roth\&Yih inference: 2-5\%
Recognizing Entities and Relations

other	0.05
per	0.85
loc	0.10

other	0.10
per	0.60
loc	0.30

Dole 's wife, Elizabeth, is a na
\cdots Key Questions:

How to guide the global inference? How to learn? Why not Jointly?

irrelevant	0.05
spouse_of	0.45
born_in	0.50

irrelevant	0.10
spouse_of	0.05
born_in	$\mathbf{0 . 8 5}$

Models could be learned separately; constraints may come up only at decision time.

Inference with General Constraint Structure [Roth\&YiA Recognizing Entities and Relations

other	0.05	other 0.10 amax $\sum_{y} \operatorname{score}(y=v)$$[[y=v]]=$

$$
\begin{gathered}
=\operatorname{argmax} \operatorname{score}\left(\mathrm{E}_{1}=\mathrm{PER}\right) \cdot\left[\left[\mathrm{E}_{1}=\mathrm{PER}\right]\right]+\operatorname{score}\left(\mathrm{E}_{1}=\mathrm{LOC}\right) \cdot\left[\left[\mathrm{E}_{1}=\mathrm{LOC}\right]\right]+\ldots \\
\text { score }\left(\mathrm{R}_{1}=\mathrm{S}-\mathrm{of}\right) \cdot\left[\left[\mathrm{R}_{1}=\mathrm{S}-\mathrm{of}\right]\right]+\ldots \ldots
\end{gathered}
$$

Subject to Constraints

Irrelevanl	U.US			
spouse_of	0.45			
born_in	0.50	\quad	Irremevamil	U.1U
:---	:---	:---		
spouse_of	0.05			
born_in	0.85			

Models could be learned separately; constraints may come up only at decision time.

Inference with General Constraint Structure [Roth\&yit

| other | 0.05 | other 0.10 |
| :--- | :--- | :--- | :--- |

An Objective function that incorporates
= argr
suon A constrained
Subject to Constraints

Irrelevanli	U.U5
spouse_of	0.45
born_in	0.50

Irrerevanit	U.1U
spouse_of	0.05
born_in	$\mathbf{0 . 8 5}$

Models could be learned separately; constraints may come up only at decision time.

Constrained Conditional Models

$$
\underset{y}{\operatorname{argmax}} \boldsymbol{\lambda} \cdot F(x, y)-\sum_{i=1}^{K} \rho_{i} d\left(y, 1_{C_{i}(x)}\right)
$$

Constrained Conditional Models

$$
\underset{y}{\operatorname{argmax}} \boldsymbol{\lambda} \cdot F(x, y)-\sum_{i=1}^{K} \rho_{i} d\left(y, 1_{C_{i}(x)}\right)
$$

Constrained Conditional Models

Constrained Conditional Models

Constrained Conditional Models

(Soft) constraints component

Constrained Conditional Models

Constrained Conditional Models

How to solve?
This is an Integer Linear Program
Solving using ILP packages gives an exact solution.

Cutting Planes, Dual Decomposition \& other search techniques are possible

How to train?
Training is learning the objective function

Decouple? Decompose?
How to exploit the structure to minimize supervision?

Structured Prediction: Inference

- Inference: given input \mathbf{x} (a document, a sentence),
predict the best structure $\mathrm{y}=\left\{\mathrm{y}_{1}, \mathrm{Y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right\} \in \mathrm{Y}$ (entities \& relations)
\square Assign values to the $y_{1}, y_{2}, \ldots, y_{n}$, accounting for dependencies among $y_{i} s$

Placing in context: a crash course in structured prediction

Structured Prediction: Inference

- Inference: given input \mathbf{x} (a document, a sentence),
predict the best structure $\mathrm{y}=\left\{\mathrm{y}_{1}, \mathrm{Y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right\} \in \mathrm{Y}$ (entities \& relations)
\square Assign values to the $y_{1}, y_{2}, \ldots, y_{n}$, accounting for dependencies among $y_{i} s$

Placing in context: a crash course in structured prediction

Structured Prediction: Inference

- Inference: given input \mathbf{x} (a document, a sentence),
predict the best structure $\mathrm{y}=\left\{\mathrm{y}_{1}, \mathrm{Y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right\} \in \mathrm{Y}$ (entities \& relations)
\square Assign values to the $y_{1}, y_{2}, \ldots, y_{n}$, accounting for dependencies among $y_{i} s$
- Inference is expressed as a maximization of a scoring function

$$
\mathrm{y}^{\prime}=\operatorname{argmax}_{\mathrm{y} \in \mathcal{Y}} \mathrm{w}^{\top} \phi(\mathrm{x}, \mathrm{y})
$$

Placing in context: a crash course in structured prediction

Structured Prediction: Inference

- Inference: given input \mathbf{x} (a document, a sentence),
predict the best structure $\mathrm{y}=\left\{\mathrm{y}_{1}, \mathrm{Y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right\} \in \mathrm{Y}$ (entities \& relations)
\square Assign values to the $y_{1}, y_{2}, \ldots, y_{n}$, accounting for dependencies among $y_{i} s$
- Inference is expressed as a maximization of a scoring function

$$
y^{\prime}=\operatorname{argmax}_{y \in \mathcal{Y}} w^{\top} \phi(x, y) \quad \begin{aligned}
& \text { Joint features } \\
& \text { on inputs and } \\
& \text { outputs }
\end{aligned}
$$

Placing in context: a crash course in structured prediction

Structured Prediction: Inference

- Inference: given input \mathbf{x} (a document, a sentence),
predict the best structure $\mathrm{y}=\left\{\mathrm{y}_{1}, \mathrm{Y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right\} \in \mathrm{Y}$ (entities \& relations)
\square Assign values to the $y_{1}, y_{2}, \ldots, y_{n}$, accounting for dependencies among $y_{i} s$
- Inference is expressed as a maximization of a scoring function

Placing in context: a crash course in structured prediction

Structured Prediction: Inference

- Inference: given input \mathbf{x} (a document, a sentence),
predict the best structure $\mathrm{y}=\left\{\mathrm{y}_{1}, \mathrm{Y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right\} \in \mathrm{Y}$ (entities \& relations)
\square Assign values to the $y_{1}, y_{2}, \ldots, y_{n}$, accounting for dependencies among $y_{i} s$
- Inference is expressed as a maximization of a scoring function

Placing in context: a crash course in structured prediction

Structured Prediction: Inference

- Inference: given input \mathbf{x} (a document, a sentence),
predict the best structure $\mathrm{y}=\left\{\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right\} \in \mathrm{Y}$ (entities \& relations)
\square Assign values to the $y_{1}, y_{2}, \ldots, y_{n}$, accounting for dependencies among $y_{i} s$
- Inference is expressed as a maximization of a scoring function

- Inference requires, in principle, touching all $y \in Y$ at decision time, when we are given $x \in X$ and attempt to determine the best $y \in Y$ for it, given w

Placing in context: a crash course in structured prediction

Structured Prediction: Inference

- Inference: given input \mathbf{x} (a document, a sentence),
predict the best structure $\mathrm{y}=\left\{\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{n}\right\} \in \mathrm{Y}$ (entities \& relations)
\square Assign values to the $y_{1}, y_{2}, \ldots, y_{n}$, accounting for dependencies among $y_{i} s$
- Inference is expressed as a maximization of a scoring function

- Inference requires, in principle, touching all $y \in Y$ at decision time, when we are given $x \in X$ and attempt to determine the best $y \in Y$ for $i t$, given w
\square For some structures, inference is computationally easy.
\square Eg: Using the Viterbi algorithm
\square In general, NP-hard (can be formulated as an ILP)

Structured Prediction: Learning

- Learning: given a set of structured examples $\{(x, y)\}$ find a scoring function w that minimizes empirical loss.

Structured Prediction: Learning

- Learning: given a set of structured examples $\{(x, y)\}$ find a scoring function w that minimizes empirical loss.
- Learning is thus driven by the attempt to find a weight vector w such that for each given annotated example ($\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}$):

Structured Prediction: Learning

- Learning: given a set of structured examples $\{(x, y)\}$
find a scoring function w that minimizes empirical loss.
- Learning is thus driven by the attempt to find a weight vector w such that for each given annotated example (x_{i}, y_{i}):

Score of annotated structure

Penalty for predicting other structure

Structured Prediction: Learning

- Learning: given a set of structured examples $\{(x, y)\}$ find a scoring function w that minimizes empirical loss.
- Learning is thus driven by the attempt to find a weight vector w such that for each given annotated example ($\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}$):

$$
\mathbf{w}^{T} \phi\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right) \geq \mathbf{w}^{T} \phi\left(\mathbf{x}_{i}, \mathbf{y}\right)+\Delta\left(\mathbf{y}, \mathbf{y}_{i}\right)
$$

Structured Prediction: Learning

- Learning: given a set of structured examples $\{(x, y)\}$ find a scoring function w that minimizes empirical loss.
- Learning is thus driven by the attempt to find a weight vector w such that for each given annotated example ($\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}$):
$\forall \mathbf{y} \quad \mathbf{w}^{T} \phi\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right) \geq \mathbf{w}^{T} \phi\left(\mathbf{x}_{i}, \mathbf{y}\right)+\Delta\left(\mathbf{y}, \mathbf{y}_{i}\right)$

Structured Prediction: Learning

- Learning: given a set of structured examples $\{(x, y)\}$ find a scoring function w that minimizes empirical loss.
- Learning is thus driven by the attempt to find a weight vector w such that for each given annotated example (x_{i}, y_{i}):
$\forall \mathrm{y} \quad \mathbf{w}^{T} \phi\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right) \geq \mathbf{w}^{T} \phi\left(\mathbf{x}_{i}, \mathbf{y}\right)+\Delta\left(\mathbf{y}, \mathbf{y}_{i}\right)$
- We call these conditions the learning constraints.

Structured Prediction: Learning

- Learning: given a set of structured examples $\{(x, y)\}$ find a scoring function w that minimizes empirical loss.
- Learning is thus driven by the attempt to find a weight vector w such that for each given annotated example ($\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}$):
$\forall \mathbf{y} \quad \mathbf{w}^{T} \phi\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right) \geq \mathbf{w}^{T} \phi\left(\mathbf{x}_{i}, \mathbf{y}\right)+\Delta\left(\mathbf{y}, \mathbf{y}_{i}\right)$
- We call these conditions the learning constraints.
- In most learning algorithms used today, the update of the weight vector w is done in an on-line fashion,
\square Think about it as Perceptron; this procedure applies to Structured Perceptron, CRFs, Linear Structured SVM

Structured Prediction: Learning

- Learning: given a set of structured examples $\{(x, y)\}$ find a scoring function w that minimizes empirical loss.
- Learning is thus driven by the attempt to find a weight vector w such that for each given annotated example (x_{i}, y_{i}):
$\forall \mathbf{y} \quad \mathbf{w}^{T} \phi\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right) \geq \mathbf{w}^{T} \phi\left(\mathbf{x}_{i}, \mathbf{y}\right)+\Delta\left(\mathbf{y}, \mathbf{y}_{i}\right)$
- We call these conditions the learning constraints.
- In most learning algorithms used today, the update of the weight vector w is done in an on-line fashion,
\square Think about it as Perceptron; this procedure applies to Structured Perceptron, CRFs, Linear Structured SVM
- W.l.o.g. (almost) we can thus write the generic structured learning algorithm as follows:

Structured Prediction: Learning Algorithm

- For each example $\left(x_{i}, y_{i}\right)$
- Do: (with the current weight vector w)
\square Predict: perform Inference with the current weight vector
$\mathbf{y}_{\mathbf{i}}^{\prime}=\operatorname{argmax}_{\mathbf{y} \in \mathcal{Y}} \mathbf{w}^{\boldsymbol{\top}} \phi\left(\mathbf{x}_{\mathrm{i}}, \mathbf{y}\right)$
\square Check the learning constraints
- Is the score of the current prediction better than of ($\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}$) ?
\square If Yes - a mistaken prediction
- Update w
\square Otherwise: no need to update w on this example
- EndFor

Structured Prediction: Learning Algorithm

- For each example $\left(x_{i}, y_{i}\right)$
- Do: (with the current weight vector w)
\square Predict: perform Inference with the current weight vector
$-\mathbf{y}_{\mathbf{i}}^{\prime}=\operatorname{argmax}_{\mathbf{y} \in \mathcal{Y}} \mathbf{w}^{\boldsymbol{\top}} \boldsymbol{\phi}\left(\mathbf{x}_{\mathrm{i}}, \mathbf{y}\right)$
\square Check the learning constraints
- Is the score of the current prediction better than of ($\left.x_{i}, y_{i}\right)$?
\square If Yes - a mistaken prediction
- Update w
\square Otherwise: no need to update w on this example
- EndFor

Structured Prediction: Learning Algorithm

- For each example $\left(x_{i}, y_{i}\right)$
- Do: (with the current weight vector w)
\square Predict: perform Inference with the current weight vector
$\mathbf{y}_{\mathbf{i}}^{\prime}=\operatorname{argmax}_{\mathbf{y} \in \mathcal{Y}} \mathbf{w}^{\boldsymbol{\top}} \phi\left(\mathbf{x}_{\mathrm{i}}, \mathbf{y}\right)$
\square Check the learning constraints
- Is the score of the current prediction better than of ($\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}$) ?
\square If Yes - a mistaken prediction
- Update w
\square Otherwise: no need to update w on this example
- EndFor

Structured Prediction: Learning Algorithm

- For each example $\left(x_{i}, y_{i}\right)$
- Do: (with the current weight vector w)
\square Predict: perform Inference with the current weight vector
$\mathbf{y}_{\mathbf{i}}^{\prime}=\operatorname{argmax}_{\mathbf{y} \in \mathcal{Y}} \mathbf{w}^{\boldsymbol{\top}} \phi\left(\mathbf{x}_{\mathrm{i}}, \mathbf{y}\right)$
\square Check the learning constraints
- Is the score of the current prediction better than of ($\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}$) ?
\square If Yes - a mistaken prediction
- Update w
\square Otherwise: no need to update w on this example
- EndFor

Structured Prediction: Learning Algorithm

- For each example (x_{i}, y_{i})

In the structured case, the prediction (inference) step is often intractable and needs to be done many times

- Do: (with the current weight vector w)
\square Predict: perform Inference with the current weight vector
$y_{i}^{\prime}=\operatorname{argmax}_{\mathbf{y} \in \mathcal{Y}} \mathbf{w}^{\boldsymbol{\top}} \phi\left(\mathbf{x}_{\mathrm{i}}, \mathbf{y}\right)$
\square Check the learning constraints
- Is the score of the current prediction better than of ($\left.x_{i}, y_{i}\right)$?
\square If Yes - a mistaken prediction
- Update w
\square Otherwise: no need to update w on this example
- EndFor

Structured Prediction: Learning Algorithm

- For each example $\left(x_{i}, y_{i}\right)$

Solution I:

decompose the scoring function to EASY and HARD parts

- Do:
\square Predict: perform Inference with the current weight vector
$-y_{i}^{\prime}=\operatorname{argmax}_{\mathrm{y} \in \mathcal{Y}} \mathbf{w}_{\mathrm{EASY}}{ }^{\top} \phi_{\mathrm{EASY}}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}\right)+\mathbf{w}_{\text {HARD }}{ }^{\top} \boldsymbol{\phi}_{\text {HARD }}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}\right)$
\square Check the learning constraint
- Is the score of the current prediction better than of ($\left.x_{i}, y_{i}\right)$?
\square If Yes - a mistaken prediction
- Update w
\square Otherwise: no need to update w on this example
- EndDo

Structured Prediction: Learning Algorithm

- For each example $\left(x_{i}, y_{i}\right)$

Solution I:

decompose the scoring function to EASY and HARD parts

- Do:
\square Predict: perform Inference with the current weight vector
$\mathbf{y}_{\mathrm{i}}{ }^{\prime}=\operatorname{argmax}_{\mathrm{y} \in \mathcal{Y}} \mathbf{w}_{\mathrm{EASY}}{ }^{\top} \phi_{\mathrm{EASY}}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}\right)+\mathbf{w}_{\text {HARD }}{ }^{\top} \phi_{\text {HARD }}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}\right)$
\square Check the learning constraint
- Is the score of the current prediction better than of ($\left.x_{i}, y_{i}\right)$?
\square If Yes - a mistaken prediction
- Update w
\square Otherwise: no need to update w on this example
- EndDo

EASY: could be feature functions that correspond to an HMM, a linear CRF, or even $\phi_{\text {EASY }}(x, y)=\phi(x)$, omiting dependence on y, corresponding to classifiers. May not be enough if the HARD part is still part of each inference step.

Structured Prediction: Learning Algorithm

- For each example $\left(x_{i}, y_{i}\right)$
- Do:
\square Predict: perform Inference with the current weight vector
$-y_{i}^{\prime}=\operatorname{argmax}_{\mathrm{y} \in \mathcal{Y}} \mathbf{w}_{\mathrm{EASY}}{ }^{\top} \phi_{\mathrm{EASY}}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}\right)+\mathbf{w}_{\text {HARD }}{ }^{\top} \phi_{\text {HARD }}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}\right)$
\square Check the learning constraint
- Is the score of the current prediction better than of ($\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}$) ?
\square If Yes - a mistaken prediction
- Update w
\square Otherwise: no need to update w on this example
- EndDo

Structured Prediction: Learning Algorithm

- For each example $\left(x_{i}, y_{i}\right)$

> Solution II: Disregard some of the dependencies: assume a simple model.

- Do:
\square Predict: perform Inference with the current weight vector
$\mathbf{y}_{i}^{\prime}=\operatorname{argmax}_{\mathrm{y} \in \mathcal{Y}} \mathbf{w}_{\text {EASY }}{ }^{\top} \phi_{\text {EASY }}\left(x_{i}, y\right)+\mathbf{w h a r d}^{\top} \phi_{\text {HARD }}\left(x_{i}, y\right)$
- Is the score of the current prediction better than of ($\left.x_{i}, y_{i}\right)$?
\square If Yes - a mistaken prediction
- Update w
\square Otherwise: no need to update w on this example
- EndDo

Structured Prediction: Learning Algorithm

- For each example $\left(x_{i}, y_{i}\right)$
- Do:
\square Predict: perform Inference with the current weight vector
$\square y_{i}^{\prime}=\operatorname{argmax}_{\mathrm{y} \in \mathcal{Y}} \mathbf{w}_{\mathrm{EASY}}{ }^{\top} \phi_{\mathrm{EASY}}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}\right)+\mathbf{w}_{\text {HARD }}{ }^{\top} \phi_{\text {HARD }}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}\right)$
\square Check the learning constraint
- Is the score of the current prediction better than of (x_{i}, y_{i})?
\square If Yes - a mistaken prediction
- Update w
\square Otherwise: no need to update w on this example
- EndDo

Structured Prediction: Learning Algorithm

- For each example $\left(x_{i}, y_{i}\right)$
- Do:
\square Predict: perform Inference with the current weight vector
$\mathbf{y}_{i}^{\prime}=\operatorname{argmax}_{\mathrm{y} \in \mathcal{Y}} \mathbf{w}_{\text {EASY }}{ }^{\top} \phi_{\text {EASY }}\left(x_{i}, y\right)+\mathbf{w h a r d}^{\top} \phi_{\text {HARD }}\left(x_{i}, y\right)$
- Is the score of the current prediction better than of ($\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}$)?
\square If Yes - a mistaken prediction
- Update w
\square Otherwise: no need to update w on this example
- EndDo
$y_{i}^{\prime}=\operatorname{argmax}_{\mathrm{y} \in \mathcal{Y}} \mathbf{w}_{\mathrm{EASY}}{ }^{\top} \phi_{\mathrm{EASY}}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}\right)+\mathrm{w}_{\text {HARD }}{ }^{\top} \phi_{\text {HARD }}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}\right)$

Structured Prediction: Learning Algorithm

- For each example $\left(x_{i}, y_{i}\right)$
- Do:

Solution III: Disregard some of the dependencies during learning; take into account at decision time
\square Predict: perform Inference with the current weight vector
$\mathbf{y}_{\mathbf{i}}^{\prime}=\operatorname{argmax}_{\mathrm{y} \in \mathcal{Y}} \mathbf{w}_{\text {EASY }}{ }^{\top} \phi_{\text {EASY }}\left(x_{i}, y\right)+\mathbf{w}_{\text {HARD }}{ }^{\top} \phi_{\text {HARD }}\left(x_{i}, y\right)$

- Is the score of the current prediction better than of ($\left.x_{i}, y_{i}\right)$?
\square If Yes - a mistaken prediction
- Update w
\square Otherwise: no need to update w on this example
- EndDo
$y_{i}^{\prime}=\operatorname{argmax}_{\mathrm{y} \in \mathcal{Y}} \mathbf{w}_{\mathrm{EASY}}{ }^{\top} \phi_{\mathrm{EASY}}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}\right)+\mathbf{w}_{\text {HARD }}{ }^{\top} \phi_{\text {HARD }}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}\right)$

Structured Prediction: Learning Algorithm

- For each example $\left(x_{i}, y_{i}\right)$
- Do:

Solution III: Disregard some of the dependencies during learning; take into account at decision time
\square Predict: perform Inference with the current weight vector
$\square \mathbf{y}_{\mathbf{i}}=\operatorname{argmax}_{\mathbf{y} \in \mathcal{Y}} \mathbf{w}_{\text {EASY }}{ }^{\top} \phi_{\text {EASY }}\left(x_{i}, y\right)+\mathbf{w}_{\text {HARD }}{ }^{\top} \phi_{\text {RARD }}\left(x_{i}, y\right)$

- Is the score of the current prediction better than of ($\left.x_{i}, y_{i}\right)$?
\square If Yes - a mistaken prediction
- Update w
\square Otherwise: no need to update w on this example
- EndDo
$y_{i}^{\prime}=\operatorname{argmax}_{\mathrm{y} \in \mathcal{Y}} \mathbf{w}_{\mathrm{EASY}}{ }^{\top} \phi_{\mathrm{EASY}}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}\right)+\mathbf{w}_{\text {HARD }}{ }^{\top} \phi_{\text {HARD }}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}\right)$

This is the most commonly used solution in NLP today

Constrained Conditional Models

How to solve?
This is an Integer Linear Program
Solving using ILP packages gives an exact solution.

Cutting Planes, Dual Decomposition \& other search techniques are possible

How to train?
Training is learning the objective function

Decouple? Decompose?
How to exploit the structure to minimize supervision?

Constrained Conditional Models

Any MAP problem w.r.t. any probabilistic model, can be formulated as an ILP [Roth+ 04, Taskar 04]

How to solve?
This is an Integer Linear Program
Solving using ILP packages gives an exact solution.

Cutting Planes, Dual Decomposition \& other search techniques are possible

How to train?
Training is learning the objective function

Decouple? Decompose?
How to exploit the structure to minimize supervision?

Examples: CCM Formulations

$$
\underset{y}{\operatorname{argmax}} \boldsymbol{\lambda} \cdot F(x, y)-\sum_{i=1}^{K} \rho_{i} d\left(y, 1_{C_{i}(x)}\right)
$$

Examples: CCM Formulations

$$
\underset{y}{\operatorname{argmax}} \boldsymbol{\lambda} \cdot F(x, y)-\sum_{i=1}^{K} \rho_{i} d\left(y, 1_{C_{i}(x)}\right)
$$

CCMs can be viewed as a general interface to easily combine declarative domain knowledge with data driven statistical models

Examples: CCM Formulations

$$
\underset{y}{\operatorname{argmax}} \boldsymbol{\lambda} \cdot F(x, y)-\sum_{i=1}^{K} \rho_{i} d\left(y, 1_{C_{i}(x)}\right)
$$

CCMs can be viewed as a general interface to easily combine declarative domain knowledge with data driven statistical models

Formulate NLP Problems as ILP problems (inference may be done otherwise)

1. Sequence tagging (HMM/CRF + Global constraints)
2. Sentence Compression (Language Model + Global Constraints)
3. SRL
(Independent classifiers + Global Constraints)

Examples: CCM Formulations

$$
\underset{y}{\operatorname{argmax}} \boldsymbol{\lambda} \cdot F(x, y)-\sum_{i=1}^{K} \rho_{i} d\left(y, 1_{C_{i}(x)}\right)
$$

CCMs can be viewed as a general interface to easily combine declarative domain knowledge with data driven statistical models
\(\left.\begin{array}{|cl}Formulate NLP Problems as ILP problems \& (inference may be done otherwise)

(HMM/CRF + Global constraints)\end{array}\right\}\)	1. Sequence tagging
2. Sentence Compression	
3. SRL	\quad
:---	
(Independent classifiers + Global Constraints)	

Linguistics Constraints

Cannot have both A states and B states in an output sequence.

Examples: CCM Formulations

$$
\underset{y}{\operatorname{argmax}} \boldsymbol{\lambda} \cdot F(x, y)-\sum_{i=1}^{K} \rho_{i} d\left(y, 1_{C_{i}(x)}\right)
$$

CCMs can be viewed as a general interface to easily combine declarative domain knowledge with data driven statistical models

Formulate NLP Problems as ILP problems (inference may be done otherwise)

1. Sequence tagging (HMM/CRF + Global constraints)
2. Sentence Compression (Language Model + Global Constraints)
3. SRL
(Independent classifiers + Global Constraints)

Sentence

Compression/Summarization:
Language Model based:

$$
\operatorname{Argmax} \sum \lambda_{i j k} \mathrm{x}_{\mathrm{ijk}}
$$

Linguistics Constraints

If a modifier chosen, include its head If verb is chosen, include its arguments

Examples: CCM Formulations

$$
\underset{y}{\operatorname{argmax}} \boldsymbol{\lambda} \cdot F(x, y)-\sum_{i=1}^{K} \rho_{i} d\left(y, 1_{C_{i}(x)}\right)
$$

CCMs can be viewed as a general interface to easily combine declarative domain knowledge with data driven statistical models

Formulate NLP Problems as ILP problems (inference may be done otherwise)

1. Sequence tagging
(HMM/CRF + Global constraints)
2. Sentence Compression
(Language Model + Global Constraints)
3. SRL
(Independent classifiers + Global Constraints)

Sentence

Compression/Summarization:
Language Model based:

$$
\operatorname{Argmax} \sum \lambda_{i j k} \mathrm{x}_{\mathrm{ijk}}
$$

Linguistics Constraints

If a modifier chosen, include its head If verb is chosen, include its arguments

Examples: CCM Formulations

$$
\underset{y}{\operatorname{argmax}} \boldsymbol{\lambda} \cdot F(x, y)-\sum_{i=1}^{K} \rho_{i} d\left(y, 1_{C_{i}(x)}\right)
$$

CCMs can be viewed as a general interface to easily combine declarative domain knowledge with data driven statistical models

Formulate NLP Problems as ILP problems (inference may be done otherwise)

1. Sequence tagging (HMM/CRF + Global constraints)
2. Sentence Compression (Language Model + Global Constraints)
3. SRL (Independent classifiers + Global Constraints)

Constrained Conditional Models Allow:

- Learning a simple model (or multiple; or pipelines)
- Make decisions with a more complex model
- Accomplished by directly incorporating constraints to bias/re-rank global decisions composed of simpler models' decisions
- More sophisticated algorithmic approaches exist to bias the output [CoDL: Cheng et. al 07,12; PR: Ganchev et. al. 10; DecL, UEM: Samdani et. al 12]

Semantic Role Labeling (SRL)

I left my pearls to my daughter in my will .
$[I]_{A \theta}$ left $[m y \text { pearls }]_{A 1}$ [to my daughter $]_{A 2}$ [in my will] $]_{A M-L o c}$.

- A0 Leaver
- A1 Things left
- A2 Benefactor
- AM-LOC Location

I left my pearls to my daughter in my will .

Semantic Role Labeling (SRL)

Archetypical Information Extraction
Problem: E.g., Concept Identification and Typing, Event Identification, etc.

I left my pearls to my daughter in my will.
$[I]_{A 0}$ left [my pearls] $]_{A 1}$ [to my daughter] $]_{A 2}$ [in my will] $]_{A M-L O C}$.

- A0 Leaver
- A1 Things left
- A2 Benefactor
- AM-LOC Location

I left my pearls to my daughter in my will.

Algorithmic Approach

- Identify argument candidates
\square Pruning [Xue\&Palmer, EMNLP'04]
\square Argument Identifier
- Binary classification
- Classify argument candidates
\square Argument Classifier
- Multi-class classification
- Inference
\square Use the estimated probability distribution given by the argument classifier
\square Use structural and linguistic constraints
\square Infer the optimal global output

Algorithmic Approach

Identify argument candidates
\square Pruning [Xue\&Palmer, EMNLP’04]
\square Argument Identifier

- Binary classification
- Classify argument candidates
\square Argument Classifier
- Multi-class classification
- Inference
\square Use the estimated probability distribution given by the argument classifier
\square Use structural and linguistic constraints

\square Infer the optimal global output

Algorithmic Approach

- Identify argument candidates
\square Pruning [Xue\&Palmer, EMNLP'04]
\square Argument Identifier
- Binary classification

Classify argument candidates

\square Argument Classifier

- Multi-class classification
- Inference
\square Use the estimated probability distribution given by the argument classifier
\square Use structural and linguistic constraints
\square Infer the optimal global output

Algorithmic Approach

- Identify argument candidates
\square Pruning [Xue\&Palmer, EMNLP'04]
\square Argument Identifier
- Binary classification
- Classify argument candidates

Algorithmic Approach

- Identify argument candidates
\square Pruning [Xue\&Palmer, EMNLP'04]
\square Argument Identifier
- Binary classification
- Classify argument candidates

Algorithmic Approach

- Identify argument candidates
\square Pruning [Xue\&Palmer, EMNLP'04]
\square Argument Identifier
- Binary classification
- Classify argument candidates

Algorithmic Approach

- Identify argument candidates
\square Pruning [Xue\&Palmer, EMNLP'04]
\square Argument Identifier
- Binary classification
- Classify argument candidates
\square Argument Classifier
- Multi-class classification

Inference

$\operatorname{argmax} \sum_{a, t} y^{a, t} c^{a, t}=\sum_{a, t} 1_{a=t} c_{a=t}$ Subject to:

- One label per argument: $\sum_{t} y^{\mathrm{a}, \mathrm{t}}=1$
- No overlapping or embedding
- Relations between verbs and arguments,....

Variable $y^{\text {a,t }}$ indicates whether candidate argument a is assigned a label t.
$\mathrm{c}^{\mathrm{a}, \mathrm{t}}$ is the corresponding model score

Algorithmic Approach

- Identify argument candid
\square Pruning [Xue\&Palmer, EM
\square Argument Identifier
- Binary classification
- Classify argument candid:

$$
\begin{aligned}
& \begin{array}{l}
\text { No duplicate } \forall i, \sum_{y \in \mathcal{Y}} 1_{\left\{y_{i}=y\right\}}=1 \\
\text { argument classes } \\
\forall y \in \mathcal{Y}, \sum_{i=0}^{n-1} 1_{\left\{y_{i}=y\right\}} \leq 1 \\
\quad \text { Unique labels } \\
\forall y \in \mathcal{Y}_{R}, \sum_{i=0}^{n-1} 1_{\left\{y_{i}=y=" \mathrm{R}-\mathrm{Ax} "\right\}} \leq \sum_{i=0}^{n-1} 1_{\left\{y_{i}=" \mathrm{Ax} "\right\}} \\
\forall j, y \in \mathcal{Y}_{C}, 1_{\left\{y_{j}=y=" \mathrm{C}-\mathrm{Ax} "\right\}} \leq \sum_{i=0}^{j} 1_{\left\{y_{i}=" \mathrm{Ax} "\right\}}
\end{array}
\end{aligned}
$$

\square Argument Classifier

- Multi-class classification

- Inference

$\operatorname{argmax} \sum_{\mathrm{a}, \mathrm{t}} \mathrm{y}^{\mathrm{a}, \mathrm{t}} \mathbf{c}^{\mathrm{a}, \mathrm{t}}=\sum_{\mathrm{a}, \mathrm{t}} 1_{\mathrm{a}=\mathrm{t}} \mathrm{c}_{\mathrm{a}=\mathrm{t}}$ Subject to:

- One label per argument: $\sum_{t} y^{a, t}=1$
- No overlapping or embedding
- Relations between verbs and arguments,....

Algorithmic Approach

- Identify argument candidates
\square Pruning [Xue\&Palmer, EMNLP'04]
\square Argument Identifier
- Binary classification
- Classify argument candidates
\square Argument Classifier
- Multi-class classification

Inference

$\operatorname{argmax} \sum_{a, t} y^{a, t} c^{a, t}=\sum_{a, t} 1_{a=t} c_{a=t}$ Subject to:

- One label per argument: $\sum_{\mathrm{t}} \mathrm{y}^{\mathrm{a}, \mathrm{t}}=1$
- No overlapping or embedding
- Relations between verbs and arguments,....

Variable $y^{\text {a,t }}$ indicates whether candidate argument a is assigned a label t .
$\mathrm{c}^{\mathrm{a}, \mathrm{t}}$ is the corresponding model score
e is ine coliespuinimg iliviel score

Learning Based Java: allows a developer to encode constraints in First Order Logic; these are compiled into linear inequalities automatically.

Algorithmic Approach

- Identify argument candidates
\square Pruning [Xue\&Palmer, EMNLP'04]
\square Argument Identifier
- Binary classification
- Classify argument candidates
\square Argument Classifier
- Multi-class classification

Inference

$\operatorname{argmax} \sum_{a, t} y^{a, t} c^{a, t}=\sum_{a, t} 1_{a=t} c_{a=t}$ Subject to:

- One label per argument: $\sum_{\mathrm{t}} \mathrm{y}^{\mathrm{a}, \mathrm{t}}=1$
- No overlapping or embedding
- Relations between verbs and arguments,....

Learning Based Java: allows a developer to encode constraints in First Order Logic; these are compiled into linear inequalities automatically.

Variable $y^{a, t}$ indicates whether candidate argument a is assigned a label t .
$\mathrm{c}^{\mathrm{a}, \mathrm{t}}$ is the corresponding model score

SRL: Posing the Problem

Demo:

http://cogcomp.cs.illinois.edu/

SRL: Posing the Problem

$$
\text { maximize } \sum_{i=0}^{n-1} \sum_{y \in \mathcal{Y}} \lambda_{\mathbf{x}_{i}, y} 1_{\left\{y_{i}=y\right\}}
$$

$$
\text { where } \quad \lambda_{\mathbf{x}, y}=\lambda \cdot F(\mathbf{x}, y)=\lambda_{y} \cdot F(\mathbf{x})
$$

subject to

\square		\boxminus
A	bomb [A1]	killer [A0]
car		
bomb		
that	$\begin{gathered} \text { bomb } \\ \text { (Reference) } \\ {[R-A 1]} \\ \hline \end{gathered}$	
exploded	V : explode	
outside	location	
the	[AM-LOC]	
U.S.		
military	temporal	
base	[AM-TMP]	
in	location	
Beniji	[AM-LOC]	
killed		V: kill
11		corpse [A1]
Iraqi		
citizens		

Demo:

$$
\forall j, y \in \mathcal{Y}_{C}, 1_{\left\{y_{j}=y=" \mathrm{C}-\mathrm{Ax} "\right\}} \leq \sum_{i=0}^{j} 1_{\left\{y_{i}=" \mathrm{Ax} "\right\}}
$$

SRL: Posing the Problem

$$
\text { maximize } \sum_{i=0}^{n-1} \sum_{y \in \mathcal{Y}} \lambda_{\mathbf{x}_{i}, y} 1_{\left\{y_{i}=y\right\}}
$$

$$
\text { where } \quad \lambda_{\mathbf{x}, y}=\lambda \cdot F(\mathbf{x}, y)=\lambda_{y} \cdot F(\mathbf{x})
$$

subject to

\square		\boxminus	
A	bomb [A1]	killer [A0]	
car			
bomb			
that	bomb (Reference) [R-A1]		
exploded	V: explode		
outside	location [AM-LOC]		
the			
U.S.			
military	temporal [AM-TMP]		
base			
in	$\begin{aligned} & \text { location } \\ & \text { [AM-LOC] } \end{aligned}$		
Beniji			
killed		V: kill	
11		corpse [A1]	
Iraqi			
citizens			

$$
\begin{aligned}
& \forall y \in \mathcal{Y}_{R}, \sum_{i=0}^{n-1} 1_{\left\{y_{i}=y=" \mathrm{R}-\mathrm{Ax} "\right\}} \leq \sum_{i=0}^{n-1} 1_{\left\{y_{i}=" \mathrm{Ax} "\right\}} \\
& \forall j, y \in \mathcal{Y}_{C}, 1_{\left\{y_{j}=y=" \mathrm{C}-\mathrm{Ax} "\right\}} \leq \sum_{i=0}^{j} 1_{\left\{y_{i}=" \mathrm{Ax} "\right\}}
\end{aligned}
$$

Demo:

http://cogcomp.cs.illinois.edu/
If there is an Reference-Ax phrase, there is an $A x$

If there is an Continuation-x phrase, there is an Ax before it

SRL: Posing the Problem

\boxminus

A	bomb [A1]	killer [A0]
car		
bomb		
that	$\begin{gathered} \text { bomb } \\ \text { (Reference) } \\ \text { [R-A1] } \\ \hline \end{gathered}$	
exploded	V: explode	
outside	location	
the	[AM-LOC]	
U.S.		
military	temporal	
base	[AM-TMP]	
in	location	
Beniji	[AM-LOC]	
killed		
11		
Iraqi		
citizens		

$$
\begin{aligned}
& \forall y \in \mathcal{Y}_{R}, \sum_{i=0}^{n-1} 1_{\left\{y_{i}=y=" \mathrm{R}-\mathrm{Ax} "\right\}} \leq \sum_{i=0}^{n-1} 1_{\left\{y_{i}=" \mathrm{Ax} "\right\}} \\
& \forall j, y \in \mathcal{Y}_{C}, 1_{\left\{y_{j}=y=" \mathrm{C}-\mathrm{Ax} "\right\}} \leq \sum_{i=0}^{j} 1_{\left\{y_{i}=" \mathrm{Ax} "\right\}}
\end{aligned}
$$

Demo:

http://cogcomp.cs.illinois.edu/
If there is an Reference-Ax phrase, there is an $A x$

If there is an Continuation-x phrase, there is an Ax before it

Verb SRL is not Sufficient

- John, a fast-rising politician, slept on the train to Chicago.
- Verb Predicate: sleep

Verb SRL is not Sufficient

- John, a fast-rising politician, slept on the train to Chicago.
- Verb Predicate: sleep

\square Sleeper: John, a fast-rising politician
\square Location: on the train to Chicago

Verb SRL is not Sufficient

- John, a fast-rising politician, slept on the train to Chicago.
- Verb Predicate: sleep

\square Sleeper: John, a fast-rising politician
\square Location: on the train to Chicago
- Who was John?

Verb SRL is not Sufficient

- Joln, G fast-rising politician, slept on the train to Chicago. Verb Predicate: sleep

\square Sleeper: John, a fast-rising politician
\square Location: on the train to Chicago

Who was John?

\square Relation: Apposition (comma)
\square John, a fast-rising politician

Verb SRL is not Sufficient

- Jon, a fast-rising politician, slept on the train to Chicago. Verb Predicate: sleep

\square Sleeper: John, a fast-rising politician
\square Location: on the train to Chicago

Who was John?

\square Relation: Apposition (comma)
\square John, a fast-rising politician

- What was John's destination?

Verb SRL is not Sufficient

- Jon, fast-rising politician, slept on the train to Chicago. Verb Predicate: sleep

\square Sleeper: John, a fast-rising politician
\square Location: on the train to Chicago

Who was John?

\square Relation: Apposition (comma)
\square John, a fast-rising politician

- What was John's destination?
\square Relation: Destination (preposition)
\square train to Chicago

Verb SRL is not Sufficient

- Jon, fast-rising politician, slept on the train to Chicago. Verb Predicate: sleep

\square Sleeper: John, a fast-rising politician
\square Location: on the train to Chicago

Who was John?

\square Relation: Apposition (comma)
\square John, a fast-rising politician

Identify the relation expressed by the predicate, and its arguments
\square Relation: Destination (preposition)
\square train to Chicago

Verb SRL is not Sufficient

- Jon, fast-rising politician, slept on the train to chicago. Verb Predicate: sleep

Sleeper: John, a fast-rising politician
\square Location: on the train to Chicago

Who was John?

\square Relation: Apposition (comma)
\square John, a fast-rising politician

- What was John's destination?

Identify the relation expressed by the predicate, and its arguments
\square Relation: Destination (preposition)
$\square \underline{\text { train to Chicago }}$

Computational Challenges

- Predict the preposition relations
$\square \quad$ [EMNLP,'11]
- Identify the relation's arguments
$\square \quad$ [Trans. Of ACL, '13]

Verb SRL is not Sufficient

- Jolin, gast-rising politician, slept on the train to chicago.

Verb Predicate: sleep $\quad \downarrow$
Sleeper: John, a fast

- Location: on the

Who was John?
\square Relation: Apposition (comma)
\square John, a fast-rising politician

- What was John's destination?

```
\square ~ R e l a t i o n : ~ D e s t i n a t i o n ~ ( p r e p o s i t i o n )
```

\square train to Chicago

Rocnedye Computation Group

Computational Challenges

- Predict the preposition relations
\square [EMNLP,'11]
- Identify the relation's arguments
$\square \quad$ [Trans. Of ACL, '13]
- Very little supervised data
\square per phenomena
- Minimal annotation
\square only at the predicate level

Verb SRL is not Sufficient

- Jolin, gast-rising politician, slept on the train to chicago.

```
Verb Predicate: sleep
\(\square\) Sleeper: John, a fast-rising politician
```

\square Location: on the train to Chicago

Who was John?

\square Relation: Apposition (comma)
\square John, a fast-rising politician

- What was John's destination?

```
\square ~ R e l a t i o n : ~ D e s t i n a t i o n ~ ( p r e p o s i t i o n )
\square \mp@code { t r a i n ~ t o ~ C h i c a g o }
```

fogndys. Computation Group
CGRy) USIT O ILLNOIS AT URBANA-CHAMPAIGN

Computational Challenges

- Predict the preposition relations
\square [EMNLP,'11]
- Identify the relation's arguments
$\square \quad$ [Trans. Of ACL, '13]
- Very little supervised data
\square per phenomena
- Minimal annotation

Verb SRL is not Sufficient

- Jolin, gast-rising politician, slept on the train to chicago.

Verb Predicate: sleep \downarrow
\square Sleeper: John, a fast-rising politician

\square Location: on the train to Chicago

Who was John?
\square Relation: Apposition (comma)
\square John, a fast-rising politician

- What was John's destination?
\square Relation: Destination (preposition)
\square train to Chicago
decnedge Computation Group
LeGuh Elvo
\square only at the predicate level
- The Learning \& Inference paradigm exploits two principles:
$\square \quad$ Coherency among multiple phenomena
$\square \quad$ Constraining latent structures (relating observed and latent variables)

Computational Challenges

- Predict the preposition relations
\square [EMNLP,'11]
- Identify the relation's arguments
\square [Trans. Of ACL, '13]
- Very little supervised data
\square per phenomena
- Minimal annotation
\square only at the predicate level
- The Learning \& Inference paradigm exploits two principles:
$\square \quad$ Coherency among multiple phenomena
$\square \quad$ Constraining latent structures (relating observed and latent variables)

Input \&
relation

Argument \& their types

Computational Challenges

- Predict the preposition relations
\square [EMNLP,'11]
- Identify the relation's arguments
\square [Trans. Of ACL, '13]
- Very little supervised data
\square per phenomena
- Minimal annotation
\square only at the predicate level
- The Learning \& Inference paradigm exploits two principles:
$\square \quad$ Coherency among multiple phenomena
$\square \quad$ Constraining latent structures (relating observed and latent variables)
- Skip

Argument \& their types

Extended Semantic Role labeling I [EMNLP'12, TACL'13] prepositions, each dictates some relations, which have to cohere.

The bus was heading for Nairobi in Kenya.

Destination

Extended Semantic Role labeling I

 [EMNLP'12, TACL'13]Verb Predicates, Noun predicates, prepositions, each dictates some relations, which have to cohere.

The bus was heading for Nairobi in Kenya.
Location

Destination

Predicate: head. 02
A0 (mover): The bus
A1 (destination): for Nairobi in Kenya

Extended Semantic Role labeling I [EMNLP'12, TACL'13]

Verb Predicates, Noun predicates, prepositions, each dictates some relations, which have to cohere.

Extended Semantic Role labeling I [EMNLP'12, TACL'13]

Verb Predicates, Noun predicates, prepositions, each dictates some relations, which have to cohere.

Predicate arguments from different triggers should be consistent

Extended Semantic Role labeling I [EMNLP'12, TACL'13]

Verb Predicates, Noun predicates, prepositions, each dictates some relations, which have to cohere.

Predicate arguments from different triggers should be consistent

The bus was heading for Nairobi in Kenya.
Joint constraints
linking the two tasks.
Destination \Leftrightarrow A1
Location

Predicate: head. 02
A0 (mover): The bus
A1 (destination) for Nairobi in Kenya

Joint inference (CCMs)

Verb arguments
$\max _{\mathbf{y}} \sum_{t} \sum_{a} y^{a, t} c^{a, t}$

Joint inference (CCMs)

Variable $y^{\mathrm{a}, \mathrm{t}}$ indicates whether candidate argument a is assigned a label t. $\mathrm{c}^{\mathrm{a}, \mathrm{t}}$ is the corresponding model score

Verb arguments
$\max _{\mathbf{y}} \sum_{t} \sum_{a} y^{a, t} c^{a, t}$

Joint inference (CCMs)

Variable $y^{\text {a,t }}$ indicates whether candidate argument a is assigned a label t. $\mathrm{c}^{\mathrm{a}, \mathrm{t}}$ is the corresponding model score

Verb arguments

Each argument label

Joint inference (CCMs)

Variable $y^{\text {a,t }}$ indicates whether candidate

 argument a is assigned a label t. $\mathrm{c}^{\mathrm{a}, \mathrm{t}}$ is the corresponding model scoreVerb arguments

Constraints:

Verb SRL constraints

Joint inference (CCMs)

Variable $y^{\text {a,t }}$ indicates whether candidate argument a is assigned a label t. $\mathrm{c}^{\mathrm{a}, \mathrm{t}}$ is the corresponding model score

Verb arguments

Constraints:

Verb SRL constraints

Joint inference (CCMs)

Variable $\mathrm{y}^{\mathrm{a}, \mathrm{t}}$ indicates whether candidate argument a is assigned a label t. $\mathrm{c}^{\mathrm{a}, \mathrm{t}}$ is the corresponding model score

Verb arguments

Constraints:

Preposition relations

 $\max _{\mathbf{y}} \sum_{\substack{\text { Preposition relation } \\ \text { label }}} \sum_{\text {Preposition }} y^{r, p} c^{r, p}$
Joint inference (CCMs)

Variable $y^{\text {a,t }}$ indicates whether candidate argument a is assigned a label t. $\mathrm{c}^{\mathrm{a}, \mathrm{t}}$ is the corresponding model score

Verb arguments

Constraints:

Verb SRL constraints
Preposition SRL Constraints

Joint inference (CCMs)

Variable $y^{\text {a,t }}$ indicates whether candidate argument a is assigned a label t. $\mathrm{c}^{\mathrm{a}, \mathrm{t}}$ is the corresponding model score

Constraints:

Verb SRL constraints
Preposition SRL Constraints

Joint inference (CCMs)

Variable $y^{\text {a,t }}$ indicates whether candidate argument a is assigned a label t.
 $\mathrm{c}^{\mathrm{a}, \mathrm{t}}$ is the corresponding model score

Constraints:

Verb SRL constraints
Preposition SRL Constraints

+ Joint constraints between tasks; easy with ILP formulations

Joint inference (CCMs)

Variable $y^{\text {a,t }}$ indicates whether candidate argument a is assigned a label t.
 $\mathrm{c}^{\mathrm{a}, \mathrm{t}}$ is the corresponding model score

Constraints:

Verb SRL constraints
Preposition SRL Constraints

+ Joint constraints between tasks; easy with ILP formulations
Joint Inference - no (or minimal) joint learning

Joint inference (CCMs)

Variable $y^{\text {a,t }}$ indicates whether candidate argument a is assigned a label t.
 $\mathrm{c}^{\mathrm{a}, \mathrm{t}}$ is the corresponding model score

Verb arguments

Constraints:

Verb SRL constraints
Preposition SRL Constraints

+ Joint constraints between tasks; easy with ILP formulations
Joint Inference - no (or minimal) joint learning

ESRL II: Predicate-Argument Structure of Prepositions

Poor care led to her death from flu.

ESRL II: Predicate-Argument Structure of Prepositions

Poor care led to her death from flu.

ESRL II: Predicate-Argument Structure of Prepositions

Poor care led to her death from flu.

ESRL II: Predicate-Argument Structure of Prepositions

................her to suffer from infection.
Poor care led to her death from flu.

ESRL II: Predicate-Argument Structure of Prepositions
...............her to suffer from infection.
Poor care led to her death from flu.

ESRL II: Predicate-Argument Structure of Prepositions

...............her to suffer from infection.
Poor care led to her death from flu.

ESRL II: Predicate-Argument Structure of Prepositions Supervision

Poor care led to her death from flu.

...............her to suffer from infection.

ESRL II: Predicate-Argument Structure of Prepositions

 her to suffer from infection.Supervision
Poor care led to her death from flu.

Governor

Governor type
"Knowledge" of the hidden structure (abstractions captured via wordnet classes and distributional clustering) supports better relation prediction. (Similarly: hidden word senses) Inference relating latent and observed variables is a CCM

ESRL II: Predicate-Argument Structure of Prepositions

 her to suffer from infection.Supervision

Prediction y

Poor care led to her death from flu.

Governor type
"Knowledge" of the hidden structure (abstractions captured via wordnet classes and distributional clustering) supports better relation prediction. (Similarly: hidden word senses) Inference relating latent and observed variables is a CCM

Learning with Latent Inference

- Given an example annotated with $r\left(y^{*}\right)$, predict with:

$$
\begin{aligned}
& \operatorname{argmax}_{y} w^{\top} \phi(x,[r(y), h(y)]) \\
& \text { s.t } r\left(y^{*}\right)=r(y)
\end{aligned}
$$

- While satisfying constraints between $r(y)$ and $h(y)$

Learning with Latent Inference

Inference takes into account constrains among parts of the structure (r and h), formulated as a CCM

- Given an example annotated with $\gamma\left(\mathrm{y}^{*}\right)$, predict with:

$$
\begin{aligned}
& \operatorname{argmax}_{\mathrm{y}} \mathrm{w}^{\top} \phi(\mathrm{x},[\mathrm{r}(\mathrm{y}), \mathrm{h}(\mathrm{y})]) \\
& \text { s.t } \mathrm{r}\left(\mathrm{y}^{*}\right)=r(\mathrm{y})
\end{aligned}
$$

- While satisfying constraints between $r(y)$ and $h(y)$

Learning with Latent Inference

Inference takes into account constrains among parts of the structure (r and h), formulated as a CCM

- Given an example annotated with $\gamma\left(y^{*}\right)$, predict with:

$$
\begin{aligned}
& \operatorname{argmax}_{y} w^{\top} \phi(x,[r(y), h(y)]) \\
& \text { s.t } r\left(y^{*}\right)=r(y)
\end{aligned}
$$

- While satisfying constraints between $\mathrm{r}(\mathrm{y})$ and $\mathrm{h}(\mathrm{y})$
- That is: "complete the hidden structure" in the best possible

> Generalization of Latent Structure SVM [Yu \& Joachims '09] \& Indirect Supervision learning [Chang et. al. '10]

Performance

Performance

Performance

Performance

Performance

Extended SRL [Demo]

$\square S R L$			
The	leader [A0]		
bus			
was			
heading	V: head	Governor	Governor
to		Destination	
Nairobi	Destination [A1]	Object	
in			Location
Kenya			Object

Extended SRL [Demo]

$\square S R L$			
The	leader [A0]		
bus			
was			
heading	V: head	Governor	Governor
to		Destination	
Nairobi	Destination [A1]	Object	
in			Location
Kenya			Object

Joint inference over phenomena specific models to enforce consistency

Models trained with latent structure: senses, types, arguments

Extended SRL [Demo]

$\square S R L$		田Preposition ■Preposition $⿴$	
The	leader [A0]		
bus			
was			
heading	V: head	Governor	Governor
to		Destination	
Nairobi	Destination [A1]	Object	
in			Location
Kenya			Object

Joint inference over phenomena specific models to enforce consistency

Models trained with latent structure: senses, types, arguments

- More to do with other relations, discourse phenomena,...

Constrained Conditional Models—ILP Formulations

- Have been shown useful in the context of many NLP problems
- [Roth\&Yih, 04,07: Entities and Relations; Punyakanok et. al: SRL ...]
\square Summarization; Co-reference; Information \& Relation Extraction; Event Identifications and causality ; Transliteration; Textual Entailment; Knowledge Acquisition; Sentiments; Temporal Reasoning, Parsing,...
- Some theoretical work on training paradigms [Punyakanok et. al., 05 more; Constraints Driven Learning, PR, Constrained EM...]
- Some work on Inference, mostly approximations, bringing back ideas on Lagrangian relaxation, etc.

Constrained Conditional Models—ILP Formulations

- Have been shown useful in the context of many NLP problems
- [Roth\&Yih, 04,07: Entities and Relations; Punyakanok et. al: SRL ...]
\square Summarization; Co-reference; Information \& Relation Extraction; Event Identifications and causality ; Transliteration; Textual Entailment; Knowledge Acquisition; Sentiments; Temporal Reasoning, Parsing,...
- Some theoretical work on training paradigms [Punyakanok et. al., 05 more; Constraints Driven Learning, PR, Constrained EM...]
- Some work on Inference, mostly approximations, bringing back ideas on Lagrangian relaxation, etc.
- Good summary and description of training paradigms: [Chang, Ratinov \& Roth, Machine Learning Journal 2012]
- Summary of work \& a bibliography: http://L2R.cs.uiuc.edu/tutorials.html

Outline

- Constrained Conditional Models
\square A formulation for global inference with knowledge modeled as expressive structural constraints
\square Some examples
- Learning with Constrained Latent Representation

Constraints Driven Learning
\square Training Paradigms for Constrained Conditional Models
\square Constraints Driven Learning (CoDL)
\square Unified (Constrained) Expectation Maximization

- Amortized Integer Linear Programming Inference
\square Exploiting Previous Inference Results
- In Inference and in Structured Learning

Constrained Conditional Models (aka ILP Inference)

How to solve?
This is an Integer Linear Program
Solving using ILP packages gives an exact solution.

Cutting Planes, Dual Decomposition \& other search techniques are possible

How to train?
Training is learning the objective function

Decouple? Decompose?
How to exploit the structure to minimize supervision?

Constrained Conditional Models (aka ILP Inference)

How to solve?
This is an Integer Linear Program
Solving using ILP packages gives an exact solution.

Cutting Planes, Dual Decomposition \& other search techniques are possible

How to train?
Training is learning the objective function

Decouple? Decompose?
How to exploit the structure to minimize supervision?

Training Constrained Conditional Models

$$
\underset{y}{\operatorname{argmax}} \boldsymbol{\lambda} \cdot F(x, y)-\sum_{i=1}^{K} \rho_{i} d\left(y, 1_{C_{i}(x)}\right)
$$

Training Constrained Conditional Models

Training Constrained Conditional Models

Training:
Decompose Model from constraints
$\square \quad$ Independently of the constraints (L+I)
$\square \quad$ Jointly, in the presence of the constraints (IBT)

Training Constrained Conditional Models

Decompose Model

Training:Independently of the constraints ($\mathrm{L}+\mathrm{I}$)
$\square \quad$ Jointly, in the presence of the constraints (IBT)
\square Decomposed to simpler models

Training Constrained Conditional Models

Decompose Model

- Training:
$\square \quad$ Independently of the constraints (L+I)
$\square \quad$ Jointly, in the presence of the constraints (IBT)
\square Decomposed to simpler models
- There has been a lot of work, theoretical and experimental, on these issues, starting with [Punyakanok et. al IJCAI'05]
- Not surprisingly, decomposition is good. [Samdani et. al ICML'12]

Training Constrained Conditional Models

Decompose Model

- Training:
$\square \quad$ Independently of the constraints (L+I)
$\square \quad$ Jointly, in the presence of the constraints (IBT)
\square Decomposed to simpler models
- There has been a lot of work, theoretical and experimental, on these issues, starting with [Punyakanok et. al IJCAI'05]
- Not surprisingly, decomposition is good. [Samdani et. al ICML'12]
- There has been a lot of work on exploiting CCMs in learning structures with indirect supervision [Chang et. al, NAACL'10, ICML'10]

Training Constrained Conditional Models

Decompose Model

- Training:
$\square \quad$ Independently of the constraints (L+I)
$\square \quad$ Jointly, in the presence of the constraints (IBT)
\square Decomposed to simpler models
- There has been a lot of work, theoretical and experimental, on these issues, starting with [Punyakanok et. al IJCAI'05]
- Not surprisingly, decomposition is good. [Samdani et. al ICML'12]
- There has been a lot of work on exploiting CCMs in learning structures with indirect supervision [Chang et. al, NAACL'10, ICML'10]
- And Response based Learning [Goldwasser et. al'12, '14]

Information extraction without Prior Knowledge

Lars Ole Andersen. Program analysis and specialization for the C Programming language. PhD thesis. DIKU, University of Copenhagen, May 1994.

Prediction result of a trained HMM

[AUTHORI
[TITLE]
[EDITOR]
[BOOKTITLE]
[TECH-REPORT]
[INSTITUTION]

Lars Ole Andersen. Program analysis and
specialization for the
C
Programming language

- PhD thesis .

DIKU, University of Copenhagen, May 1994.

Information extraction without Prior Knowledge

Lars Ole Andersen. Program analysis and specialization for the C Programming language. PhD thesis. DIKU, University of Copenhagen, May 1994.

```
argmax \boldsymbol{\lambda}\cdotF(x,y)
    y
```

Prediction result of a trained HMM

```
[AUTHOR]
[TITLE]
[EDITOR]
[BOOKTITLE]
[TECH-REPORT]
[INSTITUTION]
    Lars Ole Andersen. Program analysis and
    specialization for the
    C
    Programming language
    . PhD thesis.
    DIKU, University of Copenhagen, May
    1994.

\section*{Information extraction without Prior Knowledge}

Lars Ole Andersen. Program analysis and specialization for the C Programming language. PhD thesis. DIKU, University of Copenhagen, May 1994.
```

argmax \lambda}\cdotF(x,y
y

```

Prediction result of a trained HMM

\author{
[AUTHORI [TITLE] \\ [EDITOR] \\ [BOOKTITLEI \\ [TECH-REPORT] \\ [INSTITUTION]
}


Violates lots of natural constraints!

\section*{Strategies for Improving the Results}

\section*{Strategies for Improving the Results}
- (Pure) Machine Learning Approaches
\(\square\) Higher Order HMM/CRF?
\(\square\) Increasing the window size?
\(\square\) Adding a lot of new features
- Requires a lot of labeled examples

Increasing the model complexity
Increase difficulty of Learning

\section*{Strategies for Improving the Results}
- (Pure) Machine Learning Approaches
\(\square\) Higher Order HMM/CRF?
\(\square\) Increasing the window size?
\(\square\) Adding a lot of new features

Increasing the model complexity
Increase difficulty of Learning
- Requires a lot of labeled examples
\(\square\) What if we only have a few labeled examples?

\section*{Strategies for Improving the Results}
- (Pure) Machine Learning Approaches
\(\square\) Higher Order HMM/CRF?
\(\square\) Increasing the window size?
\(\square\) Adding a lot of new features

Increasing the model complexity
Increase difficulty of Learning
- Requires a lot of labeled examples
\(\square\) What if we only have a few labeled examples?

Can we keep the learned model simple and still make expressive decisions?

\section*{Strategies for Improving the Results}
- (Pure) Machine Learning Approaches
\(\square\) Higher Order HMM/CRF?
\(\square\) Increasing the window size?
\(\square\) Adding a lot of new features

Increasing the model complexity
Increase difficulty of Learning
- Requires a lot of labeled examples
\(\square\) What if we only have a few labeled examples?

Can we keep the learned model simple and still make expressive decisions?
- Other options?
\(\square\) Constrain the output to make sense
\(\square\) Push the (simple) model in a direction that makes sense

\section*{Examples of Constraints}
- Each field must be a consecutive list of words and can appear at most once in a citation.
- State transitions must occur on punctuation marks.
- The citation can only start with \(\underline{A U T H O R}\) or EDITOR.
- The words pp., pages correspond to PAGE.
- Four digits starting with 20xx and 19xx are DATE.
- Quotations can appear only in TITLE

\section*{Examples of Constraints}
- Each field must be a consecutive list of words and can appear at most once in a citation.
- State transitions must occur on punctuation marks.
- The citation can only start with \(\underline{A U T H O R}\) or EDITOR.
- The words pp., pages correspond to PAGE.
- Four digits starting with 20xx and 19xx are DATE.
- Quotations can appear only in TITLE

Easy to express pieces of "knowledge"

\section*{Examples of Constraints}
- Each field must be a consecutive list of words and can appear at most once in a citation.
- State transitions must occur on punctuation marks.
- The citation can only start with \(\underline{A U T H O R}\) or EDITOR.
- The words pp., pages correspond to PAGE.
- Four digits starting with 20xx and 19xx are DATE.
- Quotations can appear only in TITLE

Easy to express pieces of "knowledge"
Non Propositional; May use Quantifiers

\section*{Information Extraction with "Expectation" Constraints}
- Adding constraints, we get correct results!
\(\square\) Without changing the model
\[
\underset{y}{\operatorname{argmax}} \boldsymbol{\lambda} \cdot F(x, y)
\]
- [AUTHOR]
[TITLE]

ITECH-REPORTI PhD thesis.
[INSTITUTION]
[DATE]
May, 1994.

Lars Ole Andersen .
Program analysis and specialization for the
C Programming language .

DIKU, University of Copenhagen,

\section*{Information Extraction with "Expectation" Constraints}
- Adding constraints, we get correct results!
\(\square\) Without changing the model
\[
\underset{y}{\operatorname{argmax}} \boldsymbol{\lambda} \cdot F(x, y)
\]
- IAUTHORI
[TITLE]
[TECH-REPORT]
[INSTITUTIONI
[DATE]

Lars Ole Andersen
Program analysis and specialization for the
C Programming language.


DIKU, University of Copenhager,
May, 1994.
Sopecialization for the .

\section*{Information Extraction with "Expectation" Constraints}
- Adding constraints, we get correct results!
\(\square\) Without changing the model
\[
\underset{y}{\operatorname{argmax}} \boldsymbol{\lambda} \cdot F(x, y)-\sum_{i=1}^{K} \rho_{i} d\left(y, 1_{C_{i}(x)}\right)
\]
- IAUTHORI
[TITLE]
[TECH-REPORT]
[INSTITUTION]
[DATE]

Lars Ole Andersen
Program analysis and specialization for the
C Programming language. PhD thesis.
DIKU, University of Copenhager,
May, 1994.
 agen,

\section*{Information Extraction with "Expectation" Constraints}
- Adding constraints, we get correct results!
\(\square\) Without changing the model
\[
\underset{y}{\operatorname{argmax}} \boldsymbol{\lambda} \cdot F(x, y)-\sum_{i=1}^{K} \rho_{i} d\left(y, 1_{C_{i}(x)}\right)
\]
- IAUTHORI
[TITLE]
[TECH-REPORT]
[INSTITUTION]

Lars Ole Andersen
Program analysis and specialization for the
C Programming language.


DIKU, University of Copenhagen ,

I/ Constrained Conditional Models Allow:
- Learning a simple model
- Make decisions with a more complex model
- Accomplished by directly incorporating constraints to bias/rerank decisions made by the simpler model

\section*{Guiding (Semi-Supervised) Learning with Constraints}

\section*{Guiding (Semi-Supervised) Learning with Constraints}

\section*{Seed examples \(\longrightarrow\) Model}

\section*{Un-labeled Data}

\section*{Guiding (Semi-Supervised) Learning with Constraints}


\section*{Guiding (Semi-Supervised) Learning with Constraints}
- In traditional Semi-Supervised learning the model can drift away from the correct one.


\section*{Guiding (Semi-Supervised) Learning with Constraints}
- In traditional Semi-Supervised learning the model can drift away from the correct one.
- Constraints can be used to generate better training data
\(\square \quad\) At training to improve labeling of un-labeled data (and thus improve the model)
\(\square \quad\) At decision time, to bias the objective function towards favoring constraint satisfaction.
Seed examples Model

Better Predictions

\section*{Decision Time} Un-labeled Data

Constraints
Better model-based labeled data

\section*{Constraints Driven Learning (CoDL)}
[Chang, Ratinov, Roth, ACL'07;ICML'08,MLJ'12] See also: Ganchev et. al. 10 (PR)
( \(\mathrm{w}, \rho\) ) =learn(L)
For N iterations do
\[
\mathrm{T}=\phi
\]

For each x in unlabeled dataset
\(\mathrm{h} \leftarrow \operatorname{argmax}_{\mathrm{y}} \mathrm{w}^{\top} \phi(\mathrm{x}, \mathrm{y})-\sum \rho \mathrm{d}_{\mathrm{C}}(\mathrm{x}, \mathrm{y})\)
\(T=T \cup\{(x, h)\}\)
\((w, \rho)=\gamma(w, \rho)+(1-\gamma) \operatorname{learn}(T)\)

\section*{Constraints Driven Learning (CoDL)}
[Chang, Ratinov, Roth, ACL'07;ICML'08,MLJ'12] See also: Ganchev et. al. 10 (PR)
\((w, \rho)=\) learn \((\mathrm{L})\)
For N iterations do

Supervised learning algorithm parameterized by ( \(\mathbf{w}, \rho\) ). Learning can be justified as an optimization procedure for an objective function
\[
\mathrm{T}=\phi
\]

For each x in unlabeled dataset
\[
\begin{aligned}
& \mathrm{h} \leftarrow \operatorname{argmax}_{\mathrm{y}} \mathrm{w}^{\top} \phi(\mathrm{x}, \mathrm{y})-\sum \rho \mathrm{d}_{\mathrm{C}}(\mathrm{x}, \mathrm{y}) \\
& \mathrm{T}=\mathrm{T} \cup\{(\mathrm{x}, \mathrm{~h})\} \\
&(\mathrm{w}, \rho)=\gamma(\mathrm{w}, \rho)+(1-\gamma) \text { learn }(\mathrm{T})
\end{aligned}
\]

\section*{Constraints Driven Learning (CoDL)}
[Chang, Ratinov, Roth, ACL'07;ICML'08,MLJ'12] See also: Ganchev et. al. 10 (PR)
\((w, \rho)=\) learn \((\mathrm{L})\)
For N iterations do
\[
\mathrm{T}=\phi
\]

For each \(x\) in unlabeled dataset
Inference with constraints: augment the training set
Supervised learning algorithm parameterized by ( \(\mathbf{\omega}, \rho\) ). Learning can be justified as an optimization procedure for an objective function
\[
\begin{aligned}
& \mathrm{h} \leftarrow \operatorname{argmax}_{\mathrm{y}} \mathrm{w}^{\top} \phi(\mathrm{x}, \mathrm{y})-\sum \rho \mathrm{d}_{\mathrm{C}}(\mathrm{x}, \mathrm{y}) \\
& \mathrm{T}=\mathrm{T} \cup\{(\mathrm{x}, \mathrm{~h})\}
\end{aligned}
\]
\[
(w, \rho)=\gamma(w, \rho)+(1-\gamma) \text { learn(T) }
\]

\section*{Constraints Driven Learning (CoDL)}
[Chang, Ratinov, Roth, ACL'07;ICML'08,MLJ'12] See also: Ganchev et. al. 10 (PR)

\section*{\((w, \rho)=\) learn(L)}

For N iterations do
\[
\mathrm{T}=\phi
\]

For each x in unlabeled dataset

Inference with constraints: augment the training set

Supervised learning algorithm parameterized by ( \(\mathbf{w}, \rho\) ). Learning can be justified as an optimization procedure for an objective function
\[
\begin{aligned}
& \mathrm{h} \leftarrow \operatorname{argmax}_{\mathrm{y}} \mathrm{w}^{\top} \phi(\mathrm{x}, \mathrm{y})-\sum \rho \mathrm{d}_{\mathrm{C}}(\mathrm{x}, \mathrm{y}) \\
& \mathrm{T}=\mathrm{T} \cup\{(\mathrm{x}, \mathrm{~h})\}
\end{aligned}
\]
\[
(w, \rho)=\gamma(w, \rho)+(1-\gamma) \text { learn(T) }
\]

Learn from new training data Weigh supervised \& unsupervised models.

\section*{Constraints Driven Learning (CoDL)}

Archetypical Semi/un-supervised learning: A constrained EM
[Chang, Ratinov, Roth, ACL'07;ICML'08,MLJ'12] See also: Ganchev et. al. 10 (PR)
\((w, \rho)=l e a r n(\mathrm{~L})\)
For N iterations do
\[
\mathrm{T}=\phi
\]

For each x in unlabeled dataset

Inference with constraints: augment the training set

Supervised learning algorithm parameterized by ( \(w, \rho\) ). Learning can be justified as an optimization procedure for an objective function
\[
\begin{aligned}
& \mathrm{h} \leftarrow \operatorname{argmax}_{\mathrm{y}} \mathrm{w}^{\top} \phi(\mathrm{x}, \mathrm{y})-\sum \rho \mathrm{d}_{\mathrm{C}}(\mathrm{x}, \mathrm{y}) \\
& \mathrm{T}=\mathrm{T} \cup\{(\mathrm{x}, \mathrm{~h})\}
\end{aligned}
\]
\[
(w, \rho)=\gamma(w, \rho)+(1-\gamma) \text { learn(T) }
\]

Learn from new training data Weigh supervised \& unsupervised models.

\section*{Constraints Driven Learning (CoDL)}

Archetypical Semi/un-supervised See also: Ganchev et. al. 10 (PR)

\section*{\((w, \rho)=\) learn(L)}

For N iterations do
\[
\mathrm{T}=\phi
\] learning: A constrained EM

Supervised learning algorithm parameterized by ( \(\mathbf{w}, \rho\) ). Learning can be justified as an optimization procedure for an objective function

\section*{Inference with constraints:} augment the training set
For each x in unlabeled dataset
\[
\begin{aligned}
& \mathrm{h} \leftarrow \operatorname{argmax}_{\mathrm{y}} \mathrm{w}^{\top} \phi(\mathrm{x}, \mathrm{y})-\sum \rho \mathrm{d}_{\mathrm{C}}(\mathrm{x}, \mathrm{y}) \\
& \mathrm{T}=\mathrm{T} \cup\{(\mathrm{x}, \mathrm{~h})\}
\end{aligned}
\]
\[
(\mathrm{W}, \rho)=\gamma(\mathrm{w}, \rho)+(1-\gamma) \text { learn }(\mathrm{T})
\]

Learn from new training data Weigh supervised \& unsupervised models.

Excellent Experimental Results showing the advantages of using constraints, especially with small amounts of labeled data [Chang et. al, Others]

\section*{Value of Constraints in Semi-Supervised Learning}

Objective function: \(\square\)


\section*{\# of available labeled examples}

\section*{Value of Constraints in Semi-Supervised Learning}

Objective function: \(\square\)


Constraints are used to Bootstrap a semisupervised learner Poor model + constraints used to annotate unlabeled data, which in turn is used to keep training the model.

\section*{\# of available labeled examples}

\section*{CoDL as Constrained Hard EM}
- Hard EM is a popular variant of EM
- While EM estimates a distribution over all y variables in the Estep,
- ... Hard EM predicts the best output in the E-step
\[
y^{*}=\operatorname{argmax}_{\mathrm{y}} P_{w}(\mathrm{y} \mid \mathrm{x})
\]
- Alternatively, hard EM predicts a peaked distribution
\[
q(y)=\delta_{y=y^{*}}
\]
- Constrained-Driven Learning (CODL) - can be viewed as a constrained version of hard EM:
\[
y^{*}=\operatorname{argmax}_{\mathrm{y}: \mathrm{Uy} \leq \mathrm{b}} P_{w}(y \mid x)
\]

\section*{CoDL as Constrained Hard EM}
- Hard EM is a popular variant of EM
- While EM estimates a distribution over all y variables in the Estep,
- ... Hard EM predicts the best output in the E-step
\[
y^{*}=\operatorname{argmax}_{\mathrm{y}} P_{w}(\mathrm{y} \mid \mathrm{x})
\]
- Alternatively, hard EM predicts a peaked distribution
\[
q(y)=\delta_{y=y^{*}}
\]
- Constrained-Driven Learning (CODL) - can be viewed as a constrained version of hard EM: feasible set
\[
y^{*}=\operatorname{argmax}_{\mathrm{y}: \mathrm{Uy}} \leq \mathrm{b} P_{w}(y \mid x)
\]

\section*{Constrained EM: Two Versions}
- While Constrained-Driven Learning [CODL; Chang et al, 07,12] is a constrained version of hard EM: Constraining the feasible set
\[
y^{*}=\operatorname{argmax}_{\mathrm{y}: \mathrm{U} \mathbf{y} \leq \mathrm{b}} P_{w}(y \mid x)
\]
- ... It is possible to derive a constrained version of EM :

\section*{Constrained EM: Two Versions}
- While Constrained-Driven Learning [CODL; Chang et al, 07,12] is a constrained version of hard EM: Constraining the feasible set
\[
y^{*}=\operatorname{argmax}_{\mathrm{y}: \mathrm{Uy} \leq \mathrm{b}} P_{w}(y \mid x)
\]
- ... It is possible to derive a constrained version of EM :
- To do that, constraints are relaxed into expectation constraints on the posterior probability \(q\) :
\[
\mathrm{E}_{q}[U y] \leq b
\]

\section*{Constrained EM: Two Versions}
- While Constrained-Driven Learning [CODL; Chang et al, 07,12] is a constrained version of hard EM:

Constraining the feasible set
\[
y^{*}=\operatorname{argmax}_{\mathrm{y}: \mathrm{Uy} \leq \mathrm{b}} P_{w}(y \mid x)
\]
- ... It is possible to derive a constrained version of EM:
- To do that, constraints are relaxed into expectation constraints on the posterior probability q :
\[
\mathrm{E}_{q}[U y] \leq b
\]
- The E-step now becomes: [Neal \& Hinton '99 view of EM]
\[
\mathbf{q}^{\prime}=\underset{q: q(\mathbf{y}) \geq 0, E_{q}[\mathbf{U} \mathbf{y}] \leq \mathbf{b}, \sum_{\mathbf{y}} q(\mathbf{y})=1}{\arg \min } K L(q(\mathbf{y}) \| P(\mathbf{y} \mid \mathbf{x}, \mathbf{w}))
\]

\section*{Constrained EM: Two Versions}
- While Constrained-Driven Learning [CODL; Chang et al, 07,12] is a constrained version of hard EM:

Constraining the feasible set
\[
y^{*}=\operatorname{argmax}_{\mathrm{y}: \mathrm{Uy} \leq \mathrm{b}} P_{w}(y \mid x)
\]
- ... It is possible to derive a constrained version of EM:
- To do that, constraints are relaxed into expectation constraints on the posterior probability q :
\[
\mathrm{E}_{q}[U y] \leq b
\]
- The E-step now becomes: [Neal \& Hinton '99 view of EM]
\[
\mathbf{q}^{\prime}=\underset{q: q(\mathbf{y}) \geq 0, E_{q}[\mathbf{U} \mathbf{y}] \leq \mathbf{b}, \sum_{\mathbf{y}} q(\mathbf{y})=1}{\arg \min } K L(q(\mathbf{y}) \| P(\mathbf{y} \mid \mathbf{x}, \mathbf{w}))
\]

This is the Posterior Regularization model [PR; Ganchev et al, 10]

\section*{Which (Constrained) EM to use?}
that

\section*{Which (Constrained) EM to use?}
- There is a lot of literature on EM vs hard EM
\(\square\) Experimentally, the bottom line is that with a good enough (???) initialization point, hard EM is probably better (and more efficient).
- E.g., EM vs hard EM (Spitkovsky et al, 10)
that

\section*{Which (Constrained) EM to use?}
- There is a lot of literature on EM vs hard EM
\(\square\) Experimentally, the bottom line is that with a good enough (???) initialization point, hard EM is probably better (and more efficient).
- E.g., EM vs hard EM (Spitkovsky et al, 10)
- Similar issues exist in the constrained case: CoDL vs. PR
that

\section*{Which (Constrained) EM to use?}
- that
- There is a lot of literature on EM vs hard EM
\(\square\) Experimentally, the bottom line is that with a good enough (???) initialization point, hard EM is probably better (and more efficient).
- E.g., EM vs hard EM (Spitkovsky et al, 10)
- Similar issues exist in the constrained case: CoDL vs. PR
- Unified EM (UEM) [Samdani et. al., NAACL-12]
- Provides a continuum of algorithms - from EM to hard EM, and infinitely many new EM algorithms in between.
- Implementation wise, not more complicated than EM

\section*{Unifying Existing EM Algorithms}
\[
K L(q, p ; \gamma)=\sum_{y} \gamma q(y) \log q(y)-q(y) \log p(y)
\]

Changing \(\gamma\) values results in different existing EM algorithms

\section*{Unifying Existing EM Algorithms}
\[
K L(q, p ; \gamma)=\sum_{y} \gamma q(y) \log q(y)-q(y) \log p(y)
\]

Changing \(\gamma\) values results in different existing EM algorithms


\section*{Unifying Existing EM Algorithms}
\[
K L(q, p ; \gamma)=\sum_{y} \gamma q(y) \log q(y)-q(y) \log p(y)
\]

Changing \(\gamma\) values results in different existing EM algorithms

Constraints

\(\gamma\)

\section*{Unifying Existing EM Algorithms}
\[
K L(q, p ; \gamma)=\sum_{y} \gamma q(y) \log q(y)-q(y) \log p(y)
\]

Changing \(\gamma\) values results in different existing EM algorithms

No
Constraints


\section*{Unifying Existing EM Algorithms}
\[
K L(q, p ; \gamma)=\sum_{y} \gamma q(y) \log q(y)-q(y) \log p(y)
\]

Changing \(\gamma\) values results in different existing EM algorithms

No
Constraints

\section*{Unifying Existing EM Algorithms}
\[
K L(q, p ; \gamma)=\sum_{y} \gamma q(y) \log q(y)-q(y) \log p(y)
\]

Changing \(\gamma\) values results in different existing EM algorithms
No
Constraints

With
Constraints
\begin{tabular}{ccccc} 
& Hard EM & & \begin{tabular}{c} 
EM
\end{tabular} & \begin{tabular}{l} 
Annealing (Smith and \\
Eisner, 04; Hofmann, 99)
\end{tabular} \\
\hline\(-\infty\) & & & & \\
\hline
\end{tabular}

\section*{Unifying Existing EM Algorithms}
\[
K L(q, p ; \gamma)=\sum_{y} \gamma q(y) \log q(y)-q(y) \log p(y)
\]

Changing \(\gamma\) values results in different existing EM algorithms


\section*{Unifying Existing EM Algorithms}
\[
K L(q, p ; \gamma)=\sum_{y} \gamma q(y) \log q(y)-q(y) \log p(y)
\]

Changing \(\gamma\) values results in different existing EM algorithms


\section*{Unsupervised POS tagging: Different EM instantiations}
- Measure percentage accuracy relative to EM


\section*{Unsupervised POS tagging: Different EM instantiations}
- Measure percentage accuracy relative to EM


\section*{Unsupervised POS tagging: Different EM instantiations}
- Measure percentage accuracy relative to EM


\section*{Unsupervised POS tagging: Different EM instantiations}
- Measure percentage accuracy relative to EM


\section*{Unsupervised POS tagging: Different EM instantiations}
- Measure percentage accuracy relative to EM


\section*{Unsupervised POS tagging: Different EM instantiations}
- Measure percentage accuracy relative to EM


\section*{Unsupervised POS tagging: Different EM instantiations}
- Measure percentage accuracy relative to EM


\section*{Summary: Constraints as Supervision}

\section*{Summary: Constraints as Supervision}
- Introducing domain knowledge-based constraints can help guiding semi-supervised learning
\(\square\) E.g. "the sentence must have at least one verb", "a field of type \(y\) appears once in a citation"

\section*{Summary: Constraints as Supervision}
- Introducing domain knowledge-based constraints can help guiding semi-supervised learning
\(\square\) E.g. "the sentence must have at least one verb", "a field of type y appears once in a citation"
- Constrained Driven Learning (CoDL) : Constrained hard EM
- PR: Constrained soft EM
- UEM : Beyond "hard" and "soft"

\section*{Summary: Constraints as Supervision}
- Introducing domain knowledge-based constraints can help guiding semi-supervised learning
\(\square\) E.g. "the sentence must have at least one verb", "a field of type \(y\) appears once in a citation"
- Constrained Driven Learning (CoDL) : Constrained hard EM
- PR: Constrained soft EM
- UEM : Beyond "hard" and "soft"
- Related literature:
\(\square\) Constraint-driven Learning (Chang et al, 07; MLJ-12),
\(\square\) Posterior Regularization (Ganchev et al, 10),
\(\square\) Generalized Expectation Criterion (Mann \& McCallum, 08),
\(\square\) Learning from Measurements (Liang et al, 09)
\(\square\) Unified EM (Samdani et al 2012: NAACL-12)

\section*{Outline}
- Constrained Conditional Models
\(\square\) A formulation for global inference with knowledge modeled as expressive structural constraints
\(\square\) Some examples
- Learning with Constrained Latent Representation
- Constraints Driven Learning
\(\square\) Training Paradigms for Constrained Conditional Models
\(\square\) Constraints Driven Learning (CoDL)
\(\square\) Unified (Constrained) Expectation Maximization

Amortized Integer Linear Programming Inference
\(\square\) Exploiting Previous Inference Results
- In Inference and in Structured Learning

\section*{Amortized ILP based Inference}
- Imagine that you already solved many structured output inference problems
\(\square\) Co-reference resolution; Semantic Role Labeling; Parsing citations; Summarization; dependency parsing; image segmentation,...
\(\square\) Your solution method doesn't matter either

\section*{Amortized ILP based Inference}
- Imagine that you already solved many structured output inference problems
\(\square\) Co-reference resolution; Semantic Role Labeling; Parsing citations; Summarization; dependency parsing; image segmentation,...
\(\square\) Your solution method doesn't matter either
- How can we exploit this fact to save inference cost?

After solving \(\mathbf{n}\) inference problems, can we make the \((\mathrm{n}+1)^{\text {th }}\) one faster?

\section*{Amortized ILP based Inference}
- Imagine that you already solved many structured output inference problems
\(\square\) Co-reference resolution; Semantic Role Labeling; Parsing citations; Summarization; dependency parsing; image segmentation,...
\(\square\) Your solution method doesn't matter either
- How can we exploit this fact to save inference cost?

After solving \(\mathbf{n}\) inference problems, can we make the \((\mathrm{n}+1)^{\text {th }}\) one faster?
- We will show how to do it when your problem is formulated as a 0-1 LP, Max cx
\[
A x \leq b
\]

\section*{Amortized ILP based Inference}
- Imagine that you already solved many structured output inference problems
\(\square\) Co-reference resolution; Semantic Role Labeling; Parsing citations; Summarization; dependency parsing; image segmentation,...
\(\square\) Your solution method doesn't matter either
- How can we exploit this fact to save inference cost?

After solving \(\mathbf{n}\) inference problems, can we make the \((\mathrm{n}+1)^{\text {th }}\) one faster?
- We will show how to do it when your problem is formulated as a 0-1 LP, Max cx
\[
A x \leq b
\]
- Very general: All discrete MAP problems can be formulated as 0-1 LPs
- We only care about inference formulation, not algorithmic solution

\section*{Inference for BIG TEXT}
- In NLP, we typically don't solve a single inference problem.
- We solve one or more per sentence.
- Beyond improving the inference algorithm, what can be done?

\section*{Inference for BIG TEXT}
- In NLP, we typically don't solve a single inference problem.
- We solve one or more per sentence.
- Beyond improving the inference algorithm, what can be done?
\begin{tabular}{|l|l|l|l|}
\hline S1 & S2 & POS & \begin{tabular}{l} 
S1 \& S2 look very different \\
but their output structures
\end{tabular} \\
\hline He & She & PRP & \\
\hline is & is & VBZ & \begin{tabular}{l} 
The inference outcomes \\
are the same
\end{tabular} \\
\hline reading & watching & VBG & \\
\hline a & a & DT & \\
\hline book & movie & NN & \\
\hline
\end{tabular}

\section*{Inference for BIG TEXT}
- In NLP, we typically don't solve a single inference problem.
- We solve one or more per sentence.
- Beyond improving the inference algorithm, what can be done?
\begin{tabular}{llll|l|}
\hline S1 & S2 & POS & \begin{tabular}{l} 
S1 \& S2 look very different \\
but their output structures
\end{tabular} \\
\hline He & She & PRP & are the same
\end{tabular}

\section*{The Hope: POS Tagging on Gigaword}

Number of examples of given size


\section*{The Hope: POS Tagging on Gigaword}
- Number of examples of a given size


\section*{The Hope: Dependency Parsing on Gigaword}
- Number of examples of a given size
— Number of unique Dependency Trees


\section*{POS Tagging on Gigaword}


\section*{POS Tagging on Gigaword}


\section*{POS Tagging on Gigaword}


\section*{POS Tagging on Gigaword}


\section*{Redundancy in Inference and Learning}
- This redundancy is clearly important since in all NLP tasks there is a need to solve many inferences, at least one per sentence.
- However, it is as important in structured learning, where algorithms cycle between
- performing inference and
- updating the model.

\section*{Redundancy in Inference and Learning}
- This redundancy is clearly important since in all NLP tasks there is a need to solve many inferences, at least one per sentence.
- However, it is as important in structured learning, where algorithms cycle between
- performing inference and

\# training rounds

\section*{Amortized ILP Inference}
- These statistics show that many different instances are mapped into identical inference outcomes.
\(\square\) Pigeon Hole Principle

\section*{Amortized ILP Inference}
- These statistics show that many different instances are mapped into identical inference outcomes.
\(\square\) Pigeon Hole Principle
- How can we exploit this fact to save inference cost over the life time of the agent?

\section*{Amortized ILP Inference}
- These statistics show that many different instances are mapped into identical inference outcomes.
\(\square\) Pigeon Hole Principle
- How can we exploit this fact to save inference cost over the life time of the agent?

We give conditions on the objective functions (for all objectives with the same \# or variables and same feasible set), under which the solution of a new problem \(Q\) is the same as the one of \(P\) (which we already cached)

\section*{Amortized ILP Inference}

We argue here that the inference formulation provides a new level of abstraction.
- These statistics show that many different instances are mapped into identical inference outcomes.
\(\square\) Pigeon Hole Principle
- How can we exploit this fact to save inference cost over the life time of the agent?

We give conditions on the objective functions (for all objectives with the same \# or variables and same feasible set), under which the solution of a new problem \(Q\) is the same as the one of \(P\) (which we already cached)

\section*{Amortized ILP Inference}

We argue here that the inference formulation provides a new level of abstraction.
- These statistics show that many different instances are mapped into identical inference outcomes.
\(\square\) Pigeon Hole Principle
- How can we exploit this fact to save inference cost over the life time of the agent?

We give conditions on the objective functions (for all objectives with the same \# or variables and same feasible set), under which the solution of a new problem \(Q\) is the same as the one of \(P\) (which we already cached)

If CONDITION (problem cache, new problem) 0.04 ms then (no need to call the solver) SOLUTION(new problem) = old solution
Else
Call base solver and update cache

\section*{Theorem II (Geometric Interpretation)}


\section*{Theorem I}

\[
\begin{gathered}
\max \\
2 x_{1}+3 x_{2}+2 x_{3}+x_{4} \\
\\
x_{1}+x_{2} \leq 1 \\
\\
x_{3}+x_{4} \leq 1
\end{gathered}
\]

\section*{Q}
\(\max 2 x_{1}+4 x_{2}+2 x_{3}+0.5 x_{4}\)
\(x_{1}+x_{2} \leq 1\)
\(x_{3}+x_{4} \leq 1\)
\[
\begin{aligned}
& \left.\mathrm{x}_{\mathrm{p}}^{*}:<0,1,1,0\right\rangle \\
& \mathrm{c}_{\mathrm{p}}:<2,3,2,1> \\
& \mathrm{c}_{\mathrm{Q}}:<2,4,2,0.5>
\end{aligned}
\]

Theorem I

P
\[
\begin{gathered}
\max \\
2 x_{1}+3 x_{2}+2 x_{3}+x_{4} \\
\\
x_{1}+x_{2} \leq 1 \\
\\
x_{3}+x_{4} \leq 1
\end{gathered}
\]

\[
\begin{gathered}
\max \\
2 x_{1}+4 x_{2}+2 x_{3}+0.5 x_{4} \\
\\
x_{1}+x_{2} \leq 1 \\
\\
x_{3}+x_{4} \leq 1
\end{gathered}
\]

The objective coefficients of active variables did not decrease from \(P\) to \(Q\)
\[
\left.\mathrm{x}_{\mathrm{p}}^{*}:<0,1,1,0\right\rangle
\]
\[
\begin{array}{ll}
c_{p}: & <2,3,2,1> \\
c_{Q}: & <2,4,2,0.5>
\end{array}
\]

\section*{Theorem I}

\section*{P}
\[
\begin{gathered}
\max 2 x_{1}+3 x_{2}+2 x_{3}+x_{4} \\
x_{1}+x_{2} \leq 1 \\
x_{3}+x_{4} \leq 1
\end{gathered}
\]

\section*{If}

The objective coefficients of active variables did not decrease from \(P\) to \(Q\)
\[
\left.\mathrm{x}_{\mathrm{p}}^{*}:<0,1,1,0\right\rangle
\]
\[
c_{p}:<2,3,2,1>
\]
\[
c_{Q}:<2,4,2,0.5>
\]
\[
\begin{aligned}
\max & 2 x_{1}+4 x_{2}+2 x_{3}+0.5 x_{4} \\
& x_{1}+x_{2} \leq 1 \\
& x_{3}+x_{4} \leq 1
\end{aligned}
\]

\section*{And}

The objective coefficients of inactive variables did not increase from \(P\) to \(Q\)

\section*{Theorem I}

\section*{P}
\[
\begin{gathered}
\max 2 x_{1}+3 x_{2}+2 x_{3}+x_{4} \\
x_{1}+x_{2} \leq 1 \\
x_{3}+x_{4} \leq 1
\end{gathered}
\]

\section*{If}

The objective coefficients of active variables did not decrease from \(P\) to \(Q\)
\[
\left.\mathrm{x}_{\mathrm{p}}^{*}:<0,1,1,0\right\rangle
\]
\[
\begin{array}{ll}
c_{p}: & <2,3,2,1\rangle \\
c_{Q}: & <2,4,2,0.5>
\end{array}
\]

\section*{Q}
\[
\begin{aligned}
\max & 2 x_{1}+4 x_{2}+2 x_{3}+0.5 x_{4} \\
& x_{1}+x_{2} \leq 1 \\
& x_{3}+x_{4} \leq 1
\end{aligned}
\]

\section*{And}

The objective coefficients of inactive variables did not increase from \(P\) to \(Q\)

Theorem I

Then: The optimal solution of \(Q\) is the same as P's
\begin{tabular}{|c|c|c|}
\hline P & \[
\mathbf{x}_{\mathrm{p}}^{*}=\mathbf{x}^{*}
\] & \[
\mathrm{Q}
\] \\
\hline \[
\begin{gathered}
\max 2 x_{1}+3 x_{2}+2 x_{3}+x_{4} \\
x_{1}+x_{2} \leq 1 \\
x_{3}+x_{4} \leq 1
\end{gathered}
\] & & \[
\begin{gathered}
\max 2 x_{1}+4 x_{2}+2 x_{3}+0.5 x_{4} \\
x_{1}+x_{2} \leq 1 \\
x_{3}+x_{4} \leq 1
\end{gathered}
\] \\
\hline
\end{tabular}
\(\square\)
The objective coefficients of active variables did not decrease from \(P\) to \(Q\)
\[
\mathrm{x}_{\mathrm{p}}^{*}:\langle 0,1,1,0\rangle
\]

\section*{And}

The objective coefficients of inactive variables did not increase from \(P\) to \(Q\)

Theorem I

Then: The optimal solution of \(Q\) is the same as P's
\begin{tabular}{|c|c|}
\hline\(P\) & \(\boxed{Q}\) \\
\hline \(\max 2 x_{1}+3 x_{2}+2 x_{3}+x_{4}\) \\
\(x_{1}+x_{2} \leq 1\) \\
\(x_{3}+x_{4} \leq 1\)
\end{tabular}\(\quad\)\begin{tabular}{|c}
\(x_{P}^{*}=x^{*}\) \\
\(\max 2 x_{1}+4 x_{2}+2 x_{3}+0.5 x_{4}\) \\
\(x_{1}+x_{2} \leq 1\) \\
\(x_{3}+x_{4} \leq 1\)
\end{tabular}

\section*{If}

The objective coefficients of active variables did not decrease from \(P\) to \(Q\)
\[
\left.x_{p}^{*}:<0,1,1,0\right\rangle
\]
\[
\forall i,\left(2 \boldsymbol{y}_{p, i}^{*}-1\right)\left(c_{Q, i}-c_{P, i}\right) \geq 0
\]

Theorem I

Then: The optimal solution of \(Q\) is the same as P's
\begin{tabular}{|c|c|}
\hline\(P\) & \(\boxed{Q}\) \\
\hline \(\max 2 x_{1}+3 x_{2}+2 x_{3}+x_{4}\) \\
\(x_{1}+x_{2} \leq 1\) \\
\(x_{3}+x_{4} \leq 1\)
\end{tabular}\(\quad\)\begin{tabular}{|c}
\(x_{P}^{*}=x^{*}\) \\
\(\max 2 x_{1}+4 x_{2}+2 x_{3}+0.5 x_{4}\) \\
\(x_{1}+x_{2} \leq 1\) \\
\(x_{3}+x_{4} \leq 1\)
\end{tabular}
\(\square\)
The objective coefficients of active variables did not decrease from \(P\) to \(Q\)
\[
\left.x_{p}^{*}:<0,1,1,0\right\rangle
\]

\section*{And}

The objective coefficients of inactive variables did not increase from \(P\) to \(Q\)
\[
\forall i,\left(2 \boldsymbol{y}_{p, i}^{*}-1\right)\left(c_{Q, i}-c_{P, i}\right) \geq 0 \quad \forall i,\left(2 y_{p, i}^{*}-1\right)\left(c_{Q, i}-c_{P, i}\right) \geq-\epsilon\left|c_{Q, i}\right|
\]

Theorem I
Then: The optimal solution of \(Q\) is the same as P's

Structured Learning: Dual coordinate descent for structured SVM still returns an exact model even if approx. amortized inference is used.
\[
\begin{gathered}
\max \\
2 x_{1}+4 x_{2}+2 x_{3}+0.5 x_{4} \\
\\
x_{1}+x_{2} \leq 1 \\
\\
x_{3}+x_{4} \leq 1
\end{gathered}
\]

\section*{And}

The objective coefficients of inactive variables did not increase from \(P\) to \(Q\)
\[
\forall i,\left(2 \boldsymbol{y}_{p, i}^{*}-1\right)\left(c_{Q, i}-c_{P, i}\right) \geq 0
\]
\[
\forall i,\left(2 y_{p, i}^{*}-1\right)\left(c_{Q, i}-c_{P, i}\right) \geq-\epsilon\left|c_{Q, i}\right|
\]

\section*{Amortized Inference Experiments}
- Setup
\(\square\) Verb semantic role labeling; Entity and Relations
\(\square\) Speedup \& Accuracy are measured over WSJ test set (Section 23) and Test of E \& R
\(\square\) Baseline: solving ILPs using the Gurobi solver.

\section*{Amortized Inference Experiments}
- Setup
\(\square\) Verb semantic role labeling; Entity and Relations
\(\square\) Speedup \& Accuracy are measured over WSJ test set (Section 23) and Test of E \& R
\(\square\) Baseline: solving ILPs using the Gurobi solver.
- For amortization
\(\square\) Cache 250,000 inference problems (objective, solution) from Gigaword
\(\square\) For each problem in test set either call the inference engine or re-use a solution from the cache, if our theorems hold.

\section*{Amortized Inference Experiments}
- Setup
\(\square\) Verb semantic role labeling; Entity and Relations
\(\square\) Speedup \& Accuracy are measured over WSJ test set (Section 23) and Test of E \& R
\(\square\) Baseline: solving ILPs using the Gurobi solver.
- For amortization
\(\square\) Cache 250,000 inference problems (objective, solution) from Gigaword
\(\square\) For each problem in test set either call the inference engine or re-use a solution from the cache, if our theorems hold.

No training data is needed for this method.
Once you have a model, you can generate a large cache that will be then used to save you time at evaluation time.

\section*{Speedup \& Accuracy}
\[
\text { Speedup }=\frac{\text { number of inference calls without amortization }}{\text { number of inference calls with amortization }}
\]

\section*{Amortization schemes [EMNLP'12, ACL'13]}

OGNVPVE COMPUTATION GROUP

\section*{Speedup \& Accuracy}

By decomposing the objective function, building on the fact that "smaller structures" are more redundant, it is possible to get even better results.
Speedup \(=\frac{\text { number of inference calls without amortization }}{\text { number of inference calls with amortization }}\)


■ Speedup
- F1

Amortization schemes [EMNLP'12, ACL'13]

\section*{Speedup \& Accuracy}

By decomposing the objective function, building on the fact that "smaller structures" are more redundant, it is possible to get even better results.
Speedup \(=\frac{\text { number of inference calls without amortization }}{\text { number of inference calls with amortization }}\)


Amortization schemes [EMNLP'12, ACL'13]

\section*{Speedup \& Accuracy}

The results show that, indeed, the inference formulation provides a new level of abstraction that can be exploited to re-use solutions
Speedup \(=\frac{\text { number of inference calls without amortization }}{\text { number of inference calls with amortization }}\)


\section*{Speedup \& Accuracy}

The results show that, indeed, the inference formulation provides a new level of abstraction that can be exploited to re-use solutions
Speedup \(=\frac{\text { number of inference calls without amortization }}{\text { number of inference calls with amortization }}\)

\# Solver Calls (Entity-Relation Extraction)

\# Solver Calls (Entity-Relation Extraction)

Recent results [AAAI'15] on how to exploit amortized ILP in faster Structured Learning


\section*{Conclusion}
- Presented Constrained Conditional Models:
\(\square\) An ILP based computational framework that augments statistically learned linear models with declarative constraints as a way to incorporate knowledge and support decisions in an expressive output spaces
\(\square\) Maintains modularity and tractability of training
- A powerful \& modular learning and inference paradigm for high level tasks.
- Learning issues:
\(\square\) Constraints driven learning, constrained EM
\(\square\) Many other issues have been and should be studied
- Inference:
\(\square\) The power of ILP formulations is shown via the amortized inference results: how to use previous inference outcomes to reduce inference and, consequently, learning cost

\section*{Conclusion}
- Presented Constrained Conditional Models:
\(\square\) An ILP based computational framework that augments statistically learned linear models with declarative constraints as a way to incorporate knowledge and support decisions in an expressive output spaces
\(\square\) Maintains modularity and tractability of training
- A powerful \& modular learning and inference paradigm for high level tasks.
- Learning issues:
\(\square\) Constraints driven learning, constrained EM
\(\square\) Many other issues have been and should be studied
- Inference:
\(\square\) The power of ILP formulations is shown via the amortized inference results: how to use previous inference outcomes to reduce inference and, consequently, learning cost

\section*{Check out our tools, demos, tutorials}

\section*{Conclusion}

\section*{Thank You!}
- Presented Constrained Conditional Models:
\(\square\) An ILP based computational framework that augments statistically learned linear models with declarative constraints as a way to incorporate knowledge and support decisions in an expressive output spaces
\(\square\) Maintains modularity and tractability of training
- A powerful \& modular learning and inference paradigm for high level tasks.
- Learning issues:
\(\square\) Constraints driven learning, constrained EM
\(\square\) Many other issues have been and should be studied
- Inference:
\(\square\) The power of ILP formulations is shown via the amortized inference results: how to use previous inference outcomes to reduce inference and, consequently, learning cost

\section*{Check out our tools, demos, tutorials}

\section*{Bonus Slides}
- Response Based Learning
\(\square\) [From Clarke et. al. CoNLL'10 to Goldwasser \& Roth MLJ'14]

\section*{Understanding Language Requires Supervision}

\section*{Can I get a coffee with lots of sugar and no milk}


\section*{Understanding Language Requires Supervision}

\section*{Can I get a coffee with lots of sugar and no milk}


\section*{Understanding Language Requires Supervision}

\section*{Can I get a coffee with lots of sugar and no milk}

- How to recover meaning from text?

\section*{Understanding Language Requires Supervision}

- How to recover meaning from text?
- Standard "example based" ML: annotate text with meaning representation
\(\square\) Teacher needs deep understanding of the learning agent ; not scalable.

\section*{Understanding Language Requires Supervision}

Can I get a coffee with lots of sugar and no milk

- How to recover meaning from text?
- Standard "example based" ML: annotate text with meaning representation
\(\square\) Teacher needs deep understanding of the learning agent ; not scalable.
- Response Driven Learning: Exploit indirect signals in the interaction between the learner and the teacher/environment

\section*{Understanding Language Requires Supervision}

- How to recover meaning from text?
- Standard "example based" ML: annotate text with meaning representation \(\square\) Teacher needs deep understanding of the learning agent ; not scalable.
- Response Driven Learning: Exploit indirect signals in the interaction between the learner and the teacher/environment

\section*{Understanding Language Requires Supervision}

Can I get a coffee with lots of sugar and no milk

- How to recover meaning from text?
- Standard "example based" ML: annotate text with meaning representation
\(\square\) Teacher needs deep understanding of the learning agent ; not scalable.
- Response Driven Learning: Exploit indirect signals in the interaction between the learner and the teacher/environment

\section*{Response Based Learning}
- We want to learn a model that transforms a natural language sentence to some meaning representation.

English Sentence \(\longrightarrow\) Model \(\longrightarrow\) Meaning Representation
- Instead of training with (Sentence, Meaning Representation) pairs

\section*{Response Based Learning}
- We want to learn a model that transforms a natural language sentence to some meaning representation.
English Sentence \(\longrightarrow\) Model \(\longrightarrow\) Meaning Representation
- Instead of training with (Sentence, Meaning Representation) pairs
- Think about some simple derivatives of the models outputs,
\(\square\) Supervise the derivative [verifier] (easy!) and
\(\square\) Propagate it to learn the complex, structured, transformation model

\section*{Scenario I: Freecell with Response Based Learning}
- We want to learn a model to transform a natural language sentence to some meaning representation.
English Sentence \(\longrightarrow\) Model \(\longrightarrow\) Meaning Representation

A top card can be moved to the tableau if it has a different color than the color of the top tableau card, and the cards have successive values.

Move (a1, a2) top(a1,x1) card(a1) tableau(a2) top(x2,a2) color(a1,x3) color( \(x 2, x 4\) ) not-equal ( \(x 3, x 4\) ) value \((a 1, x 5)\) value ( \(x 2, x 6\) ) successor \((x 5, x 6)\)

\section*{Scenario I: Freecell with Response Based Learning}
- We want to learn a model to transform a natural language sentence to some meaning representation.
English Sentence \(\longrightarrow\) Model \(\longrightarrow\) Meaning Representation

A top card can be moved to the tableau if it has a different color than the color of the top tableau card, and the cards have successive values.

Move (a1, a2) top(a1,x1) card(a1) tableau(a2) top(x2,a2) color(a1,x3) color( \(x 2, x 4\) ) not-equal ( \(x 3, x 4\) ) value \((a 1, x 5)\) value( \(x 2, x 6\) ) successor( \(x 5, x 6\) )
- Simple derivatives of the models outputs
\(\square\) Supervise the derivative and
\(\square\) Propagate it to learn the transformation modelage 69

\section*{Scenario I: Freecell with Response Based Learning}
- We want to learn a model to transform a natural language sentence to some meaning representation.
English Sentence \(\longrightarrow\) Model \(\longrightarrow\) Meaning Representation

A top card can be moved to the tableau if it has a different color than the color of the top tableau card, and the cards have successive values.


Move (a1, a2) top(a1,x1) card(a1) tableau(a2) top(x2, a2) color(a1, x3) color( \(x 2, x 4\) ) not-equal ( \(x 3, x 4\) ) value \((a 1, x 5)\) value \((x 2, x 6)\) successor \((x 5, x 6)\)

\section*{Play Freecell (solitaire)}
- Simple derivatives of the models outputs
\(\square\) Supervise the derivative and
\(\square\) Propagate it to learn the transformation modelage 69

\section*{Scenario II: Geoquery with Response based Learning}
- We want to learn a model to transform a natural language sentence to some formal representation.

English Sentence \(\longrightarrow\) Model \(\longrightarrow\) Meaning Representation

\footnotetext{
What is the largest state that borders NY?
}

\section*{Scenario II: Geoquery with Response based Learning}
- We want to learn a model to transform a natural language sentence to some formal representation.

English Sentence \(\longrightarrow\) Model \(\longrightarrow\) Meaning Representation

What is the largest state that borders NY? largest( state( next_to( const(NY))))
- Simple derivatives of the models outputs

\section*{Scenario II: Geoquery with Response based Learning}
- We want to learn a model to transform a natural language sentence to some formal representation.

English Sentence \(\longrightarrow\) Model \(\longrightarrow\) Meaning Representation

What is the largest state that borders NY?
- Query a GeoQuery Database.
largest( state( next_to( const(NY))))
- Simple derivatives of the models outputs

\section*{Scenario II: Geoquery with Response based Learning}
- We want to learn a model to transform a natural language sentence to some formal representation.
English Sentence \(\longrightarrow\) Model \(\longrightarrow\) Meaning Representation

What is the largest state that borders NY?
- Query a GeoQuery Database.
largest( state( next_to( const(NY))))
- Simple derivatives of the models outputs
- "Guess" a semantic parse. Is [DB response == Expected response] ?
\(\square\) Expected: Pennsylvania DB Returns: Pennsylvania \(\rightarrow\) Positive Response
\(\square\) Expected: Pennsylvania DB Returns: NYC, or ???? \(\rightarrow\) Negative Response

\section*{Response Based Learning: Using a Simple Feedback}
- We want to learn a model to transform a natural language sentence to some formal representation.
English Sentence \(\longrightarrow\) Model \(\longrightarrow\) Meaning Representation
Instead of training with (Sentence, Meaning Representation) pairs
- Think about some simple derivatives of the models outputs,
\(\square\) Supervise the derivative (easy!) and
\(\square\) Propagate it to learn the complex, structured, transformation model

\section*{Response Based Learning: Using a Simple Feedback}
- We want to learn a model to transform a natural language sentence to some formal representation.

- Think about some simple derivatives of the models outputs,
\(\square\) Supervise the derivative (easy!) and
\(\square\) Propagate it to learn the complex, structured, transformation model

\section*{LEARNING:}
- Train a structured predictor (semantic parse) with this binary supervision
\(\square\) Many challenges: e.g., how to make a better use of a negative response?
- Learning with a constrained latent representation, making used of CCM inference, exploiting knowledge on the structure of the meaning representation.

\section*{Geoquery: Response based Competitive with Supervised}

Clarke, Goldwasser, Chang, Roth CoNLL'10; Goldwasser, Roth IJCAI'11, MLJ'14


NoLeARN :Initialization point
SuPERVISED : Trained with annotated data
Response based Learning is gathering momentum:
- Liang, M.I. Jordan, D. Klein, Learning Dependency-Based Compositional Semantics, ACL'11.
- Berant et-al ' Semantic Parsing on Freebase from Question-Answer Pairs, EMNLP'13

Supervised: Y.-W. Wong and R. Mooney. Learning synchronous grammars for semantic parsing with lambda calculus. ACL’O7

\section*{Geoquery: Response based Competitive with Supervised}

Clarke, Goldwasser, Chang, Roth CoNLL'10; Goldwasser, Roth IJCAI'11, MLJ'14
\begin{tabular}{|l|l|l|l|}
\hline Algorithm & \begin{tabular}{l} 
Training \\
Accuracy
\end{tabular} & \begin{tabular}{l} 
Testing \\
Accuracy
\end{tabular} & \begin{tabular}{l} 
\# Training \\
Examples
\end{tabular} \\
\hline NoLEARN & 22 & -- & - \\
\hline Response-based (2010) & 82.4 & 73.2 & 250 answers \\
\hline Liang et-al 2011 & -- & 78.9 & 250 answers \\
\hline Response-based (2012) & \(\mathbf{8 6 . 8}\) & \(\mathbf{8 1 . 6}\) & \(\mathbf{2 5 0}\) answers \\
\hline Supervised & -- & \(\mathbf{8 6 . 0 7}\) & \(\mathbf{6 0 0}\) structs. \\
\hline
\end{tabular}

NoLeARN :Initialization point
SuPERVISED : Trained with annotated data
Response based Learning is gathering momentum:
- Liang, M.I. Jordan, D. Klein, Learning Dependency-Based Compositional Semantics, ACL'11.
- Berant et-al ' Semantic Parsing on Freebase from Question-Answer Pairs, EMNLP'13

Supervised: Y.-W. Wong and R. Mooney. Learning synchronous grammars for semantic parsing with lambda calculus. ACL'O7```

