
Feature Construction Using Theory-Guided
Sampling and Randomised Search

Sachindra Joshi1, Ganesh Ramakrishnan1, and Ashwin Srinivasan1,2

1 IBM India Research Laboratory, 4-C, Vasant Kunj Institutional Area
New Delhi 110070, India

2 Dept. of Computer Science and Engineering & Centre for Health Informatics,
University of New South Wales, Sydney

{jsachind,ganramkr,ashwin.srinivasan}@in.ibm.com

Abstract. It has repeatedly been found that very good predictive mod-
els can result from using Boolean features constructed by an an Induc-
tive Logic Programming (ILP) system with access to relevant relational
information. The process of feature construction by an ILP system, some-
times called “propositionalization”, has been largely done either as a
pre-processing step (in which a large set of possibly useful features are
constructed first, and then a predictive model is constructed) or by
tightly coupling feature construction and model construction (in which
a predictive model is constructed with each new feature, and only those
that result in a significant improvement in performance are retained).
These represent two extremes, similar in spirit to filter and wrapper-
based approaches to feature selection. An interesting, third perspective
on the problem arises by taking search-based view of feature construc-
tion. In this, we conceptually view the task as searching through subsets
of all possible features that can be constructed by the ILP system. Clearly
an exhaustive search of such a space will usually be intractable. We re-
sort instead to a randomised local search which repeatedly constructs
randomly (but non-uniformly) a subset of features and then performs a
greedy local search starting from this subset. The number of possible fea-
tures usually prohibits an enumeration of all local moves. Consequently,
the next move in the search-space is guided by the errors made by the
model constructed using the current set of features. This can be seen
as sampling non-uniformly from the set of all possible local moves, with
a view of selecting only those capable of improving performance. The
result is a procedure in which a feature subset is initially generated in
the pre-processing style, but further alterations are guided actively by
actual model predictions. We test this procedure on language processing
task of word-sense disambiguation. Good models have previously been
obtained for this task using an SVM in conjunction with ILP features
constructed in the pre-processing style. Our results show an improve-
ment on these previous results: predictive accuracies are usually higher,
and substantially fewer features are needed.

1 Introduction
Most machine-learning techniques for constructing models from sample data are
feature-based. By this, we mean that they expect data in which objects are
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encoded as vectors of values for a pre-specified set of attributes or features, with
the object of the model often being to predict the value of one of these features
using the values of the others.1 One machine-learning approach that clearly does
not fit into this category is Inductive Logic Programming (ILP), which deals
instead with learning from instances of objects represented in a relational form.
For example, suppose we are concerned with building models for identifying
toxic chemicals. An appropriate relational representation may be the atoms in
the chemical, their location in 3-dimensional space, the bonds amongst them, the
different structural and functional group locations (benzene rings, methyl groups
etc.) and so on. A feature-based representation, on the other hand, may use the
bulk properties of the chemical (its molecular weight, the number of atoms of
a particular type etc.), some structural features (the presence of fused benzene
rings, for example), and so on. ILP systems are able to construct models using
the former representation, while methods like decision trees, neural networks,
support vector machines require the latter.

Despite an ILP system’s ability to handle more complex representations, there
has long flourished a somewhat heretical strand of ILP activity that has sought
to convert (in some efficient manner) the relational representation into a feature-
based one, with a view of using well-established feature-based model construction
methods. While a theoretical case could be made for some of this work—positive
learnability results for specific forms were shown nearly 15 years ago by Dzeroski
et. al [16]—the primary motivations have been practical. First, feature-based
model constructors are computationally efficient. Second, with appropriate fea-
tures, they are able to construct significantly complex predictive models. Third,
both data analysts and domain experts alike are more familiar with these meth-
ods than they are with ILP. This form of model construction, with an ILP system
providing some or all of the features, and a feature-based learner constructing the
actual model has repeatedly been shown to be remarkably effective (see [2,17,18]
for some examples).

If we are indeed committed to using a feature-based learner, then a case can be
made for ILP as a natural choice for the automatic construction of new features,
if the relational information can be encoded in a logical form. The techniques
essentially fall into one of two categories: those that construct features inde-
pendent of the subsequent model-constructor; and those that inter-leave feature
and model-construction. The earliest example of the former is LINUS [1], that,
given a set of relations, constructed all features possible within some syntactic
restrictions. Essentially a similar idea, but using a much more efficient tech-
nique for generating the features is executed by [3]. Also in the same category
are approaches like those exemplified by [19], which impose additional seman-
tic constraints on the features (using modern terminology, these constraints ef-
fectively place minimum requirements on the support and confidence values).
The inter-leaved approach sequentially builds up a set of features, in a manner

1 The terminology, from statistical modelling, of predicting a dependent variable using
a set of independent variables is related, but we avoid it here, since independence
amongst the features is often not as apparent.
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similar to forward-selection techniques used by a statistical model constructor.
That is, features constructed by the ILP engine are given one at a time to the
model constructor, and only those that actually improve predictive performance
are retained. The k-FOIL system [4] and the SAYU procedure proposed in [5]
are recent examples of this. The reader will recognise that the two approaches
are similar in spirit to filter and wrapper-based approaches to feature selection
[20]: the difference being, of course, that we do not already have the features to
select from here.

There is an interesting, third perspective to be gained by accepting the fact
that what is being done is actually a search for the best subset of features that
can be constructed by an ILP engine. Clearly, for any realistic problem, this space
would be too large to search exhaustively. In this paper, we examine instead the
use of a well-established method of randomised search for exploring this space.
There are three specific advantages we gain from adopting this perspective: (1)
Randomised search techniques, although not provably optimal, have been shown
to be very effective in searching extremely large searce spaces. We are now able
to apply them to the task of feature construction; (2) The pre-processing and
inter-leaved forms of feature construction can be seen as special cases of a ran-
domised algorithm searching through the feature-subset space; (3) We are able
to understand better some of the steps of feature construction in terms of gen-
erating a non-uniform sample of local moves for the randomised search. In this
paper, we implement the simplest form of randomised search inspired by the
GSAT algorithm [21], and investigate its performance on language processing
tasks for which ILP-constructed features (generated in the pre-processing style)
have been found to be useful.

The rest of the paper is organised as follows. Section 2 formulates feature-
construction by an ILP engine as a search process. The use of a randomised
local search procedure to execute this search is described in Section 2.1. The
basic procedure is usually impractical to use directly. Modifications to the ba-
sic randomised procedure in the form of using the errors made by the model-
constructor to guide sampling of local moves are in Section 2.2. We examine the
possibility of reducing the computational burden further by using models that
assign weights to features. This is described in Section 2.3. An empirical evalu-
ation of the approach for the word-sense disambiguation problems is presented
in Section 3. Section 5 concludes the paper.

2 Feature Construction as Search

We motivate the approach we propose using the “trains” problem, originally
proposed by Ryzhard Michalski. The task, familiar to many readers, is to con-
struct a model that can discriminate between eastbound and westbound trains,
using properties of their carriages, and the loads carried (see Fig. 1).

We will assume that the trains can be adequately described by background
predicates that will become evident shortly. Further, let us assume that the 10
trains shown in the figure are denoted t1, t2, . . . , t10 and that their
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Fig. 1. The trains problem. Trains are classified either as “eastbound” or “westbound”.
They have open or closed carriages of different shapes, lengths, and so on. The carriages
contain loads of different shapes and numbers. The task is to construct a model that,
given the description of a train, can predict whether it will be eastbound or westbound.

classifications are encoded (in the Prolog language) as a set of examples of the
form: class(t1, eastbound), class(t2, eastbound), . . ., class(t10, westbound). As
is quite normal in the use of ILP for feature-construction, we will assume fea-
tures to be Boolean valued, and obtained from some clause identified by the ILP
program. For example, Fig. 2 shows five such features, found by an ILP engine,
and the corresponding tabular representation of the 10 examples in Fig. 1.

Suppose that these 6 features are the only features that can be constructed
by the ILP engine, and further, that it is our task to find the best subset of
these that can result in the best model. Clearly, if we simply evaluated models
obtained with each of the 63 subsets of the set {f1, f2, f3, f4, f5, f6} and return
the subset that returned the best model, we would be done. Now, let us consider

Fig. 2. Some Boolean features for the trains problem, and a corresponding tabular
representation of the trains in Fig. 1
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a more practical situation. Suppose the features that can be constructed by an
ILP system are not in the 10s, but in the 1000s or even 100s of 1000s. This would
make it intractable to construct models with all possible subsets of features. Fur-
ther, suppose constructing each feature is not straightforward, computationally
speaking, making it impractical to even use the ILP engine to construct all the
features in the first place. Are we able to nevertheless able to determine the sub-
set that would yield the best model (which we will now interpret to mean the
model with the highest classification accuracy). The problem to be addressed is
shown in Fig. 3.

Fig. 3. Identifying the best subset of features for a model-construction algorithm A.
The X-axis enumerates the different subsets of features that can be constructed by an
ILP engine (F denotes the set of all possible features that can be constructed by the
engine). The Y-axis shows the probability that an an instance drawn randomly using
some pre-specified distribution will be correctly classified by a model constructed by
A, given the corresponding subset on the X-axis. We wish to identify the subset k∗
that yields the highest probability, without actually constructing all the features in F .

Readers will recognise this as somewhat similar to the problem addressed by
a randomised procedure for distribution-estimation like Gibb’s sampling. There,
if the F features are given (or at least can be enumerated), then it is possible
to converge on the best-performing subset without examining the entire space
of 2|F| elements. Clearly, if we are unable to generate all possible features in F
beforehand, we are not in a position to use these methods. Instead, we resort
a randomised local search procedure inspired by a randomised procedure for
checking satisfiability of Boolean formulae.

2.1 A Randomised Local Search Procedure

Randomised local search procedures are some of the most effective methods
proposed for addressing the hard problem of determining the satisfiability of
propositional formulae. The basic search procedure embodied in a technique like
GSAT [21] is straightforward (Fig. 4, taken from [6]).
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(Here R and M represent the number of random restarts and moves allowed.)
This kind of search procedure has been adapted successfuly to the ILP problem

of identifying a set of clauses that, along with some background knowledge, entail
a set of examples [15]. Here, we examine its use for feature construction (Fig. 5).

Existing techniques for feature construction can be re-cast as special cases
of the procedure in Fig. 5, with appropriate values assigned to R and M ; and
definitions of a starting point (Step 3a) and local moves (Step 3(f)i). For example,
“LINUS-inspired” methods that use an ILP engine to construct a large number
of features independent of the model constructor can be seen as an instance of
the randomised procedure with R = 1 and M = 0. Some additional constraints
may be imposed on the “starting subset” selected in Step 3a, which could be
encapsulated in the distribution used for random selection. Any further selection
amongst features in this subset are then upto the model-constructor. On the
other hand, SAYU-like procedures can be emulated with R = 1 and large values
of M ; along with restrictions that force the search to start from an empty subset,
and local moves only to add a single feature at a time.

1. currentbest:= 0 (“0” is some conventional default answer)
2. for i = 1 to R do begin

(a) current:= randomly selected starting point
(b) if current is better than currenbest then currentbest:= current
(c) for j = 1 to M do begin

i. next:= best local move from current
ii. if next is better than currenbest then currentbest:= next
iii. current:= next

(d) end
3. end
4. return currentbest

Fig. 4. A basic randomised local search procedure

1. bestfeatures:= {}
2. bestaccuracy:= 0.0
3. for i = 1 to R do begin

(a) currentfeatures:= randomly selected set of features
(b) currentmodel:= model constructed with currentfeatures
(c) accuracy:= estimated accuracy of currentmodel
(d) if accuracy > bestaccuracy then begin

i. bestfeatures:= currentfeatures
ii. bestaccuracy:= accuracy

(e) end
(f) for j = 1 to M do begin

i. nextfeatures:= best local move from currentfeatures
ii. nextmodel:= model constructed with nextfeatures
iii. accuracy:= estimated accuracy of nextmodel
iv. if accuracy > bestaccuracy then begin

A. bestfeatures:= nextfeatures
B. bestaccuracy:= accuracy

v. end
vi. currentfeatures:= nextfeatures

(g) end
4. end
5. return bestfeatures

Fig. 5. The basic randomised local search procedure, adapted to the task of feature
construction
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We consider now the more general procedure shown. In this, R and M can
take on any value from the set of natural numbers (including 0). In addition,
the starting subset is assumed to be drawn using some distribution that need
not be known; and a local move is one that either adds a single new feature
to the existing subset of features, or drops a feature from the existing subset.
We are now immediately confronted with two issues that make it impractical to
use the procedure as shown. First, we have the same difficulty that prevented
us from using an enumerative technique like a Gibb’s sampler: generating the
local neighbourhood requires us to obtain all possible single-feature additions.
Second, for each local move, we need to construct a model, which can often be
computationally expensive. We address each of these in turn.

2.2 Reducing Local Moves Using Theory-Guided Sampling

In this section, we consider a modification of the search procedure in Fig. 5
that results in only examining a small sample of all the local moves possible
before deciding on the next move in Step 3(f)i. Ideally, we are interested in
obtaining a sample that, with high probability, contains the best local move
possible. Assuming there are no ties, and that the number of possible local
moves is very large, it would clearly be undesirable to select the sample using a
uniform distribution over local moves. We propose instead a selection that uses
the errors made by the model-constructor to obtain a sample of local moves.
As a result, features in the local neighbourhood that are relevant to the errors
are more likely to be selected. In some sense, this is somewhat reminiscent of
boosting methods: here, instead of increasing the weights of examples incorrectly
classified, the representation language is enriched in a way that is biased to
classify these examples correctly on subsequent iterations.

Recall that at any point, a local move from a feature-subset F is obtained
by either dropping an existing feature in F or adding a new feature to F . We
are specifically concerned with the addition step, since in principle, all possi-
ble features that can be constructed by the ILP engine could be considered as
candidates. We curtail this in the following ways. First, we restrict ourselves
to samples of features that are relevant to examples misclassifed by the model-
constructor using the current set of features F (by “relevant” we mean those
that are TRUE for at least one of the examples in error). Second, in our imple-
mentation, we restrict ourselves to a single new feature for each such example
(by “new”, we mean a feature not already in F ).2 The altered procedure is
in Fig. 6.

2.3 Reducing Models Constructed Using Feature Weights

Step 3(f)v although now considering fewer moves, still has to construct a model
for each move before deciding on the best one. For some model-construction
2 In the implementation, we select this feature using its discriminatory power given

the original set of examples.
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1. bestfeatures:= {}
2. bestaccuracy:= 0.0
3. for i = 1 to R do begin

(a) currentfeatures:= randomly selected set of features
(b) currentmodel:= model constructed with currentfeatures
(c) accuracy:= estimated accuracy of currentmodel
(d) if accuracy > bestaccuracy then begin

i. bestfeatures:= currentfeatures
ii. bestaccuracy:= accuracy

(e) end
(f) for j = 1 to M do begin

i. F −:= set of feature subsets obtained by dropping a feature from currentfeatures
ii. Fnew:= sample of new features that are TRUE for errors made by currentmodel
iii. F+:= set of feature subsets obtained by adding a feature in Fnew to currentfeatures
iv. localmoves:= F − ∪ F+

v. nextfeatures:= best subset in localmoves
vi. nextmodel:= model constructed with nextfeatures
vii. accuracy:= estimated accuracy of nextmodel
viii. if accuracy > bestaccuracy then begin

A. bestfeatures:= nextfeatures
B. bestaccuracy:= accuracy

ix. end
x. currentfeatures:= nextfeatures
xi. currentmodel:= nextmodel

(g) end
4. end
5. return bestfeatures

Fig. 6. The randomised local search procedure for feature construction, modified using
theory-guided sampling of local moves

methods, this may also be computationally too expensive. We examine the pos-
sibility of using feature weights to reduce the computational burden further.

The principal purpose of constructing and evaluating models in the local
neighbourhood is to decide on the best next move to make. This will neces-
sarily involve either an addition of a new feature to the existing set of features,
or the deletion of an existing feature from the current set of features. That is,
we are looking to find the best new feature to add, or the worst old feature to
drop (given the other features in the set, of course). Correctly, we would form
models with each old feature omitted in turn from the current set and each new
feature added in turn to the current set. The best model would then determine
the next move. Using a model-constructor that assigns weights to features al-
lows us to adopt the following sub-optimal procedure instead. First, we find the
feature with the lowest weight in the current model: this is taken to be the worst
old feature. Next, we construct a single model with all features (old and new).
Let us call this ”extended model”. The best new feature is taken to be the new
feature with the highest weight in the extended model. The procedure in Fig. 6
with this further modification is shown in Fig. 7. It is evident that the number
of additional models constructed at any point in the search space is now reduced
to just 3: the price we pay is that we are not guaranteed to obtain the same
result as actually performing the individual additions and deletions of features.

It is the randomised local search procedure in Fig. 7, with one small difference,
that we implement and evaluate empirically in this paper. The difference arises
from the comparison of models: in the procedure shown, this is always done using
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1. bestfeatures:=
2. bestaccuracy:= 0.0
3. for i = 1 to R do begin

(a) currentfeatures:= randomly selected set of features
(b) currentmodel:= model constructed with currentfeatures
(c) accuracy:= estimated accuracy of currentmodel
(d) if accuracy > bestaccuracy then begin

i. bestfeatures:= currentfeatures
ii. bestaccuracy:= accuracy

(e) end
(f) for j = 1 to M do begin

i. Fnew:= sample of new features that are TRUE for errors made by currentmodel
ii. extendedmodel:= model constructed using currentfeatures and Fnew

iii. fworst:= feature in currentfeatures with lowest weight in currentmodel
iv. fbest:= feature in Fnew with highest weight in extendedmodel
v. F −:= set with feature subset obtained by dropping fworst from currentfeatures
vi. F+:= set with feature subset obtained by adding fbest to currentfeatures
vii. localmoves:= F − ∪ F+

viii. nextfeatures:= best subset in localmoves
ix. nextmodel:= model constructed with nextfeatures
x. accuracy:= estimated accuracy of nextmodel
xi. if accuracy > bestaccuracy then begin

A. bestfeatures:= nextfeatures
B. bestaccuracy:= accuracy

xii. end
xiii. currentfeatures:= nextfeatures
xiv. currentmodel:= nextmodel

(g) end
4. end
5. return bestfeatures

Fig. 7. The randomised local search procedure for feature construction, modified using
theory-guided sampling of local moves and the use of feature-weights to reduce model
construction

estimated accuracies only. In our implementation, if estimated accuracies for a
pair of models are identical, then the model using fewer features is prefered (that
is, comparisons are done on the pair (A, F ) where A is the estimated accuracy
of the model and F is the number of features used in the model).

One final point is worth clarifying. This concerns how the procedure in Fig. 7
is to avoid over-fitting the data. There are three principal ways in which we
see this can be achieved: (1) Estimated accuracies of the model constructed, if
unbiased, should give the procedure a way of halting before over-fitting; (2) The
feature-constructor—here an ILP learner—can ensure that features have some
minimal support (in the data mining sense of the word); and (3) The model
constructor can perform some appropriate trade-off of fit-versus-complexity to
avoid over-fitting.

3 Empirical Evaluation

Our objective is to evaluate empirically the effectiveness of the approach based on
randomised search for feature construction. Specifically, we intend to compare
the performance of following two kinds of feature-construction techniques on
word-sense disambiguation problems in language processing, for which ILP-based
feature construction methods have been previously studied in the literature [2]:
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1. Features constructed prior to model construction. An ILP system first con-
structs all interesting features that are consistent with the constraints pro-
vided by the background knowledge. Models are then constructed using these
features. Any feature selection that may be necessary is done prior to model
construction.

2. Features constructed using randomised local search and theory-guided sam-
pling. This is the procedure we have described in this paper (specifically, the
one in Fig. 7). Models are constructed using the same model construction
procedure as above, but no separate step of feature-selection is done.

3.1 Materials

Data and Background Knowledge. We use two benchmark data sets for
Word Sense Disambiguation (WSD) problem introduced in [2] to investigate
the effectiveness of our proposed method. WSD is an important problem that
needs to be solved in many natural language tasks such as machine translation,
information retrieval, speech and text processing and so on. Although complete
descriptions of the data are available in [2], we describe them briefly here for
completeness.

Monolingual task. This data consist of the 32 verbs from the SENSEVAL-
3 competition [7]. SENSEVAL3 is a joint evaluation effort for WSD and
related tasks. We use all the verbs of the English lexical sample task from
the competition. The number of examples for each verb varies from 40 to
398 (average of 186). The number of senses varies from 3 to 12 with an
average of 7 senses. The average accuracy of the majority class is about
55%. The benchmark identifies 66% of the data that can be used for model
construction. The rest are used for testing models.

Bilingual task. This task consists of 7 highly ambiguous verbs in machine
translation from English to Portuguese. The sample corpus comprises around
200 English sentences for each verb extracted from a corpus of fiction books.
In that corpus, the number of translations varies from 5 to 17, with an
average of 11 translations. The average accuracy of the majority class is
about 54%.

In [2], 9 categories of background predicates were introduced. Of these, the
category B0 consists of some simple hand-crafted features. The background pred-
icates specifically of relevance to an ILP-based feature constructor are in cate-
gories B1–B8. These consist of: (B1) the local context of the verb in a sentence;
(B2) lemmas of 5 content words to the right and left of the verb, lemmatized by
MINIPAR [9]; (B3) part-of-speech tags of 5 content words to the right and left
of the verb (obtained using MXPOST [10]); (B4) subject and object syntactic
relations with respect to the verb, obtained from MINIPAR parses; (B5) collo-
cations with respect to the verb, of the form: 1st preposition to the right, 1st

3 www.senseval.org
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and 2nd words to the left and right, 1st noun, 1st adjective, and 1st verb to the
left and right; (B6) verb restrictions, in terms of the semantic features of their
arguments in the sentence, extracted using LDOCE [11]; (B7) dictionary defini-
tions, being a relative count of the overlapping words in dictionary definitions
of each of the possible translations of the verb and the words; and (B8) phrasal
verbs possibly occurring in a sentence.

Fig. 8 tabulates the number of facts in each of B1–B8 for the two disambigua-
tion tasks.

Background Monolingual Task Bilingual Task
B1 61175 4244
B2 33969 0
B3 33969 4870
B4 6523 1598
B5 66092 10514
B6 1308 1922
B7 1591 150
B8 0 418

All 204627 23716

Fig. 8. Ground facts comprising definitions for B1–B8. B8 does not appear in the
monolingual task, since SENSEVAL-3 data do not consider senses of the verbs occurring
in phrasal verbs. B2 was not included in the bilingual task because it was considered
to be covered by B5, since we had shorter sentences than in the monolingual task.

Algorithms. We distinguish here between three implementations that, to-
gether, comprise the randomised local search approach: (1) The implementation
of the procedure in Fig. 7). This is implemented here in the Prolog language,
with some associated executable files; (2) The ILP implementation used to con-
struct features using B1–B8. We use the ILP system Aleph [6]; and (3) The
model constructor. We use a linear SVM: the specific implementation used is
the one provided in the WEKA toolbox called SMO.4

3.2 Method

Our method is straightforward:

For each verb in each task (that is, 32 verbs in the monolingual task and 7
verbs in the bilingual task):

4 http://www.cs.waikato.ac.nz/∼ml/weka/. We obtain weights for features by using
the support vector machine with linear kernel. Specifically, let xi = [xi1, xi2, . . . , xin]
represent an n-dimensional input vector. In the case of linear kernel, the predictor
function can be described as: prediction(xi) = sgn[b + wT xi], where w =

∑
i αixi

and b is the interceptor. The linear classifier categorizes a new data point x to the
positive class if linear combination w1x1+w2x2+. . . , wnxn is above a given threshold
and to the negative class if the linear combination is below the threshold. We use
the absolute value |wj | as the weight of the jth feature. These weights have also been
used for the feature selection problem in [13].

http://www.cs.waikato.ac.nz/~ml/weka/
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1. Construct a set of good features using the ILP engine. Select a subset
of these as being relevant for the prediction task. Construct a model
using the feature-subset selected. Call this the “model with pre-specified
features” (or PreSpec model).

2. Identify a set of features using the randomised local-search procedure in
Fig. 7. Obtain a model using these features. Call this the “model with
features using randomised search” (or RandSearch model).

3. Compare the performance of the PreSpec model against the performance
of the RandSearch model.

The following details are relevant:

(a) We use the same “training-test” splits of the data as those used in [2]. Per-
formance will be measured by the accuracy of prediction on the test set (that
is, the percentage of test examples whose sense is predicted correctly).

(b) The ILP learner constructs a set of definite clauses in line with the usual
specifications for predictive ILP systems (see [14] for a statement of these).
Positive examples for the ILP learner are provided by the correct sense (or
translation in the bilingual case) of verbs in a sentence. Negative examples
are generated automatically using all other senses (or translations). The
translation of a clause into a Boolean feature is straightforward: the feature
corresponding to a definite clause is a function that returns the value “true”
for an example if and only if the body of the definite clause is true, given the
background knowledge. The ILP engine is constrained to return only a single
feature that discriminates best between the positive and negative examples.
On each iteration of Fig. 7, the ILP engine is forced to construct features
that are true for errors made by the current model.

(c) Although we are able to generate PreSpec models using the randomised
procedure in Fig. 7 (by simply setting R = 1 and M = 0), we will take
the models reported in [2] to denote the PreSpec models. We also consider a
slight variation by performing some amount of experimentation to determine
(locally) optimal settings for two parameters: the C parameter used by the
linear SVM and F , the number of features to be selected. We determine
the appropriate setting by systematic variation of the C parameter over the
range 0.0001 to 10000 in multiple of 10s and F over the same range examined
in [2]. The predictive accuracy with each (C, F ) setting is estimated and the
values that yield the best results are used to construct the final model (the
predictive accuracy estimate is obtained using an average over 5 repeats of
predictions on 20% of the training data sampled to form a “validation” set).
We refer to these models as PreSpec* models.

(d) For RandSearch models, we use a value of R = 10 and M = 5 for the
number of random restarts and iterations of local moves. We are not able to
offer domain-independent guidelines on values for these parameters. In the
context of using a similar approach in search for clauses [15], short periods of
local search with many random restarts were found to be effective. While the
values we have selected here are arbitrary, some more principled approach



152 S. Joshi, G. Ramakrishnan, and A. Srinivasan

may be possible by a systematic empirical exploration of reasonable values.
We also consider a variant that performs no local search, and returns a set of
features, of the same size as those obtained by RandSearch, but constructed
randomly. We call this procedure “Random”. Both cases require a “start
point”, which is provided by features obtained from (repeated, if R > 1)
random samples of 30 examples.

(e) Comparison of performance will be done using the Wilcoxon signed-rank
test. The test is a non-parametric test of the null hypothesis that there
is no significant difference between the median performance of a pair of
algorithms. The test works by ranking the absolute value of the differences
observed in performance of the pair of algorithms. Ties are discarded and
the ranks are then given signs depending on whether the performance of
the first algorithm is higher or lower than that of the second. If the null
hypothesis holds, the sum of the signed ranks should be approximately 0.
The probabilities of observing the actual signed rank sum can be obtained
by an exact calculation (if the number of entries is less than 10), or by using
a normal approximation. We are interested in all cases in the the directional
hypothesis that the performance of RandSearch models are better than those
of PreSpec models.

4 Results and Discussion

Fig. 9 and 10 tabulate the comparative performance of the PreSpec, PreSpec*,
Random and RandSearch models on the two disambiguation tasks. Also included
is the performance of a classifier that simply predicts the most frequent sense of
the verb (as assessed on the training set). The average number of features used
in each case is in Fig. 11. We note at the outset that there appears to be little
to choose between “Random” and “Majority Class”, and between “PreSpec”
and “PreSpec*”. Therefore, in what follows, we will not include any further
discussion of either Random or PreSpec*. With this caveat, the principal details
in the tabulations are these: (1) Majority Class performs worse than the other
procedures; (2) For both tasks, the accuracies of the PreSpec models are usually
lower than the RandSearch models. Discarding ties, the PreSpec has the highest
accuracy for 10 of the 32 verbs for the monolingual task and for 1 of the 7
verbs for the bilingual task; and (3) RandSearch models use substantially fewer
features than PreSpec models.

We turn now to the question of whether the differences in accuracies observed
between the models are in fact significant. The probabilities calculated by us-
ing the Wilcoxon test are shown in Fig. 12.5 The tabulations further support
the position that both PreSpec and RandSearch models are significantly better
than a simple majority class guesser. RandSearch is significantly better on the
bilingual task, and there is reasonable evidence to believe that it is better on the

5 These were obtained from the program kindly provided by Richard Lowry at
http://faculty.vassar.edu/lowry/wilcoxon.html.
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Verb Senses Accuracy
Majority Class PreSpec PreSpec* RandSearch Random

activate 5 82.46 ±3.56 83.33 ±3.49 82.45 ±3.56 92.98 ±2.39 82.46 ±3.56
add 6 45.80 ±4.35 82.44 ±3.32 83.21 ±3.27 74.81 ±3.79 46.56 ±4.36
appear 3 44.70 ±4.33 71.21 ±3.94 71.21 ±3.94 87.12 ±2.92 43.94 ±4.32
ask 6 27.78 ±3.99 50.00 ±4.45 53.17 ±4.44 60.32 ±4.36 29.37 ±4.06
begin 4 59.74 ±5.59 74.03 ±5.00 72.73 ±5.07 71.43 ±5.15 59.74 ±5.59
climb 5 55.22 ±6.08 83.58 ±4.53 86.57 ±4.17 82.09 ±4.68 55.22 ±6.08
decide 4 67.74 ±5.94 77.42 ±5.31 80.64 ±5.02 77.42 ±5.31 67.74 ±5.94
eat 7 88.37 ±3.46 87.21 ±3.60 88.37 ±3.46 88.37 ±3.46 88.37 ±3.46
encounter 4 50.77 ±6.20 72.31 ±5.55 72.30 ±5.55 73.85 ±5.45 36.92 ±5.99
expect 3 74.36 ±4.94 92.31 ±3.02 92.31 ±3.02 89.74 ±3.44 74.36 ±4.94
express 4 69.09 ±6.23 72.73 ±6.01 67.27 ±6.32 70.91 ±6.12 69.09 ±6.23
hear 7 46.88 ±8.82 65.63 ±8.40 62.5 ±8.55 40.62 ±8.68 46.88 ±8.82
lose 9 52.78 ±8.32 58.33 ±8.22 52.7 ±8.32 47.22 ±8.32 52.78 ±8.32
mean 7 52.50 ±7.90 70.00 ±7.25 75.0 ±6.85 75.00 ±6.85 52.50 ±7.90
miss 8 33.33 ±8.61 33.33 ±8.61 36.66 ±8.80 56.67 ±9.05 33.33 ±8.61
note 3 38.81 ±5.95 88.06 ±3.96 88.06 ±3.96 82.09 ±4.68 56.72 ±6.05
operate 5 16.67 ±8.78 77.78 ±9.80 72.22 ±10.55 88.89 ±7.41 38.89 ±11.49
play 12 46.15 ±6.91 53.85 ±6.91 55.77 ±6.89 55.77 ±6.89 46.15 ±6.91
produce 6 52.13 ±5.15 67.02 ±4.85 65.96 ±4.88 77.66 ±4.30 52.13 ±5.15
provide 6 85.51 ±4.24 89.86 ±3.63 86.96 ±4.05 91.30 ±3.39 82.61 ±4.56
receive 9 88.89 ±6.05 88.89 ±6.05 88.89 ±6.05 92.59 ±5.04 88.89 ±6.05
remain 3 78.57 ±4.90 87.14 ±4.00 85.71 ±4.18 95.71 ±2.42 78.57 ±4.90
rule 5 50.00 ±9.13 83.33 ±6.80 83.33 ±6.80 90.00 ±5.48 40.00 ±8.94
smell 7 40.74 ±6.69 77.78 ±5.66 75.92 ±5.82 74.07 ±5.96 40.74 ±6.69
suspend 7 35.94 ±6.00 57.81 ±6.17 56.25 ±6.20 68.75 ±5.79 39.06 ±6.10
talk 9 72.60 ±5.22 73.97 ±5.14 73.97 ±5.14 75.34 ±5.04 72.60 ±5.22
treat 9 28.07 ±5.95 47.37 ±6.61 57.89 ±6.53 49.12 ±6.62 28.07 ±5.95
use 5 71.43 ±12.07 92.86 ±6.88 92.86 ±6.88 92.86 ±6.88 71.43 ±12.07
wash 12 67.65 ±8.02 73.53 ±7.57 61.76 ±8.33 58.82 ±8.44 67.65 ±8.02
watch 7 74.51 ±6.10 74.51 ±6.10 72.54 ±6.24 74.51 ±6.10 74.51 ±6.10
win 7 44.74 ±8.07 60.53 ±7.93 57.89 ±8.00 63.16 ±7.83 42.11 ±8.01
write 8 26.09 ±9.16 34.78 ±9.93 39.13 ±10.17 52.17 ±10.42 34.78 ±9.93

Mean 7 55.31 71.97 71.63 74.10 56.06
Median 6 52.31 74.03 72.63 74.90 52.31

Fig. 9. Estimates of accuracies of disambiguation models on the monolingual task.
“Senses” refers to the numbers of possible senses of each verb. The column labelled
“Majority class” gives the accuracy of models that simply predict the most common
sense of each verb (as estimated from the training data).

Verb Translations Accuracy
Majority class PreSpec PreSpec* RandSearch Random

come 11 50.30±7.62 76.74±6.44 75.56 ±6.41 86.67 ±5.07 55.56 ±7.41
get 17 21.00±6.70 40.54±8.07 64.1 ±7.68 51.28 ±8.00 20.51 ±6.47
give 5 88.80±4.81 95.35±3.21 100 ±0.00 97.78 ±2.20 97.78 ±2.20
go 11 68.50±6.78 78.72±5.97 77.55 ±5.96 83.67 ±5.28 71.43 ±6.45
look 7 50.30±7.45 82.22±5.70 76.59 ±6.17 82.98 ±5.48 59.57 ±7.16
make 11 70.00±7.25 75.00±6.85 78.57 ±6.33 80.95 ±6.06 73.81 ±6.78
take 13 28.50±8.24 60.00±8.94 56.25 ±8.77 56.25 ±8.77 12.50 ±5.85

Mean 11 53.91 72.65 75.51 77.08 55.88
Median 11 50.30 76.74 76.60 82.98 59.57

Fig. 10. Estimates of accuracies of disambiguation models on the bilingual task.
“Translations” refers to the numbers of possible translations of each verb into
Portuguese.
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Model Avg. Features Used
Monolingual Bilingual

Majority class 0 0
PreSpec 250 500
RandSearch 29 27

Fig. 11. Average numbers of features required to construct models. The values for
PreSpec are those reported in [2] after feature-selection was performed.

Majority class PreSpec RandSearch
Majority class − − −
PreSpec < 0.001, 0.010 − −
RandSearch < 0.001, 0.010 0.08, 0.05 −

Fig. 12. Probablities of observing the differences in accuracies for the monolingual and
bilingual tasks, under the null hypothesis that median accuracies of the pair of algo-
rithms being compared are equal. Each entry consists of a pair of probability estimates,
corresponding to the mono and bilingual tasks. The alternate hypothesis is each case is
that the column-model performance is better than the row-model performance. Thus
a value of 0.08 in the (RandSearch,PreSpec) entry means that there is an 8% chance
that the performance of the two models are actually the same, given the performance
observed on the monolingual task.

monolingual one as well (with the usual caveat that probabilities from repeated
cross-comparisons should be interpreted with caution).

For the monolingual task, we are also able to add to the comparisons reported
in [2], based on average accuracies for each verb. This is shown in Fig. 13. The
algorithms in this table use model construction methods that include bagged
decision trees (the Syntalex family), Naive Bayes (CLaC1), maximum entropy
modelling (CLaC2), a multiclass perceptron (MC-WSD), and ILP. It is evident
that the RandSearch models are comparable to the state-of-the-art in the field.

Models Accuracy
Majority class 55.31

Syntalex-1 67.00
Syntalex-2 66.50
Syntalex-3 67.60
Syntalex-4 65.30

CLaC1 67.00
CLaC2 66.00

MC-WSD 72.50

ILP 69.15
ILP-assisted 71.97

RandSearch 74.10

Fig. 13. Comparative average accuracies of the best models reported for the
SENSEVAL-3 competition. All rows except the last are as in [2]. There “ILP” refers
to using an ILP engine to construct rules for disambiguation (as opposed to using a
feature-based learner); and “ILP-assisted” is what we have called PreSpec here.
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The superior performance of RandSearch here suggests that adequate models
for the WSD tasks can be constructed with fairly small numbers of features. We
note however that this may not always be the case: depending on the background
knowledge available to the ILP learner, adequate models may require very large
numbers of features. In this case, we believe PreSpec-like models may perform
better. The distinction between PreSpec and RandSearch models is somewhat
illusory: we can clearly obtain the former using the latter with an R value of 1
and an M value of 0. A related question is whether the local search is beneficial
at all. We have some evidence for this: on the 32 verbs in the mono-lingual task,
not performing a local search yielded a better model only on 6 verbs (there were
10 ties, and local search gave better models on the remaining 16 verbs).

5 Concluding Remarks

In this paper we investigate the applicability of using a randomised search tech-
nique for feature construction using ILP. The search method we propose can be
seen as a gneralisation of some of the existing approaches to using ILP to extend
a feature-based representation. A direct implementation of randomised approach
is, however, computationally expensive, and we have described a number of ad-
ditional modifications for practical use. Chief amongst these is the use of the
errors made by a model constructed using an existing set of features to select
amongst future moves in the search. Results from an empirical evaluation on
some standard datasets in language processing are promising: we find predictive
accuracies of models constructed are usually higher and use substantially fewer
features. In cases where we are able to compare against the state-of-the-art, we
find average prediction accuracies are higher than those reported earlier.

There are a number of ways in which the work here can be improved and
extended. We list the main limitations here under three categories. On the theo-
retical front, it is evident that we have not provided any guarantees of optimality
on the feature-subset constructed. While this is typical of randomised methods
of the type proposed here, it would nevertheless be useful to obtain some per-
formance bounds, however loose.

On the implementation front, our implementation is based on the simplest
kind of randomised search (GSAT). Better methods exist and need to be inves-
tigated (for example, WalkSat). Further, we could consider other neighbourhood
definitions for the local search such as adding or dropping upto k features. Of
course, we are not restricted to use SVMs, or even the specific variant of SVM
here, as our model constructor. Our experiments on the monolingual task here
suggest that there is no significant difference between a “1-norm” SVM and the
standard approach we have used here, but other model construction techniques
may yield better results.

On the application front, we have evaluated our search procedure on a spe-
cific set of problems (namely, those concerned with word-sense disambiguation);
and against a specific kind of feature-construction (in which all features are
constructed before model construction). Clearly, testing on other datasets is
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desirable. We also need to extend the comparative study to include methods
like kFOIL [4] that perform “dynamic propositionalisation” (that is, generate
features incrementally).

These limitations notwithstanding, we believe there is sufficient evidence to
believe that the randomised approach used here could provide an interesting way
to interleave the construction of features and their associated models. We note
that when used in conjunction with a statistical model constructor (as we have
done here), we are effectively performing a form of statistical relational learning.
This aspect of the search-based approach needs to be investigated further.
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