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Lab Outline Lab Detail

Submodular Maximization Lab: Goals and Steps

1 Define a random 2D data set of 1000 points V (so |V | = n = 1000).

2 Define a non-negative similar score over pairs of points, and then
compute those similarities over all pairs. Lets call this
s : V × V → R+, so for v , v ′ ∈ V , s(v , v ′) is the similarity between
v and v ′.

3 Use the similarity scores to define a submodular function
f : 2V → R+ (you’ll use facility location function, TBD).

4 Implement the greedy algorithm to solve maxA⊆V ,|A|≤k f (A) and let
A∗ be the solution, for some small constant integer k.

5 Plot the set of points V (in 2D) and plot the set A∗ in a distinct
color and see if the points A∗ seem to be representative of V .

6 Do the above steps repeatedly for different definitions of similarity.
7 If you have time, randomly partition V into ` non-empty blocks

V = V1 ∪ V2 ∪ · · · ∪ V` and define corresponding small integers
k1, k2, . . . , k`, (∀i , ki < |Vi |) to define a partition matroid
M = (V , I), then solve maxA∈I(M) f (A) and plot the results.
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On the random generation of the |V | = 1000 points

Generate them randomly using any method you want.

Try to ensure that your final set has at least some obvious outliers.

You might also want the points to have some sort of natural clusters
(that can be seen by plotting the points in 2D).
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Similarity scores over pairs of points in R2

Given two points v , v ′ ∈ V , with v , v ′ ∈ R2, we can define a number
of possible similarity scores.
One option, α-parameterized exponentiated p-norm, i.e.,:

sα,p(v , v ′) = exp(−‖v − v ′‖pp/α) (1)

where α is a scale parameter, and ‖x‖p = (
∑

i |xi |p)1/p. Try
different α & p values to see how the behavior of submodular max
changes. Ex: p = 2 gives a Gaussian similarity, p = 1 gives the
1-norm, and p =∞ gives the max norm.
Another option doesn’t apply the exponential. I.e.,

sa(v , v ′) = max
v1,v2∈V

‖v1 − v2‖2 − ‖v − v ′‖2 (2)

Yet another option for similarity: normalized cosine squared. I.e.,

sc(v , v ′) =
〈v , v ′〉2
‖v‖2‖v ′‖2

(3)

where 〈v , v ′〉 is the dot-product between the two point.
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Facility Location Submodular Function

Given s : V × V → R+ we define the (uncapacitated) facility
location function as f : 2V → R+ and for A ⊆ V , we have:

f (A) =
∑
v∈V

max
a∈A

s(a, v) (4)

Hence, the facility location function is parameterized by the
similarity scores you have defined.

Your goal is to instantiate a number of distinct facility location
functions, one each for a given similarity score, and then use it in
submodular optimization.
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The greedy algorithm

Implement the greedy algorithm.

Algorithm 1: The Greedy Algorithm

Set S0 ← ∅ ;
for i ← 0 . . . (k − 1) do

Choose vi as follows:
vi ∈ argmaxv∈V \Si f ({v}|Si ) = argmaxv∈V \Si f (Si ∪ {v}) ;

Set Si+1 ← Si ∪ {vi} ;

If there are ties in the argmax, break them arbitrarily.
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Plot the points

Set k = 50 and run greedy.

Neatly and cleanly plot your V points in 2D, and then using a
distinct color, indicate the points that the greedy algorithm
produced.

Indicate, in your plot, a number next to each point indicating the
order it was chosen by the greedy algorithm.

Do one separate plot for each different similarity score method. For
sα,p(v , v ′) try at least 10 distinct quite different values of α and p.

Question: what qualitative difference do you find in the result when
using the different similarity measures.
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Partition Matroid

Randomly partition V into ` non-empty blocks
V = V1 ∪ V2 ∪ · · · ∪ V`.

For each block Vi , define a small integer ki . Your integer should be
small, i.e., ki ≈ 0.1|Vi | at most.

This gives a set of integers k1, k2, . . . , k`.

We can then define a partition matroid M = (V , I) where the
independent sets variable I is defined in the following way:

I = {I ⊆ V : |I ∩ Vi | ≤ ki , 1 ≤ i ≤ `} (5)
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Constrained submodular max subject to partition matroid
constraint

We can use almost the same greedy algorithm to solve
maxA∈I(M) f (A), where I(M) is the independent sets of matroid M.

Algorithm 2: The Greedy Algorithm

Set S0 ← ∅ ;
for i ← 0 . . . (|V | − 1) do

Choose vi as follows: vi ∈ argmaxv∈V \Si :Si∪{v}∈I(M) f ({v}|Si ) ;

Set Si+1 ← Si ∪ {vi} ;
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Plot the points

Neatly and cleanly plot your partitioned V points in 2D, where
points in the same block are plotted in the same way (e.g., you
might plot all points in Vi using the same shape, and points v ∈ Vi

and v ′ ∈ Vj for i 6= j are plotted using a different shape).

Run the matroid-constrained greedy algorithm for each of your
similarity measures.

Indicate the points that the greedy algorithm produced using a
distinct color.

Indicate, in your plot, a number next to each point indicating the
order it was chosen by the greedy algorithm.

Do one separate plot for each different similarity score method. For
sα,p(v , v ′) try at least 10 distinct quite different values of α and p.
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