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 Natural Language Decisions are Structured  
 Global decisions in which several local decisions play a role  but there 

are mutual dependencies on their outcome. 
                                                                 

                                                             
        

                                                             
                                                                         

 
                                                                 

                                                                        
                                                                    

                              
                                                                            

                    

Learning and Inference in NLP 

Page 3 



 Natural Language Decisions are Structured  
 Global decisions in which several local decisions play a role  but there 

are mutual dependencies on their outcome. 
 It is essential to make coherent decisions in a way that takes 

the interdependencies into account. Joint, Global Inference. 
        

                                                             
                                                                         

 
                                                                 

                                                                        
                                                                    

                              
                                                                            

                    

Learning and Inference in NLP 

Page 3 



 Natural Language Decisions are Structured  
 Global decisions in which several local decisions play a role  but there 

are mutual dependencies on their outcome. 
 It is essential to make coherent decisions in a way that takes 

the interdependencies into account. Joint, Global Inference. 
 TODAY: 

                                                             
                                                                         

 
                                                                 

                                                                        
                                                                    

                              
                                                                            

                    

Learning and Inference in NLP 

Page 3 



 Natural Language Decisions are Structured  
 Global decisions in which several local decisions play a role  but there 

are mutual dependencies on their outcome. 
 It is essential to make coherent decisions in a way that takes 

the interdependencies into account. Joint, Global Inference. 
 TODAY: 

 How to support real, high level, natural language decisions 
                                                                         

 
                                                                 

                                                                        
                                                                    

                              
                                                                            

                    

Learning and Inference in NLP 

Page 3 



 Natural Language Decisions are Structured  
 Global decisions in which several local decisions play a role  but there 

are mutual dependencies on their outcome. 
 It is essential to make coherent decisions in a way that takes 

the interdependencies into account. Joint, Global Inference. 
 TODAY: 

 How to support real, high level, natural language decisions 
 How to learn models that are used, eventually, to make global decisions 

 
                                                                 

                                                                        
                                                                    

                              
                                                                            

                    

Learning and Inference in NLP 

Page 3 



 Natural Language Decisions are Structured  
 Global decisions in which several local decisions play a role  but there 

are mutual dependencies on their outcome. 
 It is essential to make coherent decisions in a way that takes 

the interdependencies into account. Joint, Global Inference. 
 TODAY: 

 How to support real, high level, natural language decisions 
 How to learn models that are used, eventually, to make global decisions 

 
 A framework that allows one to exploit interdependencies among 

decision variables both in inference (decision making) and in learning. 
 Inference: A formulation for incorporating expressive declarative 

knowledge in decision making. 
 Learning: Ability to learn simple models; amplify its power by exploiting 

interdependencies.  
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Comprehension 

(ENGLAND, June, 1989) - Christopher Robin is alive and well.  He lives in 
England.  He is the same person that you read about in the book, Winnie the 
Pooh. As a boy, Chris lived in a pretty home called Cotchfield Farm.  When 
Chris was three years old, his father wrote a poem about him.  The poem was 
printed in a magazine for others to read.  Mr. Robin then wrote a book.  He 
made up a fairy tale land where Chris lived.  His friends were animals.  There 
was a bear called Winnie the Pooh.  There was also an owl and a young pig, 
called a piglet.  All the animals were stuffed toys that Chris owned.  Mr. Robin 
made them come to life with his words.  The places in the story were all near 
Cotchfield Farm. Winnie the Pooh was written in 1925.  Children still love to 
read about Christopher Robin and his animal friends.  Most people don't know 
he is a real person who is grown now.  He has written two books of his own.  
They tell what it is like to be famous. 
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Many forms of Inference; a lot boil down to determining best assignment  
 

Natural Language Interpretation is an Inference Problem that is best thought 
of as a knowledge constrained optimization problem, done on top of 

multiple statistically learned models.  



Outline 
 Constrained Conditional Models 

 A formulation for global inference with knowledge modeled as expressive 
structural constraints 

 Some examples 
 

 Learning with Constrained Latent Representation 
 

 Constraints Driven Learning  
 Training Paradigms for Constrained Conditional Models 
 Constraints Driven Learning (CoDL) 
 Unified (Constrained) Expectation Maximization 
 

 Amortized Integer Linear Programming Inference 
 Exploiting Previous Inference Results 

 In Inference and in Structured Learning  

Page 6 



Three Ideas Underlying Constrained Conditional Models 
 Idea 1:  
     Separate modeling and problem formulation from algorithms 

 Similar to the philosophy of probabilistic modeling 
 

 Idea 2:  
     Keep models simple, make expressive decisions (via constraints) 

 Unlike probabilistic modeling, where models become more expressive  
 

 Idea 3:  
     Expressive structured decisions can be supported by simply  
     learned models  

 Global Inference can be used to amplify simple models (and even allow 
training with minimal supervision). 
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Inference with General Constraint Structure [Roth&Yih’04,07] 
Recognizing Entities and Relations  

Dole ’s wife, Elizabeth , is a native of N.C. 
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R12 R23 
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Y = argmax ∑y score(y=v) [[y=v]] =  
 
   = argmax score(E1 = PER)¢ [[E1 = PER]] + score(E1 = LOC)¢ [[E

1
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 Inference requires, in principle, touching all y 2 Y at decision time, when we 
are given x 2 X and attempt to determine the best y 2 Y for it, given w  
 For some structures, inference is computationally easy.  
 Eg: Using the Viterbi algorithm  
 In general, NP-hard (can be formulated as an ILP) 
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                       find a scoring function w that minimizes empirical loss. 
 Learning is thus driven by the attempt to find a weight vector w 

such that for each given annotated example (xi, yi): 
 
 
 

 
 We call these conditions the learning constraints. 

 
 In most learning algorithms used today, the update of the weight vector w 

is done in an on-line fashion,  
 Think about it as Perceptron; this procedure applies to Structured Perceptron, 

CRFs, Linear Structured SVM 
 W.l.o.g. (almost) we can thus write the generic structured learning 

algorithm as follows: 
  

8 y 
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Structured Prediction: Learning Algorithm 

 For each example (xi, yi) 
   Do: (with the current weight vector w) 

 Predict: perform Inference with the current weight vector  

 yi’ = argmaxy 2 Y wT Á ( xi ,y) 
 Check the learning constraints 

 Is the score of the current prediction better than of (xi, yi)? 
 If Yes – a mistaken prediction 

 Update w 
 Otherwise: no need to update w on this example 

 EndFor 

Page 13 



Structured Prediction: Learning Algorithm 

 For each example (xi, yi) 
   Do: (with the current weight vector w) 

 Predict: perform Inference with the current weight vector  

 yi’ = argmaxy 2 Y wT Á ( xi ,y) 
 Check the learning constraints 

 Is the score of the current prediction better than of (xi, yi)? 
 If Yes – a mistaken prediction 

 Update w 
 Otherwise: no need to update w on this example 

 EndFor 

Page 13 



Structured Prediction: Learning Algorithm 

 For each example (xi, yi) 
   Do: (with the current weight vector w) 

 Predict: perform Inference with the current weight vector  

 yi’ = argmaxy 2 Y wT Á ( xi ,y) 
 Check the learning constraints 

 Is the score of the current prediction better than of (xi, yi)? 
 If Yes – a mistaken prediction 

 Update w 
 Otherwise: no need to update w on this example 

 EndFor 

Page 13 



Structured Prediction: Learning Algorithm 

 For each example (xi, yi) 
   Do: (with the current weight vector w) 

 Predict: perform Inference with the current weight vector  

 yi’ = argmaxy 2 Y wT Á ( xi ,y) 
 Check the learning constraints 

 Is the score of the current prediction better than of (xi, yi)? 
 If Yes – a mistaken prediction 

 Update w 
 Otherwise: no need to update w on this example 

 EndFor 

Page 13 



In the structured 
case, the prediction 
(inference) step is 
often intractable 
and needs to be 
done many times 

Structured Prediction: Learning Algorithm 

 For each example (xi, yi) 
   Do: (with the current weight vector w) 

 Predict: perform Inference with the current weight vector  

 yi’ = argmaxy 2 Y wT Á ( xi ,y) 
 Check the learning constraints 

 Is the score of the current prediction better than of (xi, yi)? 
 If Yes – a mistaken prediction 

 Update w 
 Otherwise: no need to update w on this example 

 EndFor 

Page 13 



Structured Prediction: Learning Algorithm 

 For each example (xi, yi) 
 Do: 

 Predict: perform Inference with the current weight vector  

 yi’ = argmaxy 2 Y  wEASY
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Solution I: 
decompose the 
scoring function to 
EASY and HARD parts 
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Structured Prediction: Learning Algorithm 

 For each example (xi, yi) 
 Do: 

 Predict: perform Inference with the current weight vector  

 yi’ = argmaxy 2 Y  wEASY
T ÁEASY ( xi ,y) + wHARD

T ÁHARD ( xi ,y)  
 Check the learning constraint 

 Is the score of the current prediction better than of (xi, yi)? 
 If Yes – a mistaken prediction 

 Update w 
 Otherwise: no need to update w on this example 

 EndDo 
 

Solution I: 
decompose the 
scoring function to 
EASY and HARD parts 

EASY: could be feature functions that correspond to an HMM, a linear CRF,   or 
even ÁEASY (x,y) = Á(x), omiting dependence on y, corresponding to classifiers. 
May not be enough if the HARD part is still part of each inference step. 
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 Update w 
 Otherwise: no need to update w on this example 

 EndDo 

 yi’ = argmaxy 2 Y  wEASY
T ÁEASY ( xi ,y) + wHARD

T ÁHARD ( xi ,y)  
 

 
This is the most commonly used solution in NLP today 

Solution III: Disregard some of the dependencies 
during learning; take into account at decision time 
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Constrained Conditional Models 

How to solve? 

This is an Integer Linear Program 

Solving using ILP packages gives an  
exact solution.  

Cutting Planes, Dual Decomposition & 
other search techniques are possible  

(Soft) constraints 
component 

Weight Vector for 
“local” models 

Penalty for violating 
the constraint. 

How far y is from  
a “legal” assignment 

Features, classifiers; log-
linear models  (HMM, 
CRF) or a combination 

How to train? 

Training is learning the objective 
function 

Decouple? Decompose? 

How to exploit the structure to        
minimize supervision? 
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Any MAP problem w.r.t. any probabilistic model, 
can be formulated as an ILP [Roth+ 04, Taskar 04] 



Examples: CCM Formulations 
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Constrained Conditional Models Allow: 
 Learning a simple model  (or multiple; or pipelines) 
 Make decisions with a more complex model 
 Accomplished by directly incorporating constraints to bias/re-rank 

global decisions composed of simpler models’ decisions 
 More sophisticated algorithmic approaches exist to bias the output  

[CoDL: Cheng et. al 07,12; PR: Ganchev et. al. 10; DecL, UEM: Samdani et. al 12]  



Semantic Role Labeling (SRL)  

I left my pearls to my daughter in my will . 
[I]A0 left [my pearls]A1 [to my daughter]A2 [in my will]AM-LOC . 
 

 A0 Leaver 

 A1 Things left 

 A2 Benefactor 

 AM-LOC Location 

 
I left my pearls to my daughter in my will . 
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Archetypical Information Extraction 
Problem: E.g., Concept Identification 
and Typing, Event Identification, etc.  



 Identify argument candidates 
 Pruning  [Xue&Palmer, EMNLP’04] 
 Argument Identifier  

 Binary classification 

 Classify argument candidates 
 Argument Classifier  

 Multi-class classification 

 Inference 
 Use the estimated probability distribution 

given by the argument classifier 
 Use structural and linguistic constraints 
 Infer the optimal global output 

 

Algorithmic Approach 
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Variable ya,t  indicates whether  candidate 
argument a is assigned a label t.  
ca,t   is the corresponding model score  
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Variable ya,t  indicates whether  candidate 
argument a is assigned a label t.  
ca,t   is the corresponding model score  

Use the pipeline architecture’s simplicity while maintaining uncertainty:  keep 
probability distributions over decisions & use global inference at decision time. 

Learning Based Java: allows a developer 
to encode constraints in First Order 
Logic; these are compiled into linear 
inequalities automatically.  
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If there is an Reference-Ax phrase, 
there is an Ax 

If there is an Continuation-x 
phrase, there is an Ax before it 

In this case, 
independent learners 

http://cogcomp.cs.illinois.edu/
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[EMNLP’12, TACL’13] 

Location 

Destination 

Page 24 

Verb Predicates, Noun predicates, 
prepositions, each dictates some 
relations, which have to cohere. 



The bus was heading for Nairobi in  Kenya. 

Extended Semantic Role labeling I 
[EMNLP’12, TACL’13] 

Location 

Destination 

Predicate: head.02 
 A0 (mover): The bus 
 A1 (destination): for Nairobi in Kenya 

Page 24 

Verb Predicates, Noun predicates, 
prepositions, each dictates some 
relations, which have to cohere. 



The bus was heading for Nairobi in  Kenya. 

Extended Semantic Role labeling I 
[EMNLP’12, TACL’13] 

Location 

Destination 

Predicate: head.02 
 A0 (mover): The bus 
 A1 (destination): for Nairobi in Kenya 

Page 24 

Verb Predicates, Noun predicates, 
prepositions, each dictates some 
relations, which have to cohere. 



The bus was heading for Nairobi in  Kenya. 

Extended Semantic Role labeling I 
[EMNLP’12, TACL’13] 

Location 

Destination 

Predicate: head.02 
 A0 (mover): The bus 
 A1 (destination): for Nairobi in Kenya 

Predicate arguments from different triggers should be consistent 

Page 24 

Verb Predicates, Noun predicates, 
prepositions, each dictates some 
relations, which have to cohere. 



The bus was heading for Nairobi in  Kenya. 

Extended Semantic Role labeling I 
[EMNLP’12, TACL’13] 

Location 

Destination 

Predicate: head.02 
 A0 (mover): The bus 
 A1 (destination): for Nairobi in Kenya 

Predicate arguments from different triggers should be consistent 

Joint constraints 
linking the two tasks. 
 
Destination  ⇔ A1 
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+ …. 

+ Joint constraints between tasks; easy with ILP formulations 

Joint Inference – no (or minimal) joint learning 
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Inference takes into account constrains 
among parts of the structure (r and h), 
formulated as a CCM 

 Given an example annotated with r(y*) , predict with: 
                                      argmaxy wT Á(x,[r(y),h(y)]) 
                                      s.t r(y*) = r(y) 
 
 While satisfying constraints between r(y) and h(y)  
 That is: “complete the hidden structure” in the best possible 

way, to support correct prediction of the supervised variable 
 During training, the loss is defined over the entire structure, where 

we scale the loss of elements in h(y).  
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Generalization of Latent Structure SVM [Yu & Joachims ’09] & 
                                Learning with Indirect Supervision  [Chang et. al. ’10] 

Generalization of Latent Structure SVM [Yu & Joachims ’09] & 
                                Indirect Supervision learning [Chang et. al. ’10] 



Performance 

Page 29 

 



 

Performance 

87.5

88

88.5

89

89.5

90

90.5

Relations + Arguments + Types & Senses

Initialization
+ Latent

Page 29 



 

Performance 

87.5

88

88.5

89

89.5

90

90.5

Relations + Arguments + Types & Senses

Initialization
+ Latent

Page 29 



 

Performance 

87.5

88

88.5

89

89.5

90

90.5

Relations + Arguments + Types & Senses

Initialization
+ Latent

Learned to predict 
predicates,  

arguments, types 
and senses. 

Page 29 



 

Performance 

87.5

88

88.5

89

89.5

90

90.5

Relations + Arguments + Types & Senses

Initialization
+ Latent

Learned to predict 
predicates,  

arguments, types 
and senses. 

Using types helps. Joint 
inference with word 

sense helps too 
More components 
constrain inference 
results and improve 

performance 

Page 29 



Extended SRL [Demo] 

Page 30 

 
Destination [A1] 
 

http://cogcomp.cs.illinois.edu/demo/srl_exp_new/


Extended SRL [Demo] 

Page 30 

 
Destination [A1] 
 

Joint inference over phenomena specific 
models  to enforce consistency  

Models trained with latent structure: 
senses, types, arguments 

http://cogcomp.cs.illinois.edu/demo/srl_exp_new/


Extended SRL [Demo] 

Page 30 

 
Destination [A1] 
 

Joint inference over phenomena specific 
models  to enforce consistency  

Models trained with latent structure: 
senses, types, arguments 

 More to do with other relations, discourse phenomena,… 

http://cogcomp.cs.illinois.edu/demo/srl_exp_new/


 
 Have been shown useful in the context of many NLP problems 

 
 [Roth&Yih, 04,07: Entities and Relations; Punyakanok et. al: SRL  …] 

 Summarization; Co-reference; Information & Relation Extraction; Event 
Identifications and causality ; Transliteration; Textual Entailment; 
Knowledge Acquisition; Sentiments; Temporal Reasoning, Parsing,… 

 
 Some theoretical work on training paradigms [Punyakanok et. al., 05 more; 

Constraints Driven Learning, PR, Constrained EM…]  
 Some work on Inference, mostly approximations, bringing back ideas on 

Lagrangian relaxation, etc.  
 

                                                                        
                                     
 

                                                                         
  

 
 

Constrained Conditional Models—ILP Formulations 

Page 31 

http://l2r.cs.uiuc.edu/tutorials.html


 
 Have been shown useful in the context of many NLP problems 

 
 [Roth&Yih, 04,07: Entities and Relations; Punyakanok et. al: SRL  …] 

 Summarization; Co-reference; Information & Relation Extraction; Event 
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Knowledge Acquisition; Sentiments; Temporal Reasoning, Parsing,… 

 
 Some theoretical work on training paradigms [Punyakanok et. al., 05 more; 

Constraints Driven Learning, PR, Constrained EM…]  
 Some work on Inference, mostly approximations, bringing back ideas on 

Lagrangian relaxation, etc.  
 

 Good summary and description of training paradigms: [Chang, Ratinov & 
Roth, Machine Learning Journal 2012] 
 

 Summary of work & a bibliography: http://L2R.cs.uiuc.edu/tutorials.html 
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Outline 
 Constrained Conditional Models 

 A formulation for global inference with knowledge modeled as expressive 
structural constraints 

 Some examples 
 

 Learning with Constrained Latent Representation 
 

 Constraints Driven Learning  
 Training Paradigms for Constrained Conditional Models 
 Constraints Driven Learning (CoDL) 
 Unified (Constrained) Expectation Maximization 
 

 Amortized Integer Linear Programming Inference 
 Exploiting Previous Inference Results 

 In Inference and in Structured Learning  
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Constrained Conditional Models (aka ILP Inference) 

How to solve? 

This is an Integer Linear Program 

Solving using ILP packages gives an  
exact solution.  

Cutting Planes, Dual Decomposition & 
other search techniques are possible  

(Soft) constraints 
component 

Weight Vector for 
“local” models 

Penalty for violating 
the constraint. 

How far y is from  
a “legal” assignment 

Features, classifiers; log-
linear models  (HMM, 
CRF) or a combination 

How to train? 

Training is learning the objective 
function 

Decouple? Decompose? 

How to exploit the structure to        
minimize supervision? 
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 Independently of the constraints (L+I) 
 Jointly, in the presence of the constraints (IBT) 
 Decomposed to simpler models 

 There has been a lot of work, theoretical and experimental, on these 
issues, starting with [Punyakanok et. al IJCAI’05] 

 Not surprisingly, decomposition is good. [Samdani et. al ICML’12] 
 

 There has been a lot of work on exploiting CCMs in learning structures 
with indirect supervision [Chang et. al, NAACL’10, ICML’10] 

 And Response based Learning [Goldwasser et. al’12, ‘14] 
 

Decompose Model 
Training Constrained Conditional Models  

Decompose Model from constraints 

Page 34 



Information extraction without Prior Knowledge 

Prediction result of a trained HMM 
  Lars Ole Andersen . Program analysis and 
  specialization for the  
  C  
  Programming language 
   .  PhD thesis . 
  DIKU , University of Copenhagen , May 
  1994 . 
 

[AUTHOR]   
[TITLE]    
[EDITOR]   
[BOOKTITLE]   
[TECH-REPORT]   
[INSTITUTION]   

[DATE]    

Lars Ole Andersen . Program analysis and specialization for the 
 C Programming language.  PhD thesis. DIKU , 
University of Copenhagen, May 1994 . 
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  DIKU , University of Copenhagen , May 
  1994 . 
 

[AUTHOR]   
[TITLE]    
[EDITOR]   
[BOOKTITLE]   
[TECH-REPORT]   
[INSTITUTION]   

[DATE]    
Violates lots of natural constraints! 

Lars Ole Andersen . Program analysis and specialization for the 
 C Programming language.  PhD thesis. DIKU , 
University of Copenhagen, May 1994 . 
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 (Pure) Machine Learning Approaches 
 Higher Order HMM/CRF? 
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 Adding a lot of new features  

 Requires a lot of labeled examples 
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Strategies for Improving the Results 

 (Pure) Machine Learning Approaches 
 Higher Order HMM/CRF? 
 Increasing the window size? 
 Adding a lot of new features  

 Requires a lot of labeled examples 
 

 What if we only have a few labeled examples? 
 
 

 
 Other options?  

 Constrain the output to make sense 
 Push the  (simple) model in a direction that makes sense 
  

Increasing the model complexity 

Can we keep the learned model simple and 
still make expressive decisions?  

Increase difficulty of Learning 
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Examples of Constraints 

 Each field must be a consecutive list of words and can appear 
at most once in a citation.  

 
 State transitions must occur on punctuation marks. 
 
 The citation can only start with AUTHOR or EDITOR.  
 
 The words pp., pages correspond to PAGE. 
 Four digits starting with 20xx and 19xx are DATE. 
 Quotations can appear only in TITLE 
 ……. 
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Examples of Constraints 

 Each field must be a consecutive list of words and can appear 
at most once in a citation.  

 
 State transitions must occur on punctuation marks. 
 
 The citation can only start with AUTHOR or EDITOR.  
 
 The words pp., pages correspond to PAGE. 
 Four digits starting with 20xx and 19xx are DATE. 
 Quotations can appear only in TITLE 
 ……. 

 

Easy to express pieces of “knowledge” 

Non Propositional; May use Quantifiers  
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Information Extraction with “Expectation” Constraints 
 Adding constraints, we get correct results! 

 Without changing the model 
 

 
 

 [AUTHOR]    Lars Ole Andersen .  
      [TITLE]           Program analysis and specialization for the  
        C Programming language . 
 [TECH-REPORT]  PhD thesis . 
 [INSTITUTION]   DIKU , University of Copenhagen ,  
 [DATE]     May, 1994 . 
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Information Extraction with “Expectation” Constraints 
 Adding constraints, we get correct results! 

 Without changing the model 
 

 
 

 [AUTHOR]    Lars Ole Andersen .  
      [TITLE]           Program analysis and specialization for the  
        C Programming language . 
 [TECH-REPORT]  PhD thesis . 
 [INSTITUTION]   DIKU , University of Copenhagen ,  
 [DATE]     May, 1994 . 

 
Constrained Conditional Models Allow: 
 Learning a simple model  
 Make decisions with a more complex model 
 Accomplished by directly incorporating constraints to bias/re-

rank decisions made by the simpler model 
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Guiding (Semi-Supervised) Learning with Constraints 
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Guiding (Semi-Supervised) Learning with Constraints 

Model 

Decision Time  
Constraints 

Un-labeled Data 

Constraints 

 In traditional Semi-Supervised learning the model can drift 
away from the correct one.  

 Constraints can be used to generate better training data 
 At training to improve labeling of un-labeled data (and thus 

improve the model) 
 At decision time, to bias the objective function towards favoring 

constraint satisfaction.  
  

Better model-based labeled data Better Predictions 

Seed examples 

Page 39 



Constraints Driven Learning (CoDL)    

 
(w,½)=learn(L)  
For N iterations do 
  T=φ  
     For each x in unlabeled dataset 
    h Ã argmaxy wT Á(x,y) - ∑ ½ dC(x,y) 
    T=T ∪ {(x, h)}   
   
    (w,½) = γ (w,½) + (1- γ) learn(T) 

[Chang, Ratinov, Roth, ACL’07;ICML’08,MLJ’12] 
See also: Ganchev et. al. 10 (PR) 
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(w,½)=learn(L)  
For N iterations do 
  T=φ  
     For each x in unlabeled dataset 
    h Ã argmaxy wT Á(x,y) - ∑ ½ dC(x,y) 
    T=T ∪ {(x, h)}   
   
    (w,½) = γ (w,½) + (1- γ) learn(T) 

[Chang, Ratinov, Roth, ACL’07;ICML’08,MLJ’12] 
See also: Ganchev et. al. 10 (PR) 

Supervised learning algorithm parameterized by 
 (w,½). Learning can be justified as an optimization 
 procedure for an objective function 

Inference with constraints:  
augment the training set  

Learn from new training data 
Weigh supervised &  
unsupervised models. 

Excellent Experimental Results showing the advantages of using constraints, 
especially with small amounts of labeled data [Chang et. al, Others] 
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Value of Constraints in Semi-Supervised Learning 
Objective function:  

This image cannot currently be displayed.

# of available labeled examples 

Learning w 10 Constraints 
Learning w/o Constraints: 300 examples. 

This image cannot currently be displayed.
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Value of Constraints in Semi-Supervised Learning 
Objective function:  

This image cannot currently be displayed.

# of available labeled examples 

Learning w 10 Constraints 
Constraints are used to 
Bootstrap a semi-
supervised learner  
Poor model + constraints 
used to annotate 
unlabeled data, which in 
turn is used to keep 
training the model.  

Learning w/o Constraints: 300 examples. 

This image cannot currently be displayed.
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CoDL as Constrained Hard EM 

 Hard EM is a popular variant of EM 
 While EM estimates a distribution over all y variables in the E-

step, 
 … Hard EM predicts the best output in the E-step 

y*= argmaxy Pw(y|x) 

 Alternatively, hard EM predicts a peaked distribution 

q(y) = ±y=y*  
 Constrained-Driven Learning (CODL) – can be viewed as a 

constrained version of hard EM:  
 

       y*= argmaxy:Uy· b Pw(y|x) 
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Constrained EM: Two Versions 

 While Constrained-Driven Learning  [CODL; Chang et al, 07,12] is a 
constrained version of hard EM: 
 

                        y*= argmaxy:Uy· b Pw(y|x) 
 … It is possible to derive a constrained version of EM: 
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Constrained EM: Two Versions 

 While Constrained-Driven Learning  [CODL; Chang et al, 07,12] is a 
constrained version of hard EM: 
 

                        y*= argmaxy:Uy· b Pw(y|x) 
 … It is possible to derive a constrained version of EM: 
 To do that, constraints are relaxed into expectation constraints 

on the posterior probability q:  

Eq[Uy] · b 

 The E-step now becomes: [Neal & Hinton ‘99 view of EM] 
              q’ =  
 
 This is the Posterior Regularization  model [PR; Ganchev et al, 10] 
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Which (Constrained) EM to use? 
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Which (Constrained) EM to use? 

 There is a lot of literature on EM vs hard EM 
 Experimentally, the bottom line is that with a good enough (???) 

initialization point, hard EM is probably better (and more efficient). 
 E.g., EM vs hard EM (Spitkovsky et al, 10) 
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Which (Constrained) EM to use? 

 that  

 There is a lot of literature on EM vs hard EM 
 Experimentally, the bottom line is that with a good enough (???) 

initialization point, hard EM is probably better (and more efficient). 
 E.g., EM vs hard EM (Spitkovsky et al, 10) 

 Similar issues exist in the constrained case: CoDL vs. PR 
 

 Unified EM (UEM)   [Samdani et. al., NAACL-12] 

 Provides a continuum of algorithms – from EM to hard EM, and 
infinitely many new EM algorithms in between.   

 Implementation wise, not more complicated than EM 
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Unifying Existing EM Algorithms 

KL(q , p; °) = ∑y ° q(y) log q(y) – q(y) log p(y) 

Changing ° values results in different existing EM algorithms 
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Hard EM 

Unsupervised POS tagging: Different EM instantiations 

 Measure percentage accuracy relative to EM 
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Hard EM 

Unsupervised POS tagging: Different EM instantiations 

 Measure percentage accuracy relative to EM 
 
 
 

Initialization with 
10 examples 

Gamma 

Pe
rf

or
m

an
ce

 re
la

tiv
e 

to
 E

M
 

EM 
Page 48 



Hard EM 

Unsupervised POS tagging: Different EM instantiations 

 Measure percentage accuracy relative to EM 
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Hard EM 

Unsupervised POS tagging: Different EM instantiations 

 Measure percentage accuracy relative to EM 
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Summary: Constraints as Supervision 
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Summary: Constraints as Supervision 

 Introducing domain knowledge-based constraints can help 
guiding semi-supervised learning 
 E.g. “the sentence must have at least one verb”, “a field of type y 

appears once in a citation”  
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Summary: Constraints as Supervision 

 Introducing domain knowledge-based constraints can help 
guiding semi-supervised learning 
 E.g. “the sentence must have at least one verb”, “a field of type y 

appears once in a citation”  

 Constrained Driven Learning (CoDL) : Constrained hard EM  
 PR: Constrained  soft EM 
 UEM : Beyond “hard” and “soft” 
 Related literature:  

 Constraint-driven Learning (Chang et al, 07; MLJ-12), 
 Posterior Regularization (Ganchev et al, 10), 
 Generalized Expectation Criterion (Mann & McCallum, 08), 
 Learning from Measurements (Liang et al, 09) 
 Unified EM (Samdani et al 2012: NAACL-12) 
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Outline 
 Constrained Conditional Models 

 A formulation for global inference with knowledge modeled as expressive 
structural constraints 

 Some examples 
 

 Learning with Constrained Latent Representation 
 

 Constraints Driven Learning  
 Training Paradigms for Constrained Conditional Models 
 Constraints Driven Learning (CoDL) 
 Unified (Constrained) Expectation Maximization 
 

 Amortized Integer Linear Programming Inference 
 Exploiting Previous Inference Results 

 In Inference and in Structured Learning  
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Amortized ILP based Inference 

 Imagine that you already solved many structured output 
inference problems 
 Co-reference resolution; Semantic Role Labeling; Parsing citations; 

Summarization; dependency parsing; image segmentation,… 
 Your solution method doesn’t matter either 
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Amortized ILP based Inference 

 Imagine that you already solved many structured output 
inference problems 
 Co-reference resolution; Semantic Role Labeling; Parsing citations; 

Summarization; dependency parsing; image segmentation,… 
 Your solution method doesn’t matter either 

 How can we exploit this fact to save inference cost? 
 
 

 We will show how to do it when your problem is formulated 
as a 0-1 LP,  Max cx        

                            Ax ≤ b 
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After solving n inference problems, can we make the 
(n+1)th one faster?  

 Very general: All discrete MAP problems 
can be formulated as 0-1 LPs 

 We only care about inference formulation, 
not algorithmic solution 



Inference for BIG TEXT  

 In NLP, we typically don’t solve a single inference problem.  
 We solve one or more per sentence. 
 Beyond improving the inference algorithm, what can be done? 
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PRP 

VBZ 

VBG 

DT 

NN 

S1 & S2 look very different 
but their output structures 
are the same   

The inference outcomes  
are the same 
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 In NLP, we typically don’t solve a single inference problem.  
 We solve one or more per sentence. 
 Beyond improving the inference algorithm, what can be done? 

S1 

He 

is 

reading 

a 

book 

After inferring the POS structure for S1,  
Can we speed up inference for S2 ? 
  

S2 
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a 

movie 
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DT 

NN 
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Number of structures is 
much smaller than the 
number of sentences 
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The Hope: Dependency Parsing on Gigaword 
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Redundancy in Inference and Learning 

 This redundancy is clearly important since in all NLP tasks 
there is a need to solve many inferences, at least one per 
sentence. 

 However, it is as important in structured learning,  where 
algorithms cycle between 

 performing inference and  
 updating the model.  
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Amortized ILP Inference 

 These statistics show that many different instances are 
mapped into identical inference outcomes. 
 Pigeon Hole Principle 

                                                               
                         
 
 

 



Amortized ILP Inference 

 These statistics show that many different instances are 
mapped into identical inference outcomes. 
 Pigeon Hole Principle 

 How can we exploit this fact to save inference cost over the 
life time of the agent?  
 
 

 



Amortized ILP Inference 

 These statistics show that many different instances are 
mapped into identical inference outcomes. 
 Pigeon Hole Principle 

 How can we exploit this fact to save inference cost over the 
life time of the agent?  
 
 

 

We give conditions on the objective functions  
(for all objectives with the same # or variables and same feasible set),  

under which the solution of a new problem Q is the same as the 
one of  P (which we already cached)  



Amortized ILP Inference 

 These statistics show that many different instances are 
mapped into identical inference outcomes. 
 Pigeon Hole Principle 

 How can we exploit this fact to save inference cost over the 
life time of the agent?  
 
 

 

We give conditions on the objective functions  
(for all objectives with the same # or variables and same feasible set),  

under which the solution of a new problem Q is the same as the 
one of  P (which we already cached)  

We argue here that the inference formulation 
provides a new level of abstraction. 



Amortized ILP Inference 

 These statistics show that many different instances are 
mapped into identical inference outcomes. 
 Pigeon Hole Principle 

 How can we exploit this fact to save inference cost over the 
life time of the agent?  
 
 

 

Page 58 

We give conditions on the objective functions  
(for all objectives with the same # or variables and same feasible set),  

under which the solution of a new problem Q is the same as the 
one of  P (which we already cached)  

We argue here that the inference formulation 
provides a new level of abstraction. 

If CONDITION (problem cache, new problem) 
  then (no need to call the solver) 
 SOLUTION(new problem) = old solution 
Else 
 Call base solver and update cache 
End 

0.04 ms 

2 ms 
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Structured Learning: Dual 
coordinate descent for 
structured SVM still returns 
an exact model even if 
approx. amortized 
inference is used. 



Amortized Inference Experiments 
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 Verb semantic role labeling; Entity and Relations   
 Speedup & Accuracy are measured over WSJ test set (Section 23) and 

Test of E & R 
 Baseline: solving ILPs using the Gurobi solver. 

 
 For amortization 

 Cache 250,000 inference problems (objective, solution) from Gigaword 
 For each problem in test set either call the inference engine or re-use a 

solution from the cache, if our theorems hold. 

 
 

No training data is needed for this method. 
Once you have a model, you can generate a large cache that will be then 

used to save you time at evaluation time.  
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Ent F1: 87.7 
Rel F1: 47.6 

Ent F1: 87.3 
Rel F1: 47.8 

% Solver Calls 

Better 

Recent results [AAAI’15]  on 
how to exploit amortized 

ILP in faster Structured 
Learning  



Conclusion 
 Presented Constrained Conditional Models:   

 An ILP based computational framework that augments statistically learned 
linear models with declarative constraints  as a way to incorporate knowledge 
and support decisions in an expressive output spaces  

 Maintains modularity and tractability of training 
 A powerful & modular learning and inference paradigm for high level tasks. 

 
 Learning issues:  

 Constraints driven learning, constrained EM  
 Many other issues have been and should be studied 

 Inference: 
 The power of ILP formulations is shown via the amortized inference results: 

how to use previous  inference outcomes to reduce inference and, 
consequently, learning cost  
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Thank You! 

Check out our tools, demos, tutorials 
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Bonus Slides 

 Response Based Learning 
 
 [From Clarke et. al. CoNLL’10 to  Goldwasser & Roth MLJ’14]  
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Semantic Parser 

Can we rely on this 
interaction to provide 
supervision (and 
eventually, recover 
meaning) ? 



Response Based Learning 
 We want to learn a model that transforms a natural language 

sentence to some meaning representation. 
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Response Based Learning 
 We want to learn a model that transforms a natural language 

sentence to some meaning representation. 
 
  
 

 Instead of training with  (Sentence, Meaning Representation) pairs  
 

 Think about some simple derivatives of the models outputs,  
 Supervise the derivative [verifier] (easy!) and  
 Propagate it to learn the complex, structured, transformation model 
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Scenario I: Freecell with Response Based Learning 
 We want to learn a model to transform a natural language 

sentence to some meaning representation. 
 
  
 

 
 
 

 

Model English Sentence Meaning Representation 

A top card can be moved to the tableau if 
it has a different color than the color of 
the top tableau card, and the cards have 

successive values.   

Move (a1,a2) top(a1,x1) card(a1) 
tableau(a2) top(x2,a2) color(a1,x3) 

color(x2,x4) not-equal(x3,x4) value(a1,x5) 
value(x2,x6) successor(x5,x6) 
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Play Freecell (solitaire)  
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Scenario II: Geoquery with Response based Learning 
 We want to learn a model to transform a natural language 

sentence to some formal representation. 
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Scenario II: Geoquery with Response based Learning 
 We want to learn a model to transform a natural language 

sentence to some formal representation. 
 
 
 
 
 
 

 “Guess” a semantic parse.  Is [DB response == Expected response] ?  
 Expected: Pennsylvania   DB Returns: Pennsylvania Positive Response 
 Expected: Pennsylvania   DB Returns: NYC, or ????  Negative Response 
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Response Based Learning: Using a Simple Feedback  
 We want to learn a model to transform a natural language 

sentence to some formal representation. 
 
  

 Instead of training with  (Sentence, Meaning Representation) pairs  
 Think about some simple derivatives of the models outputs,  

 Supervise the derivative (easy!) and  
 Propagate it to learn the complex, structured, transformation model 
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Response Based Learning: Using a Simple Feedback  
 We want to learn a model to transform a natural language 

sentence to some formal representation. 
 
  

 Instead of training with  (Sentence, Meaning Representation) pairs  
 Think about some simple derivatives of the models outputs,  

 Supervise the derivative (easy!) and  
 Propagate it to learn the complex, structured, transformation model 

LEARNING:  
 Train a structured predictor (semantic parse) with this binary supervision  

 Many challenges: e.g., how to make a better use of a negative response?  
 Learning with a constrained latent representation, making used of CCM 

inference, exploiting knowledge on the structure of the meaning 
representation. 
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Geoquery: Response based Competitive with Supervised 

NOLEARN :Initialization point SUPERVISED :  Trained with annotated data  

 Supervised: Y.-W. Wong and R. Mooney. Learning synchronous grammars for semantic parsing 
with lambda calculus. ACL’07 

Response based Learning is gathering momentum:  
 Liang, M.I. Jordan, D. Klein,  Learning Dependency-Based Compositional Semantics, ACL’11. 
 Berant et-al ’ Semantic Parsing on Freebase from Question-Answer Pairs, EMNLP’13 

Clarke, Goldwasser, Chang, Roth CoNLL’10; Goldwasser, Roth IJCAI’11, MLJ’14 

 
Algorithm Training 

Accuracy 
Testing 
Accuracy 

# Training 
Examples 

NOLEARN 22 --         - 

Response-based (2010) 82.4 73.2 250 answers 

Liang et-al 2011 -- 78.9 250 answers 

Response-based (2012) 86.8 81.6 250 answers 

Supervised -- 86.07 600 structs. 
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