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Abstract. We present a CATALIST model that ‘tames’ the attention
(heads) of an attention-based scene text recognition model. We provide
supervision to the attention masks at multiple levels, i.e., line, word,
and character levels while training the multi-head attention model. We
demonstrate that such supervision improves training performance and
testing accuracy. To train CATALIST and its attention masks, we also
present a synthetic data generator ALCHEMIST that enables the syn-
thetic creation of large scene-text video datasets, along with mask infor-
mation at character, word, and line levels. We release a real scene-text
dataset of 2k videos, CATALISTd with videos of real scenes that poten-
tially contain scene-text in a combination of three different languages,
namely, English, Hindi, and Marathi. We record these videos using 5
types of camera transformations - (i) translation, (ii) roll, (iii) tilt, (iv)
pan, and (v) zoom to create transformed videos. The dataset and other
useful resources are available as a documented public repository for use
by the community.

Keywords: Scene Text Recognition · Video Dataset · OCR in the
Wild · Multilingual OCR · Indic OCR · Video OCR

1 Introduction

Reading the text in modern street signs generally involves detecting the boxes
around each word in the street signs and then recognizing the text in each box.
Reading street signs is challenging because they often appear in various lan-
guages, scripts, font styles, and orientations. Reading the end-to-end text in
scenes has the advantage of utilizing the global context in street signs, enhanc-
ing the learning of patterns. One crucial factor that separates a character-level
OCR system from an end-to-end OCR system is reading order. Attention is thus
needed to locate the initial characters, read them, and track the correct reading
order in the form of change in characters, words, lines, paragraphs, or columns
(in multi-column texts). This observation forms the motivation for our work.

https://catalist-2021.github.io
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Fig. 1: Sample video frames from CATALISTd

Obtaining large-scale multi-frame video annotations is a challenging problem
due to unreliable OCR systems and expensive human efforts. The predictions
obtained on videos by most OCR systems are fluctuating, as we motivate in
Section 3. The fluctuations in the accuracy of the extracted text may also be
due to various external factors such as partial occlusions, motion blur, complex
font types, distant text in the videos. Thus, such OCR outputs are not reliable
for downstream applications such as surveillance, traffic law enforcement, and
cross-border security system.

In this paper, we demonstrate that the photo OCR systems can improve by
guiding the attention masks based on the orientations and positions of the cam-
era. We improve an end-to-end attention-based photo-OCR model on continuous
video frames by taming the attention masks in synthetic videos and on novel
controlled datasets that we record for capturing possible camera movements.

We begin by motivating our work in Section 3. We base a video scene-text
recognition model (referred to as CATALIST) on partly supervised attention.
Like a teacher holding a lens through which a student can learn to read on a
board, CATALIST exploits supervision for attention masks at multiple levels (as
shown in Figure 3). Some of the attention masks might be interpreted as covering
different orientations in frames during individual camera movements (through
separate masks). In contrast, others might focus on the line, word, or character
level reading order. We train CATALIST using synthetic data generated using a
non-trivial extension of SynthText [6]. The extension allows for the generation
of text videos using different camera movements while also preserving character-
level information. We describe the CATALIST model which ‘tames’ the attention
(heads) in Section 4.1. We demonstrate that providing direct supervision to
attention masks at multiple levels (i.e., line, word, and character levels) yields
improvement in the recognition accuracy.

To train CATALIST and its attention masks, we present a synthetic data
generator ALCHEMIST1 that enables the synthetic creation of large scene-text
1 ALCHEMIST stands for synthetic video generation in order to tame Attention

for Language (line, word, character, etc.) and other camera-CHangEs and
coMbinatIons for Scene Text.
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video datasets, along with mask information at character, word and line levels.
We describe the procedure to generate synthetic videos in Section 4.2.

We also present a new video-based real scene-text dataset, CATALISTd in
Section 4.3. Figure 1 shows the sample video frames of the dataset. We create
these videos using 5 types of camera transformations - (i) translation, (ii) roll,
(iii) tilt, (iv) pan, and (v) zoom. We provide the dataset and experimental details
in Section 5. We summarize the results in Section 6 and conclude the work in
Section 8.

2 Related Work

We now introduce the approaches to tackle various issues in the field of photo
OCR. Works specific to text localization are proposed by Gupta et al. [6]. Liao et
al. [11,13] augments such work to real-time detections in the end-to-end scenes.
Karatzas et al. [9] and Bušta et al. [3] present better solutions in terms of accu-
racy and speed. The problem of scene-text spotting, however, remains compli-
cated owing to variations in illumination, capturing methods and weather con-
ditions. Moreover, the movement of the camera (or objects containing text) and
motion blur in videos can make it harder to recognize the scene-text correctly.
There has been a rising interest in end-to-end scene-text recognition in images
over the last decade [2,16,10,9,3]. Recent text-spotters by Bušta et al. [3,4] in-
clude deep models that are trained end-to-end but with supervision at the level
of text as well as at the level of words and text-boxes. The two recent break-
throughs in this direction, which work directly on complete scene images without
supervision at the level of text boxes, are:

1. STN-OCR by Bartz et al. [2]: A single neural network for text detection and
text recognition. The model contains a spatial transformation network that
encodes the input scene image. It then applies a recurrent model over the
encoded image features to output a sequence of grids. Combining the grids
and the input image returns the series of word images present in the scene.
Another spatial transformer network process the word images for recognition.
This work does not need supervision at the level of detection.

2. Attention-OCR by Wojna et al. [19]: This work employs an inception network
(proposed by Szegedy et al. [18]) as an encoder and an LSTM with attention
as a decoder. The work is interesting because it does not involve any cropping
of word images but works on the principle of soft segmentation through
attention. The attention-OCR model performs character-level recognition
directly on the complete scene image thus utilizing the global context while
reading the scene. This model has an open-source TensorFlow (a popular
library for deep learning by Abadi et al. [1]) implementation.

Both these works experiment on French Street Name Signs (FSNS) dataset,
on which Attention-OCR performs the best. The Attention-OCR model also
outperforms another line-level segmentation-based method (refer to work by
Smith et al. [17]) on the FSNS dataset. Recently, the OCR-on-the-go model
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Fig. 2: Frame wise accuracy of 3 text-spotters on a simple video exhibiting pan

outperforms these models on the FSNS dataset using a multi-head attention
mechanism [15]. In this work, we set new benchmarks for reading Indian street
signs in a large number of video frames. The FSNS dataset contains around 10M
images annotated with end-to-end transcriptions similar to ours. Different large-
scale datasets are available in English. Uber-Text by Zhang et al. [21] include
over 0.1M images annotated at line-level, captured from 6 US cities. Reddy et
al. [14] annotate 1000 video clips from the BDD dataset [20] at line-level. We
provide end-to-end transcriptions for our dataset similar to FSNS. Additionally,
we also share noisy annotations at word-level and paragraph-level for each frame.

3 Motivation

We motivate our work of training the scene-text spotting models on the real (as
well as synthetic) videos captured via continuous camera movements. Various
end-to-end scene-text spotters, such as the ones proposed by Bušta et al. [4,3],
train on synthetic as well as augmented real data to cover different capturing
perspectives/orientations. The problem, however, is that during the training
phase, such models do not exploit all the continuous perspectives/orientations
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captured by the camera movement (or scene movement). Thus the OCR output
fluctuates when tested on all/random video frames. Also, to deploy such models
on real-time videos, two scenarios may occur. Firstly, the multi-frame consensus
is desirable to improve OCR accuracy or interactive systems. Secondly, since it is
computationally expensive to process each frame for readability, it is not possible
to verify the quality of the frame to be OCR-ed. In any of these scenarios, the
recognition system needs to work reasonably well on continuous video frames.

We present the frame level accuracy of E2E-MLT proposed by Bušta et al. [4]
on an 8 second video clip with a frame size of 480×260 in the first plot of Figure 2
(with sample frames shown at the bottom). Since the model does not work for
Hindi, we recognize the Hindi text using OCR-on-the-go model [15] . As shown,
the E2E-MLT model produces the most unstable text on a simple video (from
the test dataset) with the average character accuracy of 83.1% and the standard
deviation of 9.20. The reason for this is that E2E-MLT, which does not train
on continuous video frames, produces extra text-boxes on many of them during
the detection phase. Thus extra noise characters or strings are observed during
recognition. For instance, the correct text “Jalvihar Guest House” appears in
18 frames, the text “Jalvihar arG Guest House” appears in 10 frames, and the
text “Jalvihar G Guest House” appears in 9 frames. The text “Jalvihar G arGu
Guesth R H House” appears in one of the frame.

The instability in the video text, however, reduces when we use the OCR-
on-the-go model by Saluja et al. [15] to read these video frames. As shown in the
second plot of Figure 2, we achieve the (higher) average character accuracy of
94.54% and (lower) standard deviation of 4.15. This model works on the principle
of end-to-end recognition and soft detection via unsupervised attention. The
instability further reduces, as shown in the third plot of Figure 2, when we train
our CATALIST model on the continuous video datasets proposed in this work.

4 Methodology

We use end-to-end attention-based encoder-decoder model proposed by Wojna
et al. [19]. For better inference of attention masks, and improved recognition,
we use the multi-head version of this model, proposed by Saluja et al. [15]. In
Figure 3, we present the CATALIST model, that uses multi-task learning to
update attention masks. Each mask is updated based on two loss functions. For
end-to-end supervision, we use cross-entropy loss. To train attention heads, we
use dice loss [12] between the predicted masks and the segmented masks obtained
using text-boxes from SynthText proposed by Gupta et al. [6]. We also transform
the synthetic images, along with text-boxes, to form videos which we describe
in the end of this section.

4.1 The CATALIST model

As shown in Figure 3, the powerful inception-based encoder proposed by Szegedy
et al. [18], which performs multiple convolutions in parallel, enhances the ability
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Fig. 3: CATALIST tames attention mask at multiple levels of granularity. The
first three masks, namely line, word, and char mask, are supervised. The remain-
ing attention masks are set free. Figure shows the first four attention masks.

to read the text at multiple resolutions. We extract the features f from the input
image using the inception-based encoder. Moreover, the multi-head attention
mechanism in our model exploits: i) the splits of feature f into fL, fw, fc,
ff

2, etc. (refer Figure 3), ii) one-hot-encoded (OHE) vectors (OHEL, OHEw,
OHEc, OHEf , etc.3) for both x and y coordinates of each feature split, iii)
hidden layer at the previous decoding step (ht−1) of an LSTM (decoder). To
learn the attention at multiple levels of granularity, we provide supervision to
the first three masks in the form of the line, word, and character level segmented
binary images. The remaining masks are set free to assist/exploit end-to-end
recognition/supervision. Thus we refer to the first three of them as line mask,
word mask, and char mask in Figure 3. We also hard-code the word mask to
remain inside the line mask, and the character mask to remain inside the word
mask. The context vectors (cL, cw, cc, cf , etc.), which are obtained after applying
the attention mechanism, are fed into the LSTM to decode the characters in the
input image.

It is important to note that for each input frame, the features f and splits
remain fixed, whereas the attention masks move in line with the decoded charac-
ters. Thus, we avoid using simultaneous supervision for all the character masks
(or word masks or line masks) in a frame. Instead, we use a sequence of masks
(in the form of segmented binary images) at each level for all the video frames.
We accomplish this by keeping the word-level as well as the line-level segmented
images constant and moving the character level segmented images while decod-
ing the characters in each word. Once the decoding of all the characters in a

2 fL represents the features used for producing line masks, fw represents features used
for word masks, fc represents features used for character masks, and ff represents
features used for free attention masks

3 for the corresponding features fL, fw, fc, ff , etc.
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word is complete, the word level segmented image moves to the next word in the
line, and the character level image keeps moving as usual. Once the model has
decoded all the characters in a line of text, the line (and word) level segmented
image moves to the next line, and the character level segmented image continues
to move within the word image.

4.2 The ALCHEMIST videos

We generate synthetic data for training the attention masks (as well as the
complete model) using our data generator, which we refer to as ALCHEMIST.
ALCHEMIST enables the synthetic creation of large scene-text video datasets.
ALCHEMIST overlays synthetic text on videos under 12 different transforma-
tions described in the next section. By design, we preserve the information of
the transformation performed, along with information of the character, word,
and line positions (as shown in Figure 7). This information in the synthetic
data provides for fairly detailed supervision on the attention masks in the
CATALIST model. We build ALCHEMIST as an extension of an existing fast
and scalable engine called SynthText proposed by Gupta et al. [6].

Methodology: According to pinhole camera model, a (2-d) point x (in ho-
mogeneous coordinate system) of image captured by a camera is given by equa-
tion 1.

x = K[R|t]X (1)
Here K is the intrinsic camera matrix, R and t are rotation and translation
matrices respectively, and X is a (3-d) point in real world coordinates in an
homogeneous coordinate system.

Fig. 4: For videos with camera pan, we find Homography between the corners
of a rectangle and 4 points equidistant from them (which form one of the blue
trapeziums).

For generating synthetic videos, we first select a fixed crop within the syn-
thetic image (as denoted by the green rectangle in Figure 5). We then warp
the corners of the crop by finding a planar homography matrix H (using algo-
rithm given by Hartley et al. [7]) between the corner coordinates and four points
equidistant from corners (direction depends on the kind of transformation as
explained later). For Figure 4 (and Figure 5), we find the planar homography
matrix H between corners of one of the blue trapezium and the green rectan-
gle. Thus, instead of a 2D point x in the homogeneous coordinate system as
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Original Image
and Rectangle
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and Trapeziums

Cropped
Frames 

Fig. 5: Generating video with camera pan (3 frames at the bottom for dark-blue,
green and light-blue perspectives respectively) from an image (at the top)

explained earlier, we get a translated point xnew defined in equation 2:

xnew = HK[R|t]X (2)

Here, H is the known homography. The above equation is simplified from the
equation below:

xnew = KT [R|t]X = KTK−1K[R|t]X (3)

Here T is the unknown transformation matrix. We then warp the complete image
using H and crop the rectangular region (refer green rectangle in Figure 5),
to obtain the video frames. To find all the homography matrices for a video
with camera pan, we consider the corners of the trapezium moving towards the
rectangle corners. Once the homography matrix becomes the identity matrix,
we move the corners of the trapezium away from the rectangle in the opposite
direction to the initial flow (to form the mirrors of the initial trapeziums, e.g.
light-blue trapezium in Figure 5).

The process for generating videos with camera tilt is similar to that of pan.
The only difference is that the trapeziums in videos with camera tilt have vertical
sides as parallel (as shown in Figure 6a) whereas the trapeziums in videos with
camera pan have horizontal sides as parallel. For the videos with camera roll, we
utilize the homography matrices between the corners of the rectangles rotating
around the text center and the base (horizontal) box, as shown in Figure 6b.

For videos with camera translation, we use the regions a moving rectangle
beginning from one text boundary to the other and generate the frames, as shown
in Figure 6d. We make sure that the complete text, with rare partial occlusion
of boundary characters, lies within each frame of the videos.
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(a) Tilt
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Fig. 6: Generating video with camera (a) tilt, (b) roll, (c) zoom and (d) translation
(frames at the bottom)

Fig. 7: Sample frames from the synthetic videos with multi-level text-boxes

We also use the homography H to transform the multi-level text-boxes in
the cropped image. Figure 7 depicts sample video frames with text-boxes at the
line, word, and character4 levels – shown in blue, green, and red, respectively.

4 For Devanagari (the script used for Hindi and Marathi), we carefully consider the
boxes at the level of joint-glyphs instead of characters since rendering characters
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Table 1: Distribution of videos in the CATALISTd dataset

S.No. Transformation Type Number of Videos
1. Translation 736
2. Roll 357
3. Tilt 387
4. Pan 427
5. Zoom 402

4.3 The CATALISTd videos

We now present a new video-based scene-text dataset, which we refer to as
CATALISTd. Every video in CATALISTd contains scene-text, potentially in a
combination of three different languages, namely, English, Hindi, and Marathi.
For each such scene-text, we create 12 videos using 12 different types of camera
transformations, broadly categorized into 5 groups:- (i) four types of translation,
that could be left, right, up and down, (ii) two types of roll, including clockwise
and anti-clockwise, (iii) two types of tilt which could be up-down or down-up
motion, (iv) two types of pan, that is left-right and right-left , and (v) two types
of zoom which could be in or out. We use a camera with a tripod stand to record
all these videos to have a uniform control.

We summarize the distribution of different types of videos in Table 1. It is
important to note that there are four types of translations, whereas there are
only two types for all other transformations. We capture these videos at 25 fps
with a resolution of 1920× 1080.

5 Experiments

We synthesize around 12000 videos using ALCHEMIST data generator, which
we use only for training the models. We use 50 Unicode fonts5 and 18 license plate
fonts6 to render text in these videos. Here the duration and frame-rate for each
video are 5 seconds and 25 fps, respectively. Moreover, we record a total of around
2k real videos (uniformly divided across 12 camera transformations) using a
camera mounted over tripod stand for CATALISTd dataset. The setup allows
smooth camera movements for roll, tilt, pan and zoom. We record the horizontal
translation videos with the camera and tripod moving on a skateboard. Other
translation videos, which exhibit top to bottom and reverse movements, have
jitter because our tripod does not allow for smooth translation while recording
such videos. We use a train:test split of 75:25, and carefully avoid letting any
testing labels (as well as redundancy of the scenes) be present in the training
data. We additionally record around 1k videos using handheld mobile phones and

individually (to obtain character level text-boxes) hamper glyph substitution rules
that form the joint glyphs in Devanagari.

5 http://indiatyping.com/index.php/download/top-50-hindi-unicode-fonts-free
6 https://fontspace.com/category/license%20plate

http://indiatyping.com/index.php/download/top-50-hindi-unicode-fonts-free
https://fontspace.com/category/license%20plate
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use them for training the models. Finally, we also make use of the 640 videos
shared by Saluja et al. [15]. We refer to the complete training dataset described
above as CATALISTALL in the next sections.

Fig. 8: A sample video frame from ICDAR’15 competition with text-boxes sorted
using our algorithm

We further add the ICDAR’15 English video dataset of 25 training videos
(13,450 frames) and 24 testing videos (14, 374 frames) by Karatzas et al. [9] to
the datasets. For each frame in the ICDAR’15 dataset, we first cluster the text-
boxes into paragraphs and then sort the paragraph text-boxes from top-left to
bottom-right. A sample video frame with the reading order mentioned above and
the text-boxes sorted using our algorithm are shown in Figure 8. We visually
verify that the reading order remains consistent throughout their appearance
and disappearance in the videos. The reading order, changes when a new piece
of text appears in the video or an old piece of text disappears from the video.

Although we record the controlled videos with a high resolution of 1920 ×
1080, we work with the frame size of 480× 260 for all videos owing to the more
limited size of the videos captured on mobile devices, as well as for to reduce
training time on a large number of video frames. To take care of resolution as
well as to remove the frames without text, we extract the 480 × 260 sized clips
containing the mutually exclusive text regions in the videos from the ICDAR’15
dataset. Features of size 14 × 28 × 1088 are extracted from the mixed-6a layer
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of inception-resnet-v2 [18]. The maximum sequence length of the labels is 180,
so we unroll the LSTM decoder for 180 steps. We train all the models for 15
epochs.

Table 2: Test Accuracy on different datasets.

S. Training Training Test Char. Seq.
No. Model Data Data Acc. Acc.
1. OCR-on-the-go OCR-on-the-go7 35.00 [15] 1.30

(8 free masks)
2. CATALIST model CATALISTALL

8 OCR-on-the-go 65.50 7.76
(8 free masks) 200 test videos

3. CATALIST model CATALISTALL 68.67 7.91
(3 superv., 5 free masks)

4. CATALIST model 73.97 6.50
(8 free masks) CATALISTALL 491 CATALISTd

5. CATALIST model videos 73.60 7.96
(3 superv., 5 free masks)

6. CATALIST model 34.37 1.70
(8 free masks) CATALISTALL 24 ICDAR’15

7. CATALIST model Competition videos 35.48 0.72
(3 superv., 5 free masks)

6 Results

We now present the results of the CATALIST model on the different datasets
described in the previous section. It is important to note that we use a sin-
gle CATALIST model to jointly train on all the datasets (CATALISTALL) at
once.

Results on the OCR-on-the-go dataset In the first three rows of Table 2,
we show the results on the test data used for OCR-on-the-go model by Saluja
et al. [15]. The first row shows the results of this work. As shown in row 2,
there is a dramatic improvement in character accuracy by 30.50% (from 35.0%
to 65.5%) as well as sequence accuracy by 6.46% (1.30% to 7.76%), due to
proposed CATALIST model as well as the ALCHEMIST and CATALISTd
datasets we have have created. Adding the multi-level mask supervision to the
CATALIST model further improves the accuracies by 3.17% (from 65.50% to
68.67%) and 0.15% (from 7.76% to 7.91%).
7 640 real videos + 700k synthetic images
8 3.7k real videos + 12k synthetic videos
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Results on the CATALISTd dataset As shown in the fourth and fifth row of
Table 2, the gain of 1.46% (6.50 to 7.96) is observed in the sequence accuracy of
the CATALIST model, when we use the mask supervision. We, however, observe
a slight gain of 0.37% in character level accuracy when all the masks are set free
(i.e., trained without any direct supervision).

Results on the ICDAR’15 competition dataset We observe a gain of 1.11%
(from 34.37% to 35.48%) in character-level accuracy on the ICDAR’15 competi-
tion dataset due to mask supervision. The end-to-end sequence accuracy for this
dataset is as low as 1.70% for the model with all free masks and further lowers
(by 0.98%) for the model with the first 3 masks trained using direct semantic
supervision. We observe that the lower sequence accuracy for this dataset is due
to the complex reading order in the frames.

7 Frame-wise accuracies for all transformations

In Figure 2, we presented the frame-level accuracy of E2E-MLT (with the Hindi
text recognized using OCR-on-the-go model), OCR-on-the-go model, and the
present work on an 8 second video exhibiting pan. In this section, we present the
frame-level accuracy of the above mentioned text-spotters for the other trans-
formations: roll, zoom, tilt, and translation. The accuracy plots for a video with
88 frames (at 25 fps) exhibiting roll (clockwise) is shown in Figure 9a. We use
the formulae in Equation 4 for calculating the character accuracy taking noise
characters into consideration.

Accuracy = 100 ∗ length(GT )− edit_distance(P,GT )

length(GT )
(4)

Here, GT denotes the ground truth sequence and P is the predicted sequence.
For some of the frames (with large amounts of transformations), predicted se-
quence contains a lot of noise characters. As a result, the edit_distance be-
tween predicted sequence and ground truth sequence may go higher than the
length of ground truth sequence. Thus we get negative accuracy for some of
the frames in Figure 9a. As shown, our model has the highest mean and lowest
standard deviation for this video as well. It demonstrates the importance of the
CATALIST model trained with mask supervision on continuous video frames.
Furthermore, it is essential to note that all the models perform poorly at the
start of this video due to larger amounts of rotation as compared to the later
parts of the video.

In Figure 9b, we present similar plots for a video with 58 frames exhibiting
zoom (out). The signboard in the video only contains Hindi text. The E2E-MLT
model, however, outputs some English characters due to script mis-identification.
Owing to this, the overall accuracy of the topmost plot (E2E-MLT + OCR-on-
the-go) in Figure 9b is most unstable. Our model again achieves the highest
mean and lowest standard deviation across all the video frames.
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(a) Roll (b) Zoom

(c) Tilt (d) Translation

Fig. 9: Frame-wise accuracy of 3 text-spotters on videos exhibiting (a) roll, (b)
zoom, (c) tilt and (d) translation

The plots for a video with 75 frames exhibiting tilt (up-down) is shown in Fig-
ure 9c. As shown, contrary to other figures, the OCR-on-the-go model performs
poorly on this video. The reason for this is that the model perhaps overfits to its
license plates dataset. E2E-MLT generalizes well with respect to OCR-on-the-go
model, however, our model has the highest average accuracy. In Figure 9d, we
present similar plots for a video with 121 frames exhibiting translation (upward).
As discussed earlier in Section 5, the video clips recorded with the vertical cam-
era movements in the setup possess jitter because the tripod does not allow for
smooth translation while recording such videos. Our model, however, outputs
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the text with the highest accuracy and lowest standard deviation for the video
we present in Figure 9d.

8 Conclusion

In this paper, we presented CATALIST, a multi-task model for reading scene-
text in videos and ALCHEMIST, a data generator that produces the videos from
text images. These synthetic videos mimic the behaviour of videos captured with
five different camera movements. We also presented the CATALISTd dataset of
around two thousand real videos recorded with the camera movements men-
tioned above. By training the CATALIST model on both real and synthetic
videos, we set new benchmarks for the task of reading multi-lingual scene-text
in Hindi, Marathi, and English. The multi-level mask supervision improved ei-
ther character or sequence (or both) accuracy on three different datasets with
varying complexities.

9 Future Work

The camera movement information in CATALISTd dataset is ideal for Capsule
Network [8,5]. Unlike conventional CNNs, capsule networks are viewpoint in-
variant. The transformation information can help capsules with video scene-text
detection by helping the network learn about camera movements.

Acknowledgment: We thank Shubham Shukla for dataset collection and an-
notation efforts.
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