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 Natural Language Decisions are Structured  
 Global decisions in which several local decisions play a role  but there 

are mutual dependencies on their outcome. 
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 A framework that allows one to exploit interdependencies among 

decision variables both in inference (decision making) and in learning. 
 Inference: A formulation for incorporating expressive declarative 

knowledge in decision making. 
 Learning: Ability to learn simple models; amplify its power by exploiting 

interdependencies.  
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Comprehension 

(ENGLAND, June, 1989) - Christopher Robin is alive and well.  He lives in 
England.  He is the same person that you read about in the book, Winnie the 
Pooh. As a boy, Chris lived in a pretty home called Cotchfield Farm.  When 
Chris was three years old, his father wrote a poem about him.  The poem was 
printed in a magazine for others to read.  Mr. Robin then wrote a book.  He 
made up a fairy tale land where Chris lived.  His friends were animals.  There 
was a bear called Winnie the Pooh.  There was also an owl and a young pig, 
called a piglet.  All the animals were stuffed toys that Chris owned.  Mr. Robin 
made them come to life with his words.  The places in the story were all near 
Cotchfield Farm. Winnie the Pooh was written in 1925.  Children still love to 
read about Christopher Robin and his animal friends.  Most people don't know 
he is a real person who is grown now.  He has written two books of his own.  
They tell what it is like to be famous. 
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This is an Inference Problem 
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Learning and Inference  
 Natural language understanding decisions are global decisions 

in which several local decisions play a role,  but there are 
mutual dependencies on their outcome. 

 
 
 

                         
                                             
                                                 
                                                   

                                                              
                                            
                                                                      

                                

Page 5 



Learning and Inference  
 Natural language understanding decisions are global decisions 

in which several local decisions play a role,  but there are 
mutual dependencies on their outcome. 

 
 
 

 We need to think about: 
 (Learned) models for different sub-problems 
 Reasoning with knowledge relating sub-problems  
 Knowledge that may appear only at evaluation time 

                                                              
                                            
                                                                      

                                

Page 5 



Learning and Inference  
 Natural language understanding decisions are global decisions 

in which several local decisions play a role,  but there are 
mutual dependencies on their outcome. 

 
 
 

 We need to think about: 
 (Learned) models for different sub-problems 
 Reasoning with knowledge relating sub-problems  
 Knowledge that may appear only at evaluation time 

 Goal: Incorporate models’ information, along with knowledge 
(constraints) in making coherent decisions  
 Decisions that respect the local models as well as domain & context 

specific knowledge/constraints. 
  

Page 5 



Learning and Inference  
 Natural language understanding decisions are global decisions 

in which several local decisions play a role,  but there are 
mutual dependencies on their outcome. 

 
 
 

 We need to think about: 
 (Learned) models for different sub-problems 
 Reasoning with knowledge relating sub-problems  
 Knowledge that may appear only at evaluation time 

 Goal: Incorporate models’ information, along with knowledge 
(constraints) in making coherent decisions  
 Decisions that respect the local models as well as domain & context 

specific knowledge/constraints. 
  

Page 5 

Natural Language Interpretation is an Inference Problem that is best thought 
of as a knowledge constrained optimization problem, done on top of 

multiple statistically learned models.  



Learning and Inference  
 Natural language understanding decisions are global decisions 

in which several local decisions play a role,  but there are 
mutual dependencies on their outcome. 

 
 
 

 We need to think about: 
 (Learned) models for different sub-problems 
 Reasoning with knowledge relating sub-problems  
 Knowledge that may appear only at evaluation time 

 Goal: Incorporate models’ information, along with knowledge 
(constraints) in making coherent decisions  
 Decisions that respect the local models as well as domain & context 

specific knowledge/constraints. 
  

Page 5 

Many forms of Inference; a lot boil down to determining best assignment  
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multiple statistically learned models.  



Outline 
 Constrained Conditional Models 

 A formulation for global inference with knowledge modeled as expressive 
structural constraints 

 Some examples 
 

 Learning with Constrained Latent Representation 
 

 Constraints Driven Learning  
 Training Paradigms for Constrained Conditional Models 
 Constraints Driven Learning (CoDL) 
 Unified (Constrained) Expectation Maximization 
 

 Amortized Integer Linear Programming Inference 
 Exploiting Previous Inference Results 

 In Inference and in Structured Learning  
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Three Ideas Underlying Constrained Conditional Models 
 Idea 1:  
     Separate modeling and problem formulation from algorithms 

 Similar to the philosophy of probabilistic modeling 
 

 Idea 2:  
     Keep models simple, make expressive decisions (via constraints) 

 Unlike probabilistic modeling, where models become more expressive  
 

 Idea 3:  
     Expressive structured decisions can be supported by simply  
     learned models  

 Global Inference can be used to amplify simple models (and even allow 
training with minimal supervision). 
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Inference with General Constraint Structure [Roth&Yih’04,07] 
Recognizing Entities and Relations  

Dole ’s wife, Elizabeth , is a native of N.C. 
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Models could be learned separately; constraints may come up only at decision time.  
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Constrained Conditional Models 

How to solve? 

This is an Integer Linear Program 

Solving using ILP packages gives an  
exact solution.  

Cutting Planes, Dual Decomposition & 
other search techniques are possible  

(Soft) constraints 
component 

Weight Vector for 
“local” models 

Penalty for violating 
the constraint. 

How far y is from  
a “legal” assignment 

Features, classifiers; log-
linear models  (HMM, 
CRF) or a combination 

How to train? 

Training is learning the objective 
function 

Decouple? Decompose?  

How to exploit the structure to        
minimize supervision? 
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 Inference: given input x (a document, a sentence),  

                         predict the best structure y = {y1,y2,…,yn} 2 Y  (entities & relations) 
 Assign values to the y1,y2,…,yn, accounting for dependencies among yis 
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 Inference requires, in principle, touching all y 2 Y at decision time, when we 
are given x 2 X and attempt to determine the best y 2 Y for it, given w  
 For some structures, inference is computationally easy.  
 Eg: Using the Viterbi algorithm  
 In general, NP-hard (can be formulated as an ILP) 
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 We call these conditions the learning constraints. 

 
 In most learning algorithms used today, the update of the weight vector w 

is done in an on-line fashion,  
 Think about it as Perceptron; this procedure applies to Structured Perceptron, 

CRFs, Linear Structured SVM 
 W.l.o.g. (almost) we can thus write the generic structured learning 

algorithm as follows: 
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Structured Prediction: Learning Algorithm 

 For each example (xi, yi) 
   Do: (with the current weight vector w) 

 Predict: perform Inference with the current weight vector  

 yi’ = argmaxy 2 Y wT Á ( xi ,y) 
 Check the learning constraints 

 Is the score of the current prediction better than of (xi, yi)? 
 If Yes – a mistaken prediction 

 Update w 
 Otherwise: no need to update w on this example 

 EndFor 
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In the structured 
case, the prediction 
(inference) step is 
often intractable 
and needs to be 
done many times 
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 EndDo 
 

Solution I: 
decompose the 
scoring function to 
EASY and HARD parts 

EASY: could be feature functions that correspond to an HMM, a linear CRF,   or 
even ÁEASY (x,y) = Á(x), omiting dependence on y, corresponding to classifiers. 
May not be enough if the HARD part is still part of each inference step. 
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This is the most commonly used solution in NLP today 

Solution III: Disregard some of the dependencies 
during learning; take into account at decision time 
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Constrained Conditional Models 

How to solve? 

This is an Integer Linear Program 

Solving using ILP packages gives an  
exact solution.  

Cutting Planes, Dual Decomposition & 
other search techniques are possible  

(Soft) constraints 
component 

Weight Vector for 
“local” models 

Penalty for violating 
the constraint. 

How far y is from  
a “legal” assignment 

Features, classifiers; log-
linear models  (HMM, 
CRF) or a combination 

How to train? 

Training is learning the objective 
function 

Decouple? Decompose? 

How to exploit the structure to        
minimize supervision? 
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Any MAP problem w.r.t. any probabilistic model, 
can be formulated as an ILP [Roth+ 04, Taskar 04] 



Examples: CCM Formulations 
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Constrained Conditional Models Allow: 
 Learning a simple model  (or multiple; or pipelines) 
 Make decisions with a more complex model 
 Accomplished by directly incorporating constraints to bias/re-rank 

global decisions composed of simpler models’ decisions 
 More sophisticated algorithmic approaches exist to bias the output  

[CoDL: Cheng et. al 07,12; PR: Ganchev et. al. 10; DecL, UEM: Samdani et. al 12]  



Semantic Role Labeling (SRL)  

I left my pearls to my daughter in my will . 
[I]A0 left [my pearls]A1 [to my daughter]A2 [in my will]AM-LOC . 
 

 A0 Leaver 

 A1 Things left 

 A2 Benefactor 

 AM-LOC Location 

 
I left my pearls to my daughter in my will . 
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Archetypical Information Extraction 
Problem: E.g., Concept Identification 
and Typing, Event Identification, etc.  



 Identify argument candidates 
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argument a is assigned a label t.  
ca,t   is the corresponding model score  
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to encode constraints in First Order 
Logic; these are compiled into linear 
inequalities automatically.  
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Variable ya,t  indicates whether  candidate 
argument a is assigned a label t.  
ca,t   is the corresponding model score  

Use the pipeline architecture’s simplicity while maintaining uncertainty:  keep 
probability distributions over decisions & use global inference at decision time. 

Learning Based Java: allows a developer 
to encode constraints in First Order 
Logic; these are compiled into linear 
inequalities automatically.  
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If there is an Reference-Ax phrase, 
there is an Ax 

If there is an Continuation-x 
phrase, there is an Ax before it 

In this case, 
independent learners 

http://cogcomp.cs.illinois.edu/


 John, a fast-rising politician, slept on the train to Chicago. 
 Verb Predicate: sleep 
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Identify the relation 
expressed by the predicate, 

and its arguments 



Computational Challenges 

 Predict the preposition relations 
 [EMNLP, ’11] 

 Identify the relation’s arguments 
 [Trans. Of ACL, ‘13] 
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The bus was heading for Nairobi in  Kenya. 

Extended Semantic Role labeling I 
[EMNLP’12, TACL’13] 

Location 
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The bus was heading for Nairobi in  Kenya. 

Extended Semantic Role labeling I 
[EMNLP’12, TACL’13] 

Location 

Destination 

Predicate: head.02 
 A0 (mover): The bus 
 A1 (destination): for Nairobi in Kenya 

Predicate arguments from different triggers should be consistent 

Joint constraints 
linking the two tasks. 
 
Destination  ⇔ A1 
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Verb Predicates, Noun predicates, 
prepositions, each dictates some 
relations, which have to cohere. 
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+ …. 

+ Joint constraints between tasks; easy with ILP formulations 

Joint Inference – no (or minimal) joint learning 
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 Given an example annotated with r(y*) , predict with: 
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Inference takes into account constrains 
among parts of the structure (r and h), 
formulated as a CCM 

 Given an example annotated with r(y*) , predict with: 
                                      argmaxy wT Á(x,[r(y),h(y)]) 
                                      s.t r(y*) = r(y) 
 
 While satisfying constraints between r(y) and h(y)  
 That is: “complete the hidden structure” in the best possible 

way, to support correct prediction of the supervised variable 
 During training, the loss is defined over the entire structure, where 

we scale the loss of elements in h(y).  

 

Learning with Latent Inference 
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Generalization of Latent Structure SVM [Yu & Joachims ’09] & 
                                Learning with Indirect Supervision  [Chang et. al. ’10] 

Generalization of Latent Structure SVM [Yu & Joachims ’09] & 
                                Indirect Supervision learning [Chang et. al. ’10] 
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Destination [A1] 
 

Joint inference over phenomena specific 
models  to enforce consistency  

Models trained with latent structure: 
senses, types, arguments 

 More to do with other relations, discourse phenomena,… 

http://cogcomp.cs.illinois.edu/demo/srl_exp_new/


 
 Have been shown useful in the context of many NLP problems 

 
 [Roth&Yih, 04,07: Entities and Relations; Punyakanok et. al: SRL  …] 

 Summarization; Co-reference; Information & Relation Extraction; Event 
Identifications and causality ; Transliteration; Textual Entailment; 
Knowledge Acquisition; Sentiments; Temporal Reasoning, Parsing,… 

 
 Some theoretical work on training paradigms [Punyakanok et. al., 05 more; 

Constraints Driven Learning, PR, Constrained EM…]  
 Some work on Inference, mostly approximations, bringing back ideas on 

Lagrangian relaxation, etc.  
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 Summarization; Co-reference; Information & Relation Extraction; Event 
Identifications and causality ; Transliteration; Textual Entailment; 
Knowledge Acquisition; Sentiments; Temporal Reasoning, Parsing,… 

 
 Some theoretical work on training paradigms [Punyakanok et. al., 05 more; 

Constraints Driven Learning, PR, Constrained EM…]  
 Some work on Inference, mostly approximations, bringing back ideas on 

Lagrangian relaxation, etc.  
 

 Good summary and description of training paradigms: [Chang, Ratinov & 
Roth, Machine Learning Journal 2012] 
 

 Summary of work & a bibliography: http://L2R.cs.uiuc.edu/tutorials.html 
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Outline 
 Constrained Conditional Models 

 A formulation for global inference with knowledge modeled as expressive 
structural constraints 

 Some examples 
 

 Learning with Constrained Latent Representation 
 

 Constraints Driven Learning  
 Training Paradigms for Constrained Conditional Models 
 Constraints Driven Learning (CoDL) 
 Unified (Constrained) Expectation Maximization 
 

 Amortized Integer Linear Programming Inference 
 Exploiting Previous Inference Results 

 In Inference and in Structured Learning  
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Constrained Conditional Models (aka ILP Inference) 

How to solve? 

This is an Integer Linear Program 

Solving using ILP packages gives an  
exact solution.  

Cutting Planes, Dual Decomposition & 
other search techniques are possible  

(Soft) constraints 
component 

Weight Vector for 
“local” models 

Penalty for violating 
the constraint. 

How far y is from  
a “legal” assignment 

Features, classifiers; log-
linear models  (HMM, 
CRF) or a combination 

How to train? 

Training is learning the objective 
function 

Decouple? Decompose? 

How to exploit the structure to        
minimize supervision? 
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 Training: 
 Independently of the constraints (L+I) 
 Jointly, in the presence of the constraints (IBT) 
 Decomposed to simpler models 

 There has been a lot of work, theoretical and experimental, on these 
issues, starting with [Punyakanok et. al IJCAI’05] 

 Not surprisingly, decomposition is good. [Samdani et. al ICML’12] 
 

 There has been a lot of work on exploiting CCMs in learning structures 
with indirect supervision [Chang et. al, NAACL’10, ICML’10] 

 And Response based Learning [Goldwasser et. al’12, ‘14] 
 

Decompose Model 
Training Constrained Conditional Models  

Decompose Model from constraints 
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Information extraction without Prior Knowledge 

Prediction result of a trained HMM 
  Lars Ole Andersen . Program analysis and 
  specialization for the  
  C  
  Programming language 
   .  PhD thesis . 
  DIKU , University of Copenhagen , May 
  1994 . 
 

[AUTHOR]   
[TITLE]    
[EDITOR]   
[BOOKTITLE]   
[TECH-REPORT]   
[INSTITUTION]   

[DATE]    

Lars Ole Andersen . Program analysis and specialization for the 
 C Programming language.  PhD thesis. DIKU , 
University of Copenhagen, May 1994 . 
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Information extraction without Prior Knowledge 

Prediction result of a trained HMM 
  Lars Ole Andersen . Program analysis and 
  specialization for the  
  C  
  Programming language 
   .  PhD thesis . 
  DIKU , University of Copenhagen , May 
  1994 . 
 

[AUTHOR]   
[TITLE]    
[EDITOR]   
[BOOKTITLE]   
[TECH-REPORT]   
[INSTITUTION]   

[DATE]    
Violates lots of natural constraints! 

Lars Ole Andersen . Program analysis and specialization for the 
 C Programming language.  PhD thesis. DIKU , 
University of Copenhagen, May 1994 . 
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 Higher Order HMM/CRF? 
 Increasing the window size? 
 Adding a lot of new features  

 Requires a lot of labeled examples 
 

 What if we only have a few labeled examples? 
 
 

 
 Other options?  

 Constrain the output to make sense 
 Push the  (simple) model in a direction that makes sense 
  

Increasing the model complexity 

Can we keep the learned model simple and 
still make expressive decisions?  

Increase difficulty of Learning 
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Examples of Constraints 

 Each field must be a consecutive list of words and can appear 
at most once in a citation.  

 
 State transitions must occur on punctuation marks. 
 
 The citation can only start with AUTHOR or EDITOR.  
 
 The words pp., pages correspond to PAGE. 
 Four digits starting with 20xx and 19xx are DATE. 
 Quotations can appear only in TITLE 
 ……. 
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 The words pp., pages correspond to PAGE. 
 Four digits starting with 20xx and 19xx are DATE. 
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 ……. 

 

Easy to express pieces of “knowledge” 

Non Propositional; May use Quantifiers  
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Information Extraction with “Expectation” Constraints 
 Adding constraints, we get correct results! 

 Without changing the model 
 

 
 

 [AUTHOR]    Lars Ole Andersen .  
      [TITLE]           Program analysis and specialization for the  
        C Programming language . 
 [TECH-REPORT]  PhD thesis . 
 [INSTITUTION]   DIKU , University of Copenhagen ,  
 [DATE]     May, 1994 . 
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 Adding constraints, we get correct results! 

 Without changing the model 
 

 
 

 [AUTHOR]    Lars Ole Andersen .  
      [TITLE]           Program analysis and specialization for the  
        C Programming language . 
 [TECH-REPORT]  PhD thesis . 
 [INSTITUTION]   DIKU , University of Copenhagen ,  
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Constrained Conditional Models Allow: 
 Learning a simple model  
 Make decisions with a more complex model 
 Accomplished by directly incorporating constraints to bias/re-

rank decisions made by the simpler model 
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Guiding (Semi-Supervised) Learning with Constraints 
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Model 

Un-labeled Data 

 In traditional Semi-Supervised learning the model can drift 
away from the correct one.  
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Guiding (Semi-Supervised) Learning with Constraints 

Model 

Decision Time  
Constraints 

Un-labeled Data 

Constraints 

 In traditional Semi-Supervised learning the model can drift 
away from the correct one.  

 Constraints can be used to generate better training data 
 At training to improve labeling of un-labeled data (and thus 

improve the model) 
 At decision time, to bias the objective function towards favoring 

constraint satisfaction.  
  

Better model-based labeled data Better Predictions 

Seed examples 
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Constraints Driven Learning (CoDL)    

 
(w,½)=learn(L)  
For N iterations do 
  T=φ  
     For each x in unlabeled dataset 
    h Ã argmaxy wT Á(x,y) - ∑ ½ dC(x,y) 
    T=T ∪ {(x, h)}   
   
    (w,½) = γ (w,½) + (1- γ) learn(T) 

[Chang, Ratinov, Roth, ACL’07;ICML’08,MLJ’12] 
See also: Ganchev et. al. 10 (PR) 
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    (w,½) = γ (w,½) + (1- γ) learn(T) 

[Chang, Ratinov, Roth, ACL’07;ICML’08,MLJ’12] 
See also: Ganchev et. al. 10 (PR) 

Supervised learning algorithm parameterized by 
 (w,½). Learning can be justified as an optimization 
 procedure for an objective function 

Inference with constraints:  
augment the training set  

Learn from new training data 
Weigh supervised &  
unsupervised models. 

Excellent Experimental Results showing the advantages of using constraints, 
especially with small amounts of labeled data [Chang et. al, Others] 
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Value of Constraints in Semi-Supervised Learning 
Objective function:  

This image cannot currently be displayed.

# of available labeled examples 

Learning w 10 Constraints 
Learning w/o Constraints: 300 examples. 

This image cannot currently be displayed.
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Value of Constraints in Semi-Supervised Learning 
Objective function:  

This image cannot currently be displayed.

# of available labeled examples 

Learning w 10 Constraints 
Constraints are used to 
Bootstrap a semi-
supervised learner  
Poor model + constraints 
used to annotate 
unlabeled data, which in 
turn is used to keep 
training the model.  

Learning w/o Constraints: 300 examples. 

This image cannot currently be displayed.
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CoDL as Constrained Hard EM 

 Hard EM is a popular variant of EM 
 While EM estimates a distribution over all y variables in the E-

step, 
 … Hard EM predicts the best output in the E-step 

y*= argmaxy Pw(y|x) 

 Alternatively, hard EM predicts a peaked distribution 

q(y) = ±y=y*  
 Constrained-Driven Learning (CODL) – can be viewed as a 

constrained version of hard EM:  
 

       y*= argmaxy:Uy· b Pw(y|x) 
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Constrained EM: Two Versions 

 While Constrained-Driven Learning  [CODL; Chang et al, 07,12] is a 
constrained version of hard EM: 
 

                        y*= argmaxy:Uy· b Pw(y|x) 
 … It is possible to derive a constrained version of EM: 
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                        y*= argmaxy:Uy· b Pw(y|x) 
 … It is possible to derive a constrained version of EM: 
 To do that, constraints are relaxed into expectation constraints 

on the posterior probability q:  

Eq[Uy] · b 

 The E-step now becomes: [Neal & Hinton ‘99 view of EM] 
              q’ =  
 
 This is the Posterior Regularization  model [PR; Ganchev et al, 10] 
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Which (Constrained) EM to use? 
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Which (Constrained) EM to use? 

 There is a lot of literature on EM vs hard EM 
 Experimentally, the bottom line is that with a good enough (???) 

initialization point, hard EM is probably better (and more efficient). 
 E.g., EM vs hard EM (Spitkovsky et al, 10) 
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Which (Constrained) EM to use? 

 that  

 There is a lot of literature on EM vs hard EM 
 Experimentally, the bottom line is that with a good enough (???) 

initialization point, hard EM is probably better (and more efficient). 
 E.g., EM vs hard EM (Spitkovsky et al, 10) 

 Similar issues exist in the constrained case: CoDL vs. PR 
 

 Unified EM (UEM)   [Samdani et. al., NAACL-12] 

 Provides a continuum of algorithms – from EM to hard EM, and 
infinitely many new EM algorithms in between.   

 Implementation wise, not more complicated than EM 
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Unifying Existing EM Algorithms 

KL(q , p; °) = ∑y ° q(y) log q(y) – q(y) log p(y) 

Changing ° values results in different existing EM algorithms 
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Hard EM 

Unsupervised POS tagging: Different EM instantiations 

 Measure percentage accuracy relative to EM 
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Hard EM 

Unsupervised POS tagging: Different EM instantiations 

 Measure percentage accuracy relative to EM 
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Hard EM 

Unsupervised POS tagging: Different EM instantiations 

 Measure percentage accuracy relative to EM 
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 Constraint-driven Learning (Chang et al, 07; MLJ-12), 
 Posterior Regularization (Ganchev et al, 10), 
 Generalized Expectation Criterion (Mann & McCallum, 08), 
 Learning from Measurements (Liang et al, 09) 
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Outline 
 Constrained Conditional Models 

 A formulation for global inference with knowledge modeled as expressive 
structural constraints 

 Some examples 
 

 Learning with Constrained Latent Representation 
 

 Constraints Driven Learning  
 Training Paradigms for Constrained Conditional Models 
 Constraints Driven Learning (CoDL) 
 Unified (Constrained) Expectation Maximization 
 

 Amortized Integer Linear Programming Inference 
 Exploiting Previous Inference Results 

 In Inference and in Structured Learning  
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 Co-reference resolution; Semantic Role Labeling; Parsing citations; 

Summarization; dependency parsing; image segmentation,… 
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After solving n inference problems, can we make the 
(n+1)th one faster?  

 Very general: All discrete MAP problems 
can be formulated as 0-1 LPs 

 We only care about inference formulation, 
not algorithmic solution 



Inference for BIG TEXT  

 In NLP, we typically don’t solve a single inference problem.  
 We solve one or more per sentence. 
 Beyond improving the inference algorithm, what can be done? 
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S1 & S2 look very different 
but their output structures 
are the same   

The inference outcomes  
are the same 
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Number of structures is 
much smaller than the 
number of sentences 
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The Hope: Dependency Parsing on Gigaword 

0

100

200

300

400

500

600

0 10 20 30 40 50

In
st

an
ce

s (
Th

ou
sa

nd
s)

 

Number of Examples of size

Number of unique dependency trees

Number of Tokens 

 
 
 
 
 
 
 
 
 
 

Number of structures is 
much smaller than the 
number of sentences 

Number of examples of a given size  
Number of unique Dependency Trees 

Page 55 



0

100

200

300

400

500

600

0 10 20 30 40 50

Th
ou

sa
nd

s 

Number of examples of size

Number of unique POS tag sequences
 
 
 
 
 
 
 
 
 
 

POS Tagging on Gigaword 

Number of Tokens 

How skewed is the 
distribution of the 
structures? 

Page 56 



0

100

200

300

400

500

600

0 10 20 30 40 50

Th
ou

sa
nd

s 

Number of examples of size

Number of unique POS tag sequences
 
 
 
 
 
 
 
 
 
 

POS Tagging on Gigaword 

Number of Tokens 

How skewed is the 
distribution of the 
structures? 

Page 56 



0

100

200

300

400

500

600

0 10 20 30 40 50

Th
ou

sa
nd

s 

Number of examples of size

Number of unique POS tag sequences
 
 
 
 
 
 
 
 
 
 

POS Tagging on Gigaword 

Number of Tokens 

How skewed is the 
distribution of the 
structures? 

Page 56 



0

100

200

300

400

500

600

0 10 20 30 40 50

Th
ou

sa
nd

s 

Number of examples of size

Number of unique POS tag sequences
 
 
 
 
 
 
 
 
 
 

POS Tagging on Gigaword 

Number of Tokens 

How skewed is the 
distribution of the 
structures? 

A small # of 
structures occur 
very frequently 

Page 56 



Redundancy in Inference and Learning 

 This redundancy is clearly important since in all NLP tasks 
there is a need to solve many inferences, at least one per 
sentence. 

 However, it is as important in structured learning,  where 
algorithms cycle between 

 performing inference and  
 updating the model.  
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 These statistics show that many different instances are 
mapped into identical inference outcomes. 
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We give conditions on the objective functions  
(for all objectives with the same # or variables and same feasible set),  

under which the solution of a new problem Q is the same as the 
one of  P (which we already cached)  

We argue here that the inference formulation 
provides a new level of abstraction. 

If CONDITION (problem cache, new problem) 
  then (no need to call the solver) 
 SOLUTION(new problem) = old solution 
Else 
 Call base solver and update cache 
End 

0.04 ms 

2 ms 
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Structured Learning: Dual 
coordinate descent for 
structured SVM still returns 
an exact model even if 
approx. amortized 
inference is used. 



Amortized Inference Experiments 

 Setup 
 Verb semantic role labeling; Entity and Relations   
 Speedup & Accuracy are measured over WSJ test set (Section 23) and 

Test of E & R 
 Baseline: solving ILPs using the Gurobi solver. 
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 For amortization 

 Cache 250,000 inference problems (objective, solution) from Gigaword 
 For each problem in test set either call the inference engine or re-use a 

solution from the cache, if our theorems hold. 

 
 

No training data is needed for this method. 
Once you have a model, you can generate a large cache that will be then 

used to save you time at evaluation time.  
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The results show that, indeed, the inference 
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The results show that, indeed, the inference 
formulation provides a new level of abstraction 
that can be exploited to re-use solutions 
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Recent results [AAAI’15]  on 
how to exploit amortized 

ILP in faster Structured 
Learning  



Conclusion 
 Presented Constrained Conditional Models:   

 An ILP based computational framework that augments statistically learned 
linear models with declarative constraints  as a way to incorporate knowledge 
and support decisions in an expressive output spaces  

 Maintains modularity and tractability of training 
 A powerful & modular learning and inference paradigm for high level tasks. 

 
 Learning issues:  

 Constraints driven learning, constrained EM  
 Many other issues have been and should be studied 

 Inference: 
 The power of ILP formulations is shown via the amortized inference results: 

how to use previous  inference outcomes to reduce inference and, 
consequently, learning cost  
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linear models with declarative constraints  as a way to incorporate knowledge 
and support decisions in an expressive output spaces  

 Maintains modularity and tractability of training 
 A powerful & modular learning and inference paradigm for high level tasks. 

 
 Learning issues:  

 Constraints driven learning, constrained EM  
 Many other issues have been and should be studied 

 Inference: 
 The power of ILP formulations is shown via the amortized inference results: 

how to use previous  inference outcomes to reduce inference and, 
consequently, learning cost  
 

Thank You! 

Check out our tools, demos, tutorials 
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Bonus Slides 

 Response Based Learning 
 
 [From Clarke et. al. CoNLL’10 to  Goldwasser & Roth MLJ’14]  
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Can we rely on this 
interaction to provide 
supervision (and 
eventually, recover 
meaning) ? 



Response Based Learning 
 We want to learn a model that transforms a natural language 

sentence to some meaning representation. 
 
  
 

 Instead of training with  (Sentence, Meaning Representation) pairs  
 

                                                             
                                                  
                                                                     

 

Model English Sentence Meaning Representation 

Page 68 



Response Based Learning 
 We want to learn a model that transforms a natural language 

sentence to some meaning representation. 
 
  
 

 Instead of training with  (Sentence, Meaning Representation) pairs  
 

 Think about some simple derivatives of the models outputs,  
 Supervise the derivative [verifier] (easy!) and  
 Propagate it to learn the complex, structured, transformation model 
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Scenario I: Freecell with Response Based Learning 
 We want to learn a model to transform a natural language 

sentence to some meaning representation. 
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A top card can be moved to the tableau if 
it has a different color than the color of 
the top tableau card, and the cards have 

successive values.   
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tableau(a2) top(x2,a2) color(a1,x3) 

color(x2,x4) not-equal(x3,x4) value(a1,x5) 
value(x2,x6) successor(x5,x6) 
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Model English Sentence Meaning Representation 

A top card can be moved to the tableau if 
it has a different color than the color of 
the top tableau card, and the cards have 

successive values.   

Move (a1,a2) top(a1,x1) card(a1) 
tableau(a2) top(x2,a2) color(a1,x3) 

color(x2,x4) not-equal(x3,x4) value(a1,x5) 
value(x2,x6) successor(x5,x6) 

 Simple derivatives of the 
models outputs 
 Supervise the derivative and 
 Propagate it to learn the 

transformation model 
 

Play Freecell (solitaire)  

Page 69 



Scenario II: Geoquery with Response based Learning 
 We want to learn a model to transform a natural language 

sentence to some formal representation. 
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What is the largest state that borders NY? largest( state( next_to( const(NY)))) 
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What is the largest state that borders NY? largest( state( next_to( const(NY)))) 

 Simple derivatives of the 
models outputs  Query a GeoQuery Database.  
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Scenario II: Geoquery with Response based Learning 
 We want to learn a model to transform a natural language 

sentence to some formal representation. 
 
 
 
 
 
 

 “Guess” a semantic parse.  Is [DB response == Expected response] ?  
 Expected: Pennsylvania   DB Returns: Pennsylvania Positive Response 
 Expected: Pennsylvania   DB Returns: NYC, or ????  Negative Response 
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Response Based Learning: Using a Simple Feedback  
 We want to learn a model to transform a natural language 

sentence to some formal representation. 
 
  

 Instead of training with  (Sentence, Meaning Representation) pairs  
 Think about some simple derivatives of the models outputs,  

 Supervise the derivative (easy!) and  
 Propagate it to learn the complex, structured, transformation model 
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Response Based Learning: Using a Simple Feedback  
 We want to learn a model to transform a natural language 

sentence to some formal representation. 
 
  

 Instead of training with  (Sentence, Meaning Representation) pairs  
 Think about some simple derivatives of the models outputs,  

 Supervise the derivative (easy!) and  
 Propagate it to learn the complex, structured, transformation model 

LEARNING:  
 Train a structured predictor (semantic parse) with this binary supervision  

 Many challenges: e.g., how to make a better use of a negative response?  
 Learning with a constrained latent representation, making used of CCM 

inference, exploiting knowledge on the structure of the meaning 
representation. 
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Geoquery: Response based Competitive with Supervised 

NOLEARN :Initialization point SUPERVISED :  Trained with annotated data  

 Supervised: Y.-W. Wong and R. Mooney. Learning synchronous grammars for semantic parsing 
with lambda calculus. ACL’07 

Response based Learning is gathering momentum:  
 Liang, M.I. Jordan, D. Klein,  Learning Dependency-Based Compositional Semantics, ACL’11. 
 Berant et-al ’ Semantic Parsing on Freebase from Question-Answer Pairs, EMNLP’13 

Clarke, Goldwasser, Chang, Roth CoNLL’10; Goldwasser, Roth IJCAI’11, MLJ’14 

 
Algorithm Training 

Accuracy 
Testing 
Accuracy 

# Training 
Examples 

NOLEARN 22 --         - 

Response-based (2010) 82.4 73.2 250 answers 

Liang et-al 2011 -- 78.9 250 answers 

Response-based (2012) 86.8 81.6 250 answers 

Supervised -- 86.07 600 structs. 
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