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Abstract

The problem of multi-instance multi-label learning (MIML)
requires a bag of instances to be assigned a set of labels most
relevant to the bag as a whole. The problem finds numerous
applications in machine learning, computer vision, and nat-
ural language processing settings where only partial or dis-
tant supervision is available. We present a novel method for
optimizing multivariate performance measures in the MIML
setting. Our approach MIMLperf uses a novel plug-in tech-
nique and offers a seamless way to optimize a vast variety
of performance measures such as macro and micro-F mea-
sure, average precision, which are performance measures of
choice in multi-label learning domains. MIMLperf offers two
key benefits over the state of the art. Firstly, across a diverse
range of benchmark tasks, ranging from relation extraction to
text categorization and scene classification, MIMLperf offers
superior performance as compared to state of the art methods
designed specifically for these tasks. Secondly, MIMLperf op-
erates with significantly reduced running times as compared
to other methods, often by an order of magnitude or more.

1 Introduction

The paucity of labeled data has fueled much interest in learn-
ing paradigms with partial or distant supervision. The task
of Multi-instance Multi-label (MIML) learning is one such
paradigm that has received much attention in areas such as
relation extraction (RE), image classification etc. The prob-
lem requires a bag of data points to be assigned a set of labels
most relevant to the bag as a whole. To take an example, in
the RE setting, we are interested in identifying relations held
by entities being discussed in a body of text. The problem
is pretty straightforward in the presence of sentence level
annotations i.e., indications of which sentences discuss spe-
cific relations. However, this requirement is a prohibitive
one, especially when the number of relations runs into the
hundreds or thousands. Consequently, the problem is often
posed as that of learning under distant supervision (Haffari,
Nagesh, and Ramakrishnan 2015; Hoffmann et al. 2011;
Surdeanu et al. 2012; Zeng et al. 2015) wherein one is pro-
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vided only with relational facts in a database along with a
non-annotated corpus that overall, supports most of the facts.

The general MIML problem has been explored through
reductions to single instance or single label learning in the
past (Zhou and Zhan 2006; Zhan and Zhou 2008). The RE
problem has enjoyed more focused attention and several di-
verse approaches have been proposed for this problem such
as structural risk minimization Hoffmann et. al. (2011), neu-
ral networks (Zeng et al. 2015) and graphical models (Sur-
deanu et al. 2012).

Existing approaches for the MIML problem suffer from
two main drawbacks 1) Although performance measures
such as F-measure and average precision are standard for
evaluation, the algorithms do not seek to optimize them di-
rectly, instead choosing to adopt heuristics that encourage
good performance. An exception is the work of Haffari et
al. (2015) who attempt to directly optimize the F-micro
measure. 2) The algorithms are often expensive in terms of
training time and cannot scale to large, web-scale datasets.

We address both these issues by developing MIMLperf, a
plug-in classifier for the MIML problem. MIMLperf directly
tries to optimize complex performance measures such as
macro and micro-F measure in a scalable manner. MIMLperf

excels over its competitors in its abilty to predict rare labels
correctly. A notable feature of MIMLperf is its streaming na-
ture, that allows it to be executed by making several passes
over the data without the need for storing the entire dataset
in memory. We rigorously benchmark MIMLperf to estab-
lish that 1) it offers far greater label extraction accuracies
on RE than specialized methods for the problem, 2) it also
outperforms state-of-the-art MIML approaches on text cat-
egorization and scene classification problems, and 3) it can
offer orders of magnitude faster running times.

2 Related Work

Completely supervised approaches, such as those for RE
(Zhou et al. 2005; Surdeanu and Ciaramita 2007) have lim-
ited application owning to their requirement of fully anno-
tated data which is expensive. Of the alternate paradigms,
that of distant supervision has found much appeal in both
RE and MIML literature. For the RE problem, this paradigm
shift due to (Mintz et al. 2009) fueled much interest with
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(Riedel, Yao, and McCallum 2010; Yao, Riedel, and Mc-
Callum 2010) modeling the problem as that of mapping en-
tity pairs in the database to their mentions in the corpus, in
other words, a multi-instance single-label learning problem.
Soon, (Hoffmann et al. 2011; Surdeanu et al. 2012) general-
ized this to allow entity pairs to participate in multiple rela-
tions, thus completing the MIML abstraction. A variety of
techniques have been applied to this problem over the years.
Recently (Zeng et al. 2015) applied Piecewise Convolutional
Neural Networks (PCNNs) to the RE problem. However,
these models were often trained by optimizing performance
measures such as conditional log-likelihood (Surdeanu et al.
2012), error rate, or bag level entropy (Zeng et al. 2015)
that are not directly related to the measures actually used for
evaluation such as F-measure and average precision.

The area of learning structured prediction models be-
comes relevant in this context since MIML requires pre-
dicting a structured array of labels. The area has seen
the development of powerful large-margin methods (Taskar,
Guestrin, and Koller 2003) which can incorporate hidden
variables (Wang and Mori 2011; Felzenszwalb et al. 2010;
Yu and Joachims 2009), which is useful since MIML admits
elegant formulations as a latent variable learning problem,
as well as optimize non-decomposable performance mea-
sures such as F-measure (Ranjbar et al. 2013; Rosenfeld et
al. 2014; Keshet 2014).

However, the only direct application of these techniques
to optimize non-decomposable performance measures in the
MIML setting is in the work of Haffari et al. (2015),
who optimize the micro averaged F-measure in the RE set-
ting. Their optimization algorithm interleaves the Concave-
Convex Procedure (CCCP) (Yuille and Rangarajan 2001) to
populate latent variables using dual decomposition (Rush
and Collins 2012). This factorizes the hard optimization
problem into smaller independent sub-problems over the
training instances. Despite such optimization tricks and
the use of heuristic local search methods replacing the ex-
haustive search of (Joachims 2005; Ranjbar, Vahdat, and
Mori 2012)), their approach suffers from two drawbacks: (i)
the resulting algorithms are slow and do not scale to large
datasets and (ii) the approach does not perform well for the
heavy tail of rare classes with small class priors.

There also has been progress in developing general pur-
pose algorithms for the MIML problem (Zhou and Zhan
2006; Zhan and Zhou 2008) that have been applied to text
and image (scene) classification tasks. The work of (Zhou
and Zhan 2006) provides two methods, viz., MIMLBoost
and MIMLSVM for the problem. MIMLBoost solves sev-
eral multi-instance single label (MISL) problems and then
converts each into Single Instance Single Label (SISL) prob-
lems using multi-instance boosting. MIMLSVM, on the
other hand, converts the MIML problem into several Sin-
gle Instance Multi Label (SIML) problems using k-medoids
clustering that uses the Hausdorff distance between all
pairs of points and then solves the SIML problems using
SVM. Both methods work on the degenerate versions of
MIML and hence can be lossy. The main bottleneck in
the MIMLSVM approach is the extremely expensive com-
putation of Hausdorff distance matrix between all pairs of

points. As we shall see in Section 5, this causes this ap-
proach to be extremely slow. As a concluding note, we point
out that the the SIML approach of reducing the problem of
predicting labels for bags to that of predicting labels for in-
dividual instances is very popular in RE (Zeng et al. 2015;
Haffari, Nagesh, and Ramakrishnan 2015; Hoffmann et al.
2011) and MIML algorithms. We will revisit this approach
while describing the MIMLperf algorithm.

The principles of EM, alternating minimization, etc., are
very popular in optimization and learning literature. We
note that the classical EM algorithm cannot be directly ap-
plied to optimize multivariate performance measures as it
is designed to optimize the decomposable likelihood mea-
sure over i.i.d. samples. As a result, direct adaptations of
EM (Zhang and Goldman 2001) to multi-instance settings
only address decomposable measures and that too, only in
binary or multi-class settings where labels are exclusive.
The models developed therein cannot extend directly even
to decomposable performance measures in the multi-label
setting since labels can co-exist in this setting, something
that our approach critically exploits.

3 Problem Formulation

In the MIML setting, training data is presented as
D := {(xi,yi)}Ni=1 where xi =

{
x
(1)
i , . . . ,x

(ni)
i

}
∈ X

is the ith instance set (also called a bag) containing ni in-
stances and yi = [yi,1, yi,2, . . . , yi,L] ∈ Y = {0, 1}L is
a vector of labels associated with xi. We will use hi ∈
{1, .., L, nil}ni to denote the vector of hidden labels for xi.
hi,j will encode whether the jth instance in the bag xi ex-
presses one of the labels {1, . . . , L} or none (nil). We will
denote X := {xi}Ni=1 ∈ X and Y := {yi}Ni=1 ∈ Y .

Let us illustrate the above with an example from the RE
domain. The goal here is to align facts to sentences in a
large unlabeled corpus. The training data consists of entity-
pairs, such as (Walt Disney, Mickey Mouse). For
each entity pair, we are given a set of sentences (also
called mentions) that talk about these entities, and a set
of relations known to be satisfied by the pair. For in-
stance, (Walt Disney, Mickey Mouse) satisfy the
relations Co-creator-Of, Voice-Of but not the rela-
tion Animator-Of (Mickey was animated by Ub Iwerks).

The above can be cast as an MIML problem by letting xi

be the instance set or bag containing all mentions of the i-th
entity pair and yi be the relations satisfied by the pair. The
hidden label vector hi can then be used to denote relations
expressed by individual mentions. The set of L possible re-
lations is extracted from a knowledge-base.

We wish to learn a function f : X → Y that predicts labels
for novel data points f(x) = [f1(x), f2(x), . . . , fL(x)].
Our learning process will be guided by a performance mea-
sure Δ : Y ×Y → R+. Given a dataset (X,Y) containing
N bags, let Yj = [y1,j , y2,j , . . . , yN,j ] encode which bags
support label j and f j(X) = [fj(x1), fj(x2), . . . , fj(x)N ]
be the vector of predictions for label j.

The simplest of performance measures is the class of
univariate or decomposable measures that compute per-
formance over a set of data points by simply averaging
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Figure 1: (Left) The Riedel dataset exhibits a heavy tail in its label distribution, most relations are extremely rare. (Right) Men-
tion level hidden labels can be used to compute the active relations for the entity-pair (Walt Disney, Mickey Mouse).

the performance on individual data points Δ(f(X),Y) =
1
N

∑N
i=1 Δ(f(xi),yi). Examples include the Hamming dis-

tance (Bi and Kwok 2013; Chen and Lin 2012), precision
(Hsu et al. 2009; Weston, Bengio, and Usunier 2011), and
recall (Steck 2010). Although convenient to work with and
analyze, these performance measures are known to be ill
suited in the presence of label imbalance or a heavy tailed la-
bel distribution (Koyejo et al. 2014; Narasimhan, Vaish, and
Agarwal 2014) since they tend to neglect performance on
rare labels. Incidentally, the heavy tail phenomenon is well
documented in relation extraction settings (see Figure 1a).

Instead, the performance measures of choice in these sit-
uations are the multivariate performance measures force the
predictor to do well on rare labels as well. These measures
are typically non-decomposable as their evaluation does not
decompose over individual points. In this paper we con-
sider the family of F-measures – these have been popular for
the RE problem (Haffari, Nagesh, and Ramakrishnan 2015;
Surdeanu et al. 2012), as well as for label imbalanced learn-
ing in general (Koyejo et al. 2014; Ye et al. 2012).

The label-wise Precision and Recall of a predictor f mea-
sure the performance on each individual label

PRECj(f ;X,Y) :=
∑n

i=1 yi,j ·fj(xi)∑n
i=1 fj(xi)

RECj(f ;X,Y) :=
∑n

i=1 yi,j ·fj(xi)∑n
i=1 yi,j

,

whereas the global Precision and Recall calculate the overall
performance of f across labels

PREC(f ;X,Y) :=
∑n

i=1

∑L
j=1 yi,j ·fj(xi)

∑n
i=1

∑L
j=1 fj(xi)

REC(f ;X,Y) :=
∑n

i=1

∑L
j=1 yi,j ·fj(xi)

∑n
i=1

∑L
j=1 yi,j

For any label j, we define label-wise F-measure as

F j
β(f ;X,Y) :=

(
β

PRECj(f ;X,Y)
+ 1−β

RECj(f ;X,Y)

)−1

, as well
as the Macro and Micro F-measure as

Fmacro
β (f ;X,Y) := 1

L

∑L
j=1 F

j
β(f ;X,Y), and

Fmicro
β (f ;X,Y) :=

(
β

PREC(f ;X,Y)
+ 1−β

REC(f ;X,Y)

)−1

,

where β = 0.5 gives the standard F1 measure. These
performance measures, especially the macro F-measure, pe-
nalize predictors that perform poorly on rare labels.

In the next section, we develop scalable techniques for
optimizing multivariate performance measures such as F-
measure variants in the MIML and RE settings.

4 Proposed Approach

Despite having attractive properties as discussed above,
multivariate performance measures such as F-measure
present challenges to learning algorithms. Due to their non-
decomposability, classical algorithmic tools such as online
and stochastic optimization, as well as analytical tools such
as uniform convergence bounds are not readily applicable.

The recent years have seen a growing interest in the prob-
lem of optimizing non-decomposable performance mea-
sures, especially F-measure variants (Dembczyński et al.
2013; Narasimhan, Kar, and Jain 2015). However, past work
is mostly restricted to binary classifiation. An exception is
the recent work of Haffari et al. (2015) that utilizes the
structural SVM approach (Joachims 2005) to optimize the
F-micro measure in the RE setting. However, the approach
is woefully non-scalable, struggling to cope with even a few
thousand data points. This severely restricts its applicability
to real life and production-grade problems.

This section will develop MIMLperf, a scalable tool for
optimizing multivariate performance measures in the MIML
setting. MIMLperf is based on a plug-in approach to clas-
sification. Plug-in classifiers have been studied in binary
classification settings (Kotłowski and Dembczynski 2015;
Narasimhan, Vaish, and Agarwal 2014; Koyejo et al. 2014;
Ye et al. 2012) with great success. However, to the best of
our knowledge, plug-in approaches have not been studied in
MIML/RE settings before.

Plug-In Classifiers

Consider a simple binary classification problem where the
task is to assign every data point x ∈ X , a binary label
y ∈ {±1}. Plug-in classifiers achieve this by first learn-
ing to predict Class Probability Estimate (CPE) scores. A
function g : X → R+ is learnt such that g(x) ≈ P [y = 1].
Various tools such as logistic regression may be used to
learn this CPE model g. The final classifier is of the form
sign(g(x) − η) where η is a threshold that is tuned to max-
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Algorithm 1 MIMLperf: Training Routine

Input: Data {(xi,yi)}Ni=1, expression rate κ, perf. measure Δ
1: For all (i, j) such that yi,j = 1, set random κ · ni entries of

the vector z(i,j) to 1 // Initialize hidden labels randomly
2: while not converged do

Step 1: Fix hidden variables, update plug-in classifiers
3: for every label j ∈ [L] do

4: Dj ← {{(x(k)
i , z

(i,j)
k )}ni

k=1}ni=1 // Prepare datasets
5: gj ← CPE-train(Dj) // Train CPE models
6: end for
7: η ← Tune-thresholds((X,Y),p; Δ) // Optimize Δ

Step 2: Fix plug-in classifiers, update hidden variables
8: for (i, j) ∈ [N ]× [L] such that yi,j = 1 do

9: z(i,j) ← 0ni // Reset hidden labels
10: c(i,j) ← ∑ni

k=1 I{gj(x(k)
i ) ≥ ηj}

11: S(i,j) ← Sample c(i,j) entries of z(i,j) according to gj

12: z
(i,j)
k ← 1 for all k ∈ S(i,j) // Reestimate hidden labels

13: end for
14: end while

Algorithm 2 MIMLperf: Testing Routine

Input: Test point x = {x(1), . . . ,x(nt)} with nt instances, CPE
models g1, . . . , gL, thresholds η = [η1, . . . , ηL].

1: for k = 1, 2, . . . , nt do

2: hk ← {j : gj(x(k)) ≥ ηj} // Discover hidden labels
3: end for
4: for j = 1, 2, . . . , L do
5: ŷj ← ∨nt

k=1 I {j ∈ hk} // Aggregation step
6: end for
7: return ŷ = [ŷ1, ŷ2, . . . , ŷL]

imize the performance measure being considered, e.g. clas-
sification accuracy, F-measure, G-mean etc.

Plug-in approaches offer various benefits. They can be
used to optimize complex multivariate performance mea-
sures. In fact the same CPE model can be reused to tar-
get several performance measures by simply changing the
threshold tuning step. Plug-in approaches have been rigor-
ously analyzed and are known to be statistically consistent
(Narasimhan, Vaish, and Agarwal 2014).

However, plug-in methods require total supervision, akin
to requiring every instance in every bag to be labeled,
whereas MIML operates under a significantly impoverished
distant supervision setting. Thus, a direct application of ex-
isting plug-in approaches to MIML problems is not possible.

MIMLperf: An MIML Algorithm for Optimizing
Multivariate Performance Measures

MIMLperf reduces the problem of predicting labels for a bag
to the problem of predicting labels expressed by individual
instances in that bag. Recall that this is captured by the hid-
den variables (see Section 3). E.g. the sentence “Mickey
Mouse was voiced by Walt Disney himself” expresses the la-
bel Voice Of but not the label Co-creator Of. Af-
terward, a label is predicted as relevant for the bag if at
least one instance in the bag expresses that label. This ag-
gregation or SIML approach has been standard in MIML

and RE settings (Haffari, Nagesh, and Ramakrishnan 2015;
Hoffmann et al. 2011; Zhan and Zhou 2008).

Existing approaches suffer since they use expensive tech-
niques such as integer linear programming Haffari et al.
(2015) to set these hidden variables. MIMLperf instead uses
plug-in classifiers to set the hidden variables which results in
training routines that are orders of magnitude faster. How-
ever, training these classifiers is challenging since we do not
have any instance level supervision – the training data does
not tell us which instances express which labels.

Overview of MIMLperf Training: MIMLperf overcomes
the challenge of absence of instance level supervision in a
scalable manner by combining two powerful approaches –
plug-in classifiers and alternating optimization. At every
time step, MIMLperf estimates the hidden variables, i.e. for
each instance in a training bag, it estimates which labels are
likely to be expressed by that instance. These estimates are
valuable since they offer a form of instance level supervi-
sion to the method. This makes it possible for MIMLperf

to train plug-in classifiers by learning CPE models and tun-
ing appropriate thresholds; a separate classifier is trained for
each of the L labels. MIMLperf uses these classifiers to get
improved estimates of the hidden variables. The process is
repeated for a few iterations. Details of the training and test-
ing routines for MIMLperf are given in Algorithms 1 and 2.

Hidden Variables These are used to record the algo-
rithm’s beliefs about which labels are expressed by individ-
ual instances. For a set of N data points {(xi,yi)}Ni=1, the
binary variable z

(i,j)
k ∈ {0, 1} indicates whether the kth in-

stance in the ith bag expresses the j th label or not. If the ith

data point has ni instances then the vector z(i,j) ∈ {0, 1}ni

encodes which of the instances in the bag express the label
j. A crucial observation that makes our approach scalable is
that if a bag does not have a label j, then none of its instance
can express it. In other words, if yi,j = 0 then z(i,j) = 0.
This observation is valuable since we need only worry about
z
(i,j)
k when yi,j = 1. Since most bags have very few labels

(see Figure 1a), this introduces sparsity into our approach.
We now describe the alternation steps.

Step 1: Learning Plug-In Classifiers Given an assign-
ment to all the hidden variables z(i,j), MIMLperf learns a
plug-in classifier for each label. The job of these classifiers
corresponding to a particular label is to predict whether a
given instance expresses that label or not. This is done by
simply formulating a binary classification problem for each
label with the hidden variables acting as the “classes”. A
standard procedure like logistic regression (CPE-train in Al-
gorithm 1) is used to obtain CPE models, one for each label.
Afterward, thresholds are tuned for each label such that the
performance measure Δ being targeted, such as F-macro or
F-micro measure, is maximized. Doing so in an efficient
manner is challenging as in large scale settings, the number
of CPE scores being handled can run into millions or more.1

Step 2: Re-estimating Hidden Variables The CPE mod-
els learnt in the previous step can be used to obtain (noisy)

1We refer the reader to https://www.cse.iitb.ac.in/∼ganesh/
papers/supp-aaai17/ for details.
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CPE scores for all instances with respect to all labels. The
noise is due to incorrect assignments to the hidden variables
in the previous step. Nevertheless, this gives us an estimate
of which instances are more likely to express a certain la-
bel. MIMLperf uses these CPE scores to reassign the hidden
variables. In order to avoid trusting these scores completely,
MIMLperf chooses a random set of instances with high CPE
scores with respect to a label and assigns them that label.
This has the effect of reinforcing good CPE models as well
as smoothing out errors. For the initialization step, if a bag
has a label j, the method assigns a random κ fraction of
instances in that bag to label j. κ is an expression rate pa-
rameter that is only used for initialization.

Overview of MIMLperf Training: The testing procedure
of MIMLperf (see Algorithm 2) involves simply applying the
plug-in classifiers and performing the aggregation step to
obtain the predictions for all labels for a bag. This procedure
is enormously cheaper than the integer linear programming
approach followed by Haffari et al. (2015).

Theoretical Analysis

Giving strong theoretical guarantees for algorithms for non-
convex learning problems such as multi-instance learning
is a challenging albeit interesting problem. We are never-
theless able to establish generalization guarantees for our
method which proves that our method does not overfit. Let
f̂ be the classifier generated by MIMLperf. Let the training
and test sets (X,Y) and (Xt,Yt) be chosen randomly from
some fixed but unknown distribution. Let π denote the min-
imum frequency of any label.
Theorem 1. Let the instances be represented as d dimen-
sional features x

(k)
i ∈ R

d. Then for any N such that√
1
N

(
log 1

δ + d log N
d

)
< c · π for a small constant c, we

have with probability at least 1− δ, for some constant C,
∣∣∣E

[
Fmacro
β (f̂ ;Xt,Yt)

]
− Fmacro

β (f̂ ;X,Y)
∣∣∣ ≤

√
C
N

(
d+ log 1

δ

)

The result is stated for linear models for sake of simplicity
and can be extended to hypothesis spaces with finite capacity
as well. A similar result holds for F-micro measure as well.

5 Experiments

We present detailed comparisons of our approach with the
state of the art on three benchmark MIML/RE datasets.

1. Riedel Distant Supervision Dataset: For the distantly
supervised relation extraction problem, we use the bench-
mark dataset created by (Riedel, Yao, and McCallum
2010). The dataset was created by aligning relations from
Freebase2 with the sentences in the New York Times cor-
pus (Sandhaus 2008). The labels for the data points come
from the Freebase database; however, Freebase is incom-
plete (Ritter et al. 2013). A data point is labeled nil
when either no relation exists or the relation is absent in
Freebase. Following (Haffari, Nagesh, and Ramakrishnan
2015), we train and evaluate all algorithms on a subset of

2www.freebase.com

Table 1: Dataset Statistics

#bags #labels labels

point

points

label

instances

bag

Riedel 4350 52 1.08 90.4 6.6
Scene 2000 5 1.24 494.4 9
Reuters 2000 7 1.15 329.71 3.56

this dataset, termed as the positive dataset, which consists
of only non-nil relation labeled data points.

2. MIML Scene Classification Dataset (Scene): The
Scene data set contains 2000 scene images collected from
the COREL image collection and the Internet, with five
different possible class labels, viz., desert, mountains, sea,
sunset and trees. Each image is represented as a bag of
nine instances with each instance represented as 15 di-
mensional feature vector that corresponds to an image
patch. Following MIMLSVM, We divided the data into
two parts consisting of 1600 data points for training and
the remaining 400 points for testing.

3. MIML Text Classification Dataset (Reuters): The text
data is derived from the widely studied Reuters-21578
collection using seven most frequent classes. It consists of
2000 documents with 15% associated with more than one
class labels. In this dataset each instance is represented
as a 243-dimensional feature vector and corresponds to a
text segment. Again, we follow MIMLSVM in the way
we partition this dataset into training and testing splits.

Comparisons against existing approaches We compare
MIMLperf against state-of-the-art methods for each of the
three datasets. We report Fmacro

β , Fmicro
β and average preci-

sion as our evaluation measures. In addition, we also report
the training time and the average time required to predict la-
bels for each test bag (instance set). We used a default value
κ = 1 as the prevalence parameter for training MIMLperf.
For the sake of fairness, training splits and feature sets were
kept common across all comparative experiments.

Table 2 compares MIMLperf against state-of-the-art ap-
proaches MIMLSVM and M3MIML (Zhan and Zhou 2008)
for the Scene and Reuters datasets. We observe that
MIMLperf consistently outperforms both methods on all
three evaluation measures. Additionally, as noted in Table 5,
MIMLperf is significantly and consistently faster in training
than MIMLSVM and even more so at testing time.

Table 3 compares MIMLperf on the distant supervision RE
setting with the MM-Fβ approach (Haffari, Nagesh, and Ra-
makrishnan 2015). We note that MIMLperf offers significant
improvements over MM-Fβ on F-macro along with a 145-
fold speedup in training. The gains on F-micro are marginal.
However, in skewed class distribution settings, F-macro is a
more relevant measure of performance than F-micro.

In addition to offering gains on training and test speeds,
our approach does not require the entire dataset to be loaded
in memory. As noted earlier, MIMLperf is executed by mak-
ing several passes over the data and is inherently streaming
in nature. None of the other approaches we have compared
against, enjoy these properties.
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Table 2: Performance of MIMLperf compared against MIMLSVM and M3MIML on the Scene and Reuters Datasets

Dataset Kernel
F-Macro F-Micro Avg. Precision

MIMLSVM M3MIML MIMLperf MIMLSVM M3MIML MIMLperf MIMLSVM M3MIML MIMLperf

Scene
lin 0.4292 0.386 0.5427 0.4475 0.3868 0.5287 0.6635 0.5754 0.7465

rbf 0.6054 0.5872 0.6201 0.6016 0.5796 0.6158 0.7704 0.74857 0.7919

Reuters
lin 0.8274 0.7601 0.8492 0.8395 0.8067 0.8629 0.9489 0.9463 0.9625

rbf 0.8839 0.6998 0.8901 0.8689 0.7866 0.8942 0.9467 0.9403 0.9706

Table 3: MIMLperf comparison with the (MM-Fβ) model by Haffari
et. al. on the Riedel dataset

F-macro Precision Recall F-micro Train time

MM-Fβ 0.1366 0.6599 0.6521 0.6559 4h 20m
MIMLperf 0.2283 0.7928 0.5781 0.6686 1m 49s

Table 4: Effect of the training objective on
test performance on the Riedel dataset

F-macro F-micro

Optimizing Fmacro
β 22.8354 61.0615

Optimizing Fmicro
β 18.984 66.8648

Table 5: Comparisons of training time and testing time per instance

Dataset Kernel
Training time Testing time per instance

MIMLSVM MIMLperf Speedup MIMLSVM MIMLperf speedup

Scene
Linear 7m 45s 1.66s 280× 0.0920s 0.0009s 102×
RBF 9m 24s 6m 40s 1.41× 0.0921s 0.03s 3×

Reuters
Linear 3m 55s 1.62s 145× 0.1035s 0.0005s 207×
RBF 5m 04s 1m 02s 5× 0.1063s 0.008s 13×

Table 6: Relation-wise comparisons of F-score with MM-Fβ , MIMLperf, κ = 1 and MIMLperf, tuned κ on Riedel

Relation % of occurrence MM-Fβ MIMLperf κ = 1 MIMLperf tuned κ
/people/person/place lived 12.36 0.15966 0.46556 0.46897

/people/deceased person/place of death 4.04 0.19231 0.31111 0.35294

/location/administrative division/country 1.26 0 0.37624 0.37624

/business/company/founders 1.09 0.48148 0.68571 0.75676

/location/country/capital 0.77 0 0.10866 0.11494

/film/film/featured film locations 0.15 0 0.01262 0.01325

Overall F-Macro 0.13660 0.22835 0.23282

Effects of changes in parameters and objective In
Table 4 we compare the difference in performances of
MIMLperf when the macro-F measure is replaced with the
micro-F measure as the objective. We compare the results
of training to optimize the Fmicro

β measure against optimiz-
ing Fmacro

β . In each setting, we report both Fmicro
β and Fmacro

β .
We note the strong correspondence between the choice of
performance in the training objective and performance be-
ing evaluated upon the test dataset.

Class wise comparison of performances We expect op-
timizing the F-macro performance measure to enhance per-
formance on the rarer classes (that have low priors). We
confirm this in Table 6 which compares the performance
of MIMLperf with MM-Fβ for some of the rarer classes.
Whereas MM-Fβ reports extremely low F-scores (in some
cases 0) on these rare classes, MIMLperf performs much bet-
ter, even with κ = 1. The value of κ yielding the best per-
formance for a class changes across classes and therefore,
also report results with κ tuned for each class on the training
dataset. This gives us even better gains.

We also test for statistical differences between the accura-
cies of MIMLperf and MM-Fβ on all the 29 classes using the

Wilcoxon3 signed-rank test. We notice that the sum of the
signed ranks (222 with κ = 1 and 237 for κ tuned for each
class) is very clearly in favour of MIMLperf over MM-Fβ .

6 Conclusions

We proposed MIMLperf, a scalable approach for optimizing
several multivariate performance measures in the MIML set-
ting and applied it to relation extraction and other MIML
tasks. Our approach makes novel use of the plug-in tech-
nique, offers significantly reduced running times, and caters
well even to rare classes, without compromising on the
popular ones. Furthermore, our approach appears very
amenable to distributed and parallel computing and a pos-
sible future work is validating this hypothesis.
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