
Information Extraction using Non-consecutive Word Sequences

Sachindra Joshi, Ganesh Ramakrishnan, Sreeram Balakrishnan, Ashwin Srinivasan

IBM India Research Labs, IIT Delhi, Hauz Khas, New Delhi, India
{jsachind, ganramkr, srbalakr, ashwin.srinivasan}@in.ibm.com

Abstract. We address an important deficiency in existing machine learning approaches for in-
formation extraction from natural language texts. Existing techniques for information extraction
employ rules that exploit properties of consecutive word sequences. We argue that sequences of
non-consecutive words capturing long range contextual correlations are vital features for informa-
tion extraction from natural language text. We propose an efficient method that extends the a-priori
algorithm to mine frequently occurring non-consecutive word sequences from a given corpus. We
also perform a simplistic aggregation of feature information across multiple mentions of an en-
tity in a document to avoid independent classification of the multiple occurrences of the entity.
Experiments on some standard data sets show substantial improvements over previously reported
results.

1 Introduction

The task of information extraction aims at distilling out facts from documents. Formally, we can con-
sider this as a problem of extracting all instances of a structured target schema E from an unstructured
source S. Typically, the target schema is tied to a specific domain and an information extraction task.
For the domain of financial news about mergers and acquisition, if we want to extract the names of the
acquiring and acquired companies and the deal amount, we would define the set {acquiring company,
deal amount, acquired company} as the target schema.

Following [2], we propose populating this schema by decomposing the task into two sub-tasks
based on the amount of contextual knowledge required at each stage. The first sub-task, called entity
annotation identifies all the entities in the document that belong to a generic type such as ‘person name’,
‘company’, ‘place’ or ‘date’. In general, this sub-task can be accomplished using information obtained
from intrinsic features of the entity or features of the immediate neighboring tokens. The second sub-
task assigns a role to each entity of a particular type. This usually requires detailed knowledge of
the surrounding context in which the entity occurs. We refer to this sub-task as role labeling. In our
financial example, this corresponds to assigning the role of ‘acquiring’ or ‘acquired’ to an entity of type
‘company’. The focus of this paper is on the second sub-task. We use a simple rule-based annotator for
the first sub-task although any one of many alternative rule and machine learning approaches from the
literature could be applied. We use very general rules to achieve high recall for entity identification.

Rule-based approaches have been widely employed for information extraction [11, 7, 3]. An infor-
mation extraction rule consists of a pattern and an action. A pattern typically uses words or sequences
of consecutive words, to impose contextual constraints. When a group of words satisfies these con-
straints, the corresponding action is taken, to assign a role to the group of words. The rules can be
either manually developed or can be learned automatically.

In this paper, we argue that patterns that capture non-consecutive word sequences are important
for natural language text. Natural language expressions allow inclusion of complex modifiers. The

Fig. 1. Example Sentences for Acquiring Com-
pany

Fig. 2. An Example Rule R

intervening modifiers improve the richness of expressions and are thus important in natural languages.
However, these variations make certain highly co-related words non-consecutive. Figure 1, presents a
set of example sentences. All the sentences convey the same information, namely, a company acquiring
another company. However, they slightly differ on the surface due to the use of modifiers, etc. The rule
{“<ALLCAPS> purchased” =⇒ <ALLCAPS>= Acquiring Company} will extract information
only from the first example sentence in Figure 1 and will fail on the rest. Patterns involving non-
consecutive word sequences are required to enable information extraction from all the sentences given
in Figure 1.

In the past, several methods that identify contextual constraints in the form of patterns, have been
proposed for the information extraction task. The approach proposed in [11] requires the contextual
constraints to be identified manually. Finkel et al [5] incorporate non-local structure in CRFs while
preserving tractable inference to augment an existing CRF-based information extraction system with
long-distance dependency models. However, they require the non-local features to be manually engi-
neered. Finn et. al. [6] formulate IE as a task of classifying each token as either the start of a field
to extract, as an end of a field or neither. They use neighbouring tokens as features in the classifica-
tion task and do not consider the engineering of patterns of non-consecutive tokens as features. The
techniques presented in [7, 3] capture contextual patterns of consecutive tokens only. Further, several
of these methods [3, 12] employ greedy covering techniques that yield sub-optimal patterns. On the
contrary, the method proposed in this paper generates all patterns that satisfy pre-specified support and
confidence thresholds. Yunbo Cao et. al. [4] report a technique for information extraction that identi-
fies patterns with non-consecutive token sequences. However, their method can be used only when the
schema has a single target element. Some methods [12] attempt to capture long-range dependencies
through the syntactic parsing of sentences. Unfortunately, syntactic parsing can be time-intensive and
error-prone, especially on grammatically poor texts.

Several methods that identify consecutive word sequences or n-grams, have been proposed in the
past [14]. Some of these methods identify only significant n-grams. The total number of consecutive
word sequences of length n in a word sequence of length m is (m − n + 1). Let δ be an upper bound
on the number of intervening words between every pair of successive words in a non-consecutive
word sequence. The total number of non-consecutive word sequences of length n in a word sequence
of length m is at least ((m − nδ + δ) ∗ δ(n−1)), which is of order O(mδn). This is a huge search
space that warrants more efficient methods for identifying significant non-consecutive word sequences.
We propose a method based on the a-priori algorithm [1], to mine significant non-consecutive word
sequences. The significance of word sequences are captured through the support measure. The support
measure which we introduce in this paper for word sequences, can be efficiently measured [10] using
operations on the inverted index of the document collection.

In this paper, we also use a simple method to aggregate contextual information available across the
different occurrences of an entity in a document, before assigning it a role. We make an assumption
that all the occurrences of an entity in a document have the same role. Entities of a particular type
are grouped together such that all the entities belonging to a group refer to the same entity. Grouping
is done on the basis of exact string match and substring relationships to capture abbreviated forms.
More sophisticated techniques for co-reference resolution [13] can also be adopted. The set of rules
discovered by the above mentioned algorithm are applied to each entity in the group and the output is
aggregated into a single feature vector for the group. Standard classification techniques (SVMs, ma-
jority voting) are then used to obtain the final role assignment for all the entities in the cluster. Our
experimental results show that non-consecutive word sequences significantly improve the IE perfor-
mance for natural language text. Our results show that even the simplistic method for aggregation,
substantially improves the performance. Techniques for collective information extraction [2] can be
employed to perform aggregation in a more principled manner.

The organization of the rest of the paper is as follows. In Section 2 we describe the details of the
two sub-tasks of our approach: firstly the entity annotator and secondly the rules for determining the
role of the entity together with the algorithm for aggregating the output of these rules over multiple
entities. Subsequently, in Section 3, we present details of the method for learning rules that determine
roles. In Section 4, we present experimental evaluation of the proposed method. We finally conclude
and describe future work.

2 Entity Extraction and Role labeling

2.1 Identification of entities

There are many alternative rule-based and machine learning-based methods [9] for building entity an-
notators capable of identifying token sequences in a document which are instances of entity types, such
as, ‘company name’, ‘currency measure’, ‘place’, etc.. For this paper, we used a rule-based annotator
that has rules in first order logic and that involve predicates over orthographic features and dictionary
containment properties of tokens [10]. We use very generic entity annotation rules to achieve high re-
call. Low precision of our named entity annotation does not negatively effect the overall performance,
since the surrounding context information is used to assign a role to an entity.

2.2 Representation of rules for role assignment

In this subsection, we describe the structure of the rules that we use for assigning roles to entities. Each
rule has a pattern p and an action a. Figure 2 shows an example rule R. The pattern part of the rule
is a regular expression over tokens, each token being either a word or an entity type. To enable the
reader distinguish between words and entity types, instances of the latter are shown in italized font.
A role is assigned to an entity based on its type and is independent of the actual entity itself. If the
type of an entity should be associated with a role, the corresponding instance of the type is called an
actionable type instance. Actionable type instances are denoted by prefixing the type instance with
a ‘<’ and suffixing with a ’>’. ‘<company>’ is an example actionable type instance. The pattern
specifies which type instances are actionable.

The pattern in R matches occurrences of the following sequence of tokens, while allowing a
bounded number of intervening words between successive tokens: (1) an entity of type ‘company’

(2) the word ‘paid’ (3) an entity of type ‘monetary amount’ (4) the word ‘to’ (5) an entity of type
‘company’. Moreover, the pattern specifies that a role has to be associated with entities at positions (1)
and (3).

The action part specifies the role that should be assigned to each actionable type instance, in the
order of its position in the pattern. The action part of R assigns the role of ‘Acquiring Company’ to the
first token and ‘Deal Amount’ to the third token. Since roles are associated only with entity types, the
actual entities are not required in the training data. Each entity in the training data is therefore replaced
with its entity type.

2.3 Information extraction from a test document

We obtain a set of rules for information extraction using a training data set and the algorithms described
in the next two sections. In the rest of this section, we describe the method that we employ for assigning
a role to an entity using the set of rules. The number of extracted rules will typically be in several thou-
sands. Further, multiple rules may assign different roles to the same entity in a document. Therefore,
we generate a feature set for each entity using the rules and then use a classifier to assign a unique role
to it based on the feature set.

For each rule r, we define a feature Fr, such that, given an entity, Fr assumes the value of the role
assigned by r to the entity and assumes the value ‘NONE’ if no role is assigned. Consider the annotated
document D in Figure 3. The rule R when applied to D, assigns the role of ‘Acquiring Company’ to
‘XYZ Ltd.’ and no role to ‘ABC Inc.’ The feature FR therefore takes the value ‘Acquiring Company’
for the first entity and ‘NONE’ in the case of the second.

In general, there could be a set of rulesR that assign a set of roles to different entities in a document.
The IE task boils down to aggregating the decisions of the different rules on each entity and making
a consolidated decision on the role to be assigned to the entity. Further, an entity may be referred to
using multiple ways in a document. Aggregating contextual information across different references for
the same entity yields higher evidences for role assignment. More precisely, we perform information
extraction from a test document using the following four steps:

1. Entities and their types are identified from the test document.
2. For each entity type, co-referring entities are grouped. An entity A is said to refer to an entity

B iff either A = B or A is a substring of B. The longest member string of a group is treated as the
canonical form for that group. E.g: For the document D, there are three groups for the entity type
‘company’: (C1) group of ‘XYZ Ltd.’ and ‘XYZ’, with the former as the canonical form, (C2) the single
entity ‘ABC Inc.’ and (C3) the single entity ‘PQR News’.

3. We next obtain a set of feature values for each group. Each rule is applied on the document
to determine feature values for each entity. A feature Fr may assume different values for different
members that belong to the same group C. We pool all these values into a single set and apply an
aggregation function to this set that returns a single value. Currently the aggregation function we use
returns the most frequent value other than ’NONE’. A value of ’NONE’ is returned only if the set
consists exclusively of ’NONE’ values. Thus, FR takes the following values for different ‘company’
groups in D: ‘Acquiring Company’ for (C1) and ‘NONE’ for (C2) and (C3).

4. The set of values taken by a set of features {Fr} for a group C, is used to determine a role Z to be
finally assigned to each member of C. We determine Z by performing a majority voting over the values
assigned by the features in {Fr}, weighed by the support of rule r. As an example, given an entity
and each rule with a unit support, if 4 features take the value ‘NONE’, 6 take the value ‘Acquiring
Company’ and 2 take the value ‘Acquired Company’, the voting–based technique will assign the role

Fig. 3. A sample annotated document D Fig. 4. The Complete Process for Information
Extraction

‘Acquiring Company’ to the entity. Alternatively, the role assignment can be done using some classifier
trained on the values of {Fr} assumed over training instances.

Figure 4 outlines the complete process that we employ for information extraction.

3 Generating Rules for Role Assignment

3.1 Generating Patterns

The pattern of a rule, in general, can be any regular expression over tokens, each token being a word
or an entity type. Further, the entity type may be an actionable type instance. Thus there are three
categories of tokens that appear in a pattern, viz., (1) words, (2) entity type instances and (3) actionable
entity type instances. Each occurrence of (3) is also considered to be an occurrence of (2).

The search space for learning arbitrary regular expressions over these tokens is very large. Hence,
we restrict the search space, to regular expression patterns that are sequences of tokens, with a bounded
number of words allowed between two successive tokens. We observe that words influence the role
assignment of only closest type instances and therefore do not allow intervening tokens to be instances
of entity types.

Each such pattern can be equivalently represented as a token-sequence. For example, the pattern in
Figure 2 can be equivalently written as the following token sequence: ‘[<company>, paid, <monetary
amount>, to, company]’. We will denote a token-sequence comprising n tokens by sn.

Definition 1. A document d is said to contain an instance of token-sequence sn; d w sn ;iff all tokens
in sn appear in d in the same order, with a fixed upper bound, δ, on the number of intervening words
between every pair of successive tokens in sn.

Let δ = 4. The document D in Figure 3 has an instance of ‘[<company>, paid, <currency>]’. On the
other hand, D does not have any instance of ‘[toward, unit]’, because there are more than δ intervening

words. Similarly, D does not have any instance of ‘[<currency>, toward]’, since there is an intervening
occurrence of ‘company’ type.

Let D be a set of training documents of size |D|. freq(sn) = |{d|d ∈ D, d w sn}| is the number
of documents in D that contain instances of sn. freq(sn) can also be counted at a granularity finer
than document, such as at the sentence level. However, freq(sn) considers overlapping occurrences of
sn to be a single occurrence1. Note that this definition of freq(sn) is well-suited for the information
extraction task.

We define support sup(sn) as sup(sn) = freq(sn)
|D| . Let minSup be a threshold on support. We

define Sn as the set of all token sequence of length n that have support greater than or equal to the
minimum support minSup, i.e., Sn = {sn |sup(sn)≥ minSup}. Let S∗ be the set of token-sequences
s∗ such that each s∗ has length between 1 and a threshold N and sup(s∗) is above the threshold
minSup. S∗ is identified using the algorithm described in Figure 5. The algorithm is inspired by a-
priori [1]. The a-priori algorithm optimally and efficiently yields all item-sets or item-sequences, that
have their support value above a given threshold value. We next prove that the algorithm given in Figure
5 optimally discovers all non-consecutive token sequences.

Definition 2. Let si and sj be two token sequences where j < i. We say si ⊃ sj; iff sj is a contiguous
subsequence of si.

E.g. Token sequences <t1, t2> and <t2, t3, t4> are contiguous subsequences of s4 =<t1, t2, t3, t4>.
On the other hand, <t1, t3, t4> is not a contiguous subsequence of s4. Note that every document
that has an instance of a sequence also has an instance of each of its contiguous subsequences, i.e.
∀d ∈ D, d w sn ⇒ ∀sn ⊃ si, d w si. This implies ∀sn ⊃ si, sup(sn) ≤ sup(si).

Theorem 1. If sn ∈ S∗, then ∀si|sn ⊃ si, si ∈ S∗.

Proof: We prove the theorem by contradiction. Let there be an si, i < n, s.t. sn ⊃ si and si /∈ S∗. This
implies sup(si) < minSup. However, sup(sn) ≤ sup(si). Therefore, sup(sn) < minSup which
implies sn /∈ S∗. This is a contradition.

Using the result of Theorem 1, we iteratively build token-sequences of length n + 1 from token
sequences of length n. The following corollary is important, as it suggests that a set of patterns obtained
with particular values of δ and N subsumes all sets obtained using lower values of the respective
parameters.

Corollary 1. Let S∗(δ,N) be the set of all non consecutive token sequences upto a length of N such
that a maximum of δ intervening words are permitted between any two successive tokens. Then, ∀N ′ ≤
N, δ′ ≤ δ, S∗(δ′, N ′) ⊆ S∗(δ,N).

3.2 Generating Rules

We generate a set of rules, such that each rule has a pattern and an action as defined earlier. In order
to generate an action part for a pattern, the patten should have at least one actionable type instance.
To ensure this, all token-sequences that have no instances of actionable entity types are removed from
S∗. Given a confidence threshold minConf , a set of confident rules R∗ is generated in the following
manner (the algorithm is outlined in Figure 6):

1 If overlapping occurrences of a token sequence are considered as multiple occurrences, the monotonicity prop-
erty of freq(sn) will not hold [15].

Find S1, the set of all 1-item-sequences;
n = 1
S∗ = {}
while n ≤ N do
Sn+1 = {}
for Each sn, s′n ∈ Sn do

if sn and s′n have a subsequence of
length n− 1 in common then

Merge sn and s′n to obtain sn+1

if sup(sn+1) ≥ minSup then
Sn+1 = Sn+1 ∪ {sn+1}

end if
end if

end for
for Each sn ∈ Sn do

if ¬(∃sn+1 ∈ Sn+1|sn+1 ⊃ sn)
then
S∗ = S∗ ∪ {sn}

end if
end for
n = n + 1

end while

Fig. 5. The algorithm for generating the set S∗
of token-sequences with high support

R∗ = {}
for Each s∗ ∈ S∗ do

Generate the set of all possible actions
A∗
for Each a∗ ∈ A∗ do

if conf(a∗, s∗) ≥ minConf then
Add the rule R = [a∗, s∗] to the
set R∗

end if
end for

end for
Output the set of rules R∗

Fig. 6. The algorithm for generating the set R∗
of confident rules

1. For each pattern s∗ ∈ S∗, a set A∗ of all possible actions is generated. Each action a∗ ∈ A∗
specifies a unique assignment of roles to the actionable entities in s∗. E.g: Given the pattern in Figure 2,
‘<company>⇒Purchaser, <monetary amount>⇒Deal Amount’ is an action, different from the action
specified in the same figure.

2. The confidence conf(a∗, s∗) of each action a∗ for the sequence s∗ is computed. We define
conf(a, s) as conf(a, s) = freq(s,a)

freq(s) , where freq(s, a) is the number of instances of s (in D) that
satisfy the role assignment specified by a.

3. A rule R is constructed for each pair of pattern and action [s∗, a∗] that has confidence above the
minConf threshold.

4 Experimental Results

We present experimental results on nine information extraction problems from two corpora. The first
data set is a collection of 600 news articles describing corporate acquisition events taken from the
Reuters data set. Each news article has a ‘purchaser’ , ‘acquired’, and a ‘seller’ company along with
their abbreviated forms, viz., ‘purchabr’, ‘acqabr’ and ‘sellerabr’ respectively. We focus only on the
extraction task for these IE target elements, since all of them correspond to company entity type and
differ only in their roles. In the rest of this section, we refer to ‘purchaser’, ‘acquired’ and ‘seller’ as
complete roles and ‘purchabr’, ‘acqabr’, and ‘sellerabr’ as abbreviated roles. The second data set is a
collection of seminar announcements posted to local newsgroups at a large university. Both of these

data sets as well as the IE problems defined for them, are described in detail in previously published
work [8].

Each result reported in this section is an average over 10 random 50-50 train-test splits. The rules are
learnt from a training data set. By default, all the reported results use rules generated with a minimum
support of 0.01 and minimum confidence value of 0.9. In our experiments, we used the values δ = 4
and N = 4. Table 1 shows some example rules generated by our algorithm on the two data sets. A

Pattern Action
<company>1.*to.*acquire.*<company>2 <company>1 → purchaser

<company>2 → acquired

<company>.*sell.*its <company>→ seller

who.*:.*<person> <person>→ speaker
Table 1. Examples of Extracted Rules

feature set is generated for each entity using the extracted rules. We used a majority voting classifier
weighed by the support of each rule for the role assignment. Experiments were also conducted with an
SVM classifier which yielded similar results. We performed experiments with and without aggregation
referred to as ‘with aggn.’ and ‘w/o aggn.’ respectively, in the result tables. While classifying without
aggregation, the classifier directly assigns a role to each entity. In case of aggregation, all the company
names in a document are first grouped using the substring relationship. This groups together company
names along with their abbreviated forms. An aggregated feature set is generated for each group using
the feature sets of its members. The classifier is then used to assign a complete role to each group. Once
a complete role is assigned to a group, the longest company name in that group is assigned the complete
role and all other members of it are assigned the abbreviated role corresponding to the complete role.

As a first-cut approach, we trained an SVM classifier to assign roles to entities based on their
(1) types and (2) neighboring words along with information of whether they appear on the left or
right of the entity. We obtained the following F1 using this approach: ‘acquired’= 38.1, ‘acqabr’=36.1,
‘purchaser’=42.4 , ‘purchabr’=34.0, ‘seller’=41.3 and ‘sellerabr’=21.11. Next, we report results on the
acquisition data set with longer contextual patterns. Table 2, presents the results with and without
the aggregation of information across company names using weighted majority voting. The results
with aggregation outperform results without aggregation. Note that while aggregation improves F1
measure for complete roles slightly, it improves F1 for abbreviated roles substantially. This is true as
entities associated with abbreviated roles are mentioned at multiple places in a document with different
contexts. Context associated with some of the instances is not sufficient for the correct assignment of
roles and aggregating information improves the performance.

In Table 3, we compare the best results obtained by our approach for a subset of roles on the
acquisition data sets for which previously published results are known, viz., SRV [7], HMM [8] and
Elie [6]. We achieve significantly better results for all the roles even without aggregation. This result
underscores the importance of long-range contextual constraints specified by the rules.

In Table 4, we present the results obtained on the seminar announcement data set. Note that the
gains achieved on acquisition data set is significantly more than the gains achieved on the seminar data
set. The reason is that the acquisition data set contains plenty of natural language text (compared to the
seminar data set) and patterns of non-consecutive word sequences prove to be vital contextual features,

Entity type W/o aggn. With aggn.
P R F1 P R F1

acquired 54.4 44.8 49.1 62.8 54.6 58.4
acqabr 44.0 47.9 45.8 65.2 56.7 60.6

purchaser 57.6 50.8 53.9 64.1 52.3 57.6
purchabr 56.8 31.3 40.3 71.3 49.6 58.4

seller 62.7 43.8 51.4 68.7 41.7 51.7
sellerabr 68.9 10.1 17.1 70.3 35.7 47.1

Table 2. Performance of Weighted Majority Vot-
ing

Entity SRV HMM Elie w/o aggn. with aggn.
acquired 34.3 30.9 42.0 49.1 58.4
acqabr 35.1 40.1 40.0 45.8 60.6

purchaser 42.9 48.1 47.0 53.9 57.6
purchabr −− −− 29.0 40.3 58.4

seller −− −− 15.0 51.4 51.7
sellerabr −− −− 14.0 17.1 47.1
Macro F1 37.4 39.7 43.0 49.6 58.9
for 3 rows
Macro F1 - - 31.16 42.9 55.6

Table 3. Comparison of F1 against SRV, HMM
Shrinkage and Elie on acquisition data set

Entity SRV HMM Elie w/o aggn. with aggn.
speaker 70.3 71.1 88.0 69.3 69.3
location 72.3 83.9 86.0 87.8 87.8

stime 98.8 99.1 98.0 94.2 94.2
etime 83.9 59.5 95.0 97.6 97.6

Macro F1 81.3 78.4 91.7 87.2 87.2
Table 4. Comparison of F1 on seminar announce-
ment data set against SRV, HMM and Elie

Entity type W/o context. With context
P R F1 P R F1

speaker 15.0 98.0 26.0 80.7 60.8 69.3
location 27.6 99.2 43.2 90.7 85.1 87.8

Table 5. Improvements achieved using contextual
information

producing significant gains of over 10% in many cases. Also, aggregation of information proves to be
helpful for such data sets.

In order to evaluate the importance of contextual information for role assignment, we conducted
a small experiment on the seminar announcement data. All the identified ‘person’ name entities were
assigned a role of ‘speaker’ and all the identified ‘place’ names were assigned a ‘location’ role. In
Table 5, we show the precision and recall numbers achieved. Using the contextual information, we get
significant improvement in precision. The recall decreases but the overall F1 improves substantially.
This experiment illustrates that our technique of assigning roles to entities can be effectively used in
conjunction with high recall entity annotators. Thus, the proposed technique can be easily customized
to a new domain, provided that a set of relevant high recall annotators can be built.

The Figures 7 and 8 describe the effect on performance with an increase in the value of mini-
mum support and minimum confidence respectively for the ‘acquired’ role. As the minimum support
increases, the recall decreases, affecting the F1 measure negatively. This is justified, since a fewer
number of rules qualify with a higher value of the minimum support. The precision improves with an
increase in the value of minimum confidence, since rules with a higher confidence value are more likely
to be correct.

5 Conclusion

In this paper, we addressed an important deficiency in existing automated approaches for information
extraction - the lack of features that capture sequences of non-consecutive contextual words. We devel-

Fig. 7. Variations in F1, precision and recall,
plotted against support for the ‘acquired’ role

Fig. 8. Variations in F1, precision and recall,
plotted against confidence for the ‘acquired’
role

oped an efficient method for optimally determining frequent sequences of non-consecutive words by
extending the a-priori algorithm. Our experimental results show significant performance improvement
over the existing techniques for a data set that exhibits richness of natural language, and comparable re-
sults for another dataset. The use of simple methods for aggregation further improves the performance.

References

1. R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In VLDB, 1994.
2. R. Bunescu and R. J. Mooney. Relational markov networks for collective information extraction. In ICML

Workshop on Statistical Relational Learning and its Connections to Other Fields, 2004.
3. M. E. Califf and R. J. Mooney. Relational learning of pattern-match rules for information extraction. In

Working Notes of AAAI Spring Symposium on Applying Machine Learning to Discourse Processing, 1998.
4. Y. Cao, H. Li, and S. Li. Learning and exploiting non-consecutive string patterns for information extraction.

In MSR-TR-2003-33, 2003.
5. J. R. Finkel, T. Grenager, and C. Manning. Incorporating non-local information into information extraction

systems by gibbs sampling. In ACL, 2005.
6. A. Finn and N. Kushmerick. Multi-level boundary classification for information extraction. In ECML, 2004.
7. D. Freitag. Toward general-purpose learning for information extraction. In ACL, 1998.
8. D. Freitag and A. K. McCallum. Information extraction with hmms and shrinkage. In AAAI Workshop on

Machine Learning for Information Extraction, 1999.
9. D. Maynard, V. Tablan, C. Ursu, H. Cunningham, and Y. Wilks. Named entity recognition from diverse text

types. In RANLP, 2001.
10. G. Ramakrishnan, S. Balakrishnan, and S. Joshi. Entity annotation based on inverse index operations. In

EMNLP, 2006.
11. E. Riloff. Automatically constructing a dictionary for information extraction tasks. In National Conference

on Artificial Intelligence, 1993.
12. S. Soderland. Learning information extraction rules for semi-structured and free text. Machine Learning,

34(1-3), 1999.
13. W. M. Soon, H. T. Ng, and D. C. Y. Lim. A machine learning approach to coreference resolution of noun

phrases. Computational Linguistics, 2001.
14. C.-M. Tan, Y.-F. Wang, and C.-D. Lee. The use of bigrams to enhance text categorization. Information Process

Management, 2002.
15. M. Zhang, B. Kao, D. W. Cheung, and K. Y. Yip. Mining periodic patterns with gap requirement from

sequences. In SIGMOD. ACM Press, 2005.

