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ABSTRACT
We study the problem of generating DAG-structured cat-
egory hierarchies over a given set of documents associated
with “importance” scores. Example application includes au-
tomatically generating Wikipedia disambiguation pages for
a set of articles having click counts associated with them.
Unlike previous works, which focus on clustering the set
of documents using the category hierarchy as features, we
directly pose the problem as that of finding a DAG struc-
tured generative mode that has maximum likelihood of gen-
erating the observed “importance” scores for each document
where documents are modeled as the leaf nodes in the DAG
structure. Desirable properties of the categories in the in-
ferred DAG-structured hierarchy include document coverage
and category relevance, each of which, we show, is naturally
modeled by our generative model. We propose two differ-
ent algorithms for estimating the model parameters. One by
modeling the DAG as a Bayesian Network and estimating its
parameters via Gibbs Sampling; and the other by estimat-
ing the path probabilities using the Expectation Maximiza-
tion algorithm. We empirically evaluate our method on the
problem of automatically generating Wikipedia disambigua-
tion pages using human generated clusterings as the ground
truth. We find that our framework improves upon the base-
lines according to the F1 score and Entropy that are used
as standard metrics to evaluate the hierarchical clustering.

1. INTRODUCTION
With the exponential growth of digital artifacts (such as

texts, images, etc.,) particularly on the Web, hierarchical
organization of these artifacts is becoming increasingly im-
portant to manage the data. Several real world machine
learning applications involve hierarchical categorization of
a set of artifacts. Artifacts could be, for example, a set
of documents for text classification, a set of genes in func-
tional genomics, or a set of images in computer vision. One
can often define a natural category hierarchy to categorize
these artifacts. For example, in text and image classification
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problems, each document or image is assigned a hierarchy of
labels — a baseball document would be assigned the labels
“baseball”, “team sports” and “sports.” In many of these ap-
plications, the category hierarchy is generated on the entire
collection of artifacts [30, 5, 21, 32, 38].

Many techniques have been proposed for category hierar-
chy creation for organizing digital artifacts. While super-
vised techniques [13, 36, 16, 11] try to learn the hierarchy
from the labeled examples, unsupervised methods [28, 27,
7] try to infer the hierarchy from the data (artifacts) it-
self, without recourse to human generated labels. Another
class of research [3, 2, 31, 39, 18] has been actively looking
into adapting a generic “global” category hierarchy (such
as Wikipedia/Freebase/DBPedia concept hierarchy) into a
specific “local” categorization. These methods are able to
associate artifacts (text documents) with closely matching
concept nodes from the “global” category hierarchy. The
matched concept nodes thus become categories for the ar-
tifacts. These methods not only associate curated category
names from the “global” category hierarchy, but also bring
in rich semantics for the categories from the “global” hierar-
chy. This motivates us to focus on this class of approaches
for category hierarchy generation in our current work. It is
easy to find massive (i.e., size in the order of million) DAG
structured category hierarchies in practice. Wikipedia’s cat-
egory hierarchy consists of more than 1.5M categories (cate-
gories) arranged hierarchically. YAGO [35] and Freebase [9]
are other instances of “global” category hierarchies.

It is very common to have some sort of “importance”
weights/scores associated with the artifacts in a collection.
For example, in a web page collection, each web page may
have a click count (the number of times the page has been
viewed or accessed) associated with it. In Hierarchical tag
visualization [33] applications, leaf tags may have document
counts (number of documents assigned to the tag) associ-
ated with them. And, in an advertisement collections, each
advertisement may have a revenue or cost associated with it.
The existing methods for category identification [13, 36, 16,
11, 28, 27, 3, 31, 39, 18] do not focus on the hierarchy gener-
ation from the artifact importances. To reflect the artifact
importance in the choices of category nodes of the hierar-
chy, we propose novel approaches to hierarchy generation.
Specifically, we propose a generative model for explaining
the observed artifact importances based on the hierarchy
structure and apply Gibbs sampling and EM methods to
estimate the parameter of these models.

Given a DAG-structured category hierarchy and a collec-
tion of artifacts with associated importances, we investigate



the problem of finding a sub-DAG of DAG-structured cate-
gories that are induced by the artifacts. This problem arises
naturally in several real world applications. For example,
consider the problem of identifying appropriate label hier-
archies for a collection of articles. Several existing text col-
lection datasets such as the 20 Newsgroups [1] and Reuters-
21578 [29] work with a predefined set of categories. We
observe that these category names are overly general (too
abstract)1 for the articles categorized under them and fail
to induce any reasonable category hierarchy. On the other
hand, techniques proposed by systems such as Wikipedia
Miner [26] and TAGME [14] generate several labels for each
article in the dataset from the Wikipedia (pages and cate-
gories) and are highly specific to the article. Collating all
labels from all articles to create a label set for the dataset
can result in a large number of labels and become unman-
ageable. We need a hierarchy of these labels to manage the
dataset better. Our proposed techniques can discover a suit-
able label hierarchy (as a sub-DAG) from such large sets of
labels using a “global” DAG-structured category hierarchy
(such as Wikipedia).

A particularly important application of our work (and the
one we use for our evaluations in Section 6) is the problem
of hierarchical disambiguation page creation in Wikipedia.
That is, given a collection of articles spanning different cat-
egories but with similar titles, automatically generate a hier-
archical disambiguation page for those titles using the Wikipedia
category hierarchy2. Disambiguation pages3 on Wikipedia
are used to resolve conflicts in article titles that occur when
a title is naturally associated with multiple articles on dis-
tinct categories. For example, the title Apple4 can refer to a
plant, a company, a film, a television show, a place, a tech-
nology, an album, a record label, and a newspaper each of
which is associated with its own page on wikipedia. Each
disambiguation page organizes articles into several groups,
where the articles in each group pertain only to a specific
category. Disambiguations may be seen as paths in a cat-
egory hierarchy leading to different articles that arguably
could have the same title. For the “Apple” example, film,
television show, album, record label are specific types of En-
tertainment. While the company and plant are types of Es-
tablishments. The problem then is to organize the articles
into multiple hierarchical groups where each leaf group con-
tains articles of similar nature (categories) and has an appro-
priately discerned group heading. Each article in Wikipedia
has an associated click count. Currently, Wikipedia does
not consider this while grouping articles on a Disambigua-
tion page since Disambiguation pages are created manually.
Our proposed approach is able to leverage this information
while generating the hierarchical groups automatically. Fig-
ure 1 describes the process of category DAG creation for the
disambiguation page for the term “Apple”.

All the above mentioned problems can be modeled as the
problem of finding the most representative sub-DAG of cat-
egory nodes from a DAG-Structured category hierarchy. We
model this as a two step process. During the first step, we
build a generative model that is able to produce the observed
importance scores for the artifacts from the DAG-Structured

1Category Science is more general than the category Chem-
istry which is more abstract than the category BioChemistry
2http://en.wikipedia.org/wiki/Help:Categories
3http://en.wikipedia.org/wiki/Wikipedia:Disambiguation
4http://en.wikipedia.org/wiki/Apple (disambiguation)

category hierarchy. In this process, certain category nodes
in the DAG-Structured category hierarchy become more im-
portant than other nodes for generating the observed im-
portance scores for the artifacts. In the second step, we col-
lect those important nodes and the edges that connect them
(possibly indirectly) from the DAG-Structured category hi-
erarchy to produce a sub-DAG. The first step is akin to high
recall step where the entire DAG-Structured category hier-
archy is used to generate the importance scores. Whereas,
the second step is akin to the high precision step where a
few nodes that contribute maximally to the generation of
importance scores are selected.

1.1 Related Work
To the best of our knowledge, the specific problem we con-

sider here is new. Previous works on identifying categories
(more generally, topics) can be broadly categorized into one
of the following types: a) cluster the artifacts hierarchically
and then identify names for each node in the hierarchy; or
b) dynamically identify hierarchical topics for a set of ar-
tifacts. In the former approach, groups of artifacts form
a node in the hierarchy, starting with individual artifacts
at the leaves, similar artifacts are groped together to form
higher level nodes. In the later approach, a group of high
probability words are associated to each identified topic. A
name can be assigned to a topic by manually inspecting the
words or using additional algorithms like [24, 22].

Hierarchical LDA [7] infers a topic hierarchy by model-
ing term occurrences in documents using the nested Chinese
restaurant process. Non parametric extensions of LDA in-
clude the Hierarchical Dirichlet Process [37] mixture model,
which allows the number of topics to be unbounded and
learnt from the data; In these approaches, unlike our pro-
posed approach, an existing topic hierarchy is not used and
the existing artifact-topic information is not leveraged.

The Pachinko Allocation Model (PAM)[20] captures arbi-
trary, nested, and possibly sparse correlations between top-
ics using a DAG. The leaves of the DAG represent individual
words in the vocabulary, while each interior node represents
a correlation among its children, which may be words or
other interior nodes (topics). PAM learns the probability
distributions are words for a topic, subtopics for a super
topic, and topics in a document. We cannot, however, gen-
erate a subset of topics from a large existing topic DAG that
can act as summary topics, using PAM, due to the presence
of too many nodes leading to prohibitively long execution
time.

HSLDA [27] introduces a hierarchically supervised LDA
model to infer hierarchical labels for a document. It assumes
an existing label hierarchy in the form of a tree. The model
infers one or more labels such that, if a label l is inferred
as relevant to a document, then all the labels from l to the
root of the tree are also inferred as relevant to the document.
Our approach differs from HSLDA since: (1) we use the label
hierarchy to infer a set of labels for a group of documents;
(2) we do not enforce the label hierarchy to be a tree as it can
be a DAG; and (3) we do not have labeled data ( We use the
ground truth from the Wikipedia disambiguation dataset
only for evaluating the algorithm, and not for training the
model.)

Wei and James [6] present a hierarchical multi-label clas-
sification algorithm that can be used on both tree and DAG
structured hierarchies. They formulate a search for the op-
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Figure 1: Overview of sub-DAG selection: Documents with the importance scores associated as leaf nodes of DAG-structured
category hierarchy is given as input to our method. We generate a sub-DAG from the DAG-structured category hierarchy such
that the documents generated from this sub-DAG (using the estimated parameters) will have the distribution of importance
scores as close as possible to the observed distribution.

timal consistent multi-label for each example as the prob-
lem of finding of the best subgraph in a tree/DAG. In our
approach, we assume, individual documents are already as-
sociated with one or more topics and we find a consistent
label set for a group of documents using the DAG structured
topic hierarchy.

Medelyan et al. [23] and Ferragina et al. [14] detect top-
ics for a document using Wikipedia article names and cat-
egory names as the topic vocabulary. These systems are
able to extract signals from a text document and identify
Wikipedia articles and/or categories that optimally match
the document and assign those article/category names as
topics for the document. When run on a large collection of
documents, these approaches generate enormous numbers of
topics, a problem our proposed approach addresses.

Bairi et. al. [2] summarize a set of topics from Wikipedia
that can be viewed as a summary topics for the documents in
the collection. However, their method generates a flat set of
topics and does not form a hierarchy, whereas our approach
can create a hierarchical summary of topics.

1.2 Our Contributions
While most prior works discussed above focus on the un-

derlying set of documents, (e.g., by clustering documents),
we focus directly on the categories. In particular, we for-
mulate the problem as sub-DAG selection on the set of cat-
egories organized in a DAG structured hierarchy, while si-
multaneously considering the documents to be categorized.
Our approach is based on generative models which have been
successfully used in applications such as document model-
ing [40], but have to the best of our knowledge never been
applied to subsetting a category DAG to create a sub-DAG
describing the document collection. By modeling the DAG-
structured category hierarchy as a Markov network, we in-
troduce a procedure to estimate the marginal probabilities
of the nodes in generating the observed grouping of the doc-
uments along with their importance scores5. Our approach

5if documents don’t have importance scores associated with
them then their importance is simply set to be the same

is based on Gibbs sampling with path constraints to ensure
root-to-leaf path for every document is maintained. Unlike
other methods [27, 8, 20, 40] we do not observe the words
in the documents. The co-occurrence statistics of the leaf
level categories in the documents drive the sampler to sam-
ple common ancestors more frequently, thus increasing the
marginal probabilities of those nodes. While the path sam-
pling approaches [17, 19] fail in the case of massive DAG-
structured hierarchies (such as Wikipedia category hierar-
chy,) due to extremely large number of paths, our approach
is able to do local sampling (within the Markov Blanket).
We also present an EM based method to estimate the ex-
pected importance of every edge in the DAG-structured cat-
egory hierarchy based on the importance scores of the docu-
ments. Using the expected importance of edges in the DAG
we propose a technique for a sub-DAG generating. From
an empirical perspective, we introduce and evaluate our ap-
proach on a dataset of around 800 disambiguations that was
extracted from Wikipedia and subsequently cleaned using
the methods described in the experimentation section. We
show that our method outperforms other baselines, and is
practical enough to be used on large corpora.

2. PROBLEM FORMULATION
Let G(V ;E) be the DAG structured category hierarchy

with V categories. These categories are observed to have
a parent child (isa) relationship forming a DAG. Let D be
the set of documents that are associated with one or more
of these categories. The left part of Figure 1 depicts a cat-
egory hierarchy with associated documents. If a document
is attached to a category t, we assume that all the ances-
tor categories of t are also relevant for that document. This
assumption has been employed in earlier works [7, 6, 30] as
well. Furthermore, we assume that there exists a function
associating importance scores with every document node.
Examples of scores can be click counts of the documents,
number of likes given to the document, etc. Given a budget
of K, our objective is to choose a DAG of K categories from
G(V ;E) that best describes the documents inD. The notion



of best describing categories is characterized through a gen-
erative process which can generate the observed importance
scores at the document nodes.

It is easy to find massive DAG structured category hier-
archies in practice. Wikipedia’s category hierarchy consists
of more than 1M categories (categories) arranged hierarchi-
cally. In fact, they form a cyclic graph [42]. However, we
can convert the graph to a DAG by eliminating the cycles.
YAGO [35] and Freebase [9] are other instances of massive
category hierarchies. The association of the documents with
the existing category hierarchy is also well studied. Systems
such as WikipediaMiner [26], TAGME [14] and several an-
notation systems such as [12, 25, 10] attach categories from
Wikipedia (and other catalogs) to the documents by estab-
lishing links between them.

Our goal is the following: Given,

1. A DAG-structured category hierarchy G (V ;E) asso-
ciated with the categories and documents, over V =
Vcategories ∪ Vdocs nodes, which contains

∣∣∣Vcategories

∣∣∣
internal nodes (categories) denoted:c1, ..., c∣∣∣∣Vcategories

∣∣∣∣
and

∣∣Vdocs
∣∣ leaf nodes (documents) denoted:d1, ..., d∣∣∣Vdocs

∣∣∣
2. A function associating scores with each of the docu-

ment nodes: Count(di) ∈ N+. Note, we assume with-
out loss of generality that the scores are positive in-
tegers. Any set of positive real number scores can be
appropriately scaled and rounded to produce integer
scores.

Estimate a model that can predict the observed scores, i.e.:

1. Associate a Bayesian Network over binary variables
with the structure given by the DAG above, (that is,
let Xi be a binary variable corresponding to node ci
and Yj be a binary variable corresponding to node dj).

2. Determine the parameters of a Bayesian Network, that
is, P (Xi|parents(Xi)) and P (Yj |parents(Yj)) such that
the leaf nodes have marginal probability proportional
to their scores, that is, P (Yj = 1) = Count(dj)/

∑
k Count(dk).

3. Construct a sub-DAG of K nodes by first selecting K
nodes from the Bayesian Network that have maximum
marginal probability and entropy over its children and
then interconnecting them with the edges from the
DAG. These nodes contribute most in predicting the
observed score.

In this work we make a simplifying assumption that the
leaf variables (i.e., documents) don’t co-occur and have fre-
quency given by their counts. That is, we prepare exam-
ple data for learning the network as unit vectors of the
form: - (Y1, ..., YN ) = (0, ..., 0, 1, 0, ...) - where P (Yi = 1) =
Count(di)/

∑
j Count(dj)

3. GIBBS SAMPLING BASED PARAMETER
ESTIMATION

Given a DAG structured category hierarchy G = (V,E)
and a set of documents (with importance scores) attached as
the leaf nodes in the category DAG, we assume a Bayesian
Network (BN) with category nodes. Our goal is to esti-
mate the parameters of this BN such that, a generative
process using this BN to assign to the binary leaf nodes

(documents) is able to produce the desired marginal distri-
bution given by the observed document scores. With this
we mean that, repeated sampling of nodes from this BN
(with the estimated parameters) is able to produce the leaf
nodes (documents) the number of times proportional to their
importance scores. After estimating the parameters of the
BN, in the next step, we produce a ranking of the category
nodes using their marginal probabilities along with entrop
of their children to construct a sub-DAG of K nodes with
approximately the same marginal distribution (given by the
observed document scores) over the leaves. This step is de-
scribed in Section 5. In this section, we focus on estimating
the parameters of the BN.

Let X = (Xv) v∈V be a set of random variables indexed
by the category nodes V . For a BN with respect to G, its
joint probability density function (with respect to a prod-
uct measure) can be written as a product of the individual
density functions, conditioned on their parent variables:

p(x) =
∏
v∈V

p
(
xv
∣∣xπ(v)) (1)

where π (v) is the set of parents of v (i.e. those vertices
pointing directly to v via a single edge).

Here p (x) is the probability of observing a particular as-
signment of categories to a document. Specifically,

p (X1 = x1, . . . , Xn = xn) =

n∏
v=1

p
(
Xv = xv | ∀j∈π(v) Xj = xj

)
(2)

All the observations xi are binary, taking values 0 or 1. If
xi = 1, the ith category is assigned to the document; other-
wise, it is not assigned to the document. Hence, there will
be 2π(i) number of parent configurations for any category
Xi.

Once the parameter θ of this BN, i.e. p
(
xv
∣∣xπ(v)) for all

the categories in the G has been estimated, the likelihood of
observing the document collection D from this BN can be
computed as:

LL (X|θ) =
∑
d∈D

∑
v∈V

log
(
p
(
Xv = xv

∣∣Xπ(v) = xπ(v)
))

(3)

Given an assignment of valves to the variables in a BN, a
Gibbs sampler simply iterates over each latent category Xi
(note that there is one BN for each document) sampling a
new value for the variable according to its posterior distri-
bution:

Xi ∼ Bernoulli (P ) , where (4)

P = p (Xi = 1 | X−i) (5)

1− P = p (Xi = 0 | X−i) (6)

Here X−i denotes all nodes in the BN except for Xi.
The conditional independence property of a BN states

that any two nodes (u, v) are conditionally independent
given a set of variables z which d-separates them:

Xu ⊥⊥ Xv |XZ (7)

The Markov Blanket of node v, denotedMB(v), is the min-
imal set of nodes which d-separates node v from all other
nodes. Using this property, Equation 5 and 6 simplify to:



P = p
(
Xi = 1 | XMB(i)

)
(8)

1− P = p
(
Xi = 0 | XMB(i)

)
(9)

Furthermore, the conditional distribution of one variable
given all others is proportional to the joint distribution:

p (xj |x1, . . . , xj−1, xj+1, . . . , xn) ∝ p (x1, . . . , xn)

“Proportional to” in this case means that the denominator
is not a function of xj and thus is the same for all values
of xj ; it forms part of the normalization constant for the
distribution over xj .

Applying this principle to Equation 8, we have

p (Xi = 1 | X−i) ∝ p
(
Xi, XMB(i)

)
(10)

Using the factorization stated in Equation 1 and 2, we have

p (Xi=1 | X−i) ∝ p
(
Xi=1, XMB(i)

)
(11)

∝ p
(
Xi=1 |Xπ(i)

) ∏
k∈children(i)

p
(
Xk |Xπ(k)

)
Similarly, p (Xi = 0 | X−i) is computed. Note that, the nor-
malization constant is computed by simply summing the
right side of Equation 11 for Xi = 1 and Xi = 0.

The Gibbs Sampler samples repeatedly from the posterior
in Equation 11. When the Gibbs Sampler reaches a steady
state, we would have estimated the parameters of the BN,
i.e. p

(
xv
∣∣xπ(v)) for all v ∈ V .

The Algorithm 1 describes the Gibbs Sampling. The algo-
rithm iteratively samples the categories for the documents
as per the posterior distribution in Equation 11. In order to
reflect the importance scores of the documents in the pos-
terior estimation, we create M =

∑
d count(d) instances of

the BN one for each of the training examples. Similar to the
collapsed Gibbs sampler for the LDA [34] we create coun-
ters to hold the number of times a category is sampled for
a document (lines 7-13). Repeatedly sampling the latent
categories for the documents as per the estimated posterior
(from the counter values accumulated so far) and then up-
dating the counters based on the samples observed, makes
the estimated posterior converge to its true posterior (lines
15-32.) To ensure root to leaf path in the categories sam-
pled for a document, we enforce two constraints during the
sampling (line 28):

• Set Xdi = 1 if there exist a child Xk of Xi such
that Xdk = 1, but all of its parents are set to 0, i.e.
Xdπ(k) = 0

This constraint ensures that the parent category is set
to 1 if there is a child whose all parents are set to 0.

• Set Xdi = 0 if there does not exist a child Xk of Xi
such that Xdk = 1

This constraint ensures that, parent is set to 0, if none
of its children are set to 1

The process of sampling and updating counters is done
until we observe stability in the log likelihood [34]. At the
termination the algorithm computes the posterior probabil-
ity distribution, which reflects the BN parameters.

Algorithm 1 Gibbs sampling for modeling click counts

1: Input : DAG structured category hierarchy G(V,E)
2: observed categories for documents {C1, ..., Cn}
3: importance scores for documents {η1, ..., ηn}
4: Output : Parameters of BN
5: Create training instances by repeating documents:
6: D = {d1,1, . . . , d1,η1 , d2,1, . . . , d2,η2 , ....}
7: Let Xdi ∈ {0, 1} denote the current assignment of cate-

gory random variable Xi for document d ∈ D
8: Let Xdπ(i) ∈ {0, ..., 2|π(i)|−1} be a variable representing

the configuration of parents of Xi in document d.
9: . Set observed categories and all ancestors to true:

10: Set Xdi = 1 if Xi ∈ Cd ∨Xi ∈ π∗(Cd)
11: Initialize Xdi ∼ Uniform({0, 1}) for all d ∈ D and i ∈ V
12: Initialize counts:

NiJ =
∑
d 1(Xdi = 1 ∧Xdπ(i) = J)

NJ =
∑
d 1(Xdπ(i) = J)

13: for d ∈ D do
14: for i ∈ V do
15: if Xi /∈ latentV ariableSet(d) then
16: continue
17: end if
18: . Remove current assignment to Xdi from NiJ
19: J = Xdπ(i)
20: if Xdi = 1 then
21: NiJ = NiJ − 1
22: end if
23: NJ = NJ − 1
24: . Re-sample Xdi
25: Xdi ∼ Bernoulli (P ), where

P ∝ βiJ
∏

k∈children(i)

β
1(Xdk=1)

kπ(k)

(
1− βkπ(k)

)
1(Xdk=0)

and where βiJ = NiJ+α0
NJ+α1

26: Constrain Xdi in the following cases:

• Set Xdi = 1 if
∃
k∈children(i)

Xdk = 1 ∧ ∀l∈π(k) Xdl = 0

• Set Xdi = 0 if
¬∃

k∈children(i)
Xdk = 1

. Add new assignment of Xdi to NiJ
27: if Xdi = 1 then
28: NiJ = NiJ + 1
29: end if
30: NJ = NJ + 1
31: end for
32: end for
33: If not converged, goto 13

From the Gibbs Sampler’s samples (or from the posterior
distribution,) we further compute the marginal probabilities
of every category node in the G (V ;E) as

p (Xi) =

∑
J

NiJ∑
i,J

NiJ
=

Number of documents with Xi = 1

Total number of documents

(12)
This probability estimate reflects the importance of a cat-
egory node and will be used to determine the appropriate
sub DAG using an algorithm outlined in section 5. Before
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presenting the sub DAG selection algorithm, we present an-
other approach based on EM to estimate the importance
scores of the category nodes in the next Section.

4. EM BASED PARAMETER ESTIMATION
Unlike the previous approach where we treated the DAG

as a BN, in this approach we focus on the paths in the DAG
from the root to the leaves. We assume that the probability
of generating a document at the leaf node is proportional
to the product of edge probabilities on the path. Given the
category DAG with documents having importance scores at
the leaf level, our goal is to estimate the edge probabili-
ties. The leaf nodes’ (documents’) importance scores are
observed. The probabilities of paths (categories) leading to
the leaf nodes from the root are hidden. We want to esti-
mate the probability of a path given the observations. In the
Figure 2 we illustrate edge parameters which are the condi-
tional probabilities. Given an edge going from node j to k,
the probability of the edge is the probability of reaching node
k given the node j. Similarly, the probability of reaching a
leaf document node l given the category node u is proba-
bility of edge going from u to l. We segregate these two
probabilities in order to model the category-category and
document-category assignments. We estimate these proba-
bilities (parameters of the model) by applying the EM algo-
rithm. Before describing E and M steps, we list the notations
that we use:
P : A path from the root to a category having only doc-

uments. Note, a path consists of only category nodes.
l : A leaf node, which is a document.
(j, k) : An edge between the categories j and k. The

category j is the parent of category k.
p (P|l) : Probability of a path P given a leaf node l
πk|j = p (k|j) : Probability of edge (j, k). In other words,

probability of reaching child k from the parent j.
Θl|k = p (l|k) : Probability of generating document l from

a given category k.
Θl|P = p (l|P) = p (l|end (P)) : Probability of generating

document l for a given path P. It is same as the probability
of generating l from the last category ‘end(P)’ of path P.
Nl : The importance score of the leaf (document) node l.

4.1 E-Step:
In E step, we estimate p (P|l), the probability of path P

to a given leaf node (document) l. Using Bayes rule, this
can be written as:

p (P|l) =
p (l|P) p (P)∑
P′
p (l|P ′) p (P ′) (13)

The probability of a path can be decomposed as the product
of probabilities of edges on the path. Applying this to the
above equation gives us the following quantity.

p (P|l) =

Θl|P

m(P)∏
i=1

πv(i)|v(i−1)

∑
P′

Θl|P′

m(P′)∏
i=1

πv(i)|v(i−1)

(14)

While estimating the E step (that is, p (P|l)), the edge
probabilities πk|j and Θl|P are held at the values estimated
from M step.

4.2 M-Step:
In M step, we estimate the edge probabilities πk|j and

Θl|P by holding the path probabilities p (P|l) at the values
estimated from E step. That is,

πk|j =

∑
l

Nl
∑

P:(j,k)∈P
p (P|l)∑

l

Nl
∑
P:j∈P

p (P|l) (15)

Θl|P =

Nl
∑

P′:end(P′)=end(P)

p (P ′|l)∑
l′
Nl′

∑
P′:end(P′)=end(P)

p (P ′|l′) (16)

The E and M steps are repeated until the convergence, at
which the model parameters would have been estimated.

4.3 Downward-Upward Algorithm
Estimating model parameters πk|j and Θl|P in EM algo-

rithm (in equations 14,15,16) requires enumerating all the
paths in the DAG. In a moderately big DAG, the number of
paths can be prohibitively large to process on a computer.
For for example, the category DAG in Wikipedia covering
the documents in ‘Ambient’ disambiguation page has about
20 billion paths. Allocating memory to store all the path
probabilities and iterating through all the paths for com-
puting various quantities on a moderate capacity computer
(16 core, 32 GB RAM) proves to be impossible. This leads
us to discover a ‘Downward-Upward’ algorithm (inspired
by Inside-Outside algorithm [4]) to efficiently compute the
edge probabilities πk|j and Θl|P , without enumerating all
the paths. At each EM step, the ‘Downward-Upward’ algo-
rithm first traverses the DAG from root to leaves and then
from leaves to the root, by propagating aggregated quanti-
ties downwards and then upwards.

By substituting Equations 15 and 16 into Equation 14 we
get

p(t) (k|j) =

∑
l

Nl
1
Zl

∑
P:(j,k)∈P

(
p(t−1) (l|end (P))

∏
(r,s)∈P

p(t−1) (s|r)

)
∑
l

Nl
1
Zl

∑
P:j∈P

(
p(t−1) (l|end (P))

∏
(r,s)∈P

p(t−1) (s|r)

)
(17)

where zl =
∑
P′
p(t−1) (l|end (P ′))

∏
(r,s)∈P′

p(t−1) (s|r) and t is

the iteration index.
We define two functions α (j) and β (j) as follows:



α (j) is the total probability of reaching node j from the
root node through all the paths from root to j. It can be
recursively defined as

α (j) =


∑

a∈parents(j)
p (j|a)α (a) if j is not the root node

1 if j is the root node

(18)
This can be calculated efficiently by making one pass from

the root to the leaves, accumulating the values at each node.
β (j) is the fraction of value flowing to node j from the

leaf node l through all the paths between j and l. It can be
recursively defined as

β (j) =


∑

b∈children(j)

p (b|j)β (j) if j is not a leaf node

Nj

α(j)
if j is a leaf node

(19)
This can be calculated efficiently by making one pass from

the leaves to the root, accumulating the values at each node.
The equation 17 can be rewritten in terms of α and β as

follows:

p(t) (k|j) =
α (j) p(t−1) (k|j)β (k)

α (j)β (j)
(20)

=p(t−1) β (k)

β (j)

The proof is omitted due to space constraints.
Note that, πk|j = lim

t→∞
p(t) (k|j) and Θl|P = lim

t→∞
p(t) (l|end (P))

Algorithm2 outlines the Downward-Upward algorithm.

Algorithm 2 Downward-Upward Algorithm

1: Initialize edge probabilities uniformly
2: while not converged do
3: Downward Propagation: Compute α for each leaf

node as in Equation 18
4: Upward Propagation: Compute β for each node as

in Equation 19
5: Update edge probabilities as in Equation 20
6: end while

From the estimated edge probabilities we further compute
the marginal probabilities of every category node Xi in the
G (V ;E) as

p (Xi) = α (i) (21)

This probability score reflects the importance of a category
node. Combining this score with the entropy of the children,
we rank and chose top K category nodes as explained in next
section.

5. CONSTRUCTING SUB-DAGS
Once the marginal probabilities {p (Xi)}|V |i=1 of category

nodes {Xi}|V |i=1 of the DAG G (V ;E) have been estimated
via the Gibbs Sampling (Equation 12) or EM (Equation 21)
algorithms, we determine the importance of a category node
Xi through its marginal probability and computing how im-
portant its children are. If a node has high marginal prob-
ability and all its children too have high marginal probabil-
ities, then we score such a node high. Naturally, entropy

of childrens’ marginal probabilities is an indication of how
informative are the children of a node. Formally we define
the entropy of a node Xi’s children as follows:

H (Xi) =
∑

k∈children(Xi)

p̄ (Xk) log (p̄ (Xk))

p̄ (Xk) is the normalized marginal probabilities of children (Xi),

i.e., p̄ (Xk) = p(Xk)∑
j∈children(Xi)

p(Xj)

The rank of a node Xi is defined as follows:

r (Xi) = p(Xi)×H (Xi)

Given a budget K, we choose top K ranked nodes and
create edges between the nodesXi andXj ifXi is ancestor of
Xj in DAG G (V ;E). This produces a sub-DAG of K nodes
that is compact and representative of the of the document
collection. In the experimentation section we give a heuristic
to estimate the value of K from the training set.

6. EXPERIMENTAL RESULTS
To validate our approach, we make use of the Wikipedia

category structure as a category DAG and apply our tech-
nique to the task of automatic generation of Wikipedia dis-
ambiguation pages. We pre-processed the category graph
to eliminate the cycles in order to make it a DAG. Each
Wikipedia disambiguation page is manually created by Wikipedia
editors by grouping a collection of Wikipedia articles into
several groups. Each group is then assigned a name, which
serves as a category for the group. Typically, a disambigua-
tion page divides around 20-30 articles into 5-6 groups. Our
goal is to measure how accurately we can recreate the groups
for a disambiguation page and label them, given only the
collection of articles mentioned in that disambiguation page
(when actual groupings and labels are hidden.)

6.1 Datasets
We parsed the contents of Wikipedia disambiguation pages

and extracted disambiguation page names, article groups
and group names. For each article, we extracted click count
information from Wikipeida’s click count logs. We collected
about 800 disambiguation pages that had at least four groups
on them. Wikipedia category structure is used as the cate-
gory DAG. We eliminated few administrative categories such
as “Hidden Categories”, “Articles needing cleanup” , and the
like. The final DAG had about 1M categories and 3M links.

Using disambiguation page title as a keyword query, we
retrieved all the Wikipedia articles having those keywords
in their title. For each of these articles, we also extracted
click counts from the click-logs published by Wikimedia. We
eliminated about 30% of the articles having low click counts.
Remaining articles are then added to the disambiguation
page. Note that, for these added articles, we do not know
the actual group in the disambiguation page they belong
to. Hence, we do not use these articles while computing the
metrics (described in next section.) We only use the arti-
cles that are grouped under a disambiguation page by the
human editors for metric computation. However, adding
queried articles are important because: (i) more data makes
our Gibbs sampling and EM based algorithms produce bet-
ter results, and (ii) in practice (during inference time) we



are only given a disambiguation keyword and our task is to
generate the disambiguation page for it. We then have to
query the Wikipedia articles using the the disambiguation
keyword.

6.2 Evaluation Metrics
While the Wikipedia disambiguation page dataset pro-

vides us a large collection of human labeled data, it poses two
challenges for the evaluation of our methods; (i) Every group
of articles on the Wikipedia disambiguation page is assigned
a name by the editors. Unfortunately, these names may not
correspond exactly to the Wikipedia category names. For
example, one of the groups on the “Matrix” disambiguation
page has a name “Business and government” and there is
no Wikipedia category by that name. However, the group
names generated by the automated methods are those of the
Wikipedia categories. (ii) While the Wikipedia disambigua-
tion page group names (in most of the cases) form a single
level hierarchy, our methods create a DAG structured hierar-
chical group names. Hence we cannot evaluate the accuracy
of the automated methods just by matching the generated
group names to those on the disambiguation page. To allevi-
ate this problem, we adopt cluster-based evaluation metrics.
We treat every category node of the sub DAG generated by
our algorithm as a cluster of articles. All articles in this
cluster are reachable from a path originating form the cat-
egory node. These are considered as inferred clusters for a
disambiguation page. We compare them against the actual
grouping of articles on the Wikipedia disambiguation page
by treating those groups as true clusters. We can now adopt
hierarchical cluster evaluation metrics - FScore measure and
Entropy - from [43]. For each disambiguation page in the
dataset, we compute every metric score and then average it
over all the disambiguation pages.

6.2.1 FScore metric
FScore measure identifies for each class of documents the

node in the hierarchical DAG that best represents it and
then measures the overall quality of the DAG by evaluating
this subset of clusters. Note that in our setup the class of
a document is the group name under which the document
is listed on the Wikipedia disambiguation page. In deter-
mining how well a cluster represents a particular class, the
FScore measure treats each cluster as if it was the result of
a query for which all the documents of the class were the
desired set of relevant documents. Given such a view, then
the suitability of the cluster to the class is measured using
the F1 value that combines the standard precision and recall
functions used in information retrieval. Specifically, given a
particular class Lr of size nr and a particular cluster Si of
size ni , suppose nir documents in the cluster Si belong to
Lr, then the F1 value of this class and cluster is defined to
be

F1(Lr, Si) = 2∗R(Lr, Si)∗P (Lr, Si)/ (R(Lr, Si) + P (Lr, Si))

whereR(Lr, Si) = nir/nr is the recall value and P (Lr, Si) =
nir/ni is the precision value defined for the class Lr and the
cluster Si . The FScore of class Lr is the maximum F value
attained at any node in the DAG G . That is,

FScore(Lr) = max
Si∈G

F (Lr, Si) (22)

The FScore of the entire DAG is defined to be the sum of
the individual class specific FScores weighted according to

the class size. That is,

FScore =

c∑
r=1

nr
n

FScore(Lr)

where c is the total number of classes. A perfect clus-
tering solution will be the one in which every class has a
corresponding cluster containing the same set of documents
in the resulting hierarchical DAG, in which case the FScore
will be one. In general, the higher the FScore values, the
better the clustering solution is.

Note that, this metric does not consider the DAG size
or structure while computing FScore. Hence it is trivially
possible to maximize FScore in our algorithm just by out-
putting entire DAG-structured hierarchy, instead of finding
optimal sub-DAG. To overcome this, we also evaluate on
another metric -an Entropy based measure.

6.2.2 Entropy metric
Unlike the FScore, which evaluates the overall quality of

a hierarchical tree using only a small subset of its nodes the
socalled, Entropy measure takes into account the distribu-
tion of the documents in all the nodes of the tree. Given
a particular node Sr of size nr, the entropy of this node is
defined to be

E(Sr) = − 1

log q

q∑
i=1

nir
nr

log
nir
nr

where q is the number of classes in the dataset and nir is

the number of documents of the ith class that were assigned

to the rth node. Then, the entropy of the entire DAG G is
defined to be

E(G) =

p∑
r=1

1

p
E(Sr) (23)

where p is the number of non-leaf nodes of the DAG G. In
general, the lower the entropy values the better the cluster-
ing solution is.

6.3 Methods Compared
Closest to our technique is message passing technique [15,

41] where each node passes scores to its parent nodes by
equally dividing the message among its parents. Equal di-
vision is one of the schemes where every node thinks all its
parents are equally likely (akin to uniform prior), which is
acceptable in the absence of any other information to dif-
ferently weight the parents. Note that in our work we do
not look into the text of documents/category nodes, hence
we do not have any other information on the likelihood of a
parent. The scores originate from the leaf (document) nodes
and propagate upwards towards the root. The leaf nodes are
initialized with the message values equal to their importance
scores. After the message passing algorithm stabilizes, the
marginal probability of a node is proportional to the total
number of messages passed through that node. Since the
messages originate from the document nodes and are initial-
ized to the importance scores of the documents, the marginal
probabilities of the nodes reflect the importance scores of the
documents. We then apply our ranking method to rank and
build a sub-graph as explained in Section 5. We call this
technique as “Equal-Weighting.”

We call our method that we described in Section 3, which
is based on treating the DAG structured hierarchy as a
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Figure 3: Average F1 and Entropy scores vs DAG size
(higher the F1 better; lower the Entropy better)

Bayesian Network and estimating its parameters via Gibbs
sampling as “BayesNet”. And, the method described is Sec-
tion 4, which is based on sampling paths and estimating
parameters based on EM as “PathEM”

6.4 Evaluation Results
Our first evaluation is based on the F1 metric. Figure 3

first half shows the F1 metric for various values of top K
ranked nodes, i.e., sub-DAG of size K nodes. This is the
average F1 score from 800 disambiguation pages. In Figure
4 we show the F1 scores for the DAGs of 4 disambigua-
tion pages. By construction, the F1 score monotonically
increases with the size of the DAG. Hence, more the nodes
we add to the DAG, better the F1 score becomes. Therefore,
we should not compare the maximum F1 scores of different
algorithms, which obviously will all be equal (a DAG of max-
imum size.) The F1 scores initially increase rapidly due to
the clustering formation that takes place with the addition
of each node to the DAG, improving the F1 score. After a
certain size (around K = 15) the addition of new nodes do
not change the clusters and F1 measures that rapidly due to
the max F1 in Equation 22 has already found a good node
that clusters the documents close to the true clusters. Hence
F1 scores start plateauing. Therefore, we recommend to use
this heuristic to decide the value of K. Thus, we compare
the techniques for the range K = 15 to 20.

The BayesNet method performs better than PathEM, which
in turn performs better than Equal-Weighting. Since the
Gibbs sampling employed in BayesNet is able to come out
of local minimum due to the sampling nature, it performs
better than PathEM, which often gets stuck into local mini-
mum. Equal-Weighting performs poorly due to the assump-
tion it makes in dividing the messages equally among the
parents. This assumption does not seem to perform well be-
cause, often a particular parent is more important than other
parents. For e.g., the category “Sports” is more relevant par-
ent to the category “Soccer” than the parent category “21st
Century Players.”

Next we evaluate techniques using the Entropy based mea-
sure. The right part of the Figure 3 shows the Entropy met-
ric for various values of top K nodes, i.e., sub-DAG of size
K nodes. This is the average Entropy score from 800 dis-
ambiguation pages. In Figure 5 we show the Entropy scores
for the DAGs of 4 disambiguation pages. Entropy score ini-
tially decreases (smaller the Entropy score, better) up to K
around 15 and then starts to increase. Due to the improve-
ment in clustering formation with the addition of each node,
initially the Entropy score starts to decline. However, when
more nodes are added (i.e., as K increases beyond 20) the
later nodes do not induce as good clusters as initial nodes,
making the overall Entropy score in Equation 23 to increase.
However, with large K (greater than 40 or 50) we observe

decrease in Entropy once again due to the the addition of
“fine-grained” (close to the leaf) categories, which are of-
ten associated with single document, resulting in very low
Entropy, thus reducing the overall Entropy in Equation 23.
Therefore, we recommend to compare different techniques
around the first minima that happens around K = 15. At
this K value, we see that BayesNet performs better than
PathEM, which performs better than Equal-Weighting, the
reason being the same as explained earlier in F1 measure
case.

Figure 6 shows an output (sub-DAG) of BayesNet algo-
rithm run on the “Ambient” disambiguation page.

7. CONCLUSION
We investigated a problem of generating a sub-DAG of

categories over a massive DAG-structured category hierar-
chy such that the sub-DAG produced represents the impor-
tance scores of the documents. This representation is char-
acterized through a generative model that learns its param-
eters such that, repeated sampling of a path ending in a
document from the sub-DAG is able to generate the distri-
bution of observed importance scores. Currently we assume
that the number of categories K for the sub-DAG is cho-
sen by manual inspection and is given as an input to our
algorithm. It would be an interesting future problem to es-
timate the value of K automatically in our setting. As future
work, we also plan to extend our techniques to consume the
document text/word along with the importance scores to
generate a hierarchy that is also biased towards the textual
contents of the documents.
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