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ABSTRACT
Identifying the right choice of categories for organizing and
representing a large digital library of documents is a chal-
lenging task. A completely automated approach to category
creation from the underlying collection could be prone to
noise. On the other hand, an absolutely manual approach
to the creation of categories could be cumbersome and ex-
pensive. Through this work, we propose an intermediate so-
lution, in which, a global, collaboratively-developed Knowl-
edge Graph of categories can be adapted to a local document
categorization problem effectively. We model our classifi-
cation problem as that of inferring structured labels in an
Associative Markov Network meta-model over SVMs, where
the label space is derived from a large global category graph.
We propose a joint Active Learning model over the label and
the document spaces in order to incorporate active labeling
feedback from the users to train the model parameters.

Keywords
Large scale text classification, Text categorization, Topic
identification, Multi-label classification, Personalization, Ac-
tive Learning

1. INTRODUCTION
With the growth of digital data in the form of news, blogs,

web pages, scientific articles, books, images, sound, video,
social networks and so on, the need for effective categoriza-
tion systems to organize, search and extract information be-
comes self-evident.

An important aspect in building a categorization system
is the choice of categories. Categories that are very generic,
such as News, Entertainment, Technical, Politics, Sports,
and the like may not be useful. Thousands of articles could
accumulate under each such category and searching for the
required piece of information could still be a challenge. On
the other hand, fine-grained category creation needs domain
experts and is a laborious task.
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Figure 1: A part of the Knowledge Graph

Adopting predefined categories from an existing classifi-
cation system (such as Reuters text classification dataset)
may not be always suitable. Such a strategy could lead to
(i) under or over specific categories (ii) failure to capture
user intention (iii) failure to evolve with time.

In this paper we present our attempts to address these
practical issues in designing a document categorization sys-
tem. We call our system EVO. We assume as input to our
system, a global Knowledge Graph (KnG) whose nodes are
all possible categories, and edges are relationship between
the categories. Each category is accompanied by some de-
scription of that category. Every relationship edge is also
associated with a score between 0.0 to 1.0 indicating the
strength of the relationship. This score can be generated
using document similarity measurement techniques (such as
Jaccard, Cosine, Kernels or semantic similarity methods).
Such a knowledge graph can be built collaboratively. For
experimental purposes we treat Wikipedia as a knowledge
graph. Wikipedia’s 4M articles cover the terminology of
nearly any document collection [10], which could make it a
good candidate for KnG. A part of KnG is shown in Figure
1. For brevity, only one relationship edge is shown between
the categories. Next, we need sound techniques for adopting
the categories in this KnG to our local collection of docu-
ments. In this paper, we propose a technique to solve this
problem by learning a model to project the documents into
a localized subset of the categories in KnG; this is done by
capturing various signals from the documents, exploiting the
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knowledge in KnG and using the feedback from a human or-
acle.

2. FORMAL PROBLEM STATEMENT AND
SOLUTION PROPOSAL

We assume that a knowledge graph exists with all possible
categories (that can cover the terminology of nearly any doc-

ument collection; for example, Wikipedia) C = {Ci}i=f
i=1 as

nodes, and the relationship between them as edges. The cat-
egories are associated with some description of that category
and edges are associated with a score reflecting the strength
of the relationship between two categories. We further as-
sume that an organization receives documents in batches
D1, D2, ...where each batch Dj is received at jth time period
(say, jth week/month and the like.) The organization needs
to adopt (subset) the categories in KnG to logically build an
organization-specific category catalog Corg ⊆ C and at the
same time, evolve some models to classify all di ∈ Dj into
Corg. More specifically, we assume the following goals:

1. Learning a personalised model for the association of
the categories in KnG to a document collection through
active learning and feature design

2. Building an evolving multi-label categorization system
to categorize documents into Corg.

The eventual goal is to accurately identify suitable cate-
gories {Ci1 , ...CiT } for every input document di ∈ Dj ∀i, j.
If one could learn an SVM classier for every category in
the KnG, identifying all suitable categories for a document
would entail determining which classifiers label the docu-
ment as positive. However, learning such classifiers upfront
is prohibitively expensive because, the KnG is usually very
large (for example, Wikipedia has four million titles) making
it impractical to learn a classifier (SVM) for every category
in KnG using limited training data. Hence, it is a chal-
lenging task to develop a classification system which can
identify a subset of the millions of categories that suit an
organization. We attempt to solve this problem from a new
perspective of active learning and knowledge propagation
techniques, which we explain next. Figure 3 illustrates the
overall process of evolving a personalized classifier.

It has been observed that a document that is tagged with a
category is expected to contain features such as keywords/phrases
that are indicative of that category [8, 6]. For example,
the text shown in Figure 2, contains several words/phrases
that are indicative of some of the category titles in the KnG
(Wikipedia, in our examples.) Techniques such as [9, 6, 8]
can be used for spotting such keywords/phrases. We refer to
such categories as candidate categories. “Keywords Spotter”
component in Figure 3 detects candidate categories. How-
ever, some of these categories could be either (a) mislead-
ing or (b) not relevant in determining the “interesting cate-
gories.” As an illustration of (a), consider, in Figure 2, the
category “Jikes RVM” (which is picked up due to the spot-
ted keyword RVM,) which means Java JVM—not relevant
to the document. Thus, the word “RVM” is misleading as
a feature. On the other hand, while the category “Cancer”
is relevant to the document, the user may want to restrict
the choice of categories to the computer science domain, and
may therefore, not be interested in categories like “Cancer,”
thus making a case for (b). Our goal is to develop a person-
alized categorization system that has the capacity to evolve

and learn how to accurately identify only relevant categories.
This can be achieved by incrementally learning a classier for
each class, based on user feedback. We expect the classifier
training to result in feature weights such that the effect of
misleading and irrelevant features described above is mini-
mized.

Another benefit of having a candidate categories identifi-
cation phase is that, it allows us to evolve Corg with more
categories when the documents with new categories are seen
by our system. The spotter can recognize these new cate-
gories which can become part of Corg eventually. By this
process, we overcome the problem of under-specified cate-
gories that prevails in the classification systems with prede-
fined categories. However, in the process, we may result in
over-specified categories, if we do not control the addition
of new categories to Corg. We observed that, simple heuris-
tics such as generating a histogram of categories with the
number of documents classified under them and then prun-
ing the categories that have very few or very high number
of documents can work reasonably well in practice. In addi-
tion, our user feedback mechanism, which we explain later
in the paper, will also help in limiting the number of cat-
egories in Corg. More sophisticated approaches to address
under or over specified categories using category hierarchies
from KnG, which we are exploring currently, will form the
part of our future work.

We also observe that categories that get assigned to a
document either exhibit semantic relations such as “associ-
ations,”1 “descriptions overlap,” and the like or tend to be
frequently assigned together (that is, tend to co-occur) in a
particular instance of the classification exercise. For exam-
ple, with the Reuters RCV1-v2 dataset, we observe that all
pairs of categories that co-occur even once in the training
set, co-occur multiple times in test set. In other instances of
classified data such as DMOZ or the Yahoo! Directory, we
make an additional observation that co-occurring categories
exhibit semantic relations such as “association.” For exam-
ple, the category “Linear Classifier” is related to categories
such as “Kernel Methods in Classifiers,” “Machine Learn-
ing,” and the like, and are observed to co-occur as labels
for a document on “Classifiers.” Another illustration: cat-
egories “Support Vector Machines” and “Kernel Methods”
exhibit a lot of overlap in their textual descriptions. To sum
up, we identify two types of informative features to iden-
tify relevant categories for each document: (i) a feature that
is a function of the document and a category, such as the
category-specific classifier scoring function evaluated on a
document and (ii) a feature that is a function of two cate-
gories, such as their co-occurrence frequency or textual over-
lap between their descriptions. We find Associative Markov
Network (AMN) [15], a very natural way of modeling these
two types of features. Next, we provide a more detailed de-
scription of our modeling of this problem as an Associative
Markov Network.

For every input document d, we construct a Markov Net-
work (MN) from the candidate categories, such that, each
node represents a candidate category Ci ∈ C and edges
represent the association between the categories. Model-
ing inter-category relations through edges serves two impor-
tant purposes in our approach: i) When a new organization
starts categorizing documents, the classifier models are ini-

1http://marciazeng.slis.kent.edu/Z3919/44association.htm
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Figure 2: Document with detected keywords (in yellow) and sample candidate categories (in blue)

tially not tuned. The only information available to the cat-
egorization system are the category descriptions. It is not
practical to assume that perfect descriptions will be available
for every category. In such cases, the relationship between
the categories can help propagate descriptions across cate-
gories via their neighbors. ii) As part of learning the model
parameters, the system solicits user feedback on some of the
suggested categories for a document. Based on the feedback,
the category-specific model (SVM) is updated. The cate-
gory relationship helps in propagating the learning to the
neighbors. This reduces the number of feedbacks needed to
learn the model parameters. We will illustrate both these
advantages in our experimental section.

Our aim is to learn to assign a binary label (0/1) for every
category node Ci in the above MN. Label 1 indicates that
the category Ci is valid for the document d and 0 indicates
invalid. The collective assignment of labels for all the nodes
in the Markov network produces relevant categories for the
document d. As we see later in the paper, optimal assign-
ment of these labels can be achieved through MAP inference
using Integer Linear Programming.

The “Amn + SVM classifier” component in Figure 3 per-
forms the AMN inference using the learned model parame-
ters and user feedback (along with user defined constrains,
explained later in this paper.)

The “Active Learner” component in Figure 3 solicits user
feedback (which also includes constraints) and updates model
parameters, which is explained later in this paper.

3. LEARNING PERSONALIZED CLASSIFIER

3.1 Building AMN model from categories
For a given document d, we create an MN G = (N,E),

whose nodes N are the candidate categories from the KnG
and edges E are the association between them, as present
in KnG.

In an AMN, only node and edge potentials are consid-
ered. For an AMN with a set of nodes N and edges E, the
conditional probability of label assignment to nodes is given

by

P (y|x) = 1

Z

∏
ϕ (xi, yi)

∏
ψ (xij , yi, yj) (1)

We use notation xi to denote a set of node features for
the candidate category node Ci and xij to denote the set of
edge features for the edge connecting Ci and Cj . yi and yj
are the binary labels for nodes Ci and Cj .
The node features in AMN determine the relevance of a

category to the input document d and the edge features cap-
ture the strength of the various associations between the
categories. Note, here the node features xi are computed by
considering the node description and the input document
text. Hence the above distribution is for a given document
d.

Z denotes the partition function given by
Z =

∑
y′

∏
ϕ (xi, y

′
i)
∏

ψ
(
xij , y

′
i, y

′
j

)
.

A simple way to define the potentials ϕ and ψ is the log-
linear model. In this model, a weight vector is introduced
for each class label k = 1..K. The node potential ϕ is then
defined as logϕ (xi, yi) = wk

n ·xi where k = yi . Accordingly,
the edge potentials are defined as logψ (xij , yi, yj) = wk,l

e ·
xij where k = yi and l = yj . Note that there are different
weight vectors wk

n ∈ R
dn and wk,l

e ∈ R
de for the nodes and

edges.
Using the indicator variables yk

i we can express the po-
tentials as: logϕ (xi, yi) =

∑K
k=1

(
wk

n · xi

)
yk
i and

logψ (xi,j , yi, yj) =
∑K

k=1

(
wk,l

e · xij

)
yk
i y

l
j ; where yk

i is an
indicator variable which is 1 if node Ci has label k and 0,
otherwise.

To bring in the notion of association, we introduce the
constraints wk,l

e = 0 for k �= l and wk,k
e ≥ 0. This results in

ψ (xij , k, l) = 1 for k �= l and ψ (xij , k, k) ≥ 1. The idea here
is that edges between nodes with different labels should be
penalized over edges between equally labeled nodes.

Learning feature weight vectors is based on Max Margin
training, which is of the form
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Figure 3: Architecture of KnG category Personalization

argmin
w,c

1

2
‖w‖2 + cξ

s.t. wXŷ + ξ ≥ max
y

wXy + (|N | − y.ŷn) ; we ≥ 0

Using compact representation, we define the node and
edge feature weight vectors wn =

(
w1

n, ...,w
K
n

)
and we =(

w1,1
e , ...,wK,K

e

)
, and let w = (wn,we) be the vector of all

the weights. Also, we define the node and edge labels vec-
tors, yn = (..., y1

i , ..., y
K
i , ...)T and ye = (..., y1,1

ij , ..., yK,K
ij , ...)T,

where yk,l
ij = yk

i y
l
j , and the vector of all labels y = (yn,ye).

The matrix X contains the node feature vectors xi and edge
feature vectors xij repeated multiple times (for each label
k or label pair k, l respectively), and padded with zeros ap-
propriately. ŷ is the vector of true label assignments given
by the training instance. |N | is the number of nodes in the
graph G.

We request the reader to refer to[15] for details of solving
this optimization.

3.2 Inferring categories for a document
The problem of inference is to select a subset of nodes

(that is, categories) from G that have the highest probability
of being relevant to the input document. To model this
selection, we attach a binary label {0, 1} to a node. A node
Ci with label 1 is considered to be a valid category for the
input document and invalid if its label is 0.

Correctly determining the categories for the input docu-
ment is equivalent to solving the MAP optimization problem
in (2).

max
y

N∑
i=1

1∑
k=0

(
wk

n · xi

)
yk
i +

∑
(ij)∈E

1∑
k=0

(
wk

e · xij

)
yk
ij(2)

s.t. yk
i ≥ 0, ∀i, k ∈ {0, 1} ;∑1
k=0 y

k
i = 1, ∀i

yk
ij ≤ yk

i , yk
ij ≤ yk

j , ∀ij ∈ E, k ∈ {0, 1}
y0i = 1 ∀i with Hard Constraints

The variables yk
ij represent the labels of two nodes con-

nected by an edge. The inequality conditions on the fourth

line are a linearization of the constraint yk
ij = yk

i ∧ yk
j ; We

explain Hard Constraints in section 3.5.
The above MAP inference produces the optimum assign-

ment of labels yki that maximizes the probability function in
Equation 1. It can be shown that the Equation 2 produces
integer solution when unique solution exists. When y1i = 1,
we attach the label 1 to the node Ci, and when y0

i = 1,we
attach the label 0 to the node Ci. (Note, both y0

i and y1
i

cannot be 0 or 1 simultaneously, due the second constraint.)

3.3 Personalization of KnG
Personalization is the process of learning to categorize

with categories that are of interest to an organization. We
achieve this by soliciting feedback from a human oracle on
the system-suggested categories and using it to retrain the
system parameters. The feedback is solicited as “correct”,
“incorrect” or “never again” for the categories assigned to
a document by the system. In the next few sections, we
describe how this feedback is used to train our model for
personalization.

3.4 Personalization using per-class SVM
We divide the node features xi into two types : i) Global

node features xs
i and ii) Local node features SVM0

i and
SVM1

i . The node feature vector becomes
xi =

[
xs
i ;SVM0

i ;SVM1
i

]
.

Global features: These features aid in capturing the
structural similarity of a node to the input document through
a combination of different kernels such as Bag of Words ker-
nels, N-gram kernels, Relational kernels, among others. The
values of global features do not change over time. An ex-
ample of global feature could be, cosine similarity between
the bag of words representations of a document and the de-
scription associated with a node in the KnG.

Local features: These features aid in the personaliza-
tion of KnG. Essentially, we learn an SVM model for a
category based on our active learning and user feedback.
We employ the decision function of the classifier as a node
feature in the AMN. That is, SvmCi (d) = wT

Ci
d + bCi ,

where wCi and bCi are the SVM parameters learned for
the category Ci. The output of the SVM decision func-
tion is positive if Ci is relevant for the document d and
negative, if not relevant. We also treat the output of deci-
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Figure 5: Constraint Propagation: By applying a “never
again” constraint on node N, the label of Node N is forced
to 0. This forces labels of strongly associated neighbors
(O,P,Q,R) to 0. This is due to the AMN MAP inference,
which attains maximum value when the labels of these neigh-
bors (with high edge potentials) are assigned label 0.

sion function to be 0 if the SVM model is not available for
the category Ci. We introduce two features in the node
feature vector xi, viz, SVM1

i and SVM0
i whose feature

values are computed as SVM1
i = max (SvmCi (d) , 0) and

SVM0
i = min (SvmCi (d) , 0).

Due to the associative property of AMN, the SVM param-
eters learned for a node can also influence the label assign-
ments of its neighbors. In other words, if there is a strong
edge potential between categories Ci and Cj , the SVM score
propagates from Ci to Cj . This helps in correct detection of
the label of node Cj even though there may not be a trained
SVM classifier available for node Cj . The example in Fig-
ure 4 illustrates the knowledge propagation between highly
associated (that is, with high edge potential) nodes. This is
precisely what we aim to model using an AMN.

3.5 Personalization from category Constraints
In the process of personalizing the KnG, users can indicate

(via feedback) that a category Ci suggested by the system
should never reappear in future categorization, because the
organization is not interested in that category. For exam-
ple, an organization working in the core area of Computer
Science may not be interested in a detailed categorization
of cancers, even though there may be some documents on
classification algorithms for different types of cancers. The
system remembers this feedback as a hard constraint. By
hard constraint for a category Ci, we mean the inference
that is subject to a constraint set that includes y0

i = 1, as in
Equation 2. If categories Ci and Cj are related, we would ex-
pect the effect of this constraint to propogate from Ci to Cj

and encourage y0
j also to become 1. As shown in the exam-

ple in Figure 5, if the user suppresses the category Cancer
by introducing a hard constraint, the AMN inference will
try to suppress related categories as well. This is precisely
what we aim to model using an AMN.

3.6 Personalization from Active Learning
In the process of providing feedback for a document d, the

user needs to mark every category suggested (by the system)
for every document, as “correct” or “incorrect”. This can

produce a lot of cognitive load on the users. To reduce this
cognitive load and to achieve a better learning rate, we adopt
the Active Learning strategy, where we seek feedback from
the user on select categories for select documents. We in-
corporate information from this feedback for retraining the
AMN and SVM model parameters. In a binary classifica-
tion problem where positive instances are separated from
negative instances by a hyperplane, one of effective Active
Learning techniques is to choose instances closer to the hy-
perplane and seek their actual labels (feedback) from the
user [16]. This technique is known as uncertainty sampling.
However, in our case, the active learning problem has two
dimensions: (i) selecting “good documents” for feedback and
(ii) selecting “good categories” for feedback. As per uncer-
tainty sampling techniques, “good documents” are the ones
with the most uncertain categories. Similarly, “good cate-
gories” are the ones with the most uncertain assignment to
a document. We propose a novel approach to simultaneous
active learning in the document and category spaces next.

3.6.1 Joint identification of categories and documents
for feedback

For any document d, based on [16], we say that “good”
(most uncertain) categories for seeking feedback are those
which are closer to the hyperplane separating the categories
with label 0 (negative categories) from the categories with
label 1 (positive categories) for the document d. To mate-
rialize this, we need the notion of hyperplane for separating
the nodes (categories) with label 0 from the nodes with la-
bel 1 in the Markov Network of categories for a document
d. The following claim introduces the notion of a margin
separator that separates positive and negative categories for
a document.

Claim 1. There exists a feature space and a hyperplane
in the feature space that separates AMN nodes with label 1
from the nodes that have label 0 and that passes through the
origin.

Proof. Consider a node Ci that is labeled 1 after MAP
inference. Let Nbr0 (Ci) be the neighbors of Ci which are
labeled 0 and Nbr1 (Ci) be the neighbors that are labeled 1.
We have,
w1.xi+w11.

∑
j∈Nbr1(Ci)

xij ≥ w0xi+w00.
∑

j∈Nbr1(Ci)
xij .

Using simple algebraic manipulations, we can re-write this
expression as w.xi ≥ 0, where w = w1 − w0 , w1 =[
w1;0;w11

]
, w0 =

[
w0,w00,0

]
and

xi =
[
xi,

∑
j∈Nbr0(Ci)

xij ,
∑

j∈Nbr1(Ci)
xij

]
. 0 is a vector

of zeros. The expression w.xi ≥ 0 represents the half space
separated by the hyperplane specified by w, which passes
through origin in the feature space of xi. Similarly we can
show that the node xi labeled 0, resides in the half space
w.xi ≤ 0.

Based on the notion of the hyperplane defined in Claim
1, we can now choose L categories that are closest to the
hyperplane. These are the most uncertain categories of doc-
ument d for which we seek feedback. Now, we need to select
few “good” (most uncertain) documents from the batch Di

for feedback.
The association between documents and categories can be

represented as a bipartite graph, with documents on one side
and categories on the other side, as shown in Figure 6. Each
document is connected to its L most uncertain categories.
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Figure 6: Document Category bipartite graph

Note that a category can be associated with more than one
document.

Our approach is to select a subset of documents that re-
sults in the maximum coverage of the most uncertain cat-
egories. Specifically, we solve the following optimization
problem to identify the uncertain documents.

argmax
y,z

∑
aiyi +

∑
bjzj (3)

s.t.
∑

zj = P (4)∑
zj ≥ yi ∀i connected to j (5)

0 ≤ zj ≤ 1 (6)

0 ≤ yi ≤ 1 (7)

∀i ∈ I and j ∈ J

where, I is the set of indices of categories and J is the set
of indices of documents.

ai is the gain associated with selecting the ith category
Ci. We choose this to be the maximum uncertainty score of
Ci. The uncertainty score of Ci is the margin distance [16]

from the margin (hyperplane) introduced in Claim 1.

bj is the gain associated with selecting the jth docu-
ment dj . We choose this to be the uncertainty score of
dj = f (CJ1 , ..., CjL); for some function f of L categories
connected to dj in the bipartite graph. For example, a sim-
ple version of f can be the one that chooses the score of the
most uncertain category connected to dj .

zj ∈ {0, 1} and yi ∈ {0, 1} will be the integer solution at
optimality. P is the number of documents for which the user
is willing to give feedback. The constraint labeled 4 enforces
the selection of P number of documents for the feedback.

Constraint labeled 5 ensures that a category is chosen for
feedback (yi = 1) if there exists at least one document asso-
ciated with that category which is also chosen for feedback
(zj = 1).

Feedback is sought from the user for the documents with
zj = 1. Note that for each document (with zj = 1), feedback
is sought only for those categories that are identified as the
most uncertain for that document (yi = 1).

3.7 Inferring Corg

So far, we have shown how to infer a set of categories
for a document d. We have indicated that these categories
come from Corg. Essentially, Corg ⊆ C is hidden behind our
model parameters (AMN and SVM) and hard constraints,
which keeps updating with every feedback. For any new doc-
ument d, when we apply our inference logic, we essentially
derive the categories for d from Corg. However, if all the
members of Corg need to be enumerated, we need to infer
all the categories of all the documents seen by the organi-
zation so far, with the current set of model parameters and
hard constraints. However, in practice, we may not have to
enumerate Corg for the functioning of our system.
Evolving Corg over time has two dimensions: (i) evolving

Corg when new documents with new categories (which exist
in KnG) are seen by our system, and (ii) evolving Corg when
new categories are added to KnG. For the first case, assum-
ing that the collaboratively built knowledge graph KnG is
up-to-date with all the categories, our spotting phase iden-
tifies the features in the document corresponding to the new
categories and adds them to the candidate categories. If
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these categories get label 1 during the inference, they are
considered to be part of Corg. For the second case, the chal-
lenge lies in updating the already classified documents with
the new categories added to KnG. One strategy of handling
this could be to look at the neighborhood of newly added
categories in KnG, retrieve the already classified documents
that have categories present in this neighborhood and reas-
sign categories to these documents by repeating our infer-
ence algorithm. In our current work, we limit the evolution
Corg to case (i). Handling of case (ii) will be part of our
future work.

4. EXPERIMENTS AND EVALUATION

4.1 Global Knowledge Graph (KnG)
We extract Wikipedia Page/Article titles and add them

to our KnG. We also construct description text for each
category in KnG from the first few paragraphs (gloss) of
Wikipedia’s page. We introduced edges between the nodes
connected via hyperlinks to capture the association in terms
of text overlap, title overlap, gloss overlap and anchor text
overlap.

4.2 Data-sets
We report experiments on the RCV1-v2 benchmark dataset

and a manually curated dataset from arXiv. Our choice of
datasets was based on the existence of at least 100 class
labels in the dataset. The Reuters RCV1-v2 collection con-
sists of 642 categories and a collection of 23,149 documents
in the training set and 781,265 documents in the test set.
The arXiv is an archive for electronic preprints of scientific
papers in various fields and can be accessed online. Us-
ing the Amazon S3 service, we downloaded 263 technical
documents from arXiv under different streams of Computer
Science. With the help of eight human annotators, we as-
signed categories to each document using the vocabulary of
Wikipedia article names.

4.3 Evaluation Methodology
We report our results in two different settings: (i) Warm

start (ii) Cold start. In all these experiments we refer to our
system as EVO.

In the Warm start setting, we assume that the user has
a fair idea of what categories she needs and has identified
them a priori. Such a setting helps us demonstrate how,
on a standard classification dataset, the Markov network
helps propagate learnings from a category to other related
categories. We performed warm start experiments on the
Reuters RCV1-v2 collection. We selected 66 pairs of re-
lated Reuters categories, spanning 96 categories. For exam-
ple, the categories MANAGEMENT and MANAGEMENT
MOVES are related. Two categories were considered related
if the number of training documents carrying both labels,
exceeded a certain threshold. We picked 5000 training doc-
uments and 2000 test documents using this clustered sam-
pling procedure. We further divided the training set into
100 batches of 50 documents each. We iterated through
the batches and in the kth iteration, we trained our model
(SVMs, AMN feature weights) using training documents
from all batches up to the kth batch. For each iteration, we
performed AMN inference on the sample of 2000 test doc-
uments. In Figure 7, we report the best average F1 score
(observed when SVM parameter C=1 and 10) on the test
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(b) With SVM parameter C=10

Figure 7: Comparison of avg (macro) F1 scores of our system
(EVO) with SVM on different c values

sample for each of the 100 iterations. Clearly, our technique
- EVO - outperforms the multi-label SVM (mSVM).

We also compared our proposed joint active learning tech-
nique with other techniques from literature, namely, HIClass
[5] and Tong [16] (adapted to multi-class classification). In
Figure 8a we compare the average F1 scores. Clearly, joint
learning on label space and document space achieves a bet-
ter learning rate compared to an active learner only in the
document space. Viewing it as number feedback needed to
achieve a required level of F1 score, we observe in Figure
8b that, with this joint learning, we need significantly less
feedback, resulting in lesser cognitive load on the user.

In the Cold start setting, we assume that the user does
not have any predefined categories to start with. She wants
to adapt the categories from KnG. We performed cold start
experiments on the arXiv document collection and carried
out five-fold cross-validation with each fold containing 210
training documents and 53 test documents. In each fold, we
trained our model (SVMs, AMN feature weights) using the
training set and evaluated Consistency, Precision and Recall
on the test set. During the training phase, we also applied
localization techniques in which we recorded feedback for
the system suggested categories in three forms: “Correct,”,
“Incorrect” and “Never again.”

We measured consistency [10] as Consistency = 2C
A+B

,
where A and B are the total number of categories two sys-
tems assign (in this case, one is our system and other is a
human labeler) and C is the number they have in common.

Table 1 shows the overall consistency of our system with
human annotators. We also have compared the consistency
with the WikipediaMiner (WM) [12] system. Note that, in
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Figure 8: Comparing our Active Learning technique with
others

some cases, WikipediaMiner may generate a category which
is relevant to the input document; it may, however, be out
of the computer science domain. We have treated such la-
bels as incorrect because we are interested in evolving an
organization-specific categorization system, which is the goal
of this paper.

In Figure 9 we compare the F1 scores of all the docu-
ments with WikipediaMiner. In this experiment, we picked
up arXiv documents one by one, generated categories and
recorded user feedback for 10 categories. We computed the
F1 score for each document by considering the number of
categories retrieved by our system and those entered by the
human annotators. As evident from Figure 9, our system
performs better than WikipediaMiner due to its learning

Number of Documents 263
Categories Discovered by Human Labelers 1054
Categories Discovered by EVO 819
Common categories: EVO and Human Labelers 353
Categories Discovered by WM 1943
Common categories: WM and Human Labelers 368
Avg Consistency over all docs by EVO 37.69%
Avg Consistency over all docs by WM 24.56%

Table 1: Cold Start experiment results and comparison with
WikipediaMiner (WM)
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Figure 9: F1 score comparison of EVO with WM

0

50

100

150

200

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

15
1

16
1

17
1

18
1

19
1

20
1

21
1

22
1

23
1

24
1

25
1

26
1

Ti
m
e�
in
�S
ec
on

ds

Document�Number

Time

Avg

Figure 10: Time measurements for EVO

ability and propagation of learning to neighbors over AMN.
(The cumulative F1 score in 9b is the sum of F1 scores of
all documents)

In Figure 10 we show the time requirement of our sys-
tem to discover the categories for the 263 arXiv documents.
On an average, it took around 47 seconds to discover the
categories for the documents of length about 10 pages, dou-
ble column, similar to this document. The time needed by
our inference procedure depends upon the number of spots,
number of nodes and edges in the graph formed by the can-
didate categories. We ran our experiments on a machine
with 16 GB RAM, Six-Core AMD Opteron(tm) Processor
2427.

In Figure 11, we show an example of set of categories gen-
erated by our system for the abstract of an arXiv document.
Note that, the system was personalized for Computer Sci-
ence domain (with few hard constraints on categories like
Cancer, Gene, Peptides and the like) before generating the
categories. Hence, certain categories like ‘Gene Expression’
are suppressed during the inference.

5. PRIOR WORK
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Figure 11: Abstract from an arXiv document with the categories assigned by our system personalized for Computer Science
domain.

Text categorization systems with active learning capabil-
ity iteratively selects a sample of the data to a label based
on some selection strategies, suggesting that the data most
deserves to be labeled. Thus, it can achieve a comparable
performance with supervised learners while using much less
labeled data. Active learning becomes very important in
multi-label text classification as the human oracle needs to
label all possible categories for each instance. Thus, the ef-
fort of assigning labels for multi-label data is much larger
than that for the single-label data. Many algorithms have
been proposed [16, 5, 11] which adopt uncertainty-based
principles for active learning. Dan Roth et al. [13] present
global and local margin-based techniques for active learning
in the structured output spaces with multiple interdepen-
dent output variables. Aron Culotta et al. [3] present a new
active learning paradigm which reduces not only the number
of instances the annotator must label, but also the difficulty
of annotating each instance. We propose a new technique for
the joint Active Learning on label space and category space,
in which a stream of documents are continuously received.
Based on this feedback, we learn a model that tailors global
categories to a local set of documents. In this process, we
also learn curated training data.

[14] present an algorithm to build a hierarchical classifica-
tion system with predefined class hierarchy. Their classifica-
tion model is a variant of the MaximumMargin Markov Net-
work framework, where the classification hierarchy is repre-
sented as a Markov tree.

Topic Modeling in an unsupervised setting has been stud-
ied in CTM[2], PAM[7], NMF[1], which identify topics as
a group of prominent words. Discovering several hundred
topics using these techniques turns out be practically chal-
lenging with a moderately sized system. In addition, finding
a good representative and grammatically correct topic name
for a group needs additional effort.

Nadia and Andrew [4] explore multi-label conditional ran-
dom field (CRF) classification models that directly parame-
terize label co-occurrences in multi-label classification. They
show that such models outperform their single label counter-
parts on standard text corpora. We draw inspiration from
[4] and jointly make use of relations between the categories
in KnG along with the category similarity to the document
to learn the categories relevant to a document.

Medelyan [10] detect topics for a document usingWikipedia
article names as category vocabulary. However, their system
does not adapt to the user perspective. Whereas, our pro-
posed techniques support personalized category detection.

6. CONCLUSION
We presented an approach for evolving an organization-

specific multi-label document categorization system by adapt-
ing the categories in a global Knowledge Graph to a lo-
cal document collection. It not only fits the documents
in the digital library, but also caters to the perceptions of
users in the organization. We address this by learning an
organization-specific document categorization meta-model
using Associative Markov Networks over SVM by blend-
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ing (a) global features that exploit the structural similar-
ities between the categories in the global category catalog
and input document and (b) local features including ma-
chine learned discriminative SVM models in an AMN setup
along with user defined constraints that help in localization
of the global category catalog (Knowledge Graph). In the
process, we also curate the training data. Currently our sys-
tem works only with a flat category structure. We believe
that our technique can be improved to handle a hierarchical
category structure, which will form part of our future work.
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