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ABSTRACT
Recently Kulkarni et al. [20] proposed an approach for collec-
tive disambiguation of entity mentions occurring in natural
language text. Their model achieves disambiguation by effi-
ciently computing exact MAP inference in a binary labeled
Markov Random Field. Here, we build on their disambigua-
tion model and propose an approach to jointly learn the node
and edge parameters of such a model. We use a max margin
framework, which is efficiently implemented using projected
subgradient, for collective learning. We leverage this in an
online and interactive annotation system which incremen-
tally trains the model as data gets curated progressively.
We demonstrate the usefulness of our system by manually
completing annotations for a subset of the Wikipedia collec-
tion. We have made this data publicly available. Evaluation
shows that learning helps and our system performs better
than several other systems including that of Kulkarni et al.

Categories and Subject Descriptors
G.3 [PROBABILITY AND STATISTICS]: Markov pro-
cesses
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1. INTRODUCTION
Entity linking (EL) is the task of identifying and linking

mentions embedded in unstructured text to their referent
entity in a catalog like Wikipedia. This has been shown to
benefit several systems, including search [4, 18], text classi-
fication [5], and other tasks. An entity linking system [21]
typically consists of a spotter that first identifies short to-
ken segments (“spots”) as potential mentions of entities from
its catalog. Many entities may qualify for a mention, e.g.,
“python” has over 15 senses in Wikipedia including Python
(genus) and Python (programming language). In the sec-
ond stage, a disambiguator assigns zero or more entities
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to selected mentions, based on mention-entity coherence, as
well as entity-entity similarity. Collectively, these two stages
comprise an annotator.

Some of the recent work [33, 24] shows that several men-
tions may have no associated sense in the catalog. This is
referred to as the no-attachment (NA) problem (or NIL in
the TAC-KBP challenge [25]). The other relatively lesser ad-
dressed challenge is that of multiple attachments [20], where,
a mention might link to more than one entities from the cat-
alog. This might often be a result of insufficient context and
has been acknowledged by some of the recent entity disam-
biguation challenges1.

As we describe in the next section, lot of earlier work on
entity disambiguation focused on per-mention disambigua-
tion. There has been several recent research on collective
disambiguation of all mentions leveraging features derived
from both mention-local context and global entity-entity re-
latedness. However, the complexity of these models often
makes it computationally unfeasible to jointly learn their
feature weights. We leverage the disambiguation model of
Kulkarni et al. [20] and propose an efficient approach to
jointly learn the local and global feature weights.

2. PRIOR WORK
Entity disambiguation: Earlier works [10, 3, 26] on

entity annotation focused on per-mention disambiguation.
This involves selecting the best entity to assign to a men-
tion, independent of the assignments to other mentions in
the document. Wikify! [26] for instance, uses context overlap
for disambiguation and combines it with a classifier model
that exploits local and topical features. Cucerzan [9] intro-
duced the notion of agreement on categories of entities in
addition to the local context overlap, in which the entity
context comprised out-links from and in-links to their corre-
sponding Wikipedia documents. Milne et al. [27] formulated
a “relatedness” measure of similarity between two entities
from Wikipedia, based on their in-link overlap. Related-
ness, in conjunction with the prior probability of occurrence
of an entity, was then used to train a classifier model. Han
et al. [16] leveraged the semantic information in Wikipedia
to build a large-scale semantic network and developed a sim-
ilarity measure to be used for disambiguation. Kulkarni et
al. [21] were the first to propose a general collective dis-
ambiguation approach, giving formulations for trade-off be-
tween mention-entity compatibility and coherence between
entities. Several graph-based approaches [17, 11] followed

1http://web-ngram.research.microsoft.com/ERD2014/



that cast the disambiguation problem as a problem of dense
subgraph selection from a graph of mentions and candidate
entities, making use of collective signals.

Most of these systems seem to prefer tagging conserva-
tively. Some of them [9, 17] restrict their tagging to named
entities, while others use a subset of entities from a back-
ground taxonomy such as TAP [10] or Wikipedia [27, 26].
Others [19, 1] have proposed LDA-based generative models
but focus only on person names. Some of the more recent
systems [21, 15] do perform aggressive spotting, aided by
the anchor dictionary of Wikipedia entities and study the
recall-precision tradeoff.

Kulkarni et al. [20] propose a joint disambiguation model
based on a Markov network of entities as nodes and edges for
their relatedness. Disambiguation is achieved by perform-
ing a MAP inference on this graph and it naturally handles
the NA and multiple attachment cases. Unlike other ap-
proaches [14, 28], their graph models candidate entities with
binary labels, instead of mentions with multiple labels. A
suitable assumption on cliques and their potentials makes
efficient computation of exact inference possible. However,
it is not clear as to how the node and edge feature weights
are set.

Joint learning: To the best of our knowledge, none of the
graph-based models above have attempted to jointly learn
the node and edge feature weights. While there is prior
work [31, 32] that applied graphical models to the problem
of information extraction and coreference resolution, exact
inference and estimation is intractable in these models. Sim-
ilar approaches have also been applied to the problem of
entity disambiguation [21, 14, 28], but hardly anyone has
attempted to jointly learn the feature weights. Taskar et
al. [29] proposed an approach to learn associative Markov
networks (AMNs). They provide an approximate quadratic
program for the problem of learning a margin maximizing
Markov network and show that it is guaranteed to return
optimal parameters for AMNs with binary-valued variables.
Our learning approach is based on this work but we are per-
haps the first ones to apply it in the text annotation domain.
Further, we also extend this learning approach and propose
an interactive active learning framework.

2.1 Our Contributions
We leverage the disambiguation model of Kulkarni et al. [20]

and propose an efficient approach to jointly learn the node
and edge feature weights. We also develop an interactive
active learning framework that progressively improves the
model as more training data becomes available. We imple-
mented our approach in an online annotation system and
used it to semi-automatically curate labeled data2. Our
trained model performs better than several other systems
including that of Kulkarni et al.

3. PRELIMINARIES
We borrowed the features and the disambiguation model

from the work described in Kulkarni et al. and present it in
brief here. We first start with the problem definition.

3.1 Problem Definition
The primary goal of document annotation is to link en-

tity mentions in an input document to entities in a catalog.

2http://tinyurl.com/entitydisamb-data

Mentions (or “spots”) are contiguous token sequences in a
text, e.g. Bush, that can potentially link to an entity, e.g.
George Bush in the catalog. Let Md be the set of all men-
tions in a document d and E be the set of all entities in the
catalog. Then, the entity linking problem is to find for each
mention m ∈ Md, the set of entities Êm ⊂ E ∪ {NA} that
it can link to.

As a first step, the input text d is processed by a “spotter”
to identify the setMd of mentions and the set of candidates
Em ⊂ E , ∀m ∈ Md. em ∈ Em is called a candidate entity
for spot m. The set Ed = ∪m∈Md Em forms the candi-
date entities set for document d. This is then followed by a
“disambiguation” phase that obtains from Em, the set Êm of
entities that the mention m can actually link to. When none
of the entities in Em are valid, then Êm = {NA}. Alterna-
tively, more than one entities from Em might get promoted
to Êm. Assuming one sense per discourse [13], an entity in
the candidate set of more than one mentions, links (or does
not link) to all those mentions.

3.2 Entity Catalog
A catalog is a structured knowledge base comprising cat-

egories with entities under them, along with their attributes
and relations. Wikipedia has seen an extensive organic growth
and covers entities spanning a vast set of domains. We re-
port experimental results using the Wikipedia dump from
May 2011, with approximately 4.4 million entities. For eval-
uation on ERD, we used as catalog, the snapshot of Freebase
as provided in the challenge.

3.3 Spotter
We processed the Wikipedia dump and indexed it in sep-

arate fields storing page title, synopsis, frequent words, out-
links, full text etc. Given a document d, we first use the
Stanford POS tagger to obtain a set Td of tokens (and their
spans) consisting of nouns, adjectives and verbs occurring in
the document text. Tokens appearing in close spans are con-
solidated into a phrase if the phrase is an anchor text for an
entity in Wikipedia. The set of tokens and phrases obtained
after consolidation, is the set Md of all potential mentions
in the document. For each mention m ∈Md, we then fire a
fielded query against the catalog store to obtain the set Em

of candidate entities for the mention. In our experiments we
only retain the top k (empirically set to 8) entities from the
result set. In addition, we also used the Wikipedia Miner
toolkit3 to retrieve candidate senses for these tokens and
include them in the set Em.

3.4 Features
We used three types of features - (1) Popularity-based

features of an entity: Prior Sense Probability [26], In-Link
Count, Out-Link Count; (2) Mention-Entity compatibility
features [21]; (3) Entity-Entity relatedness features: Category-
based Similarity [9], In-link based Similarity [27], Out-link
based Similarity, Contextual Similarity.

3.5 The Disambiguation Model
Having identified the set of candidate entities for each

mention, a disambiguator attempts to link each mention to
zero or more entities. The label of a candidate is a collec-
tive result of the interplay of local mention-entity and global
entity-entity relatedness signals.

3http://sourceforge.net/projects/wikipedia-miner/



A Markov Random Field (MRF) is an undirected graph-
ical model that captures local correlations between random
variables [29].

Figure 1: Candidate entities MRF model

A node is instantiated in the MRF graph for each possi-
ble entity mapping of each mention instance in a document.
Edges capture entity-entity relatedness. Let xi be the node
feature vector of candidate i and xij be the edge feature
vector of the edge joining candidates i and j. Each candi-
date corresponds to a random variable that takes a binary
label, yi ∈ {0, 1}, based on whether or not it correctly dis-
ambiguates the underlying mention. Let C be the set of all
cliques in the MRF and each clique c ∈ C be associated
with a clique potential φc(.). Cliques are restricted to nodes
and edges and their potentials are parameterized by log-
linear functions of feature vectors; i.e., log φc(.) = wc · xc,
where, xc is the feature vector of a clique and wc, the cor-
responding weight vector. The potentials are assumed to be
submodular [29], that is, they are associated with only those
assignments, where, variables in a clique have the same la-
bel (associative). Moreover, these potentials are all greater
than one and the rest are set to one. Thus, log φc(.) = 0
for non-associative cliques and therefore we define node and
edge weights only for associative cliques. Let w0 and w1

be the node feature weights influencing node labels 0 and
1 respectively and w00 and w11 be the associative edge
weights influencing the connected nodes to take the same la-
bel. The probability of a complete graph labeling y is given
by P (y) = 1

Z

∏
c∈C φc(yc), where Z is the partition function.

Disambiguation is achieved by doing MAP inference on this
graph.

L(y) = arg max
y∈Y

∑
i∈N

log φi(yi) +
∑
ij∈E

log φij(yij)

= arg min
y∈Y
−(
∑
i∈N

w0 · xi(1− yi) + w1 · xiyi

+
∑
ij∈E

w00 · xij(1− yij) + w11 · xijyij) (1)

N is the set of nodes and E is the set of edges in the MRF,
yi ∈ {0, 1} and yij = yiyj . For an MRF with binary labeled
nodes and associative edge potentials, MAP inference can
be computed exactly in polynomial time, by finding the min
cut of an augmented flow graph [2].

Construction of flow graph: The MRF is augmented
by adding two special terminal nodes source, s and sink, t
that correspond to the two labels 0/1. For each node i, we
add terminal edges s → i with weight 〈w0,xi〉 and i → t
with weight 〈w1,xi〉. For each neighborhood edge i → j,

we assign weight 〈(w00 + w11),xij〉. We also add weight
〈w00,xij〉 to the edge s→ i and 〈w11,xij〉 to the edge j → t.
MAP inference in original MRF corresponds to the s/t min
cut on this augmented graph, with nodes on the s side of the
cut getting a label of 0, and the nodes on the t side being
assigned a label of 1.

4. LEARNING FEATURE WEIGHTS

Algorithm 1: MRF Learning algorithm

Data: Training set {X, q̂}, MRF graph g, Slack penalty C,
Iterations T , Step size αt

Result: Weight vector w
w ← 0
t← 1
Nn ← number of nodes in g
fopt ←∞
wopt ← 0
while t ≤ T do

g ← construct flow network from g
q̃ ← s/t mincut of g

∇wξ(w)← 2w + C(q̂ − q̃)T X
w ← w − αt ∇wξ(w)
Project w onto the positive orthant
Compute function value f
if f < fopt then

fopt ← f
wopt ← w

end
t← t+ 1

end
return wopt

The submodularity restriction and binary labels, make ef-
ficient implementation of learning possible. We jointly learn
both node and edge feature weights following the general
max-margin framework described in [29, 30]. Consider a
graph with N nodes and E edges constructed as described
above. Following Taskar et al., the learning problem can be
formulated in terms of the cut vector, such that, we mini-
mize the norm of the weight vector subject to the constraint
that the desired labeling scores better than an arbitrary la-
beling by an amount that scales with the Hamming distance
between the desired and incorrect labelings.

min
w≥0
‖w‖2 (2)

subject to

min
q∈ Q

∑
i,j∈E

w · xij(qij − q̂ij)− (Nn − q̂T
n · qn) ≥ 0

Here, Q is the set of all valid cuts and qij ∈ {0, 1} indicates if
edge i→ j is cut (qij = 1). qn is the cut vector for terminal
edges with components qsi and qit, where, qsi = 1 implies
that i is labeled 1. q̂ is the cut vector corresponding to the
desired labeling. The first component of the constraint cap-
tures the difference in cost of the min cut induced by the
weights w and that of the desired labeling. The other com-
ponent corresponds to the number of labeling disagreements,
Nn being the number of nodes in the graph (excluding s and
t).

By rearranging terms, we obtain

min
w≥0
‖w‖2 (3)



subject to min
q∈ Q

∑
i,j∈E

(wT · xij + q̂ij(δis + δjt))qij

≥ Nn +
∑
i,j∈E

(wT · xij)q̂ij

Here, δij is the Kronecker delta. Now, consider the inequal-
ity constraint minq∈ Q

∑
i,j∈E(w

T ·xij + q̂ij(δis + δjt))qij ≥
Nn +

∑
i,j∈E(w

T · xij)q̂ij . The left-hand-side of this in-

equality is equivalent to adding a capacity q̂ij(δis + δjt)
to all cut terminal edges. Since each node participates in
one terminal edge, this is equivalent to adding a total ca-
pacity of at-most Nn to the current flow graph. There-
fore, minq∈ Q

∑
i,j∈E(w

T · xij + q̂ij(δis + δjt))qij ≤ Nn +∑
i,j∈E(w

T · xij)qij ≤ Nn +
∑

i,j∈E(w
T · xij)q̂ij . It follows

that the left-hand-side and right-hand-side of the inequality
in the constraint must be equal [30]. Moving the constraint
to the objective, we get,

min
w≥0
‖w‖2 + C(Nn +

∑
i,j∈E

(wT · xij)q̂ij

− min
q∈ Q

∑
i,j∈E

(wT · xij + q̂ij(δis + δjt))qij)

Summing over all the documents in the training set, we
get the final objective,

min
w≥0
‖w‖2 +

∑
d∈D

(C (Nd +
∑

i,j∈Ed

(wT · xij)q̂ij

− min
q∈Q

∑
i,j∈Ed

(wT · xij + q̂ij(δis + δjt))qij))
(4)

Here, w = [wT
0 wT

1 wT
00 wT

11]T , Nd is the number of nodes
(excluding s and t) and Ed is the set of edges in the candidate
entity MRF graph for a document d ∈ D, the set of all train-
ing documents, s and t are special source and sink nodes,
respectively. The term Nd−q̂ij(δis + δjt))qij gives the num-
ber of misclassified nodes and

∑
i,j∈Ed

wT ·xij q̂ij−wT ·xijqij
is the total capacity of incorrectly cut edges in the flow
graph. C is the penalty associated with the incorrect la-
beling. We solved the formulation (4) using the subgradient
descent method as described in Algorithm 1.

4.1 Handling Unbalanced Training Data
The training data has many more entities labeled 0 as

compared to those labeled 1. In our datasets, we observed a
skew of about 3 : 1. This results in a bias towards the over-
represented class in the learning algorithm and the accuracy
of the non-dominant class suffers. We addressed this prob-
lem by assigning separate misclassification penalties C0 and
C1 for label 0 and 1 disagreements respectively in equation 4,
where, disagreements are defined as below.

Definition 1. Let li ∈ {0, 1} and l̂i ∈ {0, 1} be the pre-
dicted and actual labels of node i. We say that a node i has
label 0 disagreement if li 6= l̂i = 0. Similarly it has label 1
disagreement if li 6= l̂i = 1.

Proposition 1. For an edge i→ j with qij 6= q̂ij, exactly

one of the nodes agrees on the label i.e. li = l̂i (or lj = l̂j)

and the other node disagrees on the label i.e. lj 6= l̂j (li 6= l̂i).

Proof. Case 1: Let qij 6= q̂ij = 0. This implies that the

edge is not cut in the actual labeling and therefore l̂i = l̂j .
However, qij = 1 implies that li 6= lj . It follows that either

li = l̂i or lj = l̂j .
Case 2: Let qij 6= q̂ij = 1. Following a similar argument

as that for case 1 above, we have that l̂i 6= l̂j and li = lj .

Again, it follows that either li = l̂i or lj = l̂j .

Definition 2. An edge i → j with qij 6= q̂ij, is said to

have a label 0 disagreement if either li 6= l̂i = 0 or lj 6=
l̂j = 0. It is said to have a label 1 disagreement if either

li 6= l̂i = 1 or lj 6= l̂j = 1.

4.2 Active Learning
Our online annotation system presents an opportunity to

continuously update the model as more labeled data be-
comes available. The commonly used passive learning ap-
proach involves manual annotation of randomly and inde-
pendently sampled data. Due to the time and cost associ-
ated with this process, often there is not enough training
data to meet certain level of performance. Active learn-
ing [22] aims to minimize the labeling effort, by requesting
labels for the most informative samples, so as to achieve a
desired level of accuracy. While there are several approaches
to querying examples for labeling [23], we follow a pragmatic
approach, that can be characterized as least certain querying
method. The method samples examples with the smallest
difference between two highest probability classes. Our bi-
nary labeled MRF model labels a node, based on the collec-
tive effect of the node potential and the edge potentials on
the edges connecting the node to its neighbors. We define
certainty C(i) at a node ni as

C(i) =
∣∣∣(w0 · xi +

∑
(ij)∈E:j∈N(i)

w00 · xij
)

(5)

−
(
w1 · xi +

∑
(ij)∈E:j∈N(i)

w11 · xij
)∣∣∣

where N(i) is the set of all neighboring nodes of the node
i. The certainty score C(d) for a document d is then com-
puted as the average certainty score across all nodes in that
document.

C(d) =
1

|N |
∑
i∈N

C(i) (6)

The active learning algorithm then queries for a document
with the lowest C(d) and presents the document for labeling.
It might be possible to further reduce the labeling effort
by requesting labels for only top k entities in the selected
document, where the entities are ordered in increasing values
of their C(i).

5. EXPERIMENTS AND RESULTS

5.1 Data Sets
Table 1 shows details of the datasets used. We useWikicur

(created by Kulkarni et al. [20]) for training our model and
present cross-validation results. We also evaluate on several
other datasets from the entity linking literature. Kulkarni et
al. [21] had created a dataset (IITBpart) based on aggres-
sive spotting but assuming single attachment. We, therefore,
used our annotation system to manually complete annota-
tions (to create IITBcur) for the documents in this dataset.
Three volunteers put in a combined effort of close to 300
hours to curate 57 documents in the IITBcur dataset. Each



document was reviewed by at least one other volunteer. For
a given document, our system displays the spots along with
their candidate entity sets. Volunteers were instructed to:

1. link all correct entities (multiple attachments) to a
mention;

2. add an entity manually if it is not already in the can-
didate set;

3. link disambiguation pages sparingly and only if they
begin with a definition that is relevant in the context
of the mention;

4. leave the mention untagged (NA) only if none of the
above qualify and

5. manually add mentions (and their entities) whenever
they were missed by our spotter.

The number of mentions is indicative of our aggressive spot-
ting (Refer 3.3). It is encouraging to note that close to 15%
of these mentions have multiple attachments4 and around
30% have no attachment. In spite of our best efforts, data
curation continues to be an extremely challenging task. We
discuss some of these challenges in a later section (Refer to
Section 6).

5.2 Evaluation Measures
We follow the fuzzy evaluation measure [7] that accounts

for slight syntactic and semantic variations in the match of
a predicted and true annotation, where an annotation a is
defined as the mention-entity pair 〈 m, e 〉. Using their no-
tion of weak annotation match Mw(a1, a2)5, we use as per-
formance metrics, Recall, Precision and F1 micro-averaged
over all documents in a dataset. After factoring out spotter
errors, we also separately report the accuracy of our disam-
biguation model alone (Referred to as“disambiguator only”).
This accuracy can be easily computed by comparing the pre-
dicted and true labels of candidate entities also present in
the ground truth (i.e. Ed ∩ Êd for a document d).

5.3 Experiments with only Node Features

5.3.1 Is there merit in data curation?
The data curation process presents an opportunity for

continuous training where our inference model periodically
evolves, as more and more data gets curated. Optionally, in
the absence of any curated data to start with (at time t = t0
when our model is yet untrained), one could use a Logistic
Regression model, trained on a large uncurated dataset, to
warm-start the data curation process. As data gets curated
and our model is trained, we switch to our trained model at
time t = tk.

We trained binary label LR models using 10000 randomly
sampled Wikipedia documents, replacing an original Wikipedia
document with its curated version from Wikicur, one at a
time. Figure 2 plots the training accuracies of these models
for an increasing number of curated documents. The im-
provement in accuracy could be explained by the reduction
in false negatives achieved by virtue of aggressive tagging
and multiple attachments in the curated dataset. Based on

4includes synonyms
5which is true iff mentions m1 and m2 overlap in the input
text and entities e1 and e2 are synonyms

this observation, we claim (and verify it in section 5.4.3) that
our MRF model too would benefit from data curation. At
the same time, the use of an LR model for warm-starting an
online annotation system as ours is strongly recommended.

5.3.2 How does our model perform?
Thereafter, we trained our candidate entity MRF model

on Wikicur dataset using the node features alone. We report
two-fold cross-validation results on Wikicur and test results
on IITBpart (Refer to table 2). These serve as a baseline
for our collective approach.

5.4 Collective Disambiguation
Next, we trained our model using node features and one

or more edge features. Iterations T were fixed at 600, C
was tuned as described below, and step size (at iteration t),
αt = K/

√
t, where K was empirically set to 0.01.

5.4.1 Effect of C on accuracy
The C parameter in equation 4 acts as a regularizer and

is indicative of the tolerance of disagreement between pre-
dicted and true labels. It was tuned on the training fold dur-
ing two-fold cross-validation on Wikicur. Also, to account
for the skew in label 0 and 1 instances in the dataset, we pe-
nalized label 0 and label 1 disagreements separately, using
C0 and C1, respectively. A higher C1 for instance, improves
the label 1 recall while adversely impacting the precision. It
is this recall-precision tradeoff for varying values of C0, C1,
that we capture in Figure 4. We chose the best C0 and C1
from these for all our experiments.

5.4.2 Effect of Edge Features
Table 3 shows the effect of different edge features in a col-

lective setting. The model seems to benefit the most from
the inlink and outlink relatedness features, while context
overlap-based features seem to be noisy. This is understand-
able as context overlap-based signals are useful only for top-
ically coherent entities, which might not hold true for an
aggressively tagged corpus like ours [21].

5.4.3 Does training help?
We sampled 50 documents from the Wikicur dataset, 5

at a time and used them for training, applying both passive
(PL) and active learning (AL). The F1 measure evaluated
on an independent test set of 30 documents is shown in the
plot (Refer to figure 3). The F1 on training set seems to
fluctuate, more so for Train-AL, as has been observed by
others [6]. The performance of an active learner depends not
only on training on instances that the model is least certain
about, but, also on the informative features contained in
them. The F1 on test set does show a steady improvement
and we expect this to improve further as more and more
curated documents become available for training.

5.4.4 Comparison with collective approaches
We compared our system against several other collective

annotation approaches: AIDA [17], Wikify! [26], TagMe [12],
Wikipedia Miner [27] and Illionis Wikifier [28] on three datasets
viz. IITBpart, AQUAINT (Wikipedia Miner) and MSNBC [9].
Our system consistently beats all these systems on all the
three datasets (Table 4). Some of the other collective an-
notation systems like Cucerzan (F1 : .45), CSAW [21] (F1 :



Table 1: Dataset statistics (Mean and Standard Deviation)

Dataset Size #Mentions #Mentions as
% of #words
in a document

#NA #Multiple at-
tachments

#Overlapping
mentions

M SD M SD M SD M SD M SD

Wikicur 106 61.16 20.22 22.62 3.9 12.9 7.32 10.82 8.54 3.32 3.18

IITBpart 103 191.58 100.26 31.12 12.15 74.28 41.41 0 0 0 0

IITBcur 57 196.02 82.68 31.5 5.9 63.89 37.54 25.5 18.43 3.07 2.85

Figure 2: Effect of data curation
Figure 3: Effect of training

Table 2: Non-collective results (only node features)
on Wikicur set and IITBpart datasets

Dataset Disambiguator
only

Weak annota-
tion match

P R F P R F

Wikicur .82 .67 .74 .82 .56 .67

IITBpart .82 .66 .73 .82 .50 .62

Figure 4: Effect of varying C: C0 and C1

.69), [15] (F1 : .73), and [14] (F1 : .8) have used CSAW’s
evaluation measure to evaluate on IITBpart. We achieved
an F1 of 0.6 using the same measure. The relatively lower
F1 on this dataset could be attributed to inconsistencies be-
tween the ground truth and our knowledge base. During our
manual annotation of IITBpart, we came across over 8000
annotations that were either added or removed6 to create
the IITBcur dataset.

6due to erroneous annotations or newer Wikipedia dump

Table 3: Effect of edge features: two-fold cross val-
idation on Wikicur. Edge features that showed im-
provement over node features are shown in bold.

Edge feature Disambiguator
only

Weak annotation
match

P R F P R F

Category .72 .74 .73 .72 .63 .67

Outlink (O) .84 .67 .74 .84 .57 .68

Inlink (I) .80 .73 .76 .80 .62 .70

Frequent (F) .84 .64 .73 .84 .54 .66

Synopsis .69 .61 .65 .69 .52 .59

Syn. V/Adj. .69 .67 .68 .69 .57 .62

Full text .85 .63 .73 .85 .54 .66

All features .44 .50 .47 .44 .42 .43

I+O .85 .67 .74 .85 .56 .68

I+O+F .79 .74 .76 .79 .63 .70

We evaluated our system on the ERD dataset and achieved
R:.62, P:.66, F1 : .64. We believe that our system benefits
from model training, thereby performing better than that of
[20] (F1 : .61). While some of the other systems [8] at ERD
performed better, this could be attributed to their choice of
features. Our system offers an end-end annotation frame-
work that is interactive and jointly trains feature weights.

5.5 Results on IITBcur

Section 6 shows some examples of incomplete annotations
in the IITBpart dataset. It is precisely such cases that we
tried to correct during data preparation. Finally, we report
the accuracy of our model on the IITBcur dataset - P :
77.4%, R : 54.3%, F1 : 63.8%.



Table 4: Comparison with publicly available systems
(as reported by Cornolti et al. [7]) on three datasets

IITBpart AQUAINT MSNBC

Annotator F P R F P R F P R

AIDA .07 .66 .04 .21 .35 .15 .47 .75 .35

Wikify! .37 .55 .28 .34 .29 .42 .41 .34 .51

TagMe .44 .45 .42 .51 .46 .57 .52 .48 .55

Wikipedia Miner .52 .57 .48 .47 .38 .63 .46 .55 .36

Illionis Wikifier .44 .58 .36 .34 .29 .42 .41 .34 .51

Our Model
(Node+I)

.67 .76 .60 .78 .81 .74 .67 .68 .66

Our Model
(Node+I+O+F)

.65 .69 .61 .79 .82 .75 .66 .63 .69

5.6 Performance Evaluation
While our model allows for efficient inference and learn-

ing, graph construction itself is an expensive operation. For
a document with |Ed| candidate entities, the graph construc-
tion complexity is O

(
|Ed|2

)
. For documents in the Wikicur

set with 190 candidate entities on an average, the average
graph construction time was about 57 seconds. For the rel-
atively larger documents in the IITBcur dataset, the aver-
age graph construction time was around 1.5 minutes. The
performance could be improved by (a) pre-computing the
entity-entity features for all entities in the knowledge base
(b) dividing input document into chunks and performing
graph construction and inference in parallel.
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Figure 5: Running time for inference on Wikicur

The running time for inference (Figure 5) shows a slightly
quadratic behavior in the number of candidate entities |Ed|
of a document. Inference on most documents runs in under
0.5 seconds. On the relatively sparser Inlink+Outlink graphs
(Refer to Figure 6), training is much faster than the more
dense Category graphs. The faster training happens without
trading off much on accuracy as can be seen in Table 3. For
our experiments, the model was retrained at time t using all
the available training data. While this might be acceptable
for offline training, online systems might benefit from faster
incremental training approaches.

6. CHALLENGES WITH DATA CURATION
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Figure 6: Scalability of training

Data curation is a tedious and challenging task. Its in-
herent ambiguity often introduces annotator bias leading to
either incomplete or ambiguous annotations in the curated
data.

1. There might be cases when two or more entities are
correct as attachments for a mention. E.g., mention
‘Barack Obama’ can be tagged as Barack Obama or
President of United States, and both might seem cor-
rect in the context that it appeared. A ‘one entity
per mention’ assumption makes it impossible to honor
such cases.

2. Human annotators often limit their attention to the
candidate entities retrieved by the spotter and very
rarely search the catalog for any missed candidates.
This results in a lot of missed annotations and often
many mentions getting no attachments (NA).

3. Annotators also seem biased towards entity names that
match with the mention text. However, this is often
not true. E.g. a mention of ‘cone snail’ disambiguates
to Conidae and Conus.

4. Wikipedia contains many disambiguation pages that
often show up in the candidate set for a mention. Tag-
ging a mention with a disambiguation page seems to
beat the very purpose of a disambiguation system. Ide-
ally, the mention should be annotated with one of the
entities on the disambiguation page or NA if none of
them is semantically right.

Table 5 shows some of these cases from the IITBpart dataset.
It is cases like these that we attempted to correct in coming
up with the curated IITBcur dataset.

7. CONCLUSION
We presented an approach to jointly train the node and

edge features of a collective disambiguation model for the
purpose of entity linking. Our system leverages active learn-
ing to bring down labeling effort. Experiments show that the
model benefits from training and improves with the avail-
ability of more labeled data. We consistently performed



Table 5: Examples of predictions on the IITBpart highlighting the challenges in data curation

Ground Mention Ground Entity Predicted Entity Remarks

lifestyle Lifestyle NA Disambiguation page attachment

harsh reality NA Reality Incomplete data

effort NA Energy Incomplete data

self discipline Discipline self → Self, discipline → Discipline Overlapping mentions

god God (male deity) God Multiple correct entities

intellect Intelligence Intellect Multiple correct entities

better than many other systems on various datasets. It
also scales reasonably well and with suggested tweaks can
be used for large scale document annotation.
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