A Framework for Task-specific Short Document Expansion

*
Ramakrishna B Bairi
[ITB-Monash Research Academy
IIT Bombay
Mumbai, India

bairi@cse.iitb.ac.in

ABSTRACT

Collections that contain a large number of short texts are
becoming increasingly common (eg., tweets, reviews, etc).

Analytical tasks (such as classification, clustering, etc.)
involving short texts could be challenging due to the lack of
context and owing to their sparseness. An often encountered
problem is low accuracy on the task. A standard technique
used in the handling of short texts is expanding them be-
fore subjecting them to the task. However, existing works
on short text expansion suffer from certain limitations: (i)
they depend on domain knowledge to expand the text; (ii)
they employ task-specific heuristics; and (iii) the expansion
procedure is tightly coupled to the task. This makes it hard
to adapt a procedure, designed for one task, into another.
We present an expansion technique — TIDE (Task-specIfic
short Document Expansion) — that can be applied on several
Machine Learning, NLP and Information Retrieval tasks on
short texts (such as short text classification, clustering, en-
tity disambiguation, and the like) without using task specific
heuristics and domain-specific knowledge for expansion. At
the same time, our technique is capable of learning to expand
short texts in a task-specific way. That is, the same tech-
nique that is applied to expand a short text in two different
tasks is able to learn to produce different expansions depend-
ing upon what expansion benefits the task’s performance.
To speed up the learning process, we also introduce a tech-
nique called block learning. Our experiments with classifica-
tion and clustering tasks show that our framework improves
upon several baselines according to the standard evaluation
metrics which includes the accuracy and normalized mutual
information (NMI).

1. INTRODUCTION

With the rapid growth of the Internet, Web users are
generating an increasing number of short texts, including

*Work done when the first author was interning with Mi-
crosoft Research India.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

CIKM ’16, October 24-28, 2016, Indianapolis, IN, USA.
© 2016 ACM. ISBN 978-1-4503-4073-1/16/10. .. $15.00
DOL: http://dx.doi.org/10.1145/2983323.2983811

Raghavendra Udupa
Microsoft Research India
Bangalore, India
raghavu@microsoft.com

Ganesh Ramakrishnan
Dept of CSE
IIT Bombay

ganesh@cse.iitb.ac.in

tweets, search snippets, product reviews and the like. Suc-
cessfully processing them becomes increasingly important
to many IR and Machine Learning applications. However,
short texts are quite different from the traditional docu-
ments due to their being short and sparse. Hence, conven-
tional machine learning and IR algorithms cannot apply to
short texts directly. Owing to lack of context in the short
text, it becomes challenging to build a representative feature
vector to use it in a machine learning task such as classifi-
cation, clustering, ranking or searching, to name a few.

Existing approaches [17, 5, 1, 20, 25] attempt to address
challenges associated with analytic tasks on short texts by
introducing more context through expansion techniques. Br-
oadly, these approaches follow one of two techniques. The
first one is to employ a search engine (for example, Google)
or an IR system (for example, Lucene?, Solr2) to use the
short text as a search query and expand the short text using
the top search results [1, 20, 25]. The other technique is to
build a topic space and to project each short text into that
space. These topics enrich the context of the short text [21,
2,17, 5].

Although querying search engines using short texts can
produce good expansions, it may not be an ideal solution
for many applications, given its online nature and given
restricted programmatic access to search engines. Though
querying a local IR system is fast, we observe from exper-
iments that the top result that is returned by the search
engine or the IR system may not always be the best for the
task.

Using a predefined topic space may not be a feasible solu-
tion because there may not be predefined topics/taxonomy
for certain applications, domains and languages. A solution
that is based on latent topic space is preferable because the
latent topics can be generated from a large corpus that is
available in the domain of an application. However, solu-
tions that are based on topic space are restricted to certain
types of applications. It is difficult to generalize these solu-
tions in different types of applications. For example, though
tasks such as classification of short texts can be efficiently
solved by these approaches [17, 5], they may not be suitable
for tasks on learning to rank short texts. Primarily, this is
due to the bag-of-words model assumption that these ap-
proaches make while expanding the short texts, that is, the
pseudo topic names that are appended to each short text as
additional words help the classifiers to learn discriminative
weights for each class, thus boosting the classification accu-

"https://lucene.apache.org/
http://lucene.apache.org/solr/

racy. However, if the task is the retrieval and ranking of
short texts, the solution of adding pseudo topic names may
not help. One of the main characteristics of our approach is
that we do not make such assumptions, thus our approach
generalizes well to other tasks.

A large body of research has been directed at using sources
of structured semantic knowledge such as Wikipedia, DBPe-
dia and WordNet for document expansion [2, 21, 10, 8, 9, 13].
On the other hand, distributional semantic approaches are
based on the intuition that words appearing in similar con-
texts tend to have similar meanings. One such approach is
word vectors—also referred to as word embeddings— which
has recently seen a surge of interest since new ways of com-
puting them efficiently [15, 16] have become available. Word
embeddings provide a way to expand documents by attach-
ing average or augmented word vectors of the terms in the
document [24]. While all these approaches provide ways to
expand short texts, the expansion itself is independent of
the task that uses them; there is no guarantee that such an
expansion would benefit the task.

To address these shortcomings we develop an approach
that has the following characteristics: (i) It makes fewest
assumptions about the task; the task should be able to
consume the suggested expansions and produce a measur-
able performance metric (such as task accuracy), nothing
else. (ii) It uses an expansion technique that generalizes
well across different tasks. (iii) It expands the short texts
selectively, that is, a short text is expanded only if such
an expansion helps the task; otherwise, it is not expanded.
Blindly expanding all the short texts - as done in earlier ap-
proaches - in fact degrades the task’s performance. (iv) It
is able to learn a model that produces the expansions spe-
cific to the task. However, the features used by the model
generalizes well to all the tasks, thus making the approach
applicable to many tasks. In section 2.3 we present differ-
ent classes of feature functions which can be used across
multiple tasks. Figure 1 depicts overall architecture of our
approach/framework. As in many earlier approaches [17, 5]
we use a corpus that contains relevant long text articles. In
section 3.3, we comment more on choosing the right cor-
pus. Using short text as a query, a language model or an
IR system initially selects K long texts from the corpus as
expansion candidates. Our observation shows that we can
usually find the best long text for expansion within the top
10 — 20 results. We then learn an expansion model that is
specific to the task (by taking task’s performance metric as
an input) for selecting one of the K candidate long texts
as the expansion of the short text. The goal of learning is
to produce a mapping of the short texts to the long texts
which best improves the task accuracy. Note that the frame-
work only requires an accuracy value from the task and does
not exploit any other characteristics of the task or domain.
Hence the framework is applicable to a wide variety of tasks.

In particular, our framework learns a best mapping func-
tion M : {short_text x task} — {long_text} to maximize
the task accuracy. We can present this function in an alter-
nate form as

M (short_text) = argmax Sim (short_text, long text; task)
long_text

which is a mapping function that finds a maximally similar
long text to a short text, given the task. The similarity is
captured through a variety of functions that are designed

from the IR, topic model and embedding techniques and
generalize well to many tasks. The function M needs to
be learned specific to the task. There are no additional
training data for learning M. We have designed a novel
learning technique to learn M jointly with the task during
the training phase of the task, thus making M task specific.
In section 2.4, we elaborate our learning technique using
a derivative-free optimization technique that is known as
BOBYQA (Bound Optimization BY Quadratic Approxima-
tion) [18] along with our proposed block learning approach.
Our contributions can be summarized as follows:

e A framework for task-specific document expansion that
can be adapted by many machine learning tasks that
deal with the short texts

e The introduction of various classes of task agnostic fea-
ture functions (IR, topic model and embedding based
features)

e A technique for learning a model over task agnostic
features, using the task’s data through the task itself,
thus learning to expand a short text in a task-specific
way.

e A block learning technique for learning feature weights
in blocks

2. LEARNING TASK-SPECIFIC DOCUMENT

EXPANSION

2.1 Problem Formulation

Let Ds = {s;},_, be a set of n short texts, where s; is

the representation of ith short text. For example, s; can

be a TF-IDF vector representation of the short text, or it
can simply be a bag of words. The exact form of s; is task-
specific.

Let 7 (Ds) be a task that operates on the short texts Ds.
For example, T can be a classification task and D; is a set
of short texts for training and testing the classifier. The
underlying assumption is that task 7 can be run on the
data D and produce a measurable result that indicates the
goodness of the task, such as the accuracy of the task. In
the classification task example that is mentioned above, we
can measure the accuracy of the classifier that is trained on
the training set and validated on the test set.

Other examples of the tasks include Clustering of short
texts, Named Entity Recognition in short texts and Catego-
rization of short texts using Wikipedia, to name a few.

Let € (T (Ds)) be the empirical error in performing task
T . For example, in the classification task, £ could be a “mis-
classification rate”; in the clustering task, it could be “degree
of clustering disagreement”. Furthermore, we assume that
the error can be scaled to the [0,1] interval so that we can
simply compute the accuracy of the task 7 as 1 — & (-).

A standard technique to improve the accuracy of the task
T is to expand the short texts Ds into bigger texts. Let
D. = {ei};_, be the expanded short texts, where e; is a rep-

resentation for the expanded ith short text. For example.,

e; can be a TF-IDF vector that represent the expanded text.

Our aim is to present a technique that expands the short
texts D; into long texts D, such that, performing the task
T on these expanded texts best improves the task accuracy

Long Text 1

IR Model [—>< Long Text 2
Short Text >

Long Text K

Corpus ~

l

Task-specific) 4

Expansion Model ||
Long Text Expanded Text
Learner
Task

N

Figure 1: Architecture of expansion model

(this equivalently reduces the task error rate.) Formally, by
applying our technique, it is possible to achieve the following
with a maximum difference between RHS and LHS.

E(T (De)) < E(T (Ds)) (1)

To perform the expansion, we assume the existence of a
right universal corpus C of articles. Such a corpus has to
contain a large amount of articles in the domain of short
texts, which covers the topics and concepts present in the
short texts. These articles provide contexts to the short
texts and help in expanding them. We refer to these articles
as long texts. Our goal is to identify the best possible long
text I; € C for every short text s;. This long text I; is then
used to expand the short text s;. We use the operator & to
represent the expansion process of obtaining an expanded
text representation of a short text from a long text. That
is, e; = 8; @ l;. The exact process of this expansion depends
on the task. For example, @ may be a union of s; and e;,
or it may be a weighted average of TF vectors. Mapping
short texts {s;}]_, to long texts {l;}._, is done in such a
way that the task using the expanded short texts will have
maximum improvement in accuracy. This makes the short
text mapping/expansion task-specific. That means that the
same short text may map to different long texts in differ-
ent tasks, depending upon which mapping makes the task
better. However, our framework for expansion remains the
same making it task agnostic.

In particular, we present a technique in this paper to dis-
cover a mapping of I; = M (s;) to a long text I; € C for
every short text s; € Ds , such that Equation 1 is satisfied
with maximum margin. Formally, we solve the following
optimization problem.

M = argmax y
M

$st. E(TDs @M (D) =E(T(Ds)) +v (2)
v=>0

where De = {e;}; | = Ds ® M (D) = {si ® M (ss)},

An optimum mapping M increases the difference between
E(T (Ds ® M (Ds))) and € (T (Ds)), thus maximizing the
margin . Solving this optimization problem turns out to
be hard. In the following Sections we present a technique for
the solving of the optimization problem mentioned above ap-
proximately. Our experiments on benchmark datasets show

that our approach is very effective practically and can pro-
duce results that are close to optimal.

2.2 Learning framework

Finding optimal mapping to solve Equation 2 is a com-
binatorial problem. There are |C |IDS| possible mappings of
short texts s; € Ds to long texts [; € C. However, not all
of these mappings are meaningful. For example, mapping
a short text on “soccer” to an article on “photosynthesis”
makes very little sense. To be a semantically correct expan-
sion, the short text and its mapped long text have to be
topically similar. Many IR techniques [14] have been suc-
cessful in retrieving and ranking documents for short queries.
They adapt language modeling techniques [12] to map short
text queries to long text articles. This makes the language
modeling approach a possible approximation to solve Eq 2.

In the language modeling approach to information re-
trieval, a multinomial model p (w|l;) over terms is estimated
for each document [; in the collection C to be indexed and
searched. This model is used to assign a likelihood to a
short text s; = (w1, w2, ..., wm). In the simplest case, each
short text term is assumed to be independent of the other
short text terms, so that the short text likelihood is given by
p(si|lly) = [Tie, p (wk|l;). After the specification of a docu-
ment prior p(l;), the a posteriori probability of a document
is given by: p (l;]s:) o< p (si]l;) p (I;), and is used to rank the
documents in collection C.

The language model approach has the following limita-
tions in mapping a short text s; to a long text I;: (i) it always
produces the same mapping irrespective of the task; (ii) it
does not take the task accuracy into account while mapping;
and (iii) our observations show that the top ranked result of
language model need not always be the best mapping.

In order to overcome these limitations, we propose a two-
step process for mapping. First, we use language model to
retrieve the top K candidate for the mapping of long texts
{lic € C}szl for every short text s;. Second, we define a
mapping M,, to map a short text s; to the best long text
l; from the K candidate long texts, such that using [; to
expand s; best improves the accuracy of the task. M, is
computed by solving the following linear model:

li = My (s;) = argamax wacz&f (si,1)

e{ibect 7

where, ¢ is a feature function that measures the similarity

between a short and a long text and wy is the weight of
that feature function in the mixture of features. A bunch
of feature functions designed from the proven methods of
IR, topic model and embedding techniques are explained in

Section 2.3. These feature functions are then combined by

= ber of feat
learning weights W = [U)f];zgnum er of features) for them

in a task-specific manner, which is explained in Section 2.4.

2.3 Classes of Feature Functions for Mapping

In the below sections, we define a variety of feature func-
tions that measure the similarity of a short text to a long
text. We group them into three classes: (i) IR based, (ii)
Topic Model based, (iii) Embedding based.

In the following sections we use the notations s and [to
represent short and long texts, respectively, and |I| to denote
the length of [. We drop the subscript i for brevity.

2.3.1 IR Based Features

IR-based features compute the relevance of a short to
a long text using standard document similarity functions
such as BM25, Consine, and Bigram. These functions have
been successfully adapted by the information retrieval com-
munity in orer to retrieve documents using short queries
[14]. Accordingly, we define features such as ¢pmas (s,1) =
BM25 (s,1),¢cosine (s,1) = COSINE (s,1), and ¢pigram (s,1) =
BIGRAM (s,1) to compute the similarity between a short
and a long text.

2.3.2 Topic Model-based Features

Topic models such as LDA [3] have been successful in dis-
covering hidden topic distributions in a text corpus. Earlier
works [19] have shown that matching texts based on the sim-
ilarity models with hidden topics yield better results. Based
on these findings, we define a set of topic model-related func-
tions to compute the similarity between a short and a long
text. To discover the topics, we run LDA on the articles in

the corpus C. Let T; be the ithtopic discovered by the topic
model and V; be the set of top words in T;. Let tf(w;l) be
the term frequency of term w in long text | . We define the
following topic model based feature functions:

Topic Score is defined as ¢r,(s,1) = ﬁ—‘ Pwev, flw;l). 1t
measures the relevance of a long text [to the topic T;. Al-
though this feature is not a function of short text s, it helps
to measure the relevance of a long text [in the topic space of
the corpus, which by construction includes the topic space
of the short texts. For each topic T;, one such similarity
function is created..

Differential Topic Score is defined as
Qar; (s,1) = ﬁ Dwevits tf(w;1). Tt measures the similarity
of a long text [to the topic words without considering the
words in the short text s. The intuition here is that, we want
to eliminate the part of the score that comes from matching
words between short text s and long text . Since IR-based
feature functions already capture that, we want to get the
score that solely comes from matching the long text to the
topic T;. Note that for every topic T;, we define one feature
function @y, ..

Note that for the topic model based functions to be effec-
tive, it is very important to have a corpus with a topic dis-

tribution that represents the topic distribution of the short
texts. More discussion on this is deferred to Section 3.3

2.3.3 Embedding-based features

Word embeddings [15, 16] are vector representations of
terms, and are computed from unlabelled data, that repre-
sent terms in a semantic space in which the proximity of
vectors can be interpreted as a semantic similarity. Word
embeddings have been shown to produce good results in
many works [11, 6] in the comparing of semantic similari-
ties between terms, sentences, paragraphs, and documents.
Inspired by these results, we define a bunch of feature func-
tions that are based on the publicly available, pre-trained
word vectors that are known as word2vec [15]. In the fol-
lowing sections, we use v (w) to represent a low dimension
vector representation of word w in the word2vec setting.

Word2Vec Score is defined as.

S (88w s) X tf(w; 1) X max {0, o1 (w) ev (J)})

Pw2o (s, 1) = I
° wes el

It measures the term-level similarity between a short text
s and a long text [by incorporating semantic similarity that
is measured by the distance between the word vectors for
those terms.

Word2Vec Topic Score is defined as.

1
21Vl

bwavt; (5,1) =

Z Z (tf(w;) X max {0, T (w) v (w/) })

wel ey,

This function is an extension of the “Topic Score” func-
tion to the semantic space. Here we measure the relevance
of a long text [to the topic T; by comparing the term-level
semantic similarities that are measured by the distance be-
tween the word vectors for those terms.

Word2Vec Differential Topic Score is defined as.

> (tf(w: 1) x max {0‘ T (w) ew (w/)})

<z511)2'z)dt1 (s, 1) =
’
w’ eVvi\s

Vi \ sl 20

This is an extension of the “Differential Topic Score” func-
tion to the semantic space. It measures the semantic similar-
ity of a long text [to the topic T; through the word vectors,
without considering the terms in the short text s.

2.3.4 Selective Expansion via the Bias Feature

Our observation shows that not all short texts need to
be expanded to improve the accuracy of the task. Forcing
expansion on all short texts sometimes reduces the task ac-
curacy. In order to enforce selective expansion, we introduce
a Bias feature. The bias feature is always set to -1

¢bias(syl) =-1
A short text is expanded only if

Z Wf¢f (87 l) + wbias¢bias (S, l) >0
f

That means, similarity score between short and long text
has to be above some threshold to force mapping/expansion

Z wf¢f (37 l) Z Whoias (3)
f

2.4 Task-specific Learning of Mixture Weights
wg

Feature weights wy are learned for a given task such that
expanding short texts using the mappings obtained from
wy best improves the task accuracy. Let £ (7 (D.))be the
loss function that is defined for task 7 . It measures the
empirical loss of the task on the expanded texts D.. By
varying wy, the mapping of short texts to long texts changes,
which in turn changes the expansions D;, affecting the loss
function. Our aim is to learn w; such that the loss £ is
minimized for the task 7. Formally, we solve the following
optimization problem:

argminL (T (De))

w
:argv{]ninﬁ (T ({si ® Muw (s:)}1—1)) (4)

The form of loss function £ is task dependent and un-
known to us. It can be convex or non-convex; linear or non-
linear; or can be extremely complex and non differentiable
(for example, an output of a deep neural network.) Since
our framework has to be task agnostic, we cannot make any
assumptions about the form of loss function. Hence we use
a derivative-free optimization technique that is known as
BOBYQA [18]

BOBYQA solves bound constrained optimization prob-
lems without using derivatives of the objective function,
which makes it a derivative-free algorithm. The algorithm
solves the problem using a trust region method that forms
quadratic approximation models of the objective function
by interpolation. One new point is computed on each itera-
tion, usually by solving a trust region subproblem subject to
the bound constraints, or alternatively, by choosing a point
to replace an interpolation point so as to promote good lin-
ear independence in the interpolation conditions. BOBYQA
constructs the quadratic approximation models by the least
Frobenius norm updating technique.

For a non-convex loss function £, BOBYQA finds a so-
lution that is at the local minimum. One of the standard
techniques used to overcome the local minimum problem is
to adapt random restarts. That is, we start with a random
assignment of the weights wy and run the BOBYQA proce-
dure with that assignment as the starting value. By repeat-
ing this procedure multiple times with a different random
initialization each time, and picking a solution that produces
the least value for £, we can possibly avoid a local minimum
and achieve better solutions.

2.5 Alternate Minimization for Task-specific
Learning

In this section we throw some insights into the learning
that takes place with BOBYQA. Solving Equation 4 with
BOBYQA involves evaluating the task 7 on the given set of
expanded documents. In particular, evaluation of £ involves
fitting of the task parameters to the data first and then
comparing the task results with the ground truth. It is im-
portant to distinguish the task-specific parameters from our
model parameters. Let © be the parameters of the task (for
example, in a classification task, © is word/feature weights,
and in a clustering task © is cluster membership.) and W be

our model parameters for the expanding of the short texts.
The key idea in using BOBYQA is to learn © and W jointly,
such that optimal task results are achieved through the op-
timal mapping of the short texts to the long texts. The
procedure for this joint learning is outlined in Algorithm 1.

Algorithm 1 Joint learning of our model parameters W
and task parameters ©
Input: Corpus C, Short Texts Training Set D(train)j Short

Texts Development Set D(dev), Task T
Output: Model parameters W

=(num features)

1: Randomly Initialize W = [wf]§:1

2: while not converged do
3: Find K candidate mapping long texts for every short

text in D(ErAIN) 4 p(dev)

My (s;) = argamax wa¢f (si,1)

te{ibect’

4: Learn task parameters ©
©* = argminR (©) + C Z L7 (ei;0,W)
© (train)
s, €D

where e; = s; @ My, (s;) is the feature vector of the
expanded text

5: Quadratically approximate >
(dev)

L(e;;0", W)
s,€D

to Lo (W; D1V, 07)

pens in BOBYQA.

This approximation hap-

6: Learn our model parameters W by minimizing the
quadratic function Lq

W™ = argmin Lo (W;D(dev)7@*)
W

1

7: end while

Considering a loss regularized framework for task 7 and
the model parameters W of our framework, the optimal task
parameters ©* are learned from the data (expanded texts)
by optimizing the objective shown in Step 4. Here R is the
regularizer, and L7 is the task-specific loss function (for ex-
ample, hinge loss in SVM classification task). Note, L7 is
different from the loss function £ that our framework uses
to learn W. In the next step (Step 5), BOBYQA approxi-
mates the loss function £ to a quadratic function Lq, using
the interpolation technique. During this process, BOBYQA
evaluates the loss function £ at multiple points (W) using
the task parameters ©*. In Step 6, the quadratic function
Lq is optimized to find the optimum parameters W*. The
updated weights W then produce new mappings/expansions
for the short texts. The procedure repeats until no fur-
ther update happens to W within the tolerance limit set in
BOBYQA.

Class A features Class %features

Class 5 features

Feature
fy f,
Vector . .

Learn 3 H " H
block 1

i 1
Learn 5 v v v v v

weights for ’ b, ‘ w, ‘ W, ‘ w, ‘ w, ‘ :
block 2 ' i

¥ ! |
Learn 3 L ¥ X
weights for ’ b, ‘ il ‘ i) ‘
block 3

FEffective Feature Weioht Vector

wi*b *b, wo*b *b, | wi*b *b, | wa*b *b,

w;“bz ‘ ws”b2 ’ w7”bz W, W

Figure 2: Block-learning approach.

2.6 Practical BOBYQA: The Block Learning
Approach

Minimizing the loss function £ using BOBYQA results in
multiple evaluations of the function £ during quadratic ap-
proximation and the trust region growing/shrinking steps
by BOBYQA. Each evaluation of £ calls for the execu-
tion of task 7. For certain tasks, this evaluation can be
time/resource intensive. For example, for a classification
task, computing the classification loss for a given dataset
involves training the classifier in the training split and then
evaluating it on the test split. If the dataset size is very
large, it may take a good amount of time to train the classi-
fier. Hence, it becomes important to reduce the number of
loss function evaluations.

The number of loss function evaluations depends upon
the number of variables in the optimization problem, that
is, the dimension of the weight vector W. To improve the
learning (of weights wy) time of the algorithm, we need to
reduce the number of task evaluations, without reducing the
number of features. In the following section we introduce a
novel technique called “Block Learning” to achieve this.

In block learning, we divide our entire set of features into
groups of smaller number of features called “blocks” and
learn the weights one block at a time. Each block is a set
of features of a particular class. For example, IR features
constitute the 1st block, topic model features constitute the
2nd block and so on. The learning starts with block-1 in
which the BOBYQA finds optimum weights for the features
in block-1. Then we move on to block-2, in which BOBYQA
learns weights for the features in block-2. At this stage, we
treat block-1 as an additional feature and learn one weight
for it. Next, we learn weights for features in block-3 using
BOBYQA. Now, block-1 and block-2 together are treated as
an additional feature and one weight is learned for it. The
effective weights of each feature is the product of weights
learned during its block and the additional feature weights
learned during the subsequent blocks. This is depicted in
Figure 2. The weight for feature fl is w; X b1 X bz, where
wi is the feature weight learned by BOBYQA during the
first block; b; is the weight learned for the entire block-1
by treating block-1 as an additional feature; and b2 is the
weight learned for the entire block-1 and block-2 by treat-
ing block-1 and block-2 together as an additional feature.
Similarly, weights for the other features are calculated.

The main advantage of block learning is that, at a time,
BOBYQA has to optimize only those variables in a block
along with one more variable for previous blocks. This re-
duces the number of evaluations of loss function £ that
BOBYQA makes, speeding up the learning process. Though
block learning is not equivalent to learning all weights to-
gether, empirically, we observe that the task accuracy with
expansion using block learned weights is at par with the ac-
curacy from the expansion that uses weights learned with all
features together. However, the total number of BOBYQA
evaluations are significantly reduced with block learning,
thus reducing the learning time.

3. EXPERIMENTS AND EVALUATIONS

In order to evaluate our approach, we compare our work
with several baselines and earlier works in the literature,
which describe the handling of short texts. We demon-
strate the effectiveness of our approach on two different
ML tasks: classification and clustering. Our experimen-
tal results show that the proposed approach produces re-
sults that are comparable to the state-of-the-art techniques
and that it is generic enough for application to many ML
tasks. We have named our approach as TIDE (Task-specIfic
short Document Expansion), which has been used through-
out these experiments and evaluations.

3.1 Short Text Tasks

In this paper, we evaluate classification and clustering
tasks for short texts. Though our technique can be applied
to other types of ML tasks, we find that classification and
clustering tasks on short texts have a good presence in the
literature, which gives us an opportunity to use the stan-
dard data sets and compare against the baselines and earlier
works. In these tasks, we represent short and long texts as
TF-IDF vectors. To expand a short text s; using a long text
li, we smooth the TF-IDF vector of the short text using that
of the long text in the following manner: e; = as;+(1 —) l;
The 0 < a <1 is a smoothing parameter that controls how
much importance has to be given to short text and long
texts. When a = 1, only the short text used; when a = 0,
only the long text is used. The value of « is learned as part
of the optimization in Equation 4. That is, we optimize the
following to learn w and a:

argminl (T (De))

W,

:ar‘%rginﬁ (7' ({asi +(1—a) My (51)}:;1))

Note that short text is expanded only if similarity score
is above a threshold as explained in Equation 3. Using
BOBYQA and the block learning machinery that is explained
in Section 2.4, the optimization problem above is solved for
w and a.

3.2 Datasets

We report our experimental results on several benchmark
datasets used in the literature for classification and cluster-
ing tasks. We give an overview of the datasets, below.

3.2.1 Reuters21578

Reuters21578 dataset is a collection of news articles. Each
article has a short title and a long description of the news.
All articles are classified into various topics. We take the

articles classified as “Corn” or “Wheat” and consider their
titles as short texts. The task here is to classify the short
titles into the Corn or Wheat class. The choice of these two
classes is due to their high inter-class confusion while clas-
sifying short titles. We use the long descriptions (without
the title in it) from the articles to form the universal cor-
pus C. The corpus is then indexed using Lucene software.
Using Lucene as an IR system, we retrieve the top K candi-
date long texts by using the title as a short text query. The
weights wy are learned in order to choose a mapping long
text for every short text such that expanding the short text
by using the long text improves the classification accuracy.

In this dataset, we know the true long text for a short text
(title), which is the long description of that news article.
Using this true mapping we can compute a best classifier
using the true long texts of the short texts. This helps us
to compare our technique against the true expansion.

3.2.2 News Dataset from TagMyNews

TagMyNews® datasets is a collection of datasets of short
text fragments that are used for the evaluation of the topic-
based text classifier. One of the dataset from this collec-
tion is the News dataset. This is a dataset of "32K English
news that is extracted from RSS feeds of popular newspaper
websites (nyt.com, usatoday.com, reuters.com). Each news
snippet has a title and a very short (one or two lines) descrip-
tion of the news. Every news snippet is classified into one
of the following categories: Sport, Business, U.S., Health,
Sci&Tech, World and Entertainment. We use the titles and
the short descriptions as the short texts for the classification
task.

3.2.3 Web-Snippets

Web-Snippets [17] dataset has around 12K short web search
snippets that are classified into seven classes. Out of this,
10K short texts are used to train the classifier and 2K for
testing.

3.2.4 ODPTweets

ODPtweets? is a large-scale Twitter dataset with nearly
25 million tweets that are categorized in the structure of
the Open Directory Project (ODP). This dataset was used
for the tweets classification task in WWW work [26]. The
categorization of tweets is inferred from the links that they
point to. From the ODP style category structure that is
associated with each tweet, we extracted the top-level ODP
category as the category of the tweet. For example, for
one of the tweets, the ODP category structure associated
is “Computer/Software/Programming/Java”. The top-level
category is “Computer” in this case, which we associate with
the tweet as the true category. There are 15 top-level cate-
gories in this dataset (Computer, Health, etc.). For each of
these categories, we extracted around 600 tweets using Twit-
ter API. We then discarded tweets that contained only junk
characters or less than three words or non English tweets.
This gave us as a collection with around 500 tweets in each
category.

3.2.5 StackOverflowQuestions
We use the challenge data published in kaggle.com® [23]

Shttp://acube.di.unipi.it/tmn-dataset/
“http://www.zubiaga.org/datasets/odptweets/
Shttp://www.kaggle.com/

that contains questions that are posted by the users on stack-
overflow.com®. This dataset consists of 3,370,528 questions
posted on stackoverflow.com from July 31, 2012 to August
14, 2012. In our experiments, we randomly select 20,000
question titles as short texts from 20 different tags, as done
in [23].

3.3 Corpus

Choosing the right universal corpus is very important.
First, the universal corpus, as its name implies, must be
large and rich enough to cover a lot of words, concepts, and
topics that are relevant to the task problem. Second, this
corpus should be consistent with the training and future
unseen data that the task will deal with. This means that
the nature of universal data (for example, patterns, statis-
tics, and their co-occurrence of them) should be observed
by humans to determine whether or not the potential topics
analyzed from this data can help in making the task more
robust. For example, the universal corpus has to help make
the classifier more discriminative.

Today, Wikipedia is known as the richest online encyclo-
pedia written collaboratively by a large number of contrib-
utors around the world. A huge number of documents are
available in various languages and are placed in a organized
structure which inspires the WWW, IR, and NLP research
communities to use it as a large corpus [7].

Another data collection that can be used as a universal
corpus in the medical domain is Ohsumed/MEDLINE. Un-
like Wikipedia, Ohsumed only includes medical abstracts.
This corpus can be used for tasks in the medical domain.

We use Wikipedia articles as a universal corpus C of long
texts for experiments with TagMyNews, Web-snippets, ODP-
Tweets and StackOverflowQuestioins datasets. We use the
Lucene software to index these articles and retrieve the top
K candidate long texts using short texts as queries. The
weights w; are learned such that expanding the short texts
using the long texts (Wikipedia articles) improves the clas-
sification and clustering accuracy.

3.4 Robustness Analysis of Our Approach

One of the important characteristics of our approach is
its robustness to the noise in the corpus. Unlike other ap-
proaches [1, 20, 25] our method does not force expansion
on all the short texts. Expansion is done only if that helps
improving the performance of the task. When a wrong cor-
pus (one from a different domain) or a noisy corpus is used,
it may not provide the right long texts for the expansion
and, hence, expansion may not boost the performance of
the task. In our experiments, we demonstrate the robust-
ness of our method against the noisy corpus from the fol-
lowing three scenarios: (i) a wrong corpus (ii) a corpus that
is partially relevant or has noise and (iii) a corpus that con-
tains the short texts themselves. In the third scenario, we
show that our method is capable of avoiding the selection of
short texts from the corpus for expansion, whereas, other IR-
based expansion techniques result in the selection of short
texts themselves from the corpus for the expansion, which
does not help the task to improve the performance.

3.5 Evaluation Methodology

All the ML tasks are carried out by expanding the short
texts and by measuring the improvement in the task’s per-

Shttp://www.stackoverflow.com/

| Expt# | Dataset | Short Text | Corpus
1 Reuters21578 News Title Articles from entire Reuters21578 collection
2 Web-Snippets Snippet Wikipedia articles
3 TagMyNews | Title + RSS feed Wikipedia articles
4 ODPTweets Tweet Wikipedia articles
5 TagMyNews | Title + RSS feed | Wikipedia articles + all short texts from the dataset
6 TagMyNews | Title + RSS feed Wikipedia articles + Ohsumed
7 TagMyNews | Title + RSS feed Ohsumed

Table 1: Experiments for the classification task using different datasets and corpora

Exptis Accuracy (%) % Short

Short Lucene Word2Vec TIDE Comparing Actual | Texts Not

Text Only First Technique Expanded
1 85.8 87.2 67.5 91.6 - 92.1 14
2 62.1 76.8 52.9 842 82.2 (Phan [17)) - 8

85.3 (Chen [5])

3 71.3 73.7 56.3 813 80 (Vitale [22]) - i1
4 39.4 41.3 21.2 47.8 - - 0
5 71.3 71.8 56.3 81.1 - - 0
6 71.3 73.1 56.3 81 - - 10
7 71.3 62.3 56.3 70.1 - - 92

Table 2: Accuracy comparison of classification task (TIDE is our approach)

formance. We compare our expansion technique against var-
ious baselines and previous works. The two baselines we
compare against are (i) IR system-based expansion and (ii)
Word2Vec-based expansion

In an IR system based expansion, the long text articles in
the corpus are initially indexed. Using the short text as a
query, the top ranked result from the IR system is used to
expand the short text. In our experiments, we used Lucene
as the IR system.

In Word2Vec based expansion, a word vector for every
word in the short text is obtained using the word2vec tool.
The average word vector is then computed from all these
word vectors and appended to the short text to produce a
long/expanded text.

3.5.1 Methodology for Classification Task

There are various criteria that can determine the effective-
ness of a classification task; however, precision, recall, and
accuracy are most often used. We choose accuracy (macro
accuracy in case of multi-class classification) to measure the
performance of the task, though other criteria may equally
be used. In fact, it does not matter which criteria we choose
because the goal of our experiments is to demonstrate an
improvement in the task’s performance using our technique
and not to judge the task itself.

The datasets described in Section 3.2 are divided into train
and test splits according to the previous works using those
datasets. We use 25% of the data from the test split as the
development set and the remaining as the test set for evalu-
ation. During the training phase, the model parameters (of
both our framework and classier) are optimized by training
the classifier on the expanded short texts from the training
set and measuring the accuracy on the expanded short texts
from the development set. In the testing phase, expanded
short texts from the test set are classified and accuracy is
measured.

We report the results for the task using the SVM clas-

sification algorithm, however, we observed a similar result
when using other classification algorithms.

3.5.2 Methodology for Clustering Task

We test our algorithm on the StackOverflowQuestions dataset.

The clustering performance is evaluated by comparing the
clustering results of short texts with the tags/labels provided
by the text corpus. The accuracy [4] and NMI metrics[14]
are used to evaluate the clusters.

Since the focus our investigation is to demonstrate the im-
provement in the clustering accuracy of short texts through
our expansion technique rather than the clustering method
itself, we used the standard k-means algorithm whose imple-
mentation is readily available in many of the ML packages
(which, is also the algorithm used in the work we compare
against.) In other words, we believe our technique can be
used with any other clustering method.

3.6 Results and Discussion

3.6.1 Classification Accuracy

To investigate the accuracy improvement of a short text
task using our approach, we have designed several experi-
ments, as shown in Table 1. For each of these experiments
Table 1 shows the dataset, the short texts, and the univer-
sal corpus used. Experiments 1-4 show expansion using the
right corpus and 5-7 show the robustness of our approach
against the incorrect or noisy corpus.

Table 2 shows classification accuracies of our method against
other baselines. In the case of Reuters21578 (Experiment 1)
we use Reuters21578 articles as the corpus. That means,
the true expansion of the short text (title) is present in the
corpus. We consider the body of a news article as the true
expansion of the news title. This experiment lets us investi-
gate how close our approach can perform to the true (orac-
ular) expansion. Interestingly, we observe that our method
achieves 91.6% accuracy which is close to the true expansion
accuracy of 92.1%.

| Baselines/Comparing techniques | Accuracy(%) | NMI(%) |

Short Text Only 26.3 30.2
Lucene First 38.8 40.1
Word2Vec 11.4 13.6
Jiaming Xu et.al [23] 51.1 49
TIDE 50.8 52.4

Table 3: Accuracy and NMI comparison of clustering task
(TIDE is our approach)

In Experiment 5, the corpus contains exact short texts
from the dataset as short articles. The IR method retrieves
these short texts as top results due to the high matching
score and, hence, does not help the expansion. Experiment
6 has the corpus with the noise: Wikipedia articles mixed
with Ohsumed articles. We observe that the Wikipedia ar-
ticles provide the right candidates for expansion, whereas
Ohsumed articles are irrelevant (noise) for the news snip-
pets in the TagMyNews dataset. The IR method does a
good job of selecting only relevant candidates for the ex-
pansion from the corpus and discard the noisy candidates.
In addition, our model assists in the selecting of expansion
texts, which improves the task accuracy. Experiment 7 has
an irrelevant corpus for the expansion. As we can see from
the results, Lucene First (IR method) is forced to choose a
best-matching candidate for the expansion. Whereas, forc-
ing this expansion reduces the task accuracy. However, our
model’s selective expansion strategy makes the short texts
not expand in such scenarios. As shown in Table 2, the per-
centage of short texts not expanded is up to 92% in this
case.

Table 2 also shows comparison of classification accuracies
reported in short text classification techniques from the lit-
erature with our method. In most of the cases, our method
performs at par with other techniques or beats them. In
comparison to [5], we perform slightly worse. We believe
this is due to the differences between the corpus used in our
method and [5]. The seed words that are used for crawling
the Wikipedia and the process of building the corpus are
not clear from [5]. We used all the Wikipedia articles in
our experiments; however, we believe that the accuracy of
our method would improve if we build a focused crawler to
generate more relevant corpus.

3.6.2 Clustering Accuracy and NMI

The results of the clustering task are shown in Table 3. We
observe that our method beats all the baselines and performs
at par with [23]. The Lucene First and Word2Vec-based
expansions do not consider the clustering accuracy and NMI
during expansion, our method, however does. This leads to
better task performance when compared to these baselines.

Note that the framework and features used for the clus-
tering task is same as that of the classification task. Hence,
we state that our framework is task agnostic. However, it
learns to expand the short texts for the classification and
the clustering tasks in a way that improves the task’s per-
formance. This makes our framework powerful for adaption
by many IR/ML/NLP tasks that deal with short texts.

3.6.3 Effect of Block Learning

In the next set of experiments, we investigate the effect
of the block learning mechanism. For the classification task,
we run the experiments with and without block learning in

Task Evaluations

Web Snippets

WITHOUT BLOCK ~ WITH BLOCK WITHOUT BLOCK WITH BLOCK
LEARNING LEARNING LEARNING LEARNING

60

Task Evaluations

40

TagMyNews

20 — — ——

Classification Accuracy (

WITHOUT BLOCK ~ WITH BLOCK

WITHOUT BLOCK WITH BLOCK
LEARNING LEARNING LEARNING LEARNING

Figure 3: Block Learning: Reduction in the number of task
evaluations and impact on accuracy

order to investigate (i) the amount of time that block learn-
ing saves and (ii) the effect on classification accuracy. Figure
3 shows that in some cases there are 30% lesser task evalua-
tions with block learning, with a marginal drop in the classi-
fication accuracy. Note that we report the saving in training
time w.r.t. the number of task evaluations, because the ab-
solute time for a task depends upon various factors such as
the size of the dataset, the task training/validation method-
ology, and the like. Interestingly, in the case of TagMyNews,
we observe a slight increase in the classification accuracy
with block learning. We believe that this is because of our
model settles for a local minimum in a high-dimensional fea-
ture space when all the features are used together as one
block (no block learning). Whereas, when block learning
is employed, the reduction in the feature space dimension
helps to find better solutions.

3.6.4 Feature Ablation

In this section we investigate the usefulness of different
classes of feature functions through feature ablation tests.
We start with only IR features and then incorporate topic
model and embedding features one by one. We then com-
pare how the learning of expansion improves the classifica-
tion task accuracy with the addition of these features. Fig-
ure 4 shows the improvement in classification accuracies as
we add different classes of features. IR based features alone
are able to achieve a gain of around 5% in accuracy over
Lucene first, followed by another 4 — 5% gain through topic
model-based features. While IR features can be computed
very easily, topic model features require a one time com-
putation of the topic distribution of the corpus from LDA
or similar mechanisms. There is a marginal improvement
when word2vec features are used. In these experiments, we
use pre-built word vectors (of 300 dimension) published by
Google. Experiments using word vectors trained from the
corpus and of different dimensions will be part of our future
work.

3.6.5 Random Restart Results

To overcome the problem of the local minimum with our
approach, we adapt a standard technique of random restarts.
In this section we investigate the effect of random restarts on

Web Snippets 84

TagMyNews

Classification Accuracy (%)
[
o5B88583388

@
3

ODPTweets 60

8 3

S

S
|
I

Classification Accuracy (%)
h N oW s @
8
Clustering Accuracy (%)

o

Figure 4: Feature Ablation Results

Accuracy vs Random Restarts

085

0.84
gos3
fom
<081
3
% 08
€079
é 0.78

0.77

076

NN e ENRRRRNARTISRARABBIIRNSBS3HER

Figure 5: Classification Accuracy improvement with Ran-
dom Restarts in experiments using Web-snippets dataset
(Experiment 2)

the classification accuracy of the task by plotting the best
classification accuracy that is observed so far against the
number of random restarts. Figure 5 shows the improve-
ment in the accuracy over multiple random restarts. We
observe that in about 65 — 75 random restarts, we reach the
maximum task improvement that can be achieved by our
method.

4. CONCLUSION

In this work we presented a technique for learning to ex-
pand short texts in a task-specific way. The expansion is
such that the task accuracy best improves when expanded
texts are used. We do not make any assumptions regard-
ing the tasks except that the task can be evaluated with
the expanded texts. Hence, our technique can be adapted
to expand short texts for any task. To learn task-specific
expansion, we presented several classes of mapping feature
functions: IR, topic model and embedding-based. Using a
derivative-free optimization technique known as BOBYQA,
we presented the efficient learning of feature weights in a
block learning fashion. As part of our future work, we plan
to investigate performance improvement in other types of
task by using our framework.

5. REFERENCES

[1] Measuring semantic similarity between words using
web search engines. WWW, 2007.

[2] S. Banerjee, K. Ramanathan, and A. Gupta.
Clustering short texts using wikipedia. SIGIR, 2007.

[3] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent
dirichlet allocation. 2003.

[4] D. Cai, X. He, and J. Han. Document clustering using
locality preserving indexing. KDE, 2005.

[5] M. Chen, X. Jin, and D. Shen. Short text classification
improved by learning multi-granularity topics. IJCAI,
2011.

[6] A. M. Dai, C. Olah, and Q. V. Le. Document
embedding with paragraph vectors. arXiv preprint
arXiw:1507.07998, 2015.

[7] L. Denoyer and P. Gallinari. The wikipedia xml
corpus. ACM SIGIR Forum, 2006.

[8] S. Fern and M. Stevenson. A semantic similarity
approach to paraphrase detection. CLUK, 2008.

[9] R. Ferreira, R. D. Lins, F. Freitas, S. J. Simske, and
M. Riss. A new sentence similarity assessment
measure based on a three-layer sentence
representation. DocEng, 2014.

[10] A. Huang, D. Milne, E. Frank, and I. H. Witten.
Clustering documents using a wikipedia-based concept
representation. PAKDD, 2009.

[11] T. Kenter and M. de Rijke. Short text similarity with
word embeddings. CIKM, 2015.

[12] J. Lafferty and C. Zhai. Document language models,
query models, and risk minimization for information
retrieval. ACM, 2001.

[13] M. C. Lintean and V. Rus. Measuring semantic
similarity in short texts through greedy pairing and
word semantics. FLAIRS, 2012.

[14] C. D. Manning, P. Raghavan, H. Schiitze, et al.
Introduction to information retrieval. Cambridge
university press Cambridge, 2008.

[15] T. Mikolov, K. Chen, G. Corrado, and J. Dean.
Efficient estimation of word representations in vector
space. 2013.

[16] J. Pennington, R. Socher, and C. D. Manning. Glove:
Global vectors for word representation. EMNLP, 2014.

[17] X.-H. Phan, L.-M. Nguyen, and S. Horiguchi. Learning
to classify short and sparse text & web with hidden
topics from large-scale data collections. WWW, 2008.

[18] M. J. Powell. The bobyga algorithm for bound
constrained optimization without derivatives.
Cambridge NA Report NA2009/06, University of
Cambridge, Cambridge, 2009.

[19] V. Rus, N. Niraula, and R. Banjade. Similarity
measures based on latent dirichlet allocation.
CICLing. 2013.

[20] M. Sahami and T. D. Heilman. A web-based kernel
function for measuring the similarity of short text
snippets. WWW, 2006.

[21] P. Schonhofen. Identifying document topics using the
wikipedia category network. WI, 2006.

[22] D. Vitale, P. Ferragina, and U. Scaiella. Classification
of short texts by deploying topical annotations. ECIR,
2012.

[23] J. Xu, P. Wang, G. Tian, B. Xu, J. Zhao, F. Wang,
and H. Hao. Short text clustering via convolutional
neural networks. NAACL-HLT, 2015.

[24] S. Yagcioglu, E. Erdem, A. Erdem, and R. Cakici. A
distributed representation based query expansion
approach for image captioning. 2015.

[25] W.-T. Yih and C. Meek. Improving similarity
measures for short segments of text. AAAI, 2007.

[26] A. Zubiaga and H. Ji. Harnessing web page directories
for large-scale classification of tweets. WWW, 2013.

