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Abstract

We present an approach and a system that explores the
application of interactive machine learning to a branch-
ing program-based boosting algorithm—Martingale
Boosting. Typically, its performance is based on the
ability of a learner to meet a fixed objective and does
not account for preferences (e.g., low FPs) arising
from an underlying classification problem. We use
user preferences gathered on holdout data to guide
the two-sided advantages of individual weak learners
and tune them to meet these preferences. Extensive
experiments show that while arbitrary preferences
might be difficult to meet for a single classifier,
a non-linear ensemble of classifiers as the one
constructed by martingale boosting, performs better.

1 Introduction
Boosting algorithms are efficient procedures that, given access to
a weak learning algorithm, use weak learners to construct a strong
learner with arbitrarily low error on any given probability distri-
bution. Kearns and Valiant [Kearns and Valiant, 1994] defined
a weak learning algorithm as the one that produces a hypothesis
that performs slightly better than random on that distribution.
There is a large body of work [Schapire, 1990; Freund, 1995;
Kearns and Mansour, 1996] that has proposed and studied several
boosting algorithms for their theoretical soundness. However,
Martingale boosting (MB) [Long and Servedio, 2005], with its
proven tolerance to noise and well-defined structure, might be
a promising approach to practical classification problems. The
algorithm assumes access to a weak learning algorithm with a two-
sided (on positive and negative class) advantage γ, such that the
accuracy of each weak learner is at least 1

2+γ. However, a prac-
tical application might prefer differential two-sided advantages
(as we discuss next) and these are not explicitly modeled.

Depending on the choice of the learning algorithm, a learner
usually seeks a hypothesis that meets a fixed objective, such as
“minimize logistic loss” or “maximize classification accuracy”.
Such a predefined objective might fail to capture the preferences
that are inherent in the underlying classification problem. For
instance, in case of spam classification [Yih et al., 2006], clas-
sification of a non-spam document as spam might incur a higher
utility cost, than a spam document which is undetected. On the

other hand, in the medical domain, false negatives are indicative
of missed diagnosis and having them might be catastrophic.

In general, rather than seeking a hypothesis to meet a predefined
preference, a learner might benefit from a human-in-the-loop
approach where such preferences are specified by users in an
interactive “dialog” with the model. These preferences in turn
guide the two-sided advantages of the individual weak learners.

2 Related Work
Classification with asymmetric costs: There is a body of re-
search that explores the thesis that different learners might make
errors on different training examples and therefore proposes a
multistage cascade [Gavrilut et al., 2009; Kaynak and Alpaydin,
2000] of classifiers. The classification of an example is either a
collective decision of all the classifiers in the cascade [Gavrilut
et al., 2009] or a classifier might only receive examples that are
rejected by the previous classifiers [Kaynak and Alpaydin, 2000;
Viola and Jones, 2001; Alpaydin and Kaynak, 1998]. Training us-
ing utility has also been explored by [Wu et al., 2008], where, they
propose an Asymmetric Support Vector Machine (ASVM) that
accounts for tolerance to false-positives in its objective. Another
approach known as stratification [Olshen and Stone, 1984] works
by re-weighting instances, and is explored by [Yih et al., 2006] for
the problem of spam classification. Cost-sensitive boosting-based
approaches [Fan et al., 1999; Masnadi-Shirazi and Vasconcelos,
2011] also incorporate cost in instance reweighting, however, they
(1) assume prior knowledge of misclassification cost (2) weight
training instances while we weight holdout data.

Boosting: Boosting methods work by constructing several
weak classifiers that collectively give rise to a strong classifier.
While AdaBoost [Freund and Schapire, 1997] takes a linear
combination of these classifiers, Freund [Freund, 1995] uses
the majority vote to label instances. One of the drawbacks of
these algorithms is their intolerance to noisy data and this has
led to a growing interest in non-linear branching programs-based
boosting approaches. Kearns et al. explored the boosting ability of
top-down decision tree algorithms but identified the exponential
growth of tree size as a problem. Branching programs are a
generalization of decision trees and can represent functions that
are significantly more powerful [Mansour and McAllester, 2002].
Recently [Long and Servedio, 2005] proposed an approach
called martingale boosting that constructs branching programs
with well-defined structure and has an elegant graph walk-based
analysis. Adaptive martingale boosting [Long and Servedio,



2008] retains the noise tolerance of the previous algorithm while
taking advantage of varying strengths of the weak learners in
achieving a stronger bound on the overall error. While our
approach (interactive MB) is based on martingale boosting, we do
not assume a predefined target, but rather allow users to specify
preferences on the acceptable performance of the classifier.

Interactive machine learning: Instead of focusing on one
particular target, [Kapoor et al., 2012] enable users to explore
and express preferences about the operation of classification
models. They enable this interaction over a confusion matrix,
allowing users to explore the model space using leave-one-out
cross-validation results. The underlying computational procedure
then tunes the model hyper-parameters so as to meet the user
preferences. However, their approach might fail to meet an
arbitrary user input. We believe that multiple iterations of such
interactive tuning, in a boosting paradigm, might do better in
meeting user preferences on the performance of a classifier. It
is this thesis that we explore in this work.

3 Our Contributions
We present an approach and a system called interactive martingale
boosting (IMB) to interactively tune the performance of a classi-
fier. We show how ideas from interactive machine learning could
be applied to martingale boosting, not only in specifying user pref-
erences, but also in tuning the individual advantages of the weak
learners of MB. While our approach is based on martingale boost-
ing, unlike them, we do not assume a predefined target. We intro-
duce separate two-sided advantages on the positive and negative
instances and tune them separately, while guided by the user speci-
fied preferences. Additionally, we are perhaps the first ones to per-
form extensive experiments with multiple datasets to demonstrate
the feasibility and performance of MB, adaptive MB, and our
interactive MB approach. We show, through experiments1, that in
comparison to the single level interaction of [Kapoor et al., 2012],
our approach, with its multiple levels of interaction, allows a user
to browse through several additional models in the hypothesis
space, thereby doing better in meeting user preferences. Our tool-
ing systematically guides users in their interactive dialog with the
model learner by tracking the trajectory of the model performance.

Figure 1: Iterative model tuning

4 Approach
We start by formally defining the problem, describing our inter-
active martingale boosting approach followed by a description
of tuning of its individual weak learners.

1Code available at https://github.com/kulashish/
adaptivemb

4.1 Problem Definition
Let X be the set of input examples sampled from a distribution
D and {0,1} be the output labels. We are required to learn (on
subset XTrain⊂X ) a target function c :X→{0,1}, where, c best
satisfies a user defined accuracy criterion. Based on the underly-
ing usecase, users might prefer a differential misclassification cost.
Typically, deciding an acceptable misclassification cost requires
iterative tuning of the classifier on a holdout (or tuning) setXTune.
Definition 1. Let D+ denote the distribution D restricted to
the positive examples {x ∈ X : c(x) = 1} and let D− denote
D restricted to the negative examples {x ∈ X : c(x) = 0}. A
hypothesis h :X→{0,1} is said to have two-sided advantages γ+
and γ− with respect to D+ and D−, respectively, if it satisfies
Prx∈D+[h(x)=1]≥ 1

2+γ
+ and Prx∈D−[h(x)=0]≥ 1

2+γ
−.

Here, 1
2+γ

+ and 1
2+γ

− are the desired accuraciesAcc+des=
TP/(TP +FN) and Acc−des = TN/(TN +FP) on D+ and
D− respectively. How do we enable a user to decide an acceptable
classifier performance γ+ and γ−? How do we tune a classifier
to best meet these user preferences? These are the research
challenges that we address through our interactive approach.

4.2 User Interaction through Confusion Matrix
Users specify the classifier preferences through an interactive
visualization that displays the confusion matrix on a holdout
dataset (Refer to Figure 1). This is inspired from the observation
of [Kapoor et al., 2010] that an interactive confusion matrix
enables users to more effectively estimate misclassification risks.
Users specify their desire by editing the number of instances
classified in each cell. For instance, users could specify their
model preference by reducing the number of false positives on the
holdout set from 70 to 65. This translates into a user preference
on the desired accuracyAcc−des and effectively on the advantage
γ−=Acc−des−

1
2 . The underlying procedure then tunes the model

hyperparameters in an attempt to return a model that best meets
this preference. If a feasible solution is obtained, the holdout
confusion matrix is updated and this often affects the values in
other cells. Otherwise, a notification of inability to meet the pref-
erences is provided to the user. The user continues this interactive
model exploration until a satisfactory model is obtained.

4.3 Interactive Martingale Boosting
User preferences, γ+ or γ−, on a model’s performance are used
to tune the classification model in an attempt to meet these pref-
erences. [Kapoor et al., 2012] presented an efficient numerical
procedure that tunes the hyperparameters of a model in response to
preferences specified through an interactive confusion matrix. Of-
ten, a single model fails to satisfy arbitrary user specifications (Re-
fer to section 5.4). We propose an approach called Interactive Mar-
tingale Boosting (IMB) based on a non-linear ensemble of interac-
tive classifiers. Choice of martingale boosting [Long and Servedio,
2005] is motivated from its simple non-linear structure and its tol-
erance to noise, which is often important for practical applications.

Let ML be a L-stage martingale boosting program resulting
in a L+ 1 layered directed acyclic graph (DAG). Each node
in the DAG is labeled as vi,j, where j is the index of a layer,
j ∈{0,1,...,L} and for a node at layer t, i∈{0,1,...,t}. v0,0 is
the root node. The root node receives all the training XTrain and



holdout XTune instances, which are used to grow a MB program
as described next. LetD+

i,j andD−i,j be the distributions of positive
and negative examples reaching node vi,j. At every node, we
train a classification model hi,j and evaluate it on the holdout set
at that node to generate a local confusion matrix Ci,j. Each node
vi,j has two outgoing edges labeled 0 and 1, that connect to nodes
vi,j+1 and vi+1,j+1, respectively (Figure 2 shows a 3-stage MB).
Each training and holdout instance is routed along the edge labeled
hi,j(x) until it reaches a leaf node vl,L where its final label is set to
0 if l≤L/2 and is set to 1 otherwise. The final label of an instance
thus depends on its classification by the individual classifiers on its
way from the root node to the leaf. These final labels give rise to a
global confusion matrix CL for the L-stage MB program. Users
interact with the cells in this confusion matrix, thereby specifying
the desired advantages γ+ and γ− for the MB classifier. These
global specifications are used to derive local specifications γ+i,j
and γ−i,j at node vi,j and each model hi,j is tuned accordingly.

Figure 2: FP-rate forM3, a 3-stage martingale boosting program,
is the fraction of negative examples reaching nodes v2,3 and v3,3
from v0,0 through the highlighted edges.

Granularity of Interaction
The choice of node-level advantages γ+i,j and γ−i,j depends on
the granularity of user interaction. For relatively smaller MB
programs, a user can interactively tune the classifier at every node
(we refer to this as I-ALL) and view its impact on the overall
performance of the boosted classifier. However, this human effort
is quadratic in the number of levels in a MB program and might
become unfeasible even for a moderate number of levels. In such
cases, user preferences might be gathered only on the global confu-
sion matrixCL (we refer to this as I-ROOT). The resultant γ+ and
γ− could then be used as targets in automatically tuning the node-
level classifiers. Alternatively, the distinct advantages of these
individual learners, could be used to identify particularly “weak”
nodes. Following the spirit of active learning, a user could then be
prompted to interactively tune only these learners, in an attempt
to learn a boosted classifier that meets user preferences. We refer
to this as I-SELECT and it attempts to achieve a middle ground
between I-ROOT and I-ALL. We study the effect of some of these
granular interactions in the evaluation section. Figure 3 shows the
system flow for each of these levels of granular interactions.

Early Node Freezing
As the MB program grows top-down, the distribution of examples
reaching at some of the nodes tends to be heavily biased towards
a class label. This might typically happen at nodes at the extreme
ends of a level, that usually have a better advantage for one
class over others. These nodes could be “frozen” by labeling the

Figure 3: Interactive Martingale Boosting - System flow.

instances reaching there with the label of the majority class, with
little impact on the overall error rate. Similar to the approach used
by Sampling MartiBoost [Long and Servedio, 2005], we freeze
a node vi,j if the minimum of the probabilities of a positive or
negative instance reaching that node minb∈{+,−}p

b
i,j <

ε
L(L+1)

for some error rate ε.

Error Rate
The misclassification error on negative examples (FP-rate) ε−i,j at
a node vi,j is 1

2−γ
−
i,j. Based on the definition of the martingale

program above, it is easy to see that the misclassification error
ε−(ML) ofML on negative examples is the fraction of negative
examples reaching leaf nodes vl,L where l∈{L/2+1,...,L}. For
L=1, ε−(M1)= ε

−
0,0=

1
2−γ

−
0,0. Figure 2 shows a martingale

program for L=3, where the edges are labeled with the fraction
of negative examples moving from a node at the tail of an edge,
to the node at its head. It follows that the fraction of negative
examples that make it to nodes v2,3 and v3,3 is given by

ε−(M3)=ε
−
0,0.ε

−
1,1.ε

−
2,2+ε

−
0,0.ε

−
1,1.(1−ε

−
2,2)+

ε−0,0.(1−ε
−
1,1).ε

−
1,2+(1−ε−0,0).ε

−
0,1.ε

−
1,2

Let G(V,E) be the weighted directed acyclic graph for ML

where V and E are the set of all nodes and edges respectively
in ML such that each edge vt,k→ vt+1,k+1 is weighted by the
FP-rate ε−t,k of the classifier ht,k at vt,k and the edge vt,k→vt,k+1

is weighted by its FN-rate 1−ε−t,k.

Theorem 1. If A= (ai,j) is the incidence matrix of the graph
G(V,E) such that ai,j is the weight of an edge ei,j between nodes
labeled i and j, then the FP-rate ofML is the sum of the weights
of all the paths from node v0,0 to node vl,L, l∈L/2+1,...,L.

ε−(ML)=

L∑
k=L/2+1

(AL)0,k (1)

where (.)i,j is the element of the matrix at index (i, j) and
AL=AA...A (L times).

Proof omitted due to space constraint.



4.4 Node-level Model Tuning
The node-level model preferences γ+i,j and γ−i,j are used to tune
the hyperparameters of the classifier hi,j. Often, grid search
is employed to get a sub-optimal estimate of the hyperparam-
eters such that it minimizes the holdout loss. Model selec-
tion using a holdout dataset is a standard technique used to
avoid over-fitting the training data [Mosteller and Tukey, 1968;
Stone, 1974]. While this approach works for a single hyperparam-
eter, more sophisticated strategies are required for tuning multiple
hyperparameters. We borrow the hyperparameter tuning approach
from the work by [Kapoor et al., 2012] and describe it briefly here.

Consider a training set XTrain with corresponding labels
drawn from Y∈{1,...,k}, let w be the model parameters and d
represent the set of hyperparameters for our model. We wish to
determine an updated model d∗ in response to user preferences
on a holdout confusion matrix. For the current model choice,
we train the model on XTrain to obtain weights w∗ and evaluate
it on a holdout set XTune giving for each point x(i) ∈ XTune,
a k-dimensional vector y(i) = [y

(i)
c ]kc=1, where y(i)c denotes the

classification score for class c. A softmax transformation of
y(i) results in a k-dimensional current state vector p(i)(d;w∗),
corresponding to the input point x(i) and model d. User
preferences essentially express the desire to classify a point (1)
as class b, encoded as a target state vector s(i) with all zeros
except the bth component set to 1; (2) not as class b, in which
case s(i) has bth component set to 0 and all other components set
to 1/(k−1); (3) with no change and thus s(i)=p(i)(d;w∗). The
goal is to minimize the difference between the target and current
states and they use KL divergence as the objective function:

g(d;w∗)=

|XTune|∑
i=1

KL(s(i)||p(i)(d;w∗))

=

|XTune|∑
i=1

k∑
j=1

s
(i)
j log

s
(i)
j

p
(i)
j (d;w∗)

(2)

We use gradient descent with BFGS update [Fletcher, 2013]
to solve the optimization problem. Note that we do not have to
completely minimize the objective, but only minimize it up to
a point that satisfies user specifications.

4.5 Gradient Computation
We use multinomial logistic regression as the node-level learner in
our interactive martingale boosting approach. Multinomial LR is a
simple and fast algorithm with low variance and a probabilistic out-
put score. This makes it possible to systematically use predictions
from individual weak learners in our larger boosted model and also
allows us to extend to multiclass setting. Multinomial LR models
the conditional probability P(y|x;w)=exp(wTF(x,y))/Z(x),
where, F(x,y) is a vector valued mapping of (x,y) to a feature
space and Z(x)=

∑
y′∈Yexp(w

TF(x,y′)).
The parameters w are usually learned using regularized logloss

minimization [Foo et al., 2007]:

w∗=argmin
w∈Rn

1

2
wTCw−

|XTrain|∑
i=1

logP(y(i)|x(i);w) (3)

where 1
2w

TCw is the regularization term and C is the inverse
covariance matrix of a Gaussian prior on the parameters w. Con-
sider a setting, say, spam classification, where different subsets
of parameter components (corresponding to single word features,
bigram features etc.), might be constrained by different hyperpa-
rameters. Thus, C is usually parameterized by a hyperparameter
vector d as the diagonal matrix C(d)=diag(exp(d)).

The hyperparameters are trained on the holdout data by solving
the optimization:

d∗=argmin
d∈Rl

g(d;w∗) (4)

subject to

w∗=argmin
w∈Rn

1

2
wTCw−

|XTrain|∑
i=1

logP(y(i)|x(i);w)

Using the chain rule of differentiation, we get

∇dg(d;w
∗)=JTd∇wg(d;w

∗)

where JTd is the Jacobian matrix comprising partial derivative of
w∗ with respect to d as defined by equation (6) in [Foo et al.,
2007] and ∇wg(d;w

∗) is obtained by evaluating the gradient
of equation (2) at w∗.

4.6 Multiclass Interactive Martingale Boosting
Martingale boosting naturally extends to the problem of
multiclass classification under the strict assumption of k-sided
advantage (defined below). With k class labels {0,...,k−1}, let
c :X→{0,...,k−1} be the target function that we are trying to
learn, with respect to distributionD overX.
Definition 2. A hypothesis h :X→{0,...,k−1} is said to have
k-sided advantage γ, with respect to the distribution D, if it
satisfies Prx∈Di[h(x)=i]≥ 1

2+γ, ∀i∈{0,...,k−1}. Di denotes
the distributionD, restricted to the instances with label i.

We observe that the error bound2 grows weaker for increasing
number of classes and tends to be better for higher advantages
at each level.

5 Evaluation
We evaluate the effectiveness of interactive martingale boosting by
performing experiments for the problem of binary classification
on several UCI datasets including Spambase, Sonar, Ionosphere,
and Liver, and for multiclass classification on Splice and Iris
datasets. While some of these datasets are the same as those
used by [Kapoor et al., 2012], others were chosen due to the
applicability of this approach to medical and spam domains.

5.1 Interactive Tuning versus Grid Search
We assumed a separate regularization penalty per model parame-
ter in equation (3) and tuned them using the interactive procedure.
We validate the effectiveness of this procedure by comparing it
with grid search on the Liver dataset. We performed an exhaustive
search in the range 0 to 300 with a step size of 30, choosing
hyperparameters for which the validation accuracy was the max-
imum. Grid search achieved an overall accuracy of 68.84% on
the test set versus 77.06% achieved by the interactive refinement.
This observation is consistent with that of Kapoor et al.

2derivation not included due to space constraint



5.2 Effect of Base Learner and Boosting
We used multinomial LR and martingale boosting as our base
learner and boosting algorithms respectively. What would be
the effect of using a different base learner or boosting approach?
We compare multinomial LR against RBF kernel-based classifier
(choice of Kapoor et al.) and also evaluate the performance of Ad-
aBoost (50 iterations) and MB (15 levels) on these base learners.
Table 1 reports the average test accuracy across five splits (60%
train and 40% test) of the dataset. Multinomial LR vs. RBF:
Both the base classifiers show a comparable performance with
LR performing slightly worse on Ionosphere and slightly better
on Sonar. Base classifiers with interactive tuning: Interactive
tuning does improve model accuracy with LR-Tune doing better
than RBF-Tune. Models were tuned using 3-fold cross-validation
within each train split and the best model was chosen. Base
classifiers with boosting: Both AdaBoost and MB have an
improved accuracy over that of base classifiers. As expected, MB,
with its non-linear branching program-based structure, performed
better than AdaBoost. While the choice of base classifier might
slightly affect the model performance, both interactive tuning and
MB, consistently improved the model performance.

Dataset RBF LR RBF-
Tune*

LR-
Tune

Ada-
RBF

Ada-
LR

MB-
RBF

MB-
LR

Ionosphere 91.03 90.71 92.55 93.43 92.96 94.97 95.58 96.42
Sonar 85.67 86.75 86.9 91.02 87.72 89.87 90.38 91.08

Table 1: Effect of changing the base learner and boosting
algorithms. *as reported by Kapoor et al.

5.3 How Effective is Interactive Martingale Boosting?
We tested the effectiveness of our procedure in a two-class
classification task on the UCI Spambase dataset, with an aim
of reducing false positives. We compare multinomial LR (LR),
LR tuned using our interactive procedure (LR-Tune), martingale
boosting (MB), martingale boosting with interactively tuned weak
learner (MB-Tune) and finally, MB-Tune with early freezing of
non-leaf nodes (MB-Tune-Freeze).

Figure 4 shows a scatter plot of FP-FN obtained by these
procedures. The multiple data points for the martingale
boosting-based approaches correspond to different number of
levels of the branching program. The models were tuned to
minimize the number of FPs as much as possible, and thus, the
models in the lower half of the plot are more desirable and the
ones in the lower left quadrant achieve a better overall accuracy.
LR-Tune does marginally better than LR in achieving a lower
number of FPs, but the interactive martingale boosting based
approaches perform much better, both in reducing the number
of false positives and in maximizing the overall accuracy.

5.4 Comparison with Other Methods
We compared the effectiveness of our approach with that of other
approaches on UCI datasets. We report class-wise accuracy3 and
the overall accuracy obtained on the test set averaged over five
splits (Refer to Table 2). Multinomial LR was used as the base

3Accuracy for a class = TP/(TP+FN)

Figure 4: FPs vs. FNs on the UCI Spam dataset using different
algorithms

classifier and the number of levels, L, of MB was empirically set
to 15. Granularity of interaction was set to I-ROOT. Although the
system allows for arbitrary user preferences, for ease of evaluation
we tune all models in favor of one of the classes (as specified
in the table), as is typical of applications in the spam (zero FPs)
and medical (zero FNs) domains. We compare our approaches,
MB-Tune(I-ROOT) and MB-Tune-Freeze (early node freezing)
with multinomial LR (LR), LR with interactive tuning (LR-Tune),
LR with AdaBoost (Ada), tuned LR with AdaBoost (Ada-Tune),
adaptive MB (AMB), and adaptive MB with tuning (AMB-Tune).

Consistent with our earlier observation, effectiveness of the
martingale boosting approach is apparent here as well. Further,
interactively tuned MB, MB-Tune(I-ROOT), outperforms other
approaches on all datasets. Accuracy on the favored class is
generally higher than that achieved by MB and might come at
the cost of reduced accuracy on the non-favored class (as can be
seen for Spambase). In other cases, accuracy on the non-favored
class also improved and this could be attributed to a different
routing of instances in the tuned MB. With early freezing of
nodes, the results are only slightly worse, but with the advantage
of a significant reduction in the number of nodes in the DAG. On
the Spambase dataset for instance, 70 of the total 120 nodes got
frozen. In adaptive MB, a node has more than two child nodes
and an instance, based on its classification score, gets routed to
an appropriate child node. Although adaptive MB has a better
error bound in theory, in our observation, it seemed to over fit the
training data. Its accuracy on the test data, even with tuning at the
root node (AMB-Tune), is at times slightly worse than that of MB.

Comparison with Yih et al.: We evaluated the approach of
[Yih et al., 2006] on the Sonar and Ionosphere datasets. However,
it was not clear how to translate user preferences to the input that
they expected. The best results we obtained among various inputs
were Acc+: 79.62%, Acc-: 94.18%, Acc: 88.57% on Ionosphere
and Acc+: 91.30%, Acc-: 89.18%, Acc: 90.36% on Sonar.
Comparison with Kapoor et al.: [Kapoor et al., 2012] had
reported an overall test accuracy of 92.5% and 86.9% respectively
on Ionosphere and Sonar datasets.

5.5 Effect of Number of Levels on Model Accuracy
We evaluated our models by varying the number of MB levelsL=
2 to 15. The model accuracy on the tuned class steadily rises with
the number of levels and flattens at high values of L (Refer to Fig.



Dataset Test Accuracy % MB AMB AMB-
Tune

MB-Tune(I-
ROOT)

MB-Tune-
Freeze

Spambase
Acc+ 95.07 92.92 92.26 91.26 (±3.6) 89.83 (±.4)
Acc-(tuned) 97.31 94.39 94.64 98.01 (±.2) 97.85 (±.1)
Acc 96.42 93.8 93.69 95.30 (±1.5) 94.66 (±.2)

Ionosphere
Acc+ 91.04 83.86 83.86 92.86 (±7.2) 92.86 (±7.2)
Acc-(tuned) 97.72 98.66 98.66 99.27 (±2.8) 99.27 (±2.8)
Acc 96.42 93.57 93.57 97.14 (±4.5) 97.14 (±4.5)

Sonar
Acc+ 89.42 87.1 85.64 92.79 (±3.2) 92.79 (±3.2)
Acc-(tuned) 92.27 90.33 92.44 95.81 (±.6) 95.81 (±.6)
Acc 91.08 88.67 88.91 94.37 (±1.1) 94.37 (±1.1)

Liver
Acc+(tuned) 85.87 79.32 84.11 87.72 (±2.9) 82.75 (±3.6)
Acc- 71.77 55.86 43.69 74.19 (±7.0) 73.68 (±6.7)
Acc 81.65 70 72.46 82.59 (±4.0) 78.98 (±4.1)

Splice*
Acc(rest) 96.05 - - 95.96 95.67
Acc(tuned) 97.43 - - 98.39 98.27
Acc 96.39 - - 96.55 96.40

Iris*
Acc(rest) 89.19 - - 89.19 86.48
Acc(tuned) 95.65 - - 100 91.30
Acc 91.67 - - 93.33 88.33

Table 2: Comparison of interactive martingale boosting with other methods
on UCI datasets. Accuracy and standard deviation on test set. *multiclass

MB(ms) MB-Tune(I-
ROOT)(ms)

MB-Tune-
Freeze(ms)

Spambase 1009 29394 27880
Ionosphere 288 1050 1030

Sonar 230 623 422
Liver 496 949 936

Table 3: Comparison of training time.

Granularity
(#Nodes tuned)

Acc+ Acc- Acc

Spambase
I-ROOT 93.80 93.27 93.48
I-ALL (6) 93.12 94.37 93.86
I-SELECT (3) 92.86 93.97 93.22

Ionosphere
I-ROOT 88 96.67 93.57
I-ALL (6) 90.71 97.72 95.41
I-SELECT (2) 90.71 96.84 94.66

Table 4: Effect of granularity of user interaction
evaluated on UCI Spambase.

5). The behavior is consistent across MB-Tune(I-ROOT) and MB-
Tune-Freeze and across datasets. For binary label MB, the label of
an instance is based on which half of the final level it ends up in.
For smaller values of L, this decision is based on fewer classifiers
and tends to be noisy. We therefore setL=15 in our experiments.

Figure 5: Effect of varying L on model accuracy evaluated on
UCI Spambase

5.6 Run Time Analysis

Table 3 shows the average run time (in ms) to build 15 levels
of MB. Evaluation was done on an Intel i7 machine with 8GB
RAM and a 64-bit OS. Interactive MB indeed takes longer to
train. We believe it could be improved either by appropriate
grouping of features to limit the number of hyperparameters or by
a multi-threaded implementation. As expected, MB-Tune-Freeze
takes lesser time to train due to early freezing of nodes, with only
marginal impact on the accuracy (as seen in Table 2). We believe
that our interactive MB model with the option of early freezing
might be an acceptable choice especially for large datasets.

5.7 Effect of Granularity of User Interaction
We grew a 4-stage martingale boosting program and interactively
tuned the learner at every node (I-ALL), with the intent of achiev-
ing a reduction in false positives. We compare its performance
(Refer Table 4) with the one interactively tuned only at the root
node (I-ROOT). Although I-ROOT does automatically tune other
nodes, I-ALL benefits from the interactive refinement at all nodes
and does better in meeting user preferences. In an attempt to
check how many user interactions significantly affect the accuracy,
we selectively tuned nodes (I-SELECT), where the advantage
is below certain threshold (set to 0.3). Combined with our
node freezing strategy, this further reduces the number of nodes
requiring manual tuning. On UCI Spambase and Ionosphere, the
number of nodes requiring manual tuning in I-SELECT reduced
by a factor of 2 and 3 respectively as compared to I-ALL. Since
the manual effort for our interactive MB model is a function of
the number of nodes tuned, we believe that I-SELECT might sig-
nificantly reduce the effort with little impact on model accuracy.

6 Conclusion
We presented an approach and a system called interactive
martingale boosting for multiclass classification. Our approach
attempts to meet user preferences on the performance of a clas-
sifier through interactive tuning of a martingale boosting-based
classifier. We showed its effectiveness against other approaches
through evaluation on several datasets. We also studied the
trade-off between human effort and accuracy using interaction
at different granularity in the MB program.
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