
Error Detection and Corrections in
Indic OCR using LSTMs

Rohit Saluja
IITB-Monash Research Academy

Mumbai, India

rohitsaluja@cse.iitb.ac.in

Devaraj Adiga
IIT Bombay

Mumbai, India

pdadiga@iitb.ac.in

Parag Chaudhuri
IIT Bombay

Mumbai, India

paragc@cse.iitb.ac.in

Ganesh Ramakrishnan
IIT Bombay

Mumbai, India

ganesh@cse.iitb.ac.in

Mark Carman
Monash University

Victoria, Australia

mark.carman@monash.edu

Abstract—Conventional approaches to spell checking suggest
spelling corrections using proximity-based matches to a known
vocabulary. For highly inflectional Indian languages, any off-the-
shelf vocabulary is significantly incomplete, since a large fraction
of words in Indic documents are generated using word conjoining
rules. Therefore, a tremendous manual effort is needed in spell-
correcting words in Indic OCR documents. Moreover, in a spell
checking system, a vocabulary may suggest multiple alternatives
to the incorrect word. The ranking of these corrective suggestions
is improved using language models. Owing to corpus resource
scarcity, however, Indian languages lack reliable language models.
Thus, learning the character (or n-gram) confusions or error
patterns of the OCR system can be helpful in correcting the Out
of Vocabulary (OOV) words in OCR documents. We adopt a Long
Short-Term Memory (LSTM) based character level language
model with a fixed delay for discriminative language modeling
in the context of OCR errors for jointly addressing the problems
of error detection and correction in Indic OCR. For words that
need not be corrected in the OCR output, our model simply
abstains from suggesting any changes. We present extensive
results to validate the performance of our model on four Indian
languages with different inflectional complexities. We achieve F-
Scores above 92.4% and decreases in Word Error Rates (WER)
of at least 26.7% across the four languages.

I. INTRODUCTION

Optical Character Recognition (OCR) is the process of

converting document images to editable electronic format [1].

Manual correction of OCR documents is very cumbersome.

An OCR system even with accuracies as high as 90% is

not sufficiently useful unless complemented by a partially

automated mechanism for error detection and correction. Thus,

error detection can be considered a very important step in post

processing OCR words. On large contiguous texts with nearly

uniform font and language characteristics, it may be further

desirable that the error detection and correction system be able

to continuously improve itself by incorporating user feedback.

The importance of post-OCR text correction has been empha-

sized in literature [2], [3] and is further highlighted by the

introduction of a recent competition for comparing systems

for such corrections in English and French documents [4].

Conventional approaches to spell-checking and correction

yield inadequate accuracies in the context of post-OCR cor-

rections for languages that are rich in inflections [5]. These

primarily depend upon lookups into fixed vocabularies. Such

vocabularies are largely incomplete for languages in which

words are dynamically formed using word conjoining rules.

Fig. 1. Examples of OCR words corrected by LSTM in four Indic languages.
Here, the correct words are all OOV words. Mistakes are marked in red.

A crude example of word conjoining rules from English

involves placing together the words “every” and “one” to

form the word “everyone”. A simple example from Sanskrit is

of combining “vis.aya”, “pañcaka” and “rahitam” together to

form “vis.ayapañcakarahitam”. The second column of Figure 1

includes conjoint words for 4 Indian languages generated using

complex conjoining rules.

In recent work, Recurrent Neural Networks (RNNs) have

been found to be effective in learning character level language

models [6]. Such models make no local independence assump-

tions on the language text, unlike Hidden Markov Models

(HMM). Character-based attention RNNs have also shown

state-of-the-art results in Neural Language Correction [7]. In

particular, a special type of RNNs, called Long Short Term

Memory Networks (LSTMs), remember larger contexts and

are therefore best suited for languages rich in OOV words.

We delay the output in LSTM model to take care of n-gram

character confusions and succeeding contexts. In this paper, we

present a model based on LSTM with a fixed delay that can

learn, detect and correct OCR errors in addition to learning the

language model. Examples of errors detected and corrected by

our model are shown in Figure 1. In the process of manually

correcting OCR documents, we frequently observe that the

knowledge of error patterns is helpful in error detection and

correction. The OCR system tends to get confused between

letters with similar images. To correct such errors, we need

not refer to the original word image, since the information

can be inferred from the error patterns and the context in OCR

words. This observation is supported by our results.

We present the problem scope and error analysis in Sec-

tion III, wherein we also describe our dataset. Subsequently,

in Section IV, we present our method of using an LSTM with

a fixed delay for OCR correction in Indian Languages. In



0 2 4 6 8
No. of words (millions)

0

20

40

60

80

100

P
er

ce
n

ta
g

e 
o

f 
U

n
iq

u
e 

T
er

m
s

Percentage of Unique Word Occurences

Sanskrit

Malayalam

Kannada

Hindi

Fig. 2. Unique word coverage between Sanskrit, Malayalam, Kannada and
Hindi (Top to bottom). Higher curve implies more OOV words in the language.

Section V, we elaborate on our experiments, including various

ways in which we exploit our model in different contexts. The

results are summarized in Section VI, followed by conclusions

and directions for future work in Section VII.

II. RELATED WORK

Dictionary-based approaches to corrections have been ex-

plored in many works in the past [8], [9]. These methods

typically perform poorly in the absence of complete vocab-

ularies. Some of the works also concentrate on making the

dictionary based approach more efficient [10]. A trigram-

based noisy-channel model has been used to detect word

errors [11] and make context-sensitive corrections. Part-of-

speech trigrams have also been combined with Bayesian

methods for context-sensitive spelling correction [12]. More

complex methods [13] employ a combination of models such

as a shape classifier model, a word n-gram model & a binary

n-gram dictionary model to detect errors. These methods,

however, do not perform well for the inflectionally rich Indian

languages.

OCR error detection for highly inflectional Indian languages

faces challenges such as large unique word lists, lack of

linguistic resources & lack of reliable language models [5].

This work shows that the Support Vector Machine (SVM)

classifier performs better than a conventional technique of

dictionary lookup (combined with n-grams) for Malayalam

and Telugu. More recently, RNNs and Gaussian Mixture

Models have been used to detect the erroneous OCR words in

Hindi, Gujarati, Malayalam, & Telugu [14], and these models

outperform the SVM model [5] on precision, recall & F-Score.

There have been earlier efforts on post-processing the

OCR output of individual Indian languages. A statistical

sub-character language model, that backs-off a multi-stage

graph module, was used in the post-processing scheme for

Malayalam OCR [15]. A shape-based system for post process-

ing Gurmukhi OCR output has also been investigated [16].

The technique of morphological parsing has been applied

for character-level error correction in Bangla OCR text [17].

Finally, difficulties in developing spell-checkers for Hindi,

Bengali & English involving real-word errors (RWE) and non-

word errors (NWE) were discussed in Choudhury et al. [18].

0 2 4 6 8 10

Edit Distance(OCR Word, Ground TRuth)

0

10000

20000

30000

40000

50000

60000

F
re

q
u

e
n

c
y

Sanskrit

0 2 4 6 8 10

Edit Distance(OCR Word, Ground TRuth)

0

10000

20000

30000

40000

50000

60000

F
re

q
u

e
n

c
y

Malayalam

0 2 4 6 8 10

Edit Distance(OCR Word, Ground TRuth)

0

10000

20000

30000

40000

50000

60000

70000

F
re

q
u

e
n

c
y

Kannada

0 2 4 6 8 10

Edit Distance(OCR Word, Ground TRuth)

0

10000

20000

30000

40000

50000

60000

70000

F
re

q
u

e
n

c
y

Hindi

Fig. 3. Histogram of edit distance between OCR word and corresponding
ground truth word pairs. As shown, most of the erroneous OCR words (with
edit distance ≥ 1) exhibit confusion on one character and the frequency of
erroneous words exponentially decreases with edit distance.

III. PROBLEM SCOPE, DATA DESCRIPTION & ANALYSIS

Some vocabulary characteristics (such as dynamism and

size) can be analyzed through the graphs of unique words

versus corpus length. This has been studied for Malayalam

and Telugu [5]. In Figure 2, we present a similar analysis

for Sanskrit, Malayalam, Kannada and Hindi. As shown, the

vocabulary is most dynamic/incomplete in Sanskrit, followed

by Malayalam, Kannada, and Hindi.

A glimpse of OCR errors can be obtained using the his-

togram of Levenshtein-Damerau edit distance between pairs of

OCR words and corresponding ground truth word. We chose

to work using edit distance, instead of hamming distance,

since a significant fraction of OCR errors consists of confusion

between letters that look similar.

We used Google’s free OCR-service [19] to scan 86k
Sanskrit, 81k Malayalam and 118k Kannada words from

different documents. We carefully corrected the OCR words

to form the ground truth. For Hindi, we used 67k word pairs

from a state-of-the-art work [14]. Since more than 96% of

the words were incorrect in the original dataset for Hindi, we

balanced the dataset by also including “Ground Truth, Ground

Truth word” pairs in addition to the “OCR word, Ground

Truth word” pairs. This increased the number of word pairs in

Hindi to 134k. We aligned the word pairs using the recursive



Text Alignment Tool (RETA) [20]. To tackle the problem of

variable byte length per character in Indic scripts, we used

ASCII transliteration schemes such as SLP1 (Sanskrit Library

Phonetic Basic encoding scheme) for all our experiments.

The histograms for Sanskrit, Malayalam, Kannada, and

Hindi word pairs are shown in Figure 3. The frequency at 0
edit distance represents the number of words correctly detected

by the OCR system. It is important to note that the frequency

of erroneous OCR words, i.e., words with edit distance ≥ 1,

is maximum for the words that are a unit distance away from

the ground truth. This frequency decreases exponentially with

edit distance irrespective of the language and the OCR system.

A good OCR system would tend to make fewer mistakes

at higher edit distances, and thus such a histogram would

decay faster as compared to a poor quality OCR system.

Interestingly, such a histogram provides intuition regarding

the appropriate amount of delay in our LSTM model (7 for

Sanskrit & Kannada and 5 for Malayalam & Hindi).

IV. LSTM MODEL FOR POST-OCR ERROR DETECTION

AND CORRECTION

An LSTM can be used to predict characters that appear

in a word based on a preceding sequence of characters.

Character-based approaches have not (yet) attained state-of-

the-art performance on language modeling tasks [7], but such

an approach can be useful for correcting OCR errors since the

OCR output is partially correct and most errors follow some

known confusion patterns based on images of characters that

look similar. An erroneous character in a word can be more

robustly detected and corrected if we look at the sequence of

characters that appear before and after the character. This is

modeled by an LSTM with a fixed delay, wherein the delay

allows the succeeding sequence of characters to also be used

for learning, unlike a simple LSTM where only the preceding

sequence is considered. The length of the future sequence

used is equal to the delay. Another reason for including the

delay is to allow for character contractions, whereby multiple

characters are replaced by a single character.

We aligned word pairs from OCR documents and the

corresponding ground truth documents. We used one-hot-

encoded characters (see the input layer of Figure 4) from a

word in the OCR document as input and characters, from the

corresponding aligned word in the ground truth documents as

output, for training and testing our model. Our results show

that an LSTM model, with a fixed delay at the output, trained

in this manner is capable of word-level error detection and

correction.

In Figure 4, we illustrate an LSTM with 2 units of delay,

with one hidden layer of 3 units, unfolded for 8 units of time.

We represent the delay by making use of null-character ($)

symbols. The OCR word at the input is delayed with a buffer

of 1 unit and the corresponding ground truth word at the output

is delayed by 3 units of time to account for 2 units of net

delay. We illustrate an example encoding for the Devanagari

letters of Figure 4 in Table I. We assume that the character

vocabulary size and the maximum word length are both 8.

Fig. 4. An LSTM model with 2 units of delay (appears as character $), having
1 hidden layer of 3 units, unfolded for 8-time units.

Devanagari Letter Corresponding SLP1 char. One Hot Vector

$ $ 10000000
A A 01000000

E i 00100000
t̂ t 00001000

p̂ p 00000010

q̂ z 00000001

TABLE I
ONE HOT VECTOR AND CORRESPONDING SLP1 CHARACTER FOR

DEVANAGARI LETTERS USED IN FIG. 4.

Training the model should produce output vectors close to the

one hot vector for each letter. In the illustration, the element of

the output vector that is shown in green should be maximized.

In practice, we delay the input with a buffer of 15 null-

characters. This is necessary to allow the recurrent network

to learn a valid starting state. We delay the output with a

buffer of 15+d null-character symbols. Here d represents the

sequence delay which we tuned empirically, guided by the

insight in Section III based on Figure 3. We pad each word

with a suffix sequence of null characters if its length, after

adding input delays, is below the maximum word length in

the language.

V. EXPERIMENTS

Our model contains 2 hidden layers of 512 units each. We

train our model for 150 epochs. The percentage of erroneous

words in the validation set corrected by the model increases

and then hits a maximum at a certain epoch and starts to

decrease. We use the model from the epoch that corrects the

maximum number of erroneous words in the validation set

and then employ the same model on test data. Interestingly,

the model corresponding to this epoch also gives the maximum

F-Score over the validation dataset across all epochs. For more

details refer www.cse.iitb.ac.in/∼rohitsaluja/IndicOCR.

For LSTM models, while increasing the delay between the

input and output word sequence results in increased context,

we found that when the delay is increased beyond a certain

point, it also increases the error in the output of the network.

Intuitively, this could be because a larger delay makes it



difficult for the model to predict the corrections and/or the

model overfits on higher level n-grams. As stated earlier, we

found a sequence delay of 5 to 7 (character) units between the

input word and output word to work reliably in practice for

the Indian Languages we work with.

We used the dataset, introduced in Section III. As stated

earlier, we balanced our dataset for Hindi word pairs. This

also ensures that we make a fair comparison with the state-

of-the-art error detection results [14]. We use a train-val-test

split ratio of 64-16-20 in our experiments.

A. Error Detection Experiment

For an input OCR word, if our trained LSTM model outputs

a word different from the input, we mark the input word as

incorrect and mark it as correct otherwise. This is how we

detect errors using our model trained for error correction. The

error detection results for our model are better than the results

of the state-of-the-art system (see Section VI).

The measures used for error detection are defined below:

1) True Positives (TP) or Typing/Suggestion Efforts: Per-

centage of incorrect OCR words that are marked as

incorrect. Such words would need typing corrections or

suggestion selection (if suggestions are available).

2) True Negatives (TN) or Verification Gain: Percentage of

correct OCR words that are marked as correct.

3) False Positives (FP) or Verification Efforts: 100-TN.

4) False Negatives (FN) or Unavoidable Accuracy Loss:

100-TP. Since the user tends to ignore such incorrect

words, that are marked as correct, they lead to unavoid-

able accuracy loss.

5) Precision: TP/(TP+FP), Recall: TP/(TP+FN) and F-

Score: Harmonic mean of Precision and Recall.

There is always a trade-off between TP and TN, though

its degree might depend on the model. Use of conventional

dictionary based methods increases the TP but lowers the TN.

The reason is that a system that marks most incorrect words as

incorrect also tends to mark several correct words as incorrect.

Similarly, a conjoining rule-based method for increasing TN

lowers TP. This trade-off can be captured through F-Score.

Maximizing F-Score tends to yield models that are balanced

in both these measures.

B. Error Correction Experiment

We evaluate the performance of our model for error correc-

tion against two baselines that we created based on combining

the ideas of standard dictionary-based error correction with the

back-off from n-gram character confusions of the OCR system.

For each OCR word o, we find the set of closest words W

from the dictionary V (i.e., the vocabulary of known words).

We compute the posterior distribution (1) on w to rank the

replacement words in W .

w∗ = arg max
w∈W

P (w|o) = arg max
w∈W

P (o|w)P (w) (1)

to determine the desired word w∗. For P (w) we used word fre-

quencies from training and validation datasets, while P (o|w)

is estimated based on character confusion probabilities as∏
(co,cw)∈Cow

P (co|cw) . Here Cow is the set of n-gram

character confusions1, (co, cw), required to convert o into w.

For P (cw|co) we consider the frequency of confusions in the

union of training and validation datasets. We used Laplace

smoothening for the unseen confusions.

In our first baseline, we consider V to be the set of ground

truth words from training and validation datasets. The test

dataset is different from V (exactly as in the LSTM model).

We call this the lower baseline. In the second baseline, we

assume that all the ground truth words for the test dataset are

also available in V . Hence, we call it our upper baseline: an

idealized, best possible baseline for word level corrections.

C. Suggestion Generation Experiment

We observe that four different contexts are helpful in

correcting the characters of an OCR word;

1) PC: Preceding characters from the OCR word itself,

2) SC: Succeeding characters from the OCR word 2,

3) PCPW: Preceding characters from the OCR word & its

preceding word neighbors and

4) PCSW: Preceding characters from the OCR word & its

succeeding word neighbors.

For Sanskrit, which exhibits the highest proportion of OOV

words (see Section III), we train the LSTM network with these

4 contexts & obtain a model from each. For PC, we trained the

forward character model explained in Section IV. In contrast to

this, for SC, we train another model with the reversed order of

characters in both the input & the output words. For PCPW,

we train another LSTM model that takes characters from 6
words in the input, 5 of which precede the present word. In

all, 6 correct words are considered in the output. On test data,

6 OCR words are provided as input, while we are concerned

only with the corrections made to the last word. Similarly, for

PCSW, we train a model that considers the characters from 6
words in the input, 5 of which succeed the present word. To

achieve this, we reversed the order of words used to train the

LSTM. For last 2 models, we used the delay of 20 characters.

VI. RESULTS

A. Error Detection Results

Lang. TP TN FP FN Prec. Recall F-Score

San. 92.63 94.54 5.45 7.36 94.84 92.64 93.72
Mal.* 87.56 94.23 5.77 12.44 93.82 87.56 90.58
Mal. 92.62 96.02 3.98 7.38 93.26 92.63 92.94
Kan. 98.51 97.28 2.71 1.48 96.92 98.41 97.66
Hin.* 72.30 90.90 9.10 27.70 89.30 77.22 82.82
Hin. 91.96 93.86 6.14 8.04 92.94 91.95 92.44

TABLE II
ERROR DETECTION RESULTS IN INDIC OCR. *STATE-OF-THE-ART

RESULTS [14]

1Computed using dynamic programming.
2Certain mistakes in Indian language scripts are more sensitive to succeed-

ing characters than preceding ones.



We present our basic error detection results in Table II. Here,

we note that the word-level error detection on OCR output

obtained using the basic forward character level LSTM model

outperforms the state-of-the-art [14] results (shown as Lang.*)

in Malayalam and Hindi. Further, it is important to note

that the results for Sanskrit and Kannada are better than the

state-of-the-art results for Malayalam and Hindi respectively,

although the former languages have the higher percentage of

OOV words (see Figure 2).

B. Error Correction Results

Lan. Word Error Rate (WER) %age words corrected by
OCR Baseline LSTM Baseline LSTM

Lower Upper Lower Upper

San. 51.20 58.60 20.01 21.41 9.62 66.12 63.34
Mal. 37.28 48.43 10.83 10.59 9.09 58.20 78.30
Kan. 47.44 48.13 27.77 15.73 18.31 54.57 69.66
Hin. 46.80 45.43 34.17 16.71 20.94 27.46 72.47

TABLE III
DECREASE IN WER AND PERCENTAGE OF ERRONEOUS WORDS AUTO

CORRECTED BY OUR MODEL.

In Table III we compare our method against the two baseline

models described in Section V. It can be observed that we

achieve a decrease in overall WER by at least 26.7% & at least

63.3% of the erroneous words were corrected by our model

for all the languages. Our LSTM-based model outperforms

both the baseline models. Even though the upper baseline

model contains the ground truth word for the test data in its

dictionary, it is unable to correct all errors. This is because

the word searched for in the vocabulary invariably results in

a large set of neighbors, from which it is ambiguous to pick

the correct word, even using the knowledge of OCR-specific

n-gram confusions. Only in the case of Sanskrit, the idealized,

upper baseline model is marginally better because the language

has many long words and usually only one of words in the

dictionary is a neighbor of the word searched for. It should be

noted that the LSTM has no access to the ground truth of the

test data, as is the case for the upper-bound baseline model.

The poor performance of the lower baseline can be attributed

to the fact that the vocabulary of ground truth words in the test

data is significantly different from the training and validation

sets.

Our LSTM-based model with a fixed delay also worked

reliably on smaller datasets of 20k and 28k word pairs in

Gujarati and Telugu respectively, which we obtained from the

state-of-the-art [14]. We were able to correct 75.67% words in

Gujarati & 73.36% words in Telugu, with F-Scores of 91.16
& 91.57 respectively. In both these languages, our models

performed better than the upper baselines which corrected

58.65% & 49.22% words in Gujarati & Telugu respectively.

We test for statistical significance of the performance of our

model over the upper baseline using a Wilcoxon Signed-Rank

test. The null hypothesis is that our model does not perform

better than the upper baseline. On the percentage of erroneous

words corrected by both the methods, we obtain a significance

of 3.8% for the 6 Indian languages mentioned above. This

clearly rejects the null hypothesis and supports our claim.

In order to analyze the partial corrections in words, or

character level improvements, in Figure 5 we present the

histograms of edit distance of OCR words from ground truth

words, and LSTM output from ground truth. Note, that these

are based on test data. Our model reduces character level errors

for most words. This is apparent from the shift in the histogram

for OCR words with higher edit distances from the ground

truth to lower values of edit distances.

0 5 10

Edit Distance to Ground Truth

0

2000

4000

6000

8000

10000

12000

14000

16000

F
re

q
u

e
n

c
y

Sanskrit: OCR vs LSTM

OCR LSTM

0 5 10

Edit Distance to Ground Truth

0

2000

4000

6000

8000

10000

12000

14000

16000

F
re

q
u

e
n

c
y

Malayalam: OCR vs LSTM

OCR LSTM

0 5 10

Edit Distance to Ground Truth

0

5000

10000

15000

20000

F
re

q
u

e
n

c
y

Kannada: OCR vs LSTM

OCR LSTM

0 5 10

Edit Distance to Ground Truth

0

5000

10000

15000

20000

F
re

q
u

e
n

c
y

Hindi: OCR vs LSTM

OCR LSTM

Fig. 5. Histogram of edit distance between OCR word and ground truth word
pairs (in blue), LSTM output and ground truth word pairs (in red). As shown,
many of the erroneous OCR words (with edit distance ≥ 1) get corrected to
ground truth words (edit distance = 0) after passing through the LSTM. Also,
there are many partial corrections made by the LSTM-based model and this
is seen as a left shift in the red histograms as compared to the corresponding
blue histograms.

Examples of words completely corrected by our system can

be seen in Figure 1. In Figure 6, we show examples of words

that are partially corrected by our model.

Fig. 6. Examples of OCR words partially corrected by LSTM.

If OCR incorrectly map words from the document image

to other correct words in the language, our model is unable

to detect such Real Word Errors (RWE) and does not correct



these words. Examples are shown in Figure 7 (top).

Fig. 7. Examples of OCR words not corrected (top) and corrupted (bottom)
by the LSTM.

In a few rare cases, the LSTM does introduce new errors

in words that are correct in the OCR output. This seems to

happen when the model replaces less frequent n-grams in the

word by more frequent n-grams. More training data containing

the less frequent n-grams should be able to correct these errors.

Some examples of these is shown in Figure 7 (bottom).

C. Suggestion Results

Suggestion Context for %age of correct %age of unique
Index training model suggestions suggestions

1. PCPW 63.98 63.98
2. PC 63.34 8.45
3. SC 55.02 4.48
4. PCSW 57.34 0.57

TABLE IV
PERCENTAGE OF ERRONEOUS WORDS CORRECTED BY MODELS TRAINED

WITH DIFFERENT CONTEXTS IN SANSKRIT

As explained in Section V, we trained 4 additional models

for Sanskrit, to generate suggestions for the correct word. In

Table IV, we summarize the results, comparing the quality

of the suggestion generated by each of these models. The

last column in each row is for the percentage of correct

suggestions achieved by the corresponding model, that could

not be corrected by the models in the rows above them. We

achieve an overall correct suggestion percentage for around

77% of erroneous words using the strategy of obtaining

different suggestions for the same OCR word on the basis

of different contexts. Using this user-in-the-loop system, we

beat the upper baseline model for Sanskrit as well.

VII. CONCLUSIONS

In this paper, we demonstrate the use of LSTM with a

delay, for jointly learning error patterns and language models.

We show that these models are robust at detecting errors

in OCR output and perform reliably in correcting them. We

demonstrate the usefulness of our model by performing several

experiments on the OCR texts of multiple Indian languages

with varying scripts. We demonstrate performance better the

state-of-the-art for error detection. As future work, it would be

interesting to investigate the performance of BLSTM models

and character level attention [7] models. We would also like

to explore the possibility of training such models adaptively

and on the fly to support the user while correcting the OCR

output in Indic documents.

Acknowledgements: We thank NVIDIA for their GPU hard-

ware support.

REFERENCES

[1] M. Cheriet, N. Kharma, C.-L. Liu, and C. Suen, Character Recognition

Systems: A Guide for Students and Practitioners. John Wiley & Sons,
2007.

[2] I. Kissos and N. Dershowitz, “OCR Error Correction Using Character
Correction and Feature-based Word Classification,” in 12th IAPR Work-

shop on Document Analysis Systems (DAS), 2016, pp. 198–203.
[3] J. Evershed and K. Fitch, “Correcting Noisy OCR: Context Beats

Confusion,” in Proceedings of the First International Conference on

Digital Access to Textual Cultural Heritage, 2014, pp. 45–51.
[4] ICDAR, “Competition on Post-OCR Text Correction,” https://sites.

google.com/view/icdar2017-postcorrectionocr/. Last accessed on April
8, 2017.

[5] N. Sankaran and C. Jawahar, “Error Detection in Highly Inflectional
Languages,” in Document Analysis and Recognition (ICDAR), 12th

International Conference on, 2013, pp. 1135–1139.
[6] I. Sutskever, J. Martens, and G. E. Hinton, “Generating Text with

Recurrent Neural Networks,” in Proceedings of the 28th International

Conference on Machine Learning (ICML), 2011, pp. 1017–1024.
[7] Z. Xie, A. Avati, N. Arivazhagan, D. Jurafsky, and A. Y. Ng, “Neural

Language Correction with Character-based Attention,” arXiv preprint

arXiv:1603.09727, 2016.
[8] K. Kukich, “Techniques for Automatically Correcting Words in Text,”

ACM Computing Surveys (CSUR), vol. 24, no. 4, pp. 377–439, 1992.
[9] Y. Bassil and M. Alwani, “OCR Context-sensitive Error Correc-

tion Based on Google Web 1T 5-gram Data Set,” arXiv preprint

arXiv:1204.0188, 2012.
[10] A. Carlson and I. Fette, “Memory-based Context-sensitive Spelling

Correction at Web Scale,” in International Conference on Machine

learning and applications (ICMLA), 2007, pp. 166–171.
[11] A. Wilcox-O’Hearn, G. Hirst, and A. Budanitsky, “Real-Word Spelling

Correction with Trigrams: A Reconsideration of the Mays, Damerau,
and Mercer Model,” in International Conference on Intelligent Text

Processing and Computational Linguistics, 2008, pp. 605–616.
[12] A. R. Golding and Y. Schabes, “Combining Trigram-based and Feature-

based Methods for Context-sensitive Spelling Correction,” in Proceed-

ings of the 34th annual meeting on Association for Computational

Linguistics, 1996, pp. 71–78.
[13] R. Smith, “Limits on the Application of Frequency-based Language

Models to OCR,” in International Conference on Document Analysis

and Recognition (ICDAR), 2011, pp. 538–542.
[14] V. Vinitha and C. Jawahar, “Error Detection in Indic OCRs,” in 12th

IAPR Workshop on Document Analysis Systems (DAS), 2016, pp. 180–
185.

[15] K. Nair and C. Jawahar, “A Post-Processing Scheme for Malayalam
Using Statistical Subcharacter Language Models,” Proceeding of the

IAPR Workshop on Document Analysis Systems (DAS), pp. 363–370,
2010.

[16] G. Lehal, C. Singh, and R. Lehal, “A Shape Based Post Processor for
Gurmukhi OCR,” in International Conference on Document Analysis

and Recognition (ICDAR), 2001, pp. 1105–1109.
[17] U. Pal, P. K. Kundu, and B. B. Chaudhuri, “OCR Error Correction of

an Inflectional Indian Language Using Morphological Parsing,” Journal

of Information Science and Engg., vol. 16, no. 6, pp. 903–922, 2000.
[18] M. Choudhury, M. Thomas, A. Mukherjee, A. Basu, and N. Ganguly,

“How Difficult is it to Develop a Perfect Spell-checker? A Cross-
linguistic Analysis through Complex Network Approach,” arXiv preprint

physics/0703198, 2007.
[19] Google, “Google’s Optical Character Recognition (ocr) Software

Works for 248+ Languages,” https://opensource.com/life/15/9/
open-source-extract-text-images. Last accessed on March 10, 2017.

[20] I. Z. Yalniz and R. Manmatha, “A Fast Alignment Scheme for Automatic
OCR Evaluation of Books,” in International Conference on Document

Analysis and Recognition (ICDAR), 2011, pp. 754–758.


