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MDP Planning

Markov Decision Problem: general abstraction of sequential decision making.

An MDP comprises a tuple (S,A,R,T ), where

S is a set of states (with |S| = n),

A is a set of actions (with |A| = k ),

R(s, a) is a bounded real number, ∀s ∈ S,∀a ∈ A, and

T (s, a) is a probability distribution over S, ∀s ∈ S,∀a ∈ A.

A policy π : S → A specifies an action from each state. The value of a policy π

from state s is:

V
π(s) = E

[

∞
∑

t=0

γ
t
rt | s0 = s, at = π(st ), t = 0, 1, 2, . . .

]

,where

γ ∈ [0, 1) is a discount factor.
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Linear Programming

� The optimal value function Vπ
⋆ def
=V ⋆ is unique solution of

Bellman’s Optimality Equations: ∀s ∈ S:

V
⋆(s) = max

a∈A

(

R(s, a) + γ
∑

s′∈S

T (s, a, s′)V ⋆(s′)

)

.
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T (s, a, s′)V ⋆(s′)

)

.

� V ⋆ can be obtained by solving an equivalent linear program:

maximise
∑

s∈S

V (s)

subject to V (s) ≥
(

R(s, a) + γ
∑

s′

T (s, a, s′)V (s′)

)

,∀s ∈ S,∀a ∈ A.

� n variables, nk constraints (or dual with nk variables, n constraints).

Solution time: poly(n, k ,B),

where B is the number of bits used to represent the MDP.
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Value Iteration

� Classical dynamic programming approach.

V0 ← Arbitrary, element-wise bounded, n-length vector.

t ← 0.

Repeat:
For s ∈ S:

Vt+1(s)← maxa∈A

(

R(s, a) + γ
∑

s′∈S T (s, a, s′)Vt(s
′)
)

.

t ← t + 1.

Until Vt = Vt−1 = V ⋆ (up to machine precision).
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.

t ← t + 1.

Until Vt = Vt−1 = V ⋆ (up to machine precision).

� Convergence to V ⋆ guaranteed using a max-norm contraction argument.

Number of iterations: poly(n, k ,B,
1

1−γ
).
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Bellman’s Equations and Policy Evaluation

Recall that

Vπ(s) = E[r1 + γr2 + γ
2r3 + . . . |s0 = s, ai = π(si)].

Bellman’s Equations (∀s ∈ S):

Vπ(s) =
∑

s′∈S T (s, π(s), s′) [R(s, π(s), s′) + γVπ(s′)].

Vπ is called the value function of π.
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Qπ(s, a) =
∑

s′∈S T (s, a, s′) [R(s, a, s′) + γVπ(s′)].

Qπ is called the action value function of π.

Vπ(s) = Qπ(s, π(s)).

The variables in Bellman’s equation are the Vπ(s). |S| linear equations in |S|
unknowns.

Thus, given S, A, T , R, γ, and a fixed policy π, we can solve Bellman’s equa-

tions efficiently to obtain, ∀s ∈ S, ∀a ∈ A, Vπ(s) and Qπ(s, a).
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Policy Iteration

� For a given policy π:

I(π)
def
=

{

s ∈ S : Q
π(s, π(s)) < max

a∈A
Q

π(s, a)

}

.
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def
=

{
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π(s) otherwise.

� It can be shown that

(1) ∀s ∈ S : Vπ
′

(s) ≥ Vπ(s), and

(2) ∃s ∈ S : Vπ
′

(s) > Vπ(s). [Policy improvement]
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Policy Iteration

π0 ← Arbitrary policy.

t ← 0.

Repeat:
Evaluate π

t ; derive I(πt).
If I(πt) 6= ∅, select C(πt) ⊂ I(πt) and improve π

t to π
t+1.

t ← t + 1.

Until I(πt−1) = ∅.
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Expected number of iterations:

O
(

20.78n
)

for k = 2; O
(((

1 + 2
log(k)

)

k
2
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� References: Howard(1960), Mansour and Singh (1999), Hollanders et al. (2014).

� Note that bounds do not depend on B and γ!
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Our Contribution

Algorithm Computational complexity

Linear Programming poly(n, k ,B)

Value Iteration poly
(

n, k ,B,
1

1−γ

)

Policy Iteration poly(n) ·O
(((

1 + 2
log(k)

)

k
2

)n)

(expected)
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A Total Order on the Set of Policies

� For π ∈ Π, define

V (π) =
∑

s∈S

V
π(s).
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s∈S

V
π(s).

� Let L be an arbitrary total ordering on policies for tie-breaking, for example the

lexicographic ordering.

� Total order ≻:

For π1, π2 ∈ Π, define π1 ≻ π2 iff

V (π1) > V (π2) or

V (π1) = V (π2) and π1Lπ2.
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� Let L be an arbitrary total ordering on policies for tie-breaking, for example the

lexicographic ordering.

� Total order ≻:

For π1, π2 ∈ Π, define π1 ≻ π2 iff

V (π1) > V (π2) or

V (π1) = V (π2) and π1Lπ2.

� Observe that if policy improvement to π yields π
′, then π

′ ≻ π.

∀s ∈ S : V
π
′

(s) ≥ V
π(s) and ∃s ∈ S : V

π
′

(s) > V
π(s)

=⇒ V (π′) > V (π)

=⇒ π1 ≻ π2.
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Guessing Game

N

3

1
2
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Guessing Game
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N − O(  N  )

� How many operations needed to reach N?

� Pick the best of
√

N guesses, and then increment up to N.
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Guessing Game

N

3

1
2

N − O(  N  )

� How many operations needed to reach N?

� Pick the best of
√

N guesses, and then increment up to N.

� Expected number of operations: O(
√

N).
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PGPI Algorithm

π ← Arbitrary policy.

Repeat kαn times:
Draw π

′ from Π uniformly at random.

If π′ ≻ π, π ← π
′.

While π is not optimal:
π ← PolicyImprovement(π).
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If π′ ≻ π, π ← π
′.

While π is not optimal:
π ← PolicyImprovement(π).

α = 0.5; Expected number of iterations: O
(

k
n
2

)

.
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π ← Arbitrary policy.

Repeat kαn times:
Draw π

′ from Π uniformly at random.

If π′ ≻ π, π ← π
′.

While π is not optimal:
π ← PolicyImprovement(π).

α = 0.5; Expected number of iterations: O
(

k
n
2

)

.

k = 2, α = 0.46, randomised policy improvement;

Expected number of iterations: O
(

20.46n
)

.
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Overview

1. MDP Planning

2. Solution strategies

Linear programming
Value iteration
Policy iteration
Our contribution: Planning by Guessing and Policy Improvement (PGPI)

3. PGPI algorithm

A total order on the set of policies
Guessing game
Algorithm

4. Discussion
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Discussion

� PGPI: improved complexity bound solely in terms of n and k .
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