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Lab Outline
1

Submodular Maximization Lab: Goals and Steps

@ Define a random 2D data set of 1000 points V (so |V| = n = 1000).
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Lab Outline
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Submodular Maximization Lab: Goals and Steps

@ Define a random 2D data set of 1000 points V (so |V| = n = 1000).
@ Define a non-negative similar score over pairs of points, and then
compute those similarities over all pairs. Lets call this
s:VxV =Ry, soforv,v €V, s(v,v) is the similarity between
v and v/
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1

Submodular Maximization Lab: Goals and Steps

@ Define a random 2D data set of 1000 points V (so |V| = n = 1000).
@ Define a non-negative similar score over pairs of points, and then
compute those similarities over all pairs. Lets call this
s:VxV =Ry, soforv,v €V, s(v,V) is the similarity between
v and v'.
© Use the similarity scores to define a submodular function
f:2Y — R, (you'll use facility location function, TBD).
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Lab Outline
1

Submodular Maximization Lab: Goals and Steps

@ Define a random 2D data set of 1000 points V (so |V| = n = 1000).

@ Define a non-negative similar score over pairs of points, and then
compute those similarities over all pairs. Lets call this
s:VxV =Ry, soforv,v €V, s(v,V) is the similarity between
v and v'.

© Use the similarity scores to define a submodular function
f:2Y — Ry (you'll use facility location function, TBD).

© Implement the greedy algorithm to solve maxacy ja/<k f(A) and let
A* be the solution, for some small constant integer k.
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Submodular Maximization Lab: Goals and Steps

Define a random 2D data set of 1000 points V (so |V| = n = 1000).
Define a non-negative similar score over pairs of points, and then
compute those similarities over all pairs. Lets call this

s:VxV =Ry, soforv,v €V, s(v,V) is the similarity between
v and v'.

Use the similarity scores to define a submodular function

f:2Y — Ry (you'll use facility location function, TBD).
Implement the greedy algorithm to solve maxacv ja/<k f(A) and let
A* be the solution, for some small constant integer k.

Plot the set of points V' (in 2D) and plot the set A* in a distinct
color and see if the points A* seem to be representative of V.
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Submodular Maximization Lab: Goals and Steps

@ Define a random 2D data set of 1000 points V (so |V| = n = 1000).
@ Define a non-negative similar score over pairs of points, and then
compute those similarities over all pairs. Lets call this

s:VxV =Ry, soforv,v €V, s(v,V) is the similarity between
v and v'.

Use the similarity scores to define a submodular function

f:2Y — Ry (you'll use facility location function, TBD).
Implement the greedy algorithm to solve maxacv ja/<k f(A) and let
A* be the solution, for some small constant integer k.

Plot the set of points V (in 2D) and plot the set A* in a distinct
color and see if the points A* seem to be representative of V.

Do the above steps repeatedly for different definitions of similarity.

© 06 6 o

J. Bilmes & R. lyer NOML: Submodularity in ML page 2 /10



Lab Outline
1

Submodular Maximization Lab: Goals and Steps

@ Define a random 2D data set of 1000 points V (so |V| = n = 1000).
@ Define a non-negative similar score over pairs of points, and then
compute those similarities over all pairs. Lets call this

s:VxV =Ry, soforv,v €V, s(v,V) is the similarity between
v and v'.

Use the similarity scores to define a submodular function

f:2Y — Ry (you'll use facility location function, TBD).
Implement the greedy algorithm to solve maxacv ja/<k f(A) and let
A* be the solution, for some small constant integer k.

Plot the set of points V (in 2D) and plot the set A* in a distinct
color and see if the points A* seem to be representative of V.

Do the above steps repeatedly for different definitions of similarity.
If you have time, randomly partition V' into £ non-empty blocks
V=ViUWU---U YV, and define corresponding small integers

ki, ko, ..., ke, (Vi, ki < |Vj|) to define a partition matroid

M = (V,I), then solve maxacz(m) f(A) and plot the results.
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Lab Detail
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On the random generation of the |V| = 1000 points

@ Generate them randomly using any method you want.
@ Try to ensure that your final set has at least some obvious outliers.

@ You might also want the points to have some sort of natural clusters
(that can be seen by plotting the points in 2D).
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Similarity scores over pairs of points in R?

e Given two points v,V € V, with v, v/ € R?, we can define a number
of possible similarity scores.
@ One option, a-parameterized exponentiated p-norm, i.e.,:

Sap(v, V') = exp(=[lv = V'[[}/a) (1)

where « is a scale parameter, and ||x|, = (3_; |x;|p)1/p. Try
different o & p values to see how the behavior of submodular max
changes. Ex: p = 2 gives a Gaussian similarity, p = 1 gives the
1-norm, and p = oo gives the max norm.
@ Another option doesn't apply the exponential. l.e.,
sa(v,v') = max flvi — vell2 — [lv — V|| (2)

)

@ Yet another option for similarity: normalized cosine squared. l.e.,

(v, v)?
se(v, V') = = (3)
o Ivll2l[v/[l2
where (v, v') is the dot-product between the two point.
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Facility Location Submodular Function

e Given s: V x V — R, we define the (uncapacitated) facility

location function as f : 2Y — R+ and for A C V, we have:
f(A) = maxs(a, v) (4)
acA
veV

@ Hence, the facility location function is parameterized by the
similarity scores you have defined.

@ Your goal is to instantiate a number of distinct facility location
functions, one each for a given similarity score, and then use it in
submodular optimization.
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The greedy algorithm

@ Implement the greedy algorithm.
Algorithm 1: The Greedy Algorithm
Set 50 — 0 ;

for i< 0...(k—1) do
Choose v; as follows:

v € argmax,c\s; F({v}[Si) = argmax,cv\s, F(SiU{v}) ;
Set 5;+1 +~— S uU {V,'} ;

@ If there are ties in the argmax, break them arbitrarily.
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Plot the points

Set k =50 and run greedy.

(]

@ Neatly and cleanly plot your V points in 2D, and then using a
distinct color, indicate the points that the greedy algorithm
produced.

@ Indicate, in your plot, a number next to each point indicating the
order it was chosen by the greedy algorithm.

@ Do one separate plot for each different similarity score method. For
Sa,p(v, V') try at least 10 distinct quite different values of « and p.

@ Question: what qualitative difference do you find in the result when
using the different similarity measures.
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Partition Matroid

@ Randomly partition V into £ non-empty blocks
V=ViuWwu---UJV,.

@ For each block V;, define a small integer k;. Your integer should be
small, i.e., k; = 0.1]V;| at most.

@ This gives a set of integers ki, ko, ..., ky.

@ We can then define a partition matroid M = (V,Z) where the
independent sets variable Z is defined in the following way:

I={ICV:|InVi|<k,1<i<{l} (5)
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Constrained submodular max subject to partition matroid

constraint

@ We can use almost the same greedy algorithm to solve
maxacz(m) f(A), where Z(M) is the independent sets of matroid M.

Algorithm 2: The Greedy Algorithm

Set 50 — 0 ;

for i< 0...(]V|—1) do

L Choose v; as follows: v; € argmax,cw\s;.s;uqvyezm) F({VHSI) ;

Set Sip1 + SiU{vi};
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Plot the points

@ Neatly and cleanly plot your partitioned V points in 2D, where
points in the same block are plotted in the same way (e.g., you
might plot all points in V; using the same shape, and points v € V;
and v/ € Vj for i # j are plotted using a different shape).

@ Run the matroid-constrained greedy algorithm for each of your
similarity measures.

@ Indicate the points that the greedy algorithm produced using a
distinct color.

@ Indicate, in your plot, a number next to each point indicating the
order it was chosen by the greedy algorithm.

@ Do one separate plot for each different similarity score method. For
Sa,p(V, V') try at least 10 distinct quite different values of « and p.

o Question: what qualitative difference do you find in the result when
using the different similarity measures.
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