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Abstract

Data subset selection from a large number of train-
ing instances has been a successful approach to-
ward efficient and cost-effective machine learning.
However, models trained on a smaller subset may
show poor generalization ability. In this paper,
our goal is to design an algorithm for selecting
a subset of the training data, so that the model
can be trained quickly, without significantly sac-
rificing on accuracy. More specifically, we focus
on data subset selection for L2 regularized re-
gression problems and provide a novel problem
formulation which seeks to minimize the training
loss with respect to both the trainable parame-
ters and the subset of training data, subject to
error bounds on the validation set. We tackle
this problem using several technical innovations.
First, we represent this problem with simplified
constraints using the dual of the original training
problem and show that the objective of this new
representation is a monotone and α-submodular
function, for a wide variety of modeling choices.
Such properties lead us to develop SELCON, an
efficient majorization-minimization algorithm for
data subset selection, that admits an approxima-
tion guarantee even when the training provides
an imperfect estimate of the trained model. Fi-
nally, our experiments on several datasets show
that SELCON trades off accuracy and efficiency
more effectively than the current state-of-the-art.

1. Introduction
Data-driven estimation of the underlying statistical model
is the central challenge in any supervised machine learning
(ML) problem. Thanks to the law of large numbers (Casella
& Berger, 2002), such a training procedure often demands
a huge number of training examples to ensure statistical
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reliability of the learned model. Therefore, the success of
several machine learning models can be attributed to the
availability of a massive amount of data and thus to the
high performance computing infrastructures, e.g., GPUs,
multicore processors, high storage disks, etc., which are re-
quired to store and process such data. These computational
resources involve large expenses, additional energy utiliza-
tion and maintenance costs. Mitigation of such overheads
without sacrificing the accuracy of the predictive model is
a challenging task, which often entails a careful selection
of a smaller number of training instances, so that the train-
ing algorithm can be run in an environment with limited
resources (Lucic et al., 2017; Mirzasoleiman et al., 2020;
Boutsidis et al., 2013; Kaushal et al., 2019; Killamsetty
et al., 2021b; Wei et al., 2014a; Liu et al., 2015; Bairi et al.,
2015; Kirchhoff & Bilmes, 2014). However, current data
selection techniques do not explicitly account for the gener-
alization error which may be exacerbated in the presence of
a small sized training dataset. As a consequence, they can
suffer from high generalization error, especially for large
datasets.

1.1. Present work
In response to the above limitations, our goal is to select a
subset from training data in such a way that the model can
be quickly trained in an environment with limited resources,
while at the same time, provide good predictive power. More
specifically, we make the following contributions.

Novel formulation of data selection. In this work, we fo-
cus on the regression problem and introduce a novel problem
formulation (Section 2) - which encodes the task of data
selection for regression, while ensuring that the error on
validation set remains below an acceptable level. Such an
explicit use of the validation set during training improves
the generalization ability of the inferred model, as indicated
in (Ren et al., 2018; Killamsetty et al., 2021b).

More specifically, given a model class and a fixed valida-
tion set, we seek to minimize an L2 regularized constrained
squared error loss with respect to both the parameter vec-
tor and the subset of training data, subject to a set of error
bounds on different portions of the validation set. The use
of such error bounds as optimization constraints enhances
the generalization ability of the inferred model in the face
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of small training data. Moreover, the presence of multi-
ple error constraints in our setup can be useful in several
data selection problems; e.g., learning with heterogeneous
data where each constraint limits the error for each cluster
of data (Rothenhäusler et al., 2018); fair regression with
bounded group loss, where each constraint limits the error
on the protected group(s), etc. (Agarwal et al., 2019).

In general, our data selection problem is NP-hard due to
the presence of both the training set and the model param-
eters as optimization variables. However, it permits us to
reformulate it into a new optimization task with simplified
constraints, by making use of the Lagrangian dual of the
original training problem. This new optimization problem
can be seen as an instance of cardinality-constrained set
function minimization problem, where the objective cor-
responds to the optimal training loss as a function of the
candidate data subset.

Characterizing the loss function of data selection. Hav-
ing represented the optimal training loss as a set function,
we show that this function is monotone, α-submodular (Gat-
miry & Gomez-Rodriguez, 2018; Lehmann et al., 2006;
Hassani et al., 2017) and enjoys a bounded generalized cur-
vature (Iyer et al., 2013b; Zhang & Vorobeychik, 2016) for
a wide variety of models including a class of nonlinear func-
tions (Section 3). These technical results can be useful in
other related data selection problems and therefore, are of
independent interest.

Approximation algorithm for data selection. Finally,
to solve our data selection problem, we design SELCON,
a new majorization-minorization algorithm (Algorithm 1,
Section 4) building upon the semi-differentials proposed
by (Iyer et al., 2013a; Iyer & Bilmes, 2015), which mini-
mizes the set function characterized above. SELCON en-
joys an approximation guarantee even when the training
algorithm provides an imperfect estimate. While doing so,
we obtain a new family of modular upper bounds of an α-
submodular function, which extends the bounds proposed
in (Iyer et al., 2013a) and therefore, can be of independent
technical interests. Moreover, SELCON can minimize any
monotone, α-submodular function, going beyond the par-
ticular instance in this work, which makes it useful from a
broader perspective.

We evaluate1 our framework on several real-world datasets,
and demonstrate that SELCON trades off the accuracy and
efficiency more effectively than several baselines and state-
of-the-art. We also demonstrate that the use of constrained
validation set error maintains the generalization ability of the
inferred model in the presence of small training data. Finally,
we test our framework on the application of fair regression
with bounded group loss, which shows that SELCON offers

1Our code and data is available at https://github.com/abir-de/
SELCON

fair prediction along with an effective trade-off between
accuracy and efficiency.

1.2. Related work
Algorithms for data selection predominantly follow two ap-
proaches. The first approach (Wei et al., 2014a;b; Liu et al.,
2015; Bairi et al., 2015) selects diverse training examples
by maximizing submodular proxy functions, e.g., facility
location, etc., and then use them to train the underlying
model. The second approach selects coresets – weighted
subsets of training examples – alongside training the model
over them (Lucic et al., 2017; Mirzasoleiman et al., 2020;
Killamsetty et al., 2021a; Campbell & Broderick, 2018;
Boutsidis et al., 2013; Kaushal et al., 2019). The choice of
a coreset depends strongly on the model as well as on the
training loss. Therefore, coreset selection algorithms vary
widely across different ML settings, e.g., SVM (Clarkson,
2010), Bayesian inference (Campbell & Broderick, 2018),
k-means clustering (Har-Peled & Mazumdar, 2004), regres-
sion (Boutsidis et al., 2013), deep learning (Mirzasoleiman
et al., 2020; Killamsetty et al., 2021a), etc.However, they do
not explicitly control the validation set error, which often
constrains their predictive power.

Our work is related to robust and efficient learning meth-
ods (Ren et al., 2018; Zhang & Sabuncu, 2018; Killamsetty
et al., 2021b), that utilize the validation set to improve the
training performance via a bi-level optimization. However,
these approaches do not explicitly control the validation set
error the way we do. Our work is also related to subset
selection problems in the context of human-assisted ma-
chine learning (De et al., 2020; 2021), that aim to select a
training subset to outsource to humans, rather than facili-
tating efficient learning. Moreover, unlike us, these setups
do not consider any validation constraint. Our work is also
connected with batch active learning methods (Wei et al.,
2015; Hashemi et al., 2019; Kulkarni et al., 2018; Sener &
Savarese, 2018), that aim to select examples from training
data in order to minimize the labeling cost. In contrast, our
setup has access to all the labels and it aims to select data to
improve efficiency.

In recent years, there is a flurry of works on maximizing
non-submodular functions (Horel & Singer, 2016; Das &
Kempe, 2011; Bian et al., 2017; Kuhnle et al., 2018; Gat-
miry & Gomez-Rodriguez, 2018; Hassidim & Singer, 2018;
2017). However, there is a paucity of work on minimizing α-
submodular functions. Very recently, El Halabi & Jegelka
(2020) aim to minimize the difference between two mono-
tone α-submodular and β-submodular functions. However,
they do not consider a cardinality constraint, which makes
their approach less relevant to our setting.

https://github.com/abir-de/SELCON
https://github.com/abir-de/SELCON
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2. Problem formulation
In the following, we first setup the notation and contextual-
ize our problem. Thereafter, we formally present our data
selection problem which involves simultaneous selection
of a subset S of the training dataset D and training of a
regression model y ≈ hw(x), subject to validation error
constraints. We obtain an alternative representation of this
problem, using the Lagrangian dual of the parameter estima-
tion task. Finally we formally show that our data selection
problem is NP-Hard.

2.1. Notation
Let {xi, yi}i∈D be the set of training samples and
{xj , yj}j∈V the set of validation samples. Here, x• ∈ Rd
are the features and y• ∈ R are the corresponding response
(output) variables. We also have a partition ofQ subsets over
the validation set, i.e., V = V1 ∪ V2 ∪ . . . ∪ VQ. Unless oth-
erwise stated, ‖·‖ denotes the L2 norm, i.e., ‖x‖ =

√
x>x.

2.2. Our broad objective
We are provided a modeling framework hw : Rd → R
which can approximate the relationship between x and y,
i.e., y ≈ hw(x), where w is a trainable parameter vector.
Given the aforementioned setup, one can learn w using
standard least square estimation. In principle, one might
be tempted to estimate w using the entire set of training
examplesD, which would possibly give a statistically sound
estimate of w. However, if the size of D is large, such ex-
haustive training may be inefficient in a typical computing
environment. To tackle this problem, our goal is to deter-
mine a smaller subset of training samples S ⊂ D such that it
allows for efficient training of the model without significant
drop in accuracy.

2.3. Problem setting for data selection
Given the full training set {xi, yi}i∈D and the validation set
{xj , yj}j∈V along with its partitions V = ∪q∈[Q]Vq and the
model class hw, we consider minimization of the L2 regular-
ized training loss, jointly with respect to parameters w and
the candidate subset S, subject to a set of constraints that
bound the mean squared errors (MSE) on the Q partitioning
subsets of the validation set, i.e.,

minimize
S⊂D,w

∑
i∈S

[λ ‖w‖2 + (yi − hw(xi))2],

subject to,

∑
j∈Vq

(yj − hw(xj))2

|Vq|
≤ δ, ∀q ∈ [Q],

|S| = k. (1)

Here, λ is the coefficient of the regularizer; the cardinality
constraint limits the number of training samples to be
chosen; and the validation error constraints ensure that the
predictor’s loss remains below some acceptable level δ for

the subsets {Vq} of the validation set2.

Discussion on multiple validation error bounds. Note
that the absence of validation error constraints in the basic
problem setting may result in efficient training, but might not
generalize well owing to small size of the training data. The
validation error constraints in (1) ameliorate this problem,
by attenuating the generalization error which might have
exacerbated in the face of a small sized training data.

We note that, in order to improve the generalization ability,
one may consider bounding the MSE on the entire vali-
dation set as one single constraint, viz., 1

|V|
∑
j∈V(yj −

hw(xj))
2 ≤ δ, rather than constraining the MSE for multi-

ple subsets of the validation set as in Eq. (1). However, we
envision the use of formulation (1) in several applications.
For example, in the case of fair regression with bounded
group loss, the validation set can be partitioned in a way
that each subset Vq corresponds to the sub-population for a
protected group, so that the individual MSE for each pro-
tected group remains small. Our setup can also be useful
in learning from heterogeneous data, wherein the hetero-
geneity could have arisen owing to multiple sources of data,
time-shifts in the distribution, etc.. To address such require-
ments, the validation set can be partitioned into different
subsets, where each subset represents a partition with similar
properties.

2.4. A soft-constraint approach
It is evident that arbitrarily reducing δ would eventually
make the error constraints infeasible in the above optimiza-
tion problem (1). Therefore, we relax the constraints by
provisioning for some margin of violation of these con-
straints. To this aim, we introduce new slack variables
ξ1, ξ2, ..., ξQ and replace each hard validation error (in-
equality) constraint in Eq. (1) by a soft constraint, i.e.,
1
|Vq| (yj − hw(xj))

2 ≤ δ + ξq similar to the soft-SVM
formulation. Here ξq measures the extent of error viola-
tion in the constraint 1

|Vq| (yj − hw(xj))
2 ≤ δ. Finally, we

minimize the sum of regularized loss computed over the
candidate set S, along with a weighted sum of the slack
variables that penalizes the constraint violation to yield the
optimization problem in Eq. (2), i.e.,

minimize
S⊂D,w,{ξq}q∈[Q]

∑
i∈S

[λ ‖w‖2+ (yi − hw(xi))2]+C
∑
q∈Vq

ξq,

such that,

∑
j∈Vq

(yj − hw(xj))2

|Vq|
≤ δ + ξq ∀q ∈ [Q],

ξq ≥ 0 ∀ q ∈ [Q] and, |S| = k (2)

where {ξq} are the optimization variables in addition to
the parameter vectorsw and the candidate set S that were

2For the sake of brevity, we assumed the same value of δ across different vali-
dation subsets {Vq}.
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already specified in (1). Through C, we can control the
extent of penalization on the of violation of the validation
set error. We note that as C → ∞, the above formulation
becomes equivalent to its hard constrained counterpart (1).

We may consider two possible approaches to solve the op-
timization problem in Eq. (2). In the first approach, we
initially minimize the optimization problem (2) with respect
to S for fixedw and {ξq}; and thereafter minimize the inner
optimization objective with respect tow and {ξq}. This can
be viewed as an instance of minimizing the sum of k small-
est elements, which we expect to be intractable, since it is
a concave minimization problem. In the second approach,
given a fixed set S we first minimize (2) with respect to w
and {ξq}; and thereafter, minimize this quantity with respect
to S . In this work, we focus on the second approach, which,
as we will show in Section 4, provides a tractable solution
with an approximation guarantee.

For any given set S , let the optimal value of the parameters
be w∗(S) and ξ∗q (S). We note that, if we define,

g(S) =
∑
i∈S

[λ ‖w∗(S)‖2 + (yi − hw∗(S)(xi))2]

+ C
∑
q∈[Q]

ξ∗q (S), (3)

then, our data selection problem becomes equivalent to

minimize
S

g(S), subject to, |S| = k. (4)

2.5. Representation of Eq. (2) with simplified
constraints

Next, we obtain an alternative representation of the data
selection problem, by making use of the Lagrangian dual3

of the optimization problem (2) for a fixed S , as formalized
in the following proposition (Proven in Appendix A.1 in the
supplementary material). As we shall discuss, such a new
representation becomes equivalent to Eq. (4) for convex
loss functions.

Proposition 1 Given a fixed training set S, let µ =
[µq]q∈[Q] be the Lagrangian multipliers for the constraints
{ 1
|Vq|
∑
j∈Vq

(yj − hw(xj))2 ≤ δ + ξq}q∈[Q] in the opti-
mization problem (2) and F (w,µ,S) be defined as follows:

F (w,µ,S) =
∑
i∈S

[λ ‖w‖2 + (yi − hw(xi))2]

+
∑
q∈[Q]

µq

[∑
j∈Vq

(yj − hw(xj))2

|Vq|
− δ

]
(5)

Then, for the fixed set S, the dual of the optimization prob-
lem (2) for estimating w and {ξq} is given by,

maximize
0≤µ≤C1

minimize
w

F (w,µ,S) (6)

3The dual is formed with respect to the model parametersw and {ξq}, which
allows us to augment the validation error constraints and {ξq} ≥ 0 into the new ob-
jective. However, it still remains as a constrained optimization problem with respect
to S.

Let the inner minimization sub-problem of the above opti-
mization problem have the solution w∗(µ,S) for a given µ
and S . If the corresponding outer maximization problem has
the solution µ∗ = µ∗(S) for a given S , then the above dual
problem has an optimal solution at (w∗(µ∗(S),S),µ∗(S)).
To this end, given any set S, we write the solution of this
dual problem as the following set function.

f(S) = F (w∗(µ∗(S),S),µ∗(S),S) (7)

Subsequently, we aim to select |S| by solving the following
optimization problem.

minimize
S⊂D

f(S) such that, |S| = k. (8)

Relation between f(S) and g(S). Given a fixed S, the
optimization problems (2) and (6) are equivalent for convex
losses. However, they may not be equivalent for non-convex
losses and, by weak-duality, f(S) would serve as a lower
bound for g(S). This leads us to the following proposition.

Proposition 2 Given that f(·) and g(·) are defined in
Eqs. (3) and (7) respectively, f(S) ≤ g(S) and the equality
holds if the loss (y − hw(x))2 is convex with respect to w.
Hence, minS,|S|=k f(S) ≤ minS,|S|=k g(S).

2.6. Differences with weighted sum of training and
validation loss

Weighted sum of training and validation loss. Instead
of our model, one can consider minimizing a weighted
combination of training and validation losses, as follows:

minimize
w,η

η
∑
i∈S

[
λ||w||2 + (yi − hw(xi))2

]
+ (1− η) (k/|V |)

∑
j∈V

(yj − hw(xj))2 (9)

The multiplier k/|V | in the second term above ensures cor-
rect scaling w.r.t. the first term. Now, along with η can be
estimated in two ways.

η is a hyperparameter: We can treat η as hyperparame-
ter and cross validate them on another validation set V ′.
However, due to the requirement for tuning this additional
hyperparameter, this approach is extremely time consuming
and therefore, is not suitable for efficient data selection.

η is a trainable parameter: In this alternative approach, we
train the η along with w. Such a setup uses no additional
validation set V ′. However, since minη∈[0,1](aη + (1 −
η)b) = min{a, b}, the problem (9) reduces to

minimize
S,w

min

{∑
i∈S

[
λ||w||2 + (yi − hw(xi))2

]
,

k

|V |
∑
j∈Vq

(yj − hw(xj))2
}

(10)

Hence, it can latch on either minimizing only training set
error or only validation set error, which results in (i) train-
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ing only on validation set or, (ii) selecting subset without
controlling generalization error.

Our approach. In our work, the Lagrangian multipliers
µ of the dual objective F (w,µ,S) defined in Eq. (5) can
also be viewed as weights for validation error. However, we
neither treat them as hyperparameters, nor learn them by
simply minimizing the objective as in Eq. (9) above. Rather,
our formulation naturally casts a max-min optimization task
described in Eq. (6), that trains w and µ in an adversarial
manner. This also ensures that the validation error is not
much higher than δ. In contrast, the formulation in Eq. (9)
neither trains w and η using max-min optimization nor
incorporates δ.

2.7. Hardness analysis for our approach
Given any fixed training subset S , we can learn the optimal
solution of the problem (2) using a standard optimization
technique. In fact, it can be computed in polynomial time if
the loss (y − hw(x))2 is convex. However, simultaneously
determining the optimal set S∗ and the optimal parame-
ters w∗ for that optimal set is not possible in polynomial
time, as suggested by the following proposition (proof in
Appendix A.2 in the supplementary).

Proposition 3 Both the variants of the data selection prob-
lems (4) and (8) are NP-Hard.

We will focus on minimizing f(S) rather than g(S), since
that allows us to design a tractable algorithm with approx-
imation guarantee for a wide class of modeling choices
including nonlinear functions, and which works well in
practice. Moreover, since f(S) = g(S) for convex losses,
such an approximation guarantee also holds for g(S) in the
specific case of linear regression.

3. Characterization of f(S)
We next show that f(S) is monotone and α-submodular
and then, bound its generalized curvature, which would be
subsequently used to design an efficient approximation al-
gorithm for the optimization problem in Eq. (8). To help
formally state the results, we begin with defining the follow-
ing properties.

Definition 4 Given a ground set D and a set function f :
2D → R, let us define f(a | S) = f(S ∪{a})−f(S). Then
we have the following definitions.

1. Monotonicity: f(·) is monotone if f(a | S) ≥ 0 for all
S ⊂ D and a ∈ D\S .

2. α-submodularity: f(·) is α-submodular with the submod-
ularity parameter α > 0, if for S ⊆ T and a ∈ D\T , we
have f(a | S) ≥ α f(a | T ) (Hashemi et al., 2019; Zhang
& Vorobeychik, 2016; El Halabi & Jegelka, 2020).

3. Generalized curvature: Given a set S, the generalized
curvature of f(S) is defined as (Iyer et al., 2013b; Zhang

& Vorobeychik, 2016)

κf (S) = 1−min
a∈D

f(a|S\{a})
f(a|∅)

. (11)

Note that, α-submodularity is a natural extension of sub-
modularity. An α-submodular function f(S) is submodular
if α = 1. Moreover, note that an κf (S) ≥ 1− 1/α. For a
general monotone function f , α ≤ 1.

3.1. Monotonicity of f(S)
We formalize the monotonicity of f(S), as defined
in Eq. (7), in the following proposition (proof in Ap-
pendix B.1).

Proposition 5 For any model hw, f(S) is monotone, i.e.,
f(S ∪ {a})− f(S) ≥ 0 for all S ⊂ D and a ∈ D\S.

3.2. α-submodularity of f(S)
Next, we set about to present our key results on α-
submodularity of f(S) for different modeling choices of hw.
To this aim, we first characterize the submodularity param-
eter of f(S) for any bounded Hessian nonlinear model, in
terms of λ,C, δ and some specific properties of the dataset
(proof in Appendix B.2).

Theorem 6 Assume that |y| ≤ ymax; hw(x) = 0 if
w = 0, i.e., hw(x) has no bias term; hw is H-Lipschitz,
i.e., |hw(x)| ≤ H ‖w‖; the eigenvalues of the Hessian
matrix of (y − hw(x))

2) have a finite upper bound, i.e.,
Eigenvalue(∇2

w(y−hw(x))2)≤ 2χ2
max; and, define `∗ =

mina∈Dminw χ2
max ·‖w‖

2
+(ya−hw(xa))2 > 0. Then,

for λ ≥ max
{
χ2
max, 32(1 + CQ)2y2maxH

2/`∗
}

, f(S) is a
α-submodular set function, where

α ≥ α̂f = 1− 32(1 + CQ)2y2maxH
2

λ`∗
, (12)

Note that as λ → ∞, we have α → 1, which implies that
for large λ, f(S) becomes close to submodular.

Proof sketch: The proof of the above theorem consists of
two steps. In the first step, we show that f(S ∪ {a}) −
f(S) ≥ minw λ||w||2 + (yi − hw(xa))2. Next, we derive
that f(T ∪{a})−f(T ) ≤ λ ‖w∗(µ∗(T ∪ a), T )‖2+(ya−
hw∗(µ∗(T ∪ a),T )(xa))

2. Finally, we use different properties
of f(·) and the data to get a lower bound on the ratio of the
above two quantities.

For a linear model hw(x) = w>x, we exploit additional
properties of the underlying model to obtain a slightly tighter
bound (Proven in Appendix B.3).

Proposition 7 Given 0 < ymin ≤ |y| ≤ ymax, hw(x) =
w>x, ‖x‖ ≤ xmax, we set the regularizing coefficient as
λ ≥ max

{
x2max, 16(1 + CQ)2y2maxx

2
max/y

2
min.

}
. Then
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f(S) is a α-submodular set function, where

α ≥ α̂f = 1− 16(1 + CQ)2y2maxx
2
max

λy2min

. (13)

Subset selection for linear regression problems has been
widely studied in literature (Hashemi et al., 2019; De et al.,
2020). Most often, these approaches optimize measures
associated with the covariance matrix, rather than explicitly
minimizing the training loss subject to the validation set
error bound.

3.3. Generalized curvature
Next, we provide a unified bound on the generalized curva-
ture (c.f., Definition 4) for both linear and nonlinear model-
ing choices of hw(x), as formalized in the following propo-
sition (proven in Appendix B.4).

Proposition 8 Given the assumptions stated in Theorem 6,
the generalized curvature kf (S) for any set S satisfies

κf (S) ≤ κ̂f = 1− `∗

(CQ+ 1)y2max

.

4. The SELCON algorithm
In this section, we design SELCON, an iterative approxima-
tion algorithm to minimize f(S), by leveraging the semi-
differential based approach proposed by Iyer et al. (2013a).
However, they only consider submodular optimization prob-
lems having access to an exact measurement of the objective.
In contrast, SELCON works for α-submodular functions and
enjoys an approximation guarantee even when it can only
access an imperfect estimate of the learned parameters.

4.1. Outline of SELCON

At the very outset, SELCON is an iterative Majorization-
Minimization algorithm for minimizing a monotone α-
submodular function. We first develop a modular upper
bound of f(S). Then, at each iteration, we minimize this
upper bound and refine the estimate of the candidate set S.

Modular upper bound of f(S). Given an α-submodular
function f and a fixed set Ŝ , we can obtain the modular up-
per bound of f(S), as follows (see details in Appendix C.1).

Lemma 9 Given a fixed set Ŝ and an α-submodular func-
tion f(S), let the modular function mf

Ŝ
[S] be defined as

follows:

mf

Ŝ
[S] =f(Ŝ)−

∑
i∈Ŝ

αf(i|Ŝ\{i})

+
∑
i∈Ŝ∩S

αf(i|Ŝ\{i}) +
∑
i∈S\Ŝ

f(i|∅)
α

. (14)

Then, f(S) ≤ mf

Ŝ
[S] for all S ⊆ D.

Note that when α = 1, i.e., f is submodular, the expression
mf

Ŝ
[S] coincides with the existing modular upper bounds

Algorithm 1 SELCON Algorithm
Require: Training dataD, λ, α̂f , initial subset S0 of size k initial

model parameters.
1: Ŝ ← S0
2: for all i ∈ D do
3: (ŵ, µ̂), f̂({i})← Train(F (w,µ, {i}))
4: end for

5: for l ∈ [L] do
6: (ŵ, µ̂), f̂(Ŝ)← Train(F (w,µ, Ŝ))
7: for all i ∈ Ŝ do
8: f̂(Ŝ \ {i})← Train(F (w,µ, Ŝ\{i}))
9: m[i]← α̂f [f̂(Ŝ)− f̂(Ŝ \ {i})]

10: end for
11: For all i /∈ Ŝ, set m[i] = f̂(i | ∅)/α̂f

12: Pick the k smallest elements from {m[i]|}i∈D to update Ŝ
13: S(l) ← Ŝ
14: end for
15: Return Ŝ, ŵ, µ̂

for submodular functions (Nemhauser et al., 1978; Iyer
et al., 2013a; Iyer & Bilmes, 2012). Given a Ŝ, mf

Ŝ
[S] is

modular in S . Therefore, as suggested by Eq. (14), in order
to minimize this modular upper bound m with respect to a
k-member set S , we need to compute the last two terms, i.e.,
α̂ff(i|Ŝ\{i}) for all i ∈ Ŝ and, f(i|∅)/α̂f for all i 6∈ Ŝ;
and finally, choose the k smallest elements based on these
quantities.

The iterative procedure. We summarize SELCON in Al-
gorithm 1. Given the current estimate of the candidate set Ŝ ,
SELCON computes α̂f f̂(i|Ŝ\{i}) for i ∈ Ŝ in line 9 and
f̂(i|∅)/α̂f for i 6∈ Ŝ in line 11. The algorithm next picks
the k smallest values in line 12 to minimize m and update
Ŝ. Note that computation of f here requires an estimate of
the model parameters w and the Lagrangian multipliers µ.
However, a training algorithm might only provide a noisy or
imperfect estimate of these parameters. Hence, we can only
compute f̂(•), an imperfect estimate of f(•). Appendix C.4
presents the convergence properties of SELCON.

4.2. Approximation guarantee
We now show that SELCON admits a bounded approxima-
tion guarantee in the case of both perfect and imperfect
estimates of the parameters (ŵ, µ̂).

Results with perfect parameter estimates. In the follow-
ing, we present our first result on the approximation guaran-
tee (proof in Appendix C.2).

Theorem 10 If the training algorithm in Algorithm 1 (lines
3, 6, 8) provides perfect estimates of the model parameters,
it obtains a set Ŝ which satisfies:

f(Ŝ) ≤ k

α̂f (1 + (k − 1)(1− κ̂f )α̂f )
f(S∗) (15)

where α̂f and κ̂f are as stated in Theorem 6 and Proposi-
tion 8 respectively.
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Results with imperfect parameter estimates. Data-
driven training algorithms may not provide the optimal value
of model parameters, even if the underlying loss function
is convex. Therefore, in practice, SELCON can only access
an imperfect estimate of ŵ, µ̂ in lines 3, 6 and 8. Submod-
ular and weakly submodular optimization in the presence
of imperfect estimates has been widely studied in litera-
ture (Qian et al., 2017; El Halabi & Jegelka, 2020; Hassidim
& Singer, 2018; 2017; Horel & Singer, 2016; Singla et al.,
2016). However, to the best of our knowledge, they do not
tackle the problem of cardinality-constrained minimization
of an α-submodular function. In this context, a notable con-
tribution of our work is that, SELCON also enjoys a relaxed
approximation guarantee in these cases, which renders it
practically useful. We formally state the result as follows
(proven in Appendix C.3).

Theorem 11 If the training algorithm (lines 3, 6, 8)
in Algorithm 1 provides imperfect estimates, so that
‖F (ŵ, µ̂,S)− F (w∗(µ∗(S),S),µ∗(S),S)‖ ≤ ε for any
S, then Algorithm 1 obtains a set Ŝ that satisfies:

f(Ŝ) ≤
(

k

α̂f (1 + (k − 1)(1− κ̂f )α̂f )
+

2kε

`

)
f(S∗),

where ` = mini∈Dminw λ||w||2 + (yi − hw(xi))
2, α̂f

and κ̂f are obtained in Theorem 6 and Proposition 8, re-
spectively.

Discussion on the approximation ratio. A trite calcula-
tion shows that, for the regime of λ defined in Theorem 6
and a small value of ε, the approximation ratio of SELCON
is O(y4max/y

4
min). While such a ratio may appear to be con-

servative, there are several applications such as house price
prediction or stock prediction, where ymax/ymin may not
be too high. Apart from that, one can always pre-process
the dataset by adding an offset to y and augmenting a con-
stant in the feature x, to control this ratio, as illustrated in
Appendix E. Moreover, since our approximation ratio holds
for any monotone α-submodular function with bounded
curvature, it can be of independent technical interest.

5. Experiments
In this section, we present experimental results and analysis
on several real-world datasets to evaluate the performance of
SELCON against several competitive baselines. Thereafter,
we show that our framework is also practically useful in
a fair regression setup, where the validation loss bounds
are used to ensure that the error for each protected group is
below an acceptable level of threshold. Appendix E contains
additional experiments.

5.1. Experimental setup
Datasets. We experiment with five real world datasets, viz.,
Cadata (16718 instances), Law (20800 instances), NYSE-
High (701348 instances), NYSE-Close (701348 instances),
and Community-and-crime (1994 instances), all briefly de-

scribed in Appendix D.

Baselines. We compare SELCON against seven baselines.
(1) Full-selection: It uses full data for training without any
validation error constraint. (2) Full-with-constraints: It
uses full data for training, subject to the same validation
error constraints used in SELCON. (3) Random-selection: It
samples a training subset uniformly at random, but it does
not employ any constraint on validation set. (4) Random-
with-constraints: It is the same as Random-selection, ex-
cept that it uses the constraints on validation set errors.
(5) CRAIG (Mirzasoleiman et al., 2020): This is a core-
set based data selection method, that however, does not use
any constraint on the validation set. (6) GLISTER (Killam-
setty et al., 2021b): This is a data selection method that uses
validation set to fine tune the trained model, which how-
ever, does not pose any explicit constraint on the validation
set error. (7) SELCON-without-constraint: Here, we solve
the optimization problem (2), without the validation error
constraints.

Implementation details. In Algorithm 1, if we set the
number of epochs for Train( ) in line 6 to T , this training
routine runs for N = LT epochs, where L is the num-
ber of iterations of the for-loop (lines 5–14). To make a
fair comparison, we used the same number of epochs N
and the same batch size b across all baselines and SEL-
CON for training the underlying model. Specifically, we set
N = 2000 for Cadata and Law , N = 5000 for the NYSE
datasets; and, b = min{|S|, 1000} across all datasets. Ad-
ditionally, SELCON involves two more sets of small scale
optimization problems (lines 3 and 8 respectively), where
we set the number of epochs as 3. Moreover for the opti-
mization of f(S\{i}) in line 8, we use the same batch size
b = min{|S|, 1000} as stated earlier. In each experiment,
we used (random) 89% training, 1% validation and 10% test
folds. We employed pytorch with the adam optimizer for all
experiments. Further details about the implementation are
provided in Appendix D.

5.2. Predictive performance and efficiency
We evaluate the performance of each data selection method
in terms of the mean squared error (MSE) E[(y− ŷ)2] on the
test set. We also compute the computational efficiency of
a method in terms of the speed-up it achieves with respect
to Full-selection, i.e., RunTimeFull-selection/RunTimemethod,
where RunTime• is time taken by the corresponding method
to complete both the subset selection and model training.
Here, we constrain the total loss on the validation set, i.e.,
we set Q = 1.

Linear regression. Here, we compare the performance of
SELCON for linear regression (hw(x) = w>x) against all
the baselines across the first four datasets4, described in

4Due to its small size, we ignore Community-and-crime in this experiment.
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Figure 1. Variation of performance in terms of the mean squared error (MSE, top row) and the computational efficiency in terms of speed up
with respect to Full-selection (bottom row) for all methods, i.e., SELCON (Algorithm 1), SELCON-without-constraints, Random-selection,
Random-with-constraints, Full-selection, Full-with-constraints, CRAIG (Mirzasoleiman et al., 2020) and GLISTER (Killamsetty et al.,
2021b) across different datasets with 10% held-out set and 1% validation set. We set the number of partitions Q = 1.
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Figure 2. Variation of performance for nonlinear regression using hw(x) = w>ReLU(Wx), in terms of the mean squared error
(MSE, top row) and the computational efficiency in terms of speed up with respect to Full-selection (bottom row) for all methods, i.e.,
SELCON (Algorithm 1), SELCON-without-constraints, Random-selection, Random-with-constraints, Full-selection, Full-with-constraints,
CRAIG (Mirzasoleiman et al., 2020) and GLISTER (Killamsetty et al., 2021b) across different datasets with 10% held-out set and 1%
validation set. We set the number of partitions Q = 1.

Section 5.1. Moreover, for smaller datasets, i.e., Cadata
and Law, we consider |S|/|D| ∈ [0.01, 0.1], whereas, for
larger datasets, i.e., NYSE-High and NYSE-Close, we con-
sider |S|/|D| ∈ [0.001, 0.01]. In Figure 1, we summarize
the results. We make the following observations. (i) SEL-
CON shows better predictive accuracy than all the baselines
except Full-selection and Full-with-constraints in most of
the cases. The performance of Random-with-constraints is
often comparable with SELCON especially when |S|/|D| is
too high ( > 5% in Cadata and Law) or too low (< 0.3%

in NYSE datasets). On the Law dataset, SELCON’s perfor-
mance is noteworthy - with 1% training data, it performs
at par with Full-selection. In most cases, the performance
gain provided by SELCON over Random-with-constraints is
statistically significant (Wilcoxon signed-rank test, p-value
= 0.05) while SELCON consistently outperforms the other
baselines. (ii) SELCON shows a significant speed up with
respect to Full-with-constraints, Full-selection, GLISTER
and CRAIG. In fact, with 1% subset size, SELCON shows a
10× speed up with respect to Full-selection, often with neg-



Training Data Subset Selection for Regression with Controlled Generalization Error

|S|
|D| = 3%

|S|
|D| = 7%

|S|
|D| = 10%

|S|
|D| = 100%

0.2 0.4 0.6 0.8 1.0
δ→

0.8

0.6

0.4

M
S

E
→

(a) Cadata

0.02 0.04 0.06 0.08 0.10
δ→

6.0

4.0
3.0

2.0M
S

E
→

×10−2

(b) Law

Figure 3. Variation of mean squared error (MSE) across different
values of validation error bound δ for different sizes of |S|. We
observe that for different values of |S|, the performance generally
improves as δ decreases.

ligible loss in accuracy (see Law and NYSE-Close). How-
ever, SELCON is slower than Random-selection, Random-
with-constraints and SELCON-without-constraint. This is
because SELCON-without-constraint does not have any val-
idation loss constraints; and, none of the random heuristics
involves any additional overhead time due to subset selec-
tion. (iii) CRAIG and GLISTER do not involve any explicit
validation set constraints, which often curbs their predictive
power. On the other hand, even Random-with-constraints
is able to outperform them in terms of the predictive perfor-
mance, which is because of their improved generalization
ability due to the presence of the explicit validation error
constraints.

Nonlinear regression. Next, we analyze the perfor-
mance and efficiency of SELCON, when hw(x) =
w>ReLU(Wx). In Figure 2, we summarize the results5

which shows that SELCON can trade off between efficiency
and performance more effectively than the baselines (results
similar to linear regression).

Effect of δ. We next investigate the effect of δ on the pre-
dictive performance for different sizes of |S|. In Figure 3,
we summarize the results for linear models, which shows
that for different values of |S|, the performance generally
improves as δ decreases.

5.3. Application to fair regression
Fairness in regression requires that the prediction error lim-
ited to any protected group is below a pre-specified la-
bel (Agarwal et al., 2019) and therefore, such an appli-
cation naturally fits in our setting. To that end, we ap-
ply our approach to the Law and Community-and-crime
datasets (Agarwal et al., 2019) and enforce fairness with
respect to the race of an individual as the protected attribute.
More specifically, given Q types of races {rq}q∈[Q] (Q = 8
in Law, Q = 4 in Community-and-crime) in the dataset, we
partition the validation set V into the subsets V1, .., VQ, so
that each subset Vq consists of individuals with the race rq ,
i.e., Vq = {(xj , yj) |Race of individual j = rq}.
Results. In Figure 4, we plot the performance of SEL-

5We omitted the results for CRAIG in nonlinear regression because the data
selection component of CRAIG needs to be run for several epochs for non-convex
losses (Mirzasoleiman et al., 2020), and hence, it did not scale for the large datasets.
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Figure 4. Data selection in fair regression - These plots show the
variation of fairness violation measured in terms of E[|(yi− ŷi)2−
(yj − ŷj)2|

∣∣ i ∈ Vq, j ∈ V\Vq] with δ for |S| = 0.1|V|. Here, Vq

consists of individuals with a particular race rq . We observe that
SELCON guarantees fairness more effectively than Random-with-
constraints.

CON in terms of the mean fairness violation, as measured
by E[|(yi − ŷi)

2 − (yj − ŷj)
2|
∣∣ i ∈ Vq, j ∈ V\Vq] for

various values of δ. We compare SELCON’s performance
against Full-with-constraints and Random-with-constraints,
the only other methods that can enforce fairness by means
of error constraints on the validation set. Evidently, SEL-
CON guarantees fairness more effectively than Random-
with-constraints. Moreover, for low values of δ, the perfor-
mance of SELCON is close to Full-with-constraints.

6. Conclusion
We presented a novel data subset selection formulation that
aims to select a subset S by controlling the generalization er-
rors. Specifically, we considered L2 regularized regression
over candidate training set S , subject to the error bounds on
different partitions of the validation set. Such error bounds
reduce the generalization error that could otherwise increase
owing to training on a small sized data. Thereafter, we re-
formulated our data selection task as a new optimization
problem and showed its equivalence to minimization of
a monotone and α-submodular function. Finally, we de-
signed a majorization-minimization based approximation
algorithm SELCON to solve this problem in the face of im-
perfect training. Our experiments show that SELCON can
more effectively trade off between accuracy and efficiency
than several baselines. Our work opens several areas for
future work; e.g., it can be extended to data selection for
classification as well as data removal for outlier detection.
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Appendix

A. Proofs of the technical results in Section 2
A.1. Proof of Proposition 1

Proposition 1 Given a fixed training set S, let µ = [µq]q∈[Q] be the Lagrangian multipliers for the constraints
{ 1
|Vq|
∑
j∈Vq

(yj − hw(xj))2 ≤ δ + ξq}q∈[Q] in the optimization problem (2) and F (w,µ,S) be defined as follows:

F (w,µ,S) =
∑
i∈S

[λ ‖w‖2 + (yi − hw(xi))2]

+
∑
q∈[Q]

µq

[∑
j∈Vq

(yj − hw(xj))2

|Vq|
− δ

]
(16)

Then, for the fixed set S , the dual of the optimization problem (2) for estimating w and {ξq} is given by,

maximize
0≤µ≤C1

minimize
w

F (w,µ,S) (17)

Proof The dual problem of our data selection problem (2) is given as:

maximize
µ≥0,ν

minimize
w,{ξq}q∈[Q]

∑
i∈S

[λ ‖w‖2+ (yi − hw(xi))2]+C
∑
q∈Vq

ξq +
∑
q∈[Q]

µq

[∑
j∈Vq

(yj − hw(xj))2

|Vq|
− δ − ξq

]
− νqξq

Differentiating with respect to ξ, we getµ+ν = C1, which proves the Proposition (giving us the constraint 0 ≤ µ ≤ C1).

A.2. Proof of Proposition 3

Proposition 3 Both the variants of the data selection problems (4) and (8) are NP-Hard.

Proof Consider our data selection problem as follows:

minimize
S⊂D,w,{ξq}q∈[Q]

∑
i∈S

[λ ‖w‖2+ (yi − hw(xi))2]+C
∑
q∈Vq

ξq,

such that,

∑
j∈Vq

(yj − hw(xj))2

|Vq|
≤ δ + ξq ∀q ∈ [Q],

ξq ≥ 0 ∀ q ∈ [Q] and, |S| = k (18)

We make C = 0 and hw(x) = w>x. Then the problem becomes equivalent to the robust regression problem (Bhatia et al.,
2017), i.e.,

minimize
S⊂D,w

∑
i∈S

[λ ‖w‖2+ (yi −w>x)2], such that, |S| = k, (19)

which is known to be NP-hard.
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B. Techninal results on Section 3 and their proofs
B.1. Proof of Proposition 5

Proposition 5 For any model hw, f(S) is monotone, i.e., f(S ∪ a)− f(S) ≥ 0 for all S ⊂ D and a ∈ D\S.

Proof We note that

f(S ∪ a)− f(S) = F (w∗(µ∗(S ∪ a),S ∪ a),µ∗(S ∪ a),S ∪ a)− F (w∗(µ∗(S),S),µ∗(S),S) (20)
= F (w∗(µ∗(S ∪ a),S ∪ a),µ∗(S ∪ a),S ∪ a)− F (w∗(µ∗(S),S ∪ a),µ∗(S),S ∪ a)︸ ︷︷ ︸

≥0

+ F (w∗(µ∗(S),S ∪ a),µ∗(S),S ∪ a)− F (w∗(µ∗(S),S),µ∗(S),S) (21)
(i)

≥ F (w∗(µ∗(S),S ∪ a),µ∗(S),S ∪ a)− F (w∗(µ∗(S),S),µ∗(S),S) (22)
= F (w∗(µ∗(S),S ∪ a),µ∗(S),S ∪ a)− F (w∗(µ∗(S),S ∪ a),µ∗(S),S)

+ F (w∗(µ∗(S),S ∪ a),µ∗(S),S)− F (w∗(µ∗(S),S),µ∗(S),S)︸ ︷︷ ︸
≥0

(23)

(ii)

≥ F (w∗(µ∗(S),S ∪ a),µ∗(S),S ∪ a)− F (w∗(µ∗(S),S ∪ a),µ∗(S),S)

=
∑
i∈S∪ a

[λ ‖w∗(µ∗(S),S ∪ a)‖2 + (yi − hw∗(µ∗(S),S∪ a)(xi))2]

+
∑
q∈[Q]

µ∗q(S)

[∑
j∈Vq

(yj − hw∗(µ∗(S),S∪ a)(xj))2

|Vq|
− δ

]
(24)

−
∑
i∈S

[λ ‖w∗(µ∗(S),S ∪ a)‖2 + (yi − hw∗(µ∗(S),S∪ a)(xi))2]

−
∑
q∈[Q]

µ∗q(S)

[∑
j∈Vq

(yj − hw∗(µ∗(S),S∪ a)(xj))2

|Vq|
− δ

]
(25)

= λ ‖w∗(µ∗(S),S ∪ a)‖2 + (ya − hw∗(µ∗(S),S∪ a)(xa))2 (26)

Here, inequality (i) is due to the fact that: µ∗(S ∪ a) = argmax0≤µ≤C F (w∗(µ,S ∪ a),µ,S ∪ a); and, inequality (ii) is
due to the fact that: w∗(µ∗(S),S) = argminw F (w,µ∗(S),S).

B.2. Proof of Theorem 6

Theorem 6 Assume that |y| ≤ ymax; hw(x) = 0 if w = 0, i.e., hw(x) has no bias term; hw is H-Lipschitz,
i.e., |hw(x)| ≤ H ‖w‖; the eigenvalues of the Hessian matrix of (y − hw(x))

2) have a finite upper bound, i.e.,
Eigenvalue(∇2

w(y − hw(x))
2) ≤ 2χ2

max; and, define `∗ = mina∈Dminw χ2
max · ‖w‖

2
+ (ya − hw(xa))

2 > 0.
Then, for λ ≥ max

{
χ2
max, 32(1 + CQ)2y2maxH

2/`∗
}

, f(S) is a α-submodular set function, where

α ≥ α̂f = 1− 32(1 + CQ)2y2maxH
2

λ`∗
, (27)

Proof We assume that: S ⊂ T . Hence, |T | > 0. Let us define: `a(w) = λ ‖w‖2 + (ya − hw(xa))2,w = argminw`a(w).
Finally, we denote `∗ = mina∈Dminwχ

2
max ‖w‖

2
+ (ya − hw(xa))2. Next, we have that:

f(S ∪ a)− f(S)
f(T ∪ a)− f(T )

≥ `a (w
∗(µ∗(S),S ∪ a))

`a (w∗(µ∗(T ∪ a), T ))
(Due to Lemma 12)

≥ `a (w)

`a (w∗(µ∗(T ∪ a), T ))
(Since `a (w∗(µ∗(S),S ∪ a)) ≥ `a (w))
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(i)

≥ `a (w
∗(µ∗(T ), T ∪ a))− (λ+ χ2

max) ‖w −w∗(µ∗(T ∪ a), T )‖
2

`a (w∗(µ∗(T ∪ a), T ))

≥ 1− (λ+ χ2
max) ‖w −w∗(µ∗(T ∪ a), T )‖

2

`a (w∗(µ∗(T ∪ a), T ))

≥ 1− (λ+ χ2
max)

`a(w)
‖w −w∗(µ∗(T ∪ a), T )‖2 (Since `a (w∗(µ∗(S),S ∪ a)) ≥ `a (w))

(ii)

≥ 1− 32λ

`∗
(1 + CQ)2y2maxH

2

λ2

= 1− 32(1 + CQ)2y2maxH
2

λ`∗
, (28)

Inequality (i) is due to the following:

`a(w
∗(µ∗(T ∪ a), T )) (29)

= `a(w) +∇`a(w)>(w∗(µ∗(T ∪ a), T )−w) + (w∗(µ∗(T ∪ a), T )−w)>∇2`a(w
′)(w −w)> (30)

≤ `a(w) +
max{eig(∇2`a)}

2
‖w∗(µ∗(T ∪ a), T )−w‖2 (∇`a(w) = 0) (31)

≤ `a(w) + (λ+ χ2
max) ‖w∗(µ∗(T ∪ a), T )−w‖

2
; (32)

and inequality (ii) follows from

(1) `a(w) = λ ‖w‖2 + (ya − hw(xa))2 ≥ χ2
max ‖w‖

2
+ (ya − hw(xa))2 ≥ min

w
χ2
max ‖w‖

2
+ (ya − hw(xa))2 = `∗,

(2) ‖w∗(µ∗(T ∪ a), T )−w‖ ≤ 2wmax =
4(1 + CQ)ymaxH

λ
(Due to Lemma 13) ,

(3) λ ≥ χ2
max. (33)

B.3. Proof of Proposition 7
Proposition 7 Given 0 < ymin ≤ |y| ≤ ymax, hw(x) = w>x, ‖x‖ ≤ xmax, we set the regularizing coefficient as
λ ≥ max

{
x2max, 16(1 + CQ)2y2maxx

2
max/y

2
min.

}
. Then f(S) is a α-submodular set function, where

α ≥ α̂f = 1− 16(1 + CQ)2y2maxx
2
max

λy2min

. (34)

Proof The proof exactly follows the previous proof, except in the highlighted part. We assume that: S ⊂ T . Hence, |T | > 0

and define `a(w) = λ ‖w‖2 + (ya − hw(xa))2,w = argminw`a(w); `∗ = mina∈Dminwχ
2
max ‖w‖

2
+ (ya − hw(xa))2.

Then, we have that:

f(S ∪ a)− f(S)
f(T ∪ a)− f(T )

≥ `a (w
∗(µ∗(S),S ∪ a))

`a (w∗(µ∗(T ∪ a), T ))

≥ `a (w)

`a (w∗(µ∗(T ∪ a), T ))

≥`a (w
∗(µ∗(T ), T ∪ a))− (λ+ χ2

max) ‖w −w∗(µ∗(T ∪ a), T )‖
2

`a (w∗(µ∗(T ∪ a), T ))

≥1− (λ+ χ2
max) ‖w −w∗(µ∗(T ∪ a), T )‖

2

`a (w∗(µ∗(T ∪ a), T ))

≥1− (λ+ χ2
max)

`a(w)
‖w −w∗(µ∗(T ∪ a), T )‖2

≥1−
8 λ
`∗

(1 + CQ)2y2maxx
2
max

λ2
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= 1−
8 (1 + CQ)2y2maxx

2
max

λ`∗

≥ 1−
16 (1 + CQ)2y2maxx

2
max

λ y2min

(35)

where the highlighted part is due to second part of Lemma 13 which gives:

‖w∗(µ∗(T ∪ a), T )−w‖ ≤ 2wmax =
2(1 + CQ)ymaxxmax

λ
; (36)

and, Claim 1 which shows that `∗ = λy2min

λ+x2
max
≥ y2min/2.

B.4. Proof of Proposition 8
Proposition 8 Given the assumptions stated in Theorem 6. the generalized curvature kf (S) for any set S satisfies

κf (S) ≤ κ̂f = 1− `∗

(CQ+ 1)y2max

.

Proof Let us define: `a(w) = λ ‖w‖2 + (ya − hw(xa))
2, w = argminw`a(w). Finally, we denote `∗ =

mina∈Dminwχ
2
max ‖w‖

2
+ (ya − hw(xa))2. By definition, we have 1 − κf (S) = mina∈D

f(a|S\ a)
f(a|∅) . We show that,

from Lemma 12, we have that:
f(a|S\ a) ≥ λ ‖w∗(µ∗(S\ a),S)‖2 + (ya − hw∗(µ∗(S\ a),S)(xa))2 ≥ `a(w) ≥ `∗ (37)

Next, we note that:
f(a|∅) = f( a)− f(∅) (38)

= λ ‖w∗(µ∗( a), a)‖2 + (ya − hw∗(µ∗( a), a)(xa))2

+
∑
q∈[Q]

µ∗q( a)
∑
j∈Vq

[
(yj − hw∗(µ∗( a), a)(xj))2

|Vq|
− δ
]
−
∑
q∈[Q]

µ∗q(∅)
∑
j∈Vq

[
(yj − hw∗(µ∗(∅),∅)(xj))2

|Vq|
− δ
]

(i)

≤ λ ‖w∗(µ∗( a), a)‖2 + (ya − hw∗(µ∗( a), a)(xa))2

+
∑
q∈[Q]

µ∗q( a)
∑
j∈Vq

[
(yj − hw∗(µ∗( a), a)(xj))2

|Vq|
− δ
]
−
∑
q∈[Q]

µ∗q( a)
∑
j∈Vq

[
(yj − hw∗(µ∗(∅),∅)(xj))2

|Vq|
− δ
]

=λ ‖w∗(µ∗( a), a)‖2 + (ya − hw∗(µ∗( a), a)(xa))2

+
∑
q∈[Q]

µ∗q( a)
∑
j∈Vq

[
(yj − hw∗(µ∗( a), a)(xj))2

|Vq|

]
−
∑
q∈[Q]

µ∗q( a)
∑
j∈Vq

[
(yj − hw∗(µ∗(∅),∅)(xj))2

|Vq|

]
≤λ ‖w∗(µ∗( a), a)‖2 + (ya − hw∗(µ∗( a), a)(xa))2

+
∑
q∈[Q]

µ∗q( a)
∑
j∈Vq

[
(yj − hw∗(µ∗( a), a)(xj))2

|Vq|

]
(39)

(ii)

≤ (CQ+ 1) y2max (40)

Here, (i) is because µ∗(∅) = argmaxµ
∑
q∈[Q] µq

∑
j∈Vq

[
(yj − hw∗(µ,∅)(xj))2

|Vq|
− δ
]

, (ii) is obtained by putting w = 0

in Eq. (39) which is now at the minimum, i.e.,

w∗(µ∗( a), a) = argmin
w

λ ‖w‖2 + (ya − hw(xa))2 +
∑
q∈[Q]

µ∗q( a)
∑
j∈Vq

[
(yj − hw(xj))2

|Vq|

]
(41)

Hence, Eqs. (37) and (40) show that, κf (S) ≤ 1− `∗

(CQ+ 1) y2max

.



Training Data Subset Selection for Regression with Controlled Generalization Error

B.5. Auxiliary Lemmas

Lemma 12 If f(·) defined in Eq. (7), we have that

f(S ∪ a)− f(S) ≥ λ ‖w∗(µ∗(S),S ∪ a)‖2 + (ya − hw∗(µ∗(S),S∪ a)(xa))2. (42)
and,

f(S ∪ a)− f(S) ≤ λ ‖w∗(µ∗(S ∪ a),S)‖2 + (ya − hw∗(µ∗(S∪ a),S)(xa))2. (43)

Proof The proof of the lower bound of the marginal gain
f(S ∪ a)− f(S) ≥ λ ‖w∗(µ∗(S),S ∪ a)‖2 + (ya − hw∗(µ∗(S),S∪ a)(xa))2. (44)

follows from the proof of Proposition 5.

Next we prove that
f(S ∪ a)− f(S) ≤ λ ‖w∗(µ∗(S ∪ a),S)‖2 + (ya − hw∗(µ∗(S∪ a),S)(xa))2. (45)

To show this, we prove that:
f(S∪ a)− f(S)

= F (w∗(µ∗(S ∪ a),S ∪ a),µ∗(S ∪ a),S ∪ a)− F (w∗(µ∗(S),S),µ∗(S),S) (46)
= F (w∗(µ∗(S ∪ a),S ∪ a),µ∗(S ∪ a),S ∪ a)− F (w∗(µ∗(S ∪ a),S),µ∗(S ∪ a),S)
+ F (w∗(µ∗(S ∪ a),S),µ∗(S ∪ a),S)− F (w∗(µ∗(S),S),µ∗(S),S)︸ ︷︷ ︸

≤0

(47)

(i)

≤ F (w∗(µ∗(S ∪ a),S ∪ a),µ∗(S ∪ a),S ∪ a)− F (w∗(µ∗(S ∪ a),S),µ∗(S ∪ a),S) (48)
= F (w∗(µ∗(S ∪ a),S ∪ a),µ∗(S ∪ a),S ∪ a)− F (w∗(µ∗(S ∪ a),S),µ∗(S ∪ a),S ∪ a)︸ ︷︷ ︸

≤0

+ F (w∗(µ∗(S ∪ a),S),µ∗(S ∪ a),S ∪ a)− F (w∗(µ∗(S ∪ a),S),µ∗(S ∪ a),S)
(ii)

≤ F (w∗(µ∗(S ∪ a),S),µ∗(S ∪ a),S ∪ a)− F (w∗(µ∗(S ∪ a),S),µ∗(S ∪ a),S)

=
∑
i∈S∪ a

[λ ‖w∗(µ∗(S ∪ a),S)‖2 + (yi − hw∗(µ∗(S∪ a),S)(xi))2]

+
∑
q∈[Q]

µ∗q(S ∪ a)

[∑
j∈Vq

(yj − hw∗(µ∗(S∪ a),S)(xj))2

|Vq|
− δ

]
(49)

−
∑
i∈S

[λ ‖w∗(µ∗(S ∪ a),S)‖2 + (yi − hw∗(µ∗(S∪ a),S)(xi))2]

−
∑
q∈[Q]

µ∗q(S ∪ a)

[∑
j∈Vq

(yj − hw∗(µ∗(S∪ a),S)(xj))2

|Vq|
− δ

]
(50)

= λ ‖w∗(µ∗(S ∪ a),S)‖2 + (ya − hw∗(µ∗(S∪ a),S)(xa))2. (51)
Here (i) is due to the fact that,

µ∗(S) = argmax
µ

F (w∗(µ,S),µ,S) (52)

and (ii) is due to the fact that:
w∗(µ∗(S ∪ a),S ∪ a) = argmin

w
F (w,µ∗(S ∪ a),S ∪ a) (53)
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Lemma 13 Given that S 6= ∅; hw(x) = 0 forw = 0; and, hw(x) is H-Lipschitz, i.e., |hw(x)| ≤ H ‖w‖. Then, we have

‖w∗(µ,S)‖ ≤ 2(1 + CQ)ymaxH

λ
. Moreover, if hw(x) = w>x, we have that ‖w∗(µ,S)‖ ≤ (1 + CQ)ymaxxmax

λ
. Note

that, for the linear model, we are able to exploit the structure of the model much better and therefore the bound is tighter.

Proof First we define∇h0(x) = ∇whw(x)|w=0.

F (w∗(µ,S),µ,S)

= λ ‖w∗(µ,S)‖2 |S|+
∑
i∈S

(yi − hw∗(µ,S)(xi))2 +
∑
q∈[Q]

µq
|Vq|

∑
j∈Vq

[
(yj − hw∗(µ,S)(xj))2 − δ

]
= λ ‖w∗(µ,S)‖2 |S|+

∑
i∈S

y2i +
∑
q∈[Q]

µq
Vq

∑
j∈Vq

y2j −
∑
q∈[Q]

µq
|Vq|

∑
j∈Vq

δ

− 2
∑
i∈S

yihw∗(µ,S)(xi)− 2
∑
q∈[Q]

µq
|Vq|

∑
j∈Vq

yjhw∗(µ,S)(xj) +
∑
i∈S

h2w∗(µ,S)(xi) +
∑
q∈[Q]

µq
|Vq|

∑
j∈Vq

h2w∗(µ,S)(xj)︸ ︷︷ ︸
≥0

(i)

≥ λ ‖w∗(µ,S)‖2 |S|+

F (0,µ,S)︷ ︸︸ ︷∑
i∈S

y2i +
∑
q∈[Q]

µq
Vq

∑
j∈Vq

y2j −
∑
q∈[Q]

µq
|Vq|

∑
j∈Vq

δ

− 2
∑
i∈S

yihw∗(µ,S)(xi)− 2
∑
q∈[Q]

µq
|Vq|

∑
j∈Vq

yjhw∗(µ,S)(xj). (54)

Here (i) is due to
∑
i∈S

h2w∗(µ,S)(xi) +
∑
q∈[Q]

µq
|Vq|

∑
j∈Vq

h2w∗(µ,S)(xj) ≥ 0. Now since F (0, µ,S) =
∑
i∈S

y2i +∑
q∈[Q]

µq
Vq

∑
j∈Vq

y2j −
∑
q∈[Q]

µq
|Vq|

∑
j∈Vq

δ, Eq. (54) gives us:

F (w∗(µ,S),µ,S)− F (0, µ,S) ≥ λ ‖w∗(µ,S)‖2 |S|

− 2
∑
i∈S

yihw∗(µ,S)(xi)− 2
∑
q∈[Q]

µq
|Vq|

∑
j∈Vq

yjhw∗(µ,S)(xj) (55)

Now since w∗(µ,S) = argminw F (w,µ,S), we have that F (w∗(µ,S),µ,S) ≤ F (0, µ,S). Then, Eq. (55) implies that

λ ‖w∗(µ,S)‖2 |S| − 2
∑
i∈S

yihw∗(µ,S)(xi)− 2
∑
q∈[Q]

µq
|Vq|

∑
j∈Vq

yjhw∗(µ,S)(xj) ≤ 0

(i)
=⇒ λ ‖w∗(µ,S)‖2 |S| ≤ 2|S| ymaxH ‖w∗(µ,S)‖+ 2

∑
q∈[Q]

µq
|Vq|

∑
j∈Vq

ymaxH ‖w∗(µ,S)‖

≤ 2(|S|+ CQ)ymaxH ‖w∗(µ,S)‖

=⇒ ‖w∗(µ,S)‖ ≤ 2(|S|+ CQ)ymaxH

λ|S|
≤ 2(1 + CQ)ymaxH

λ
(56)

Here (i) is due to H-Lipschitzness of hw∗(µ,S)(x). For linear model, we have H = xmax. However, we use the structure
of the model to obtain a better bound. More specifically, for linear model, we have:

w∗(µ,S) =

λ|S|I+∑
i∈S

xix
>
i +

∑
q∈[Q]

µq
|Vq|

∑
j∈Vq

xjx
>
j

−1∑
i∈S

yixi +
∑
q∈[Q]

µq
|Vq|

∑
j∈Vq

yjxj


=⇒ ‖w∗(µ,S)‖ ≤ (|S|+ CQ)xmaxymax

Eigmin

(
λ|S|I+

∑
i∈S xix

>
i +

∑
q∈[Q]

µq

|Vq|
∑
j∈Vq

xjx>j

)
≤ (|S|+ CQ)xmaxymax

λ|S|

≤ (1 + CQ)xmaxymax

λ
. (57)
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Claim 1 minw[λ ‖w‖2 + (ya −w>xa)2] = λy2a
λ+‖xa‖2

Proof We note that:
w = ya(λ+ xax

>
a )
−1xa (58)

Hence, we have that:
λ ‖w‖2 + (ya −w>xa)2 = y2a − 2yaw

>xa +w
>(λI+ xax>a )w (59)

= y2a − yaw>xa (60)

= y2a − y2ax>a (λ+ xax
>
a )
−1xa (61)

= y2a − y2ax>a
[
1

λ
− xax

>
a /λ

2

1 + x>a xa/λ

]
xa (Due to Sherman Morrison formula) (62)

=
λy2a

λ+ ‖xa‖2

≥ λy2min

λ+ x2max

(63)
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C. Proofs of the technical results in Section 4
C.1. Proof of Lemma 9

Lemma 9 Given a fixed set Ŝ and an α-submodular function f(S), let the modular function mf

Ŝ
[S] be defined as follows:

mf

Ŝ
[S] =f(Ŝ)−

∑
i∈Ŝ

αf(i|Ŝ\{i})

+
∑
i∈Ŝ∩S

αf(i|Ŝ\{i}) +
∑
i∈S\Ŝ

f(i|∅)
α

. (64)

Then, f(S) ≤ mf

Ŝ
[S] for all S ⊆ D.

Proof Recall that f is α-submodular with coefficient α̂f if f(a|S) ≥ α̂ff(a|T ), a /∈ T ,S ⊆ T . Given this, the following
inequalities follow directly from:

α̂f [f(S)− f(Ŝ ∩ S)] ≤
∑
i∈S\Ŝ

f(i|∅) (65)

and similarly,

[f(Ŝ)− f(Ŝ ∩ S)] ≥ α̂f
∑
i∈Ŝ\S

f(i|Ŝ\i) (66)

The inequalities above hold by considering a chain of sets from Ŝ ∩ S to either Ŝ or S and applying the weak-submodularity
definition by considering sets S and T appropriately. We then multiply−1 to inequality (66), multiply 1/α̂f to equation (65)
and add both of them together. We then achieve:

f(S) ≤ f(Ŝ)− α̂f
∑
i∈Ŝ\S

f(i|Ŝ\i) + 1

α̂f

∑
i∈S\Ŝ

f(i|∅) (67)

Rearranging this, we get the expression for the Lemma.

C.2. Proof of Theorem 10

Theorem 10 If the training algorithm in Algorithm 1 (lines 3, 6, 8) provides perfect estimates of the model parameters, it
obtains a set Ŝ which satisfies:

f(Ŝ) ≤ k

α̂f (1 + (k − 1)(1− κ̂f )α̂f )
f(S∗) (68)

where α̂f and κ̂f are as stated in Theorem 6 and Proposition 8 respectively.

Proof From the definition of α-submodularity, note that α̂ff(S) ≤
∑
i∈S f(i). Next, we can obtain the following inequality

for any k ∈ S using weak submodularity:

f(S)− f(k) ≥ α̂f
∑
j∈S\k

(f(j|S\j) (69)

We can add this up for all k ∈ S and obtain:

|S|f(S)−
∑
k∈S

f(k) ≥ α̂f
∑
k∈S

∑
j∈S\k

(f(j|S\j)

≥ α̂f (|S| − 1)
∑
k∈S

f(k|S\k) (70)

Finally, from the definition of curvature, note that f(k|S\k) ≤ (1− κ̂f )f(k). Combining all this together, we obtain:

|S|f(S) ≥ (1 + α̂f (1− κ̂f )(|S| − 1))
∑
j∈S

f(j) (71)
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which implies: ∑
j∈S

f(j) ≤ |S|
1 + α̂f (1− κ̂f )(|S| − 1)

f(S) (72)

Combining this with the fact that α̂ff(S) ≤
∑
i∈S f(i), we obtain that:

f(S) ≤ 1

α̂f

∑
i∈S

f(i) ≤ |S|
α̂f (1 + α̂f (1− κ̂f )(|S| − 1))

f(S) (73)

The approximation guarantee then follows from some simple observations. In particular, given an approximation

mf (S) = 1

α̂f

∑
i∈S

f(i) (74)

which satisfies f(S) ≤ mf (S) ≤ βff(S), we claim that optimizing mf essentially gives a βf approximation factor.
To prove this, let S∗ be the optimal subset, and Ŝ be the subset obtained after optimizing mf . The following chain of
inequalities holds:

f(Ŝ) ≤ mf (Ŝ) ≤ mf (S∗) ≤ βff(S∗) (75)

This shows that Ŝ is a βf approximation of S∗. Finally, note that this is just the first iteration of SELCON, and with
subsequent iterations, SELCON is guaranteed to reduce the objective value (see Appendix C.4).

C.3. Proof of Theorem 11

Theorem 11 If the training algorithm (lines 3, 6, 8) in Algorithm 1 provides imperfect estimates, so that
‖F (ŵ, µ̂,S)− F (w∗(µ∗(S),S),µ∗(S),S)‖ ≤ ε for any S, then Algorithm 1 obtains a set Ŝ that satisfies:

f(Ŝ) ≤
(

k

α̂f (1 + (k − 1)(1− κ̂f )α̂f )
+

2kε

`

)
f(S∗),

where ` = mina∈Dminw λ||w||2 + (yi − hw(xi))2, α̂f and κ̂f are obtained in Theorem 6 and Proposition 8, respectively.

Proof Define:

βf =
k

(1 + (k − 1)(1− κ̂f )α̂f )
(76)

and also define, f̂(S) = F (ŵ, µ̂,S) and f(S) = F (w∗(µ∗(S),S),µ∗(S),S). Note that instead of having access to f , the
algorithm has access to f̂ which satisfies:

|f(S)− f̂(S)| ≤ ε, ∀S (77)

Let us assume that f̂ is always smaller compared to f , i.e. in other words,

f(S) ≤ f̂(S) ≤ f(S) + ε (78)

Combining this with the fact that:

f(S) ≤ 1

α̂f

∑
j∈S

f(j) ≤ βf
α̂f
f(S) (79)

we obtain the following chain of inequalities:

f(S) ≤ 1

α̂f

∑
j∈S

f(j) ≤ 1

α̂f

∑
j∈S

[f̂(j)] ≤ 1

α̂f

∑
j∈S

[f(j) + ε] ≤ βf
α̂f
f(S) + kε

α̂f
(80)

where |S| = k. Finally, we get the approximation factor by dividing by a lower bound of l = minS:|S|=k f(S) which can
be obtained via a very similar proof technique to the weak submodularity and curvature results. Hence we get the final
approximation factor as βf

α̂f
+ kε

lα̂f
.

We end by pointing out that we can get a similar result even if we do not assume that f̂ is always smaller compared to f and
in fact, assume the more general condition:

f(S)− ε ≤ f̂(S) ≤ f(S) + ε (81)
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The only difference is we have an additional factor of 2 in the additive bound. In particular, we get the following chain of
inequalities:

f(S) ≤ 1

α̂f

∑
j∈S

f(j) ≤ 1

α̂f

∑
j∈S

[f̂(j) + ε] ≤ 1

α̂f

∑
j∈S

[f(j) + 2ε] ≤ βf
α̂f
f(S) + 2kε

α̂f
(82)

The chain of inequalities holds because f(j) ≤ f̂(j) + ε and f̂(j) ≤ f(j) + ε.

C.4. Convergence property

We begin this section by showing that SELCON is guaranteed to reduce the objective value at every iteration as long as we
obtain perfect solutions from the training algorithm (lines 3, 6, 8 in Algorithm 1).

Lemma 14 SELCON (Algorithm 1) is guaranteed to reduce the objective value of f at every iteration as long as we obtain
perfect solutions from the training sub-routine.

Proof SELCON essentially uses modular upper bounds mf of f at every iteration. Denote Sl as the set obtained in the lth
iteration and let Sl+1 be the one from the l + 1th iteration. Then the following chain of inequalities hold:

f(Sl+1) ≤ mf (Sl+1) ≤ mf (Sl) = f(Sl) (83)

The first inequality holds because mf is a modular upper bound, the second inequality holds because Sl+1 is the solution
of minimizing mf (and hence mf (Sl=1) is lower in value compared to mf (Sl)). The last equality holds because mf is a
modular upper bound which is tight at Sl and hence mf (Sl) = f(Sl). This shows that f(Sl+1) ≤ f(Sl).

We end this section by pointing out that this chain of inequalities does not hold if we get inexact or approximation solutions
to the training sub-routine. In practice, we observe that the objective value of f still reduces even though we obtain only
inexact solutions since the inexact solutions are often close to the true solutions of the training step.
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D. Additional details about experimental setup
D.1. Dataset details

• Cadata: California housing dataset is obtained from the LIBSVM package 6. This spatial dataset contains 20,640
observations on housing prices with 9 economic covariates. As described in (Pace & Barry, 1997), here x are
information about households in a block, say median age, median income, total rooms/population, bedrooms/population,
population/households,households etc. and y is median price in median housing prices by all California census blocks.
It has dimension(x) = 8.

• Law: This refers to the dataset on Law School Admissions Council’s National Longitudinal Bar Passage Study (Wight-
man, 1998). Here x is information about a law student, including information on gender, race, family income, age,
etc. and y indicates GPA normalised to [0, 1] . We use race as a protected attribute for the fairness experiments. It has
dimension(x) = 10.

• NYSE-High: This dataset is obtained from the New York stock exchange (NYSE) 7 dataset as follows. Given the set
{si} with si corresponding to the the highest stock price of the ith day, we define sk+1 =

∑
i∈[100] wisk+1−i. Here

yk = sk+1 and xk = [sk, sk−1, ..., sk−99]. This dataset has dimension(x) = 100.
• NYSE-close: This dataset is obtained from the New York stock exchange (NYSE) 8 dataset as follows. Given the set
{si} with si corresponding to the the closing stock price of the ith day, we define sk+1 =

∑
i∈[100] wisk+1−i. Here

yk = sk+1 and xk = [sk, sk−1, ..., sk−99]. This dataset has dimension(x) = 100.

D.2. Implementation details

Our models. We use two models— a simple linear regression model and a two layer neural network that consists of a linear
layer of 5 hidden nodes and a ReLU activation unit. In all our experiments, we use a learning rate of 0.01. We choose the
value of δ as the 30% of the mean validation error obtained using Full-selection.

Implementation of CRAIG. CRAIG (Mirzasoleiman et al., 2020) requires computing a D × D matrix with similarity
measure for each pair of points in the training set. For the larger datasets, i.e., NYSE-close and NYSE-high, such a
computation requires a large amount of memory. Hence, we use a stochastic version where we randomly select R points
and build R×R matrix and select kRD each time and repeat the process DR times. We use R = 50000. Note that, for other
datasets, since |D| < 50000 the stochastic version is same as the original version.

CRAIG requires us to select the subset only once, since features will not change even as the training proceeds. However,
since CRAIG is an adaptive method, for the non-linear setting, we need to run CRAIG every epoch. Despite using the
stochastic version, we found CRAIG to be very slow in the non-linear setting and therefore we don’t report it.

Implementation of GLISTER. GLISTER (Killamsetty et al., 2021b), an another adaptive subset selection method where
we select a new subset every 35th epoch to help make a fair comparison against SELCON. We update the model parameters
after every selection step.

Machine configuration. We performed our experiments on a computer system with Ubuntu 16.04.6 LTS, an i-7 with 6
cores CPU and a total RAM of 125 GBs. The system had a single GeForce GTX 1080 GPU which was employed in our
experiments.

E. Additional experiments
E.1. Discussion on adding offsets to the response variable y

The approximation ratio of SELCON is f(Ŝ)/f(S∗) ≤ k

α̂f (1 + (k − 1)(1− κ̂f )α̂f )
when the training method is accurate.

A trite calculation shows that this quantity is O(y4max/y
4
min). If ymax/ymin is very high, the approximation ratio is affected.

Such a problem can be easily overcome by adding an offset to y and then augmenting the feature x with an additional term
1— which incorporates the effect of the added offset. We summarize the effect of this offset on the approximation ratio (for
different datasets) in Figure 5 which shows that adding an offset improves the approximation factor. Note that in the case of

6https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/regression.html
7https://www.kaggle.com/dgawlik/nyse
8https://www.kaggle.com/dgawlik/nyse

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/regression.html
https://www.kaggle.com/dgawlik/nyse
https://www.kaggle.com/dgawlik/nyse
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Figure 5. Variation in the approximation ratio with respect to the offset added to the response variables y.

Cadata, y indicates the house price; whereas in the case of Law, y indicates student GPA. Therefore, the approximation
factor of these datasets is reasonable even without adding an offset. Whereas, for NYSE-High and NYSE-Clone, the
approximation factor is somewhat poorer at lower values of the offset (not shown in the plot).

E.2. Significance Tests
RANDOM-SELECTION

RANDOM-WITH-CONSTRAINTS 0.000089
CRAIG 0.00012 0.50159

GLISTER 0.040043 0.00014 0.00078
SELCON-WITHOUT-CONSTRAINTS 0.001713 0.601212 0.88129 0.00803

SELCON 0.0001 0.00014 0.00059 0.0001 0.0001
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Table 6. Pairwise significance p-values using Wilcoxon signed rank test.

In Table 6, we show the p-values of two-tailed Wilcoxon signed-rank test (Wilcoxon, 1992) performed on every possible
pair of data selection strategies to determine whether there is a significant statistical difference between the strategies in
each pair, across all datasets. Our null hypothesis is that there is no difference between each pair of data selection strategies.
From the results, it is evident that SELCON significantly outperforms other baselines at p < 0.01.


