

Jeffrey A. Bilmes and Rishabh Iyer

Departments of Electrical Engineering & Computer Science and Engineering University of Washington, Seattle http://melodi.ee.washington.edu/~bilmes http://melodi.ee.washington.edu/~rkiyer/

June 17th-19th, 2014

• Define a random 2D data set of 1000 points V (so |V| = n = 1000).

- Define a random 2D data set of 1000 points V (so |V| = n = 1000).
 Define a non-negative similar score over pairs of points, and then compute those similarities over all pairs. Lets call this s : V × V → ℝ₊, so for v, v' ∈ V, s(v, v') is the similarity between
 - v and v'.

- Define a random 2D data set of 1000 points V (so |V| = n = 1000).
- Of Define a non-negative similar score over pairs of points, and then compute those similarities over all pairs. Lets call this
 - $s: V imes V o \mathbb{R}_+$, so for $v, v' \in V$, s(v, v') is the similarity between v and v'.
- Use the similarity scores to define a submodular function $f: 2^V \to \mathbb{R}_+$ (you'll use facility location function, TBD).

 A^* be the solution, for some small constant integer k.

Output Set in the similarity scores to define a submodular function f : 2^V → ℝ₊ (you'll use facility location function, TBD).

- Submodular Maximization Lab: Goals and Steps
 - Define a random 2D data set of 1000 points V (so |V| = n = 1000).
 - Observe a non-negative similar score over pairs of points, and then compute those similarities over all pairs. Lets call this

 $s: V \times V \to \mathbb{R}_+$, so for $v, v' \in V$, s(v, v') is the similarity between v and v'.

Implement the greedy algorithm to solve $\max_{A \subseteq V, |A| \le k} f(A)$ and let

- Define a random 2D data set of 1000 points V (so |V| = n = 1000).
- Of Define a non-negative similar score over pairs of points, and then compute those similarities over all pairs. Lets call this

 $s: V \times V \to \mathbb{R}_+$, so for $v, v' \in V$, s(v, v') is the similarity between v and v'.

- Use the similarity scores to define a submodular function f : 2^V → ℝ₊ (you'll use facility location function, TBD).
- Implement the greedy algorithm to solve max_{A⊆V,|A|≤k} f(A) and let A* be the solution, for some small constant integer k.
- Plot the set of points V (in 2D) and plot the set A* in a distinct color and see if the points A* seem to be representative of V.

- Define a random 2D data set of 1000 points V (so |V| = n = 1000).
- Obefine a non-negative similar score over pairs of points, and then compute those similarities over all pairs. Lets call this

 $s: V \times V \to \mathbb{R}_+$, so for $v, v' \in V$, s(v, v') is the similarity between v and v'.

- Use the similarity scores to define a submodular function f : 2^V → ℝ₊ (you'll use facility location function, TBD).
- Implement the greedy algorithm to solve max_{A⊆V,|A|≤k} f(A) and let A* be the solution, for some small constant integer k.
- Plot the set of points V (in 2D) and plot the set A* in a distinct color and see if the points A* seem to be representative of V.
- Do the above steps repeatedly for different definitions of similarity.

- Define a random 2D data set of 1000 points V (so |V| = n = 1000).
- Obefine a non-negative similar score over pairs of points, and then compute those similarities over all pairs. Lets call this

 $s: V \times V \to \mathbb{R}_+$, so for $v, v' \in V$, s(v, v') is the similarity between v and v'.

- Use the similarity scores to define a submodular function f : 2^V → ℝ₊ (you'll use facility location function, TBD).
- Implement the greedy algorithm to solve max_{A⊆V,|A|≤k} f(A) and let A* be the solution, for some small constant integer k.
- Plot the set of points V (in 2D) and plot the set A* in a distinct color and see if the points A* seem to be representative of V.
- Do the above steps repeatedly for different definitions of similarity.
- If you have time, randomly partition V into ℓ non-empty blocks $V = V_1 \cup V_2 \cup \cdots \cup V_\ell$ and define corresponding small integers k_1, k_2, \ldots, k_ℓ , $(\forall i, k_i < |V_i|)$ to define a partition matroid $M = (V, \mathcal{I})$, then solve $\max_{A \in \mathcal{I}(M)} f(A)$ and plot the results.

On the random generation of the |V| = 1000 points

- Generate them randomly using any method you want.
- Try to ensure that your final set has at least some obvious outliers.
- You might also want the points to have some sort of natural clusters (that can be seen by plotting the points in 2D).

Lab Outline

Lab Detail

Similarity scores over pairs of points in \mathbb{R}^2

- Given two points $v, v' \in V$, with $v, v' \in \mathbb{R}^2$, we can define a number of possible similarity scores.
- One option, α -parameterized exponentiated *p*-norm, i.e.,:

$$s_{\alpha,p}(\boldsymbol{v},\boldsymbol{v}') = \exp(-\|\boldsymbol{v}-\boldsymbol{v}'\|_p^p/\alpha) \tag{1}$$

where α is a scale parameter, and $||x||_p = (\sum_i |x_i|^p)^{1/p}$. Try different $\alpha \& p$ values to see how the behavior of submodular max changes. Ex: p = 2 gives a Gaussian similarity, p = 1 gives the 1-norm, and $p = \infty$ gives the max norm.

• Another option doesn't apply the exponential. I.e.,

$$s_a(v,v') = \max_{v_1,v_2 \in V} \|v_1 - v_2\|_2 - \|v - v'\|_2$$
(2)

• Yet another option for similarity: normalized cosine squared. I.e.,

$$s_{c}(v,v') = \frac{\langle v,v' \rangle^{2}}{\|v\|_{2}\|v'\|_{2}}$$
(3)

where $\langle v, v' \rangle$ is the dot-product between the two point.

Facility Location Submodular Function

• Given $s: V \times V \to \mathbb{R}_+$ we define the (uncapacitated) facility location function as $f: 2^V \to \mathbb{R}+$ and for $A \subseteq V$, we have:

$$f(A) = \sum_{v \in V} \max_{a \in A} s(a, v)$$
(4)

- Hence, the facility location function is parameterized by the similarity scores you have defined.
- Your goal is to instantiate a number of distinct facility location functions, one each for a given similarity score, and then use it in submodular optimization.

The greedy algorithm

• Implement the greedy algorithm.

Algorithm 1: The Greedy Algorithm

Set
$$S_0 \leftarrow \emptyset$$
;
for $i \leftarrow 0 \dots (k-1)$ do
Choose v_i as follows:
 $v_i \in \operatorname{argmax}_{v \in V \setminus S_i} f(\{v\}|S_i) = \operatorname{argmax}_{v \in V \setminus S_i} f(S_i \cup \{v\})$;
Set $S_{i+1} \leftarrow S_i \cup \{v_i\}$;

• If there are ties in the argmax, break them arbitrarily.

Plot the points

- Set k = 50 and run greedy.
- Neatly and cleanly plot your V points in 2D, and then using a distinct color, indicate the points that the greedy algorithm produced.
- Indicate, in your plot, a number next to each point indicating the order it was chosen by the greedy algorithm.
- Do one separate plot for each different similarity score method. For $s_{\alpha,p}(v, v')$ try at least 10 distinct quite different values of α and p.
- Question: what qualitative difference do you find in the result when using the different similarity measures.

Partition Matroid

- Randomly partition V into ℓ non-empty blocks $V = V_1 \cup V_2 \cup \cdots \cup V_{\ell}.$
- For each block V_i, define a small integer k_i. Your integer should be small, i.e., k_i ≈ 0.1|V_i| at most.
- This gives a set of integers k_1, k_2, \ldots, k_ℓ .
- We can then define a partition matroid M = (V, I) where the independent sets variable I is defined in the following way:

$$\mathcal{I} = \{ I \subseteq V : |I \cap V_i| \le k_i, 1 \le i \le \ell \}$$
(5)

Constrained submodular max subject to partition matroid constraint

 We can use almost the same greedy algorithm to solve max_{A∈I(M)} f(A), where I(M) is the independent sets of matroid M.

Algorithm 2: The Greedy Algorithm

```
Set S_0 \leftarrow \emptyset;

for \underline{i \leftarrow 0 \dots (|V| - 1)} do

Choose v_i as follows: v_i \in \operatorname{argmax}_{v \in V \setminus S_i: S_i \cup \{v\} \in \mathcal{I}(M)} f(\{v\}|S_i);

Set S_{i+1} \leftarrow S_i \cup \{v_i\};
```

Plot the points

- Neatly and cleanly plot your partitioned V points in 2D, where points in the same block are plotted in the same way (e.g., you might plot all points in V_i using the same shape, and points v ∈ V_i and v' ∈ V_j for i ≠ j are plotted using a different shape).
- Run the matroid-constrained greedy algorithm for each of your similarity measures.
- Indicate the points that the greedy algorithm produced using a distinct color.
- Indicate, in your plot, a number next to each point indicating the order it was chosen by the greedy algorithm.
- Do one separate plot for each different similarity score method. For $s_{\alpha,p}(v,v')$ try at least 10 distinct quite different values of α and p.
- Question: what qualitative difference do you find in the result when using the different similarity measures.