
Pruning Search Space for Weighted First Order
Horn Clause Satisfiability

Naveen Nair123, Anandraj Govindan2, Chander Jayaraman2,
Kiran TVS2, and Ganesh Ramakrishnan21

1 IITB-Monash Research Academy, Old CSE Building, IIT Bombay
2 Department of Computer Science and Engineering, IIT Bombay

3 Faculty of Information Technology, Monash University
{naveennair,ganesh}@cse.iitb.ac.in

{anand.itsme,chanderjayaraman,t.kiran05}@gmail.com

Abstract. Many SRL models pose logical inference as weighted satisfi-
ability solving. Performing logical inference after completely grounding
clauses with all possible constants is computationally expensive and ap-
proaches such as LazySAT [8] utilize the sparseness of the domain to deal
with this. Here, we investigate the efficiency of restricting the Knowledge
Base (Σ) to the set of first order horn clauses. We propose an algorithm
that prunes the search space for satisfiability in horn clauses and prove
that the optimal solution is guaranteed to exist in the pruned space.
The approach finds a model, if it exists, in polynomial time; otherwise it
finds an interpretation that is most likely given the weights. We provide
experimental evidence that our approach reduces the size of search space
substantially.

Key words: First Order Logic, Horn Clauses, MaxSAT, Satisfiability

1 Introduction

Representing sets of objects and their relationships in a compact form has been
the focus of researchers for more than a decade. Weighted first order formulas
proved to be one such representation which also allows inference and learning in
a structured way. Inference in these sets of formulas are mostly done by Satisfi-
ability testing. We summarize some of the works that addressed the problem of
satisfiability in the next paragraph.

Traditional SAT solvers in propositional logic try to find an assignment for
all the literals that makes all the clauses true. They return a model if it exists
or return unsatisfiable. SAT solvers such as DPLL [6] give exact solutions but
employ backtracking and take exponential time in the worst case. Local search
methods for satisfying the maximum number of clauses (Max-SAT) has been im-
plemented in GSAT [1], WalkSAT [2] etc. Weighted Max-SAT problems assign
weights to the clauses and aim to minimize the sum of the weights of unsatisfied
clauses. Teresa et. al. proposed a Lazy approach [9] which uses some bound com-
putation and variable selection heuristic for satisfiability. MiniMaxSAT [4] uses a



depth-first branch-and-bound search approach for satisfiability. Satisfiability of
first order logic (univerally quantified Conjunctive Normal Form (CNF)) can be
done by grounding all the clauses (exponential memory cost) and then running
satisfiability as in propositional case. Since, many learning techniques require
the repeated use of inference and satisfiability, complete grounding of the clauses
becomes a bottle neck. Lifted inference [5] techniques used first order variable
elimination for probabilistic inference but have not proved their applicability in
large domains. As there could be many contradictions in real world, it is bet-
ter to perform weighted satisfiability. Weighted satisfiability solvers are used for
MPE/MAP inference in relational domains [7]. But the complete grounding issue
remained unsolved. A LazySAT approach [8] that doesn’t ground all clauses was
proposed for satisfiability in domains where majority of ground atoms are false.
Their approach, a variation of WalkSAT, keeps track of all the clauses that can
be affected when a literal in an unsatisfied clause is flipped. Recently in [10], the
ground clauses that are satisfied by the evidence are excluded. The approach,
which is depended only on the evidence set, processes each clause independently
and does not find the dependent clauses transitively. Mihalkova et. al. cluster
query literals and perform inference for cluster representatives [12]. Queries are
clustered by computing signatures using a recursive procedure based on adja-
cent nodes. Inference is performed for each cluster representative by running
MaxWalkSAT on corresponding Markov Network constructed recursively. Alen
Fern mentions about the applicability of Forward Chaining in horn clauses [11]
but has not given any alogrithm or proof for doing so. In the case of contradict-
ing clauses, it is not straight forward to do forward chaining. The objective of
our work is stated in the next paragraphs.

We address the issue of complete grounding by restricting our domain to first
order horn clauses and pruning the search space for satisfiability. Our approach
caters to several real world applications that use the horn clausal language.

If a set of horn clauses are fully satisfiable, then a minimal model can be found
using TΣ operator (referred to as the immediate consequence operator TP in [3])
in polynomial time. However weighted unsatisfiable problems require to find the
most likely state based on the weights. We propose an extension to the minimal
model approach wherein we find (i) the relevant set of ground horn clauses which
has a potential to be part of a contradiction and (ii) an interpretation near to
the result. MaxSAT algorithm can be used on this subset of clauses, (optionally)
starting from the interpretation returned, to get the most likely state. We also
prove that local search for optimality in the pruned space cannot affect the
satisfiability of the rest of the clauses. Our experiments show that the approach
reduces search space substantially and helps maxSAT to converge in short time.

The paper is organized as follows. Section 2 explains the conventional TΣ
operator and the proposed Modified TΣ operator. In section 3, we give an
overall procedure for satisfiability and also state and prove our claims. Results
are discussed in section 4. We conclude our work in section 5.



2 Satisfiability in Horn Clauses

If any of the atoms in the body part of a horn clause is false, then the clause
is satisfied because of its inherent structure of having atmost one positive atom
and all others negative. The groundings of a set of first order horn clauses (Σ)
with all the constants give a large set in which majority of the atoms are false
in real world. This makes a large subset of these clauses satisfied by default. We
can neglect these clauses and restrict our attention to the clauses that have a
potential to be part of a contradiction. We call this set, the relevant set (RS).

We propose an algorithm, Modified TΣ , to identify the relevant set along
with the truth assignments that are almost near to the result. Local search for
optimality can be done on this set, starting with the interpretation returned,
rather than considering the huge set of clauses and arbitrary truth assignments.
Next we explain TΣ before going to the Modified version.

2.1 TΣ Operator

TΣ Operator provides a procedure to generate an interpretation from another.
It builds on the concept that for satisfiability in horn clauses, all the unit clauses
should be True and if the body of a clause is True, then the head should also be
True. Let Ik be the interpretation at the kth step of the operation. Then,

Ik+1 = Ik ∪ TΣ(Ik) (1)

where, TΣ(I) = {a : a← body ∈ Σ and body ⊆ I} (2)

If we start with I = ∅, and iteratively apply the above function assignment (with
respect to the set of clauses), we will eventually converge at an interpretation
that is the minimal model of the formulae if one exists. If there is no model for
this set, the operation will reach a contradiction and will return Unsatisfiable.

In weighted satisfiability problems, if the given set is unsatisfiable, we need to
get a most likely state based on the weights. MaxSAT algorithms can do this op-
timization. Since applying MaxSAT to the complete groundings is expensive, we
improve the above method to prune the search space for MaxSAT. Modified TΣ
Step described in the next section helps us to prune the search space.

2.2 Modified TΣ Step

Modified TΣ operation returns a model if one exists; Otherwise returns the set
of clauses to be used by a local search algorithm and an initial interpretation for
the local search. The method is given in Algorithm 1 and is explained below.

Start with applying TΣ to the set of ground clauses until it converges in a
model or some contradiction is attained. In the former case, we can stop and
return the current interpretation as the solution. If we land up in a contradiction,
we get an atom whose truth value determines the set of clauses satisfied. We
assign true to the atom and proceed further till no more clauses can be visited.
All the clauses discovered by Modified TΣ irrespective of whether satisfied or



Algorithm 1 Modified TΣ(Σ, DB)
Input: Σ, the set of first order clauses with weights; DB, evidence set given.
Output: RS, the set of clauses to be considered for optimization; TS, truth
assignments of all atoms in RS except those in DB.
1. TS := ∅
2. RS := ∅
3. for each unit clause c in Σ do
4. for each grounding c′ of c do
5. if c′ /∈ RS then
6. Add c′ to RS
7. end if
8. if c′.head /∈ {TS ∪ DB} then
9. Add c′.head to TS
10. end if
11. end for
12. end for
13. repeat
14. for each non unit clause c in Σ do
15. for each grounding c′ of c where c′.body ⊆ {TS ∪ DB} do
16. if c′ /∈ RS then
17. Add c′ to RS
18. end if
19. if c′.head /∈ {TS ∪ DB} then
20. Add c′.head to TS
21. end if
22. end for
23. end for
24. Until no new clauses are added to the set RS
25. Return {RS, TS}
not form the relevant set. The interpretation got at the end of the algorithm can
optionally be used as initial truth assignment for the optimization step. Note
that the truth values for evidences given are always true and cannot be changed.

Any Weighted satisfiability algorithm can be applied on the Relevant Set of
clauses and the (optional) initial truth values to get a minimum cost interpreta-
tion. We now discuss weighted satisfiability approach using Modified TΣ .

3 Modified Weighted SAT

In the new approach, Modified TΣ operation is used to find relevant subset
as well as initial truth assignment. Then weighted MaxSAT version given in
Algorithm 2 is used. Algorithm 3 gives the overall algorithm.

Claim 1. All the unsatisfied clauses will be in RS.

Proof. A horn clause c′ is unsatisfied if c′.body ⊆ {TS∪DB} and c′.head /∈ {TS∪
DB}. Step 6 in Modified TΣ adds all clauses c′ of the form (c′.head ∨ ¬True)



to RS irrespective of whether it is satisfied or not. Step 17 in Modified TΣ adds
all clauses c′ where c′.body ⊆ {TS ∪DB}. This covers both the cases of c′.head
is True and c′.head is False. All other clauses c′′ where c′′.body * {TS ∪DB}
are satisfied by default. So set of unsatisfied clauses is a subset of RS. ut

Claim 2. Any flip done in any maxSAT step to make an unsatisfied clause
satisfiable only affects the satisfiability of clauses in RS.

Proof. Let us prove this by contradiction.
Suppose a clause, c′ = (l1 ∨ ¬l2 ∨ ¬l3 ∨ . . . ∨ ¬ln) is not satisfied by the current
assignments in {TS ∪ DB}. This happens only when l1 /∈ {TS ∪ DB} and
∀i = 2 . . . n li ∈ {TS ∪DB}. To make c′ satisfied, there are two cases. case 1:
flip l1, case 2: flip any of l2, l3, . . . , ln.
case 1: Flip l1 (False to True). Assume that flipping l1 will affect the state of
a clause c′′ /∈ RS. Since c′′ /∈ RS, c′′.body * {TS ∪DB}. Otherwise step 17 in
Modified TΣ would have covered c′′ and it would have been in RS. Also all the
unit clauses are covered by step 6 in Modified TΣ .
Now let c′′.head = l1. Since flipping c′′.head to True changes the state of c′′,
c′′.body ⊆ {TS ∪DB}. If this is the case, c′′ should have been covered by step
17 in Modified TΣ and would have been in RS. Hence the assumption that
c′′ /∈ RS is wrong.
Now let l1 ∈ c′′.body and flipping it to True changes the state of c′′. Then
c′′.body\l1 ⊆ {TS∪DB}. But applying our approach to c′ would have made l1 ∈
TS and transitively c′′.body ⊆ {TS ∪DB} and c′′ ∈ RS. Hence the assumption
that c′′ /∈ RS is wrong.
case 2: Flip any li ∈ {l2, l3, . . . , ln} (True to False). Assume that flipping li
will affect the state of a clause c′′ /∈ RS. Since c′′ /∈ RS, c′′.body * {TS ∪DB}.
Otherwise step 17 in Modified TΣ would have covered c′′ and it would have
been in RS. Also all the unit clauses are covered by step 6 in Modified TΣ .
Now let c′′.head = li. Since flipping c′′.head to False changes the state of c′′,
c′′.body ⊆ {TS ∪DB}. If this is the case, c′′ should have been covered by step
17 in Modified TΣ and would have been in RS. Hence the assumption that
c′′ /∈ RS is wrong.
Now let li ∈ c′′.body and flipping it to False changes the sate of c′′. Then before
flipping, c′′.body ⊆ {TS ∪ DB} which must have been covered by step 17 in
Modified TΣ and c′′ ∈ RS. Hence the assumption that c′′ /∈ RS is wrong. ut

Claim 3. If α is the cost of an optimal solution to RS, then α is the cost of an
optimal solution to Σ

Proof. let β and γ be the cost of optimal solutions to Σ and RS respectively.
That is β should be the sum of costs of RS and Σ \RS. Increase in cost occurs
only because of contradictions and this is in the set RS (proved in claim 1). The
best possible solution to the non contradicting part is zero. We get a minimum
cost solution for RS part using MaxSAT and any modification to that can result
(proved in claim 2 that this doesn’t affect Σ \ RS) an increase in cost only in
RS. Therefore β = 0 + γ and thus β = γ ut



Algorithm 2 Modified Weighted MaxSAT(Σg, TS, DB, target)
Input: Σg, all grounded clauses with weights; TS, initial truth assignment; DB,
the evidence given; target, the upper bound of cost.
Output: TS, An interpretation that is the best solution found.
1. atms := atoms in Σg
2. repeat
3. cost := sum of weights of unsatisfied clauses
4. if cost ≤ target
5. Return Success, TS
6. end if
7. c := a randomly chosen unsatisfied clause
8. for each atom a ∈ c and a /∈ DB do
9. compute DeltaCost(a), the cost incurred if a is flipped
10. end for
11. af := a with lowest DeltaCost(a)
12. TS := TS with af flipped
13. cost := cost + DeltaCost(af )
14.until the cost is no more decreasing
15.Return Failure, TS

Algorithm 3 Weighted HornSAT(Σ, DB, target)
Input: Σ, the set of first order clauses with weights; DB, evidence set given;
target, maximum cost expected for the optimization step if required.
Output: TS, An interpretation when combined with DB gives the (local) op-
timum solution.
1. {RS, TS} := Modified TΣ(Σ, DB)
2. if {TS ∪ DB} is a model for Σ then
3. Return TS
4. else
5. TS := Modified Weighted MaxSAT(RS, TS, DB, target )
6. end if
7. Return TS

4 Results

We implemented new HornSAT algorithm with Modified TΣ in java. We have
done our experiments in AMD Athlon 64 bit dual core machine (2.90 GHz) with
2.8 GB RAM and running Ubuntu 8.04.

Our results show that, for satisfiablility, the Modified TΣ method gives a
fewer number of groundings to optimize and that the optimization step converges
in a short time when the search space is pruned.

We used the uwcse knowledge base and dataset provided by alchemy [13] for
our experiments after making small modifications to make the clause set horn.
The constants given as the evidence set is considered as the complete domain



for each variables. We have run three experiments on each dataset. First exper-
iment does the complete groundings and runs MaxWalkSAT. Second grounds
the clauses with pruning and runs traditional MaxWalkSAT with random truth
assignments. The third experiment runs MaxWalkSAT on the pruned clauses set
with the initial truth assignment returned by Modified TΣ . Evidence set of dif-
ferent sizes are used and the comparison is given in Table 1. Figures 1.a, 1.b, 1.c
portrays the results when 181 atoms of uwcse language dataset, 87 atoms of uwcse
language dataset and 766 atoms of uwcse AI dataset are used respectively as evi-
dence set. Experimental results show that the proposed method outperforms the
traditional approach in terms of memory and speed. Implementation and other
details are available at www.cse.iitb.ac.in/~naveennair/HornSatisfiability/

Table 1. Results with uwcse KB and different evidence sets

No. of groundings Converged Cost Time taken (ms)

E
v
id

en
ce

se
t

C
o
m

p
le

te

P
ru

n
ed

C
o
m

p
le

te
g
ro

u
n
d
in

g
+

M
a
x
W

a
lk

S
A

T

P
ru

n
ed

+
M

a
x
W

a
lk

S
A

T

H
o
rn

S
A

T

C
o
m

p
le

te
g
ro

u
n
d
in

g
+

M
a
x
W

a
lk

S
A

T

P
ru

n
ed

+
M

a
x
W

a
lk

S
A

T

H
o
rn

S
A

T

language
181 atoms

508788 6908 90.452 70.265 70.265 2475736 1823778 6896

language
87 atoms

177738 3205 81.463 37.892 37.892 2329459 1098285 2351

AI 766
atoms

Memory
Error

182690 NA 344.584 344.584 NA 7507578 7462967

Fig. 1. Comparison of the approaches when applied to uwcse KB. a. All 181 atoms
from language dataset are given. b. 87 atoms from language dataset are given. c. All
766 atoms from AI dataset are given. In this experiment, complete grounding approach
failed and didnot give any result.



5 Conclusion and Future work

Several ground clauses formed as a result of propositionalization of first order
horn formulae are satisfied by default and it is a wastage of resources to consider
them for optimization. We presented an algorithm that prunes the search space
and proved that the optimal solution must lie in the pruned space. Experiments
indicate the scope for efficient inference using MaxSAT for the set of horn clauses.

The algorithm can be extended for general clauses by assigning true value
artificially to all non-negated atoms if all the negated atoms are true and pro-
ceeding like in Algorithm 1.

Acknowledgments. We would like to thank Dr. Ashwin Srinivasan, IBM India
Research Laboratory for his helpful comments.
Supplementary materials: appendix.pdf

References

1. Bart Selman, Hector Levesque, David Mitchell: A New Method for Solving Hard
Satisfiability Problems. In: AAAI-92, San Jose, CA, 440-446 (1992)

2. Bart Selman, Henry Kautz, Bram Cohen: Local Search Strategies for Satisfiability
Testing. In: Second DIMACS Implementation Challenge on Cliques, Coloring and
Satisfiability (1993)

3. Christopher John Hogger: Essentials of logic programming. Oxford University Press,
New York, USA (1990)

4. Federico Heras, Javier Larrosa, Albert Oliveras: MINIMAXSAT: an efficient
weighted max-SAT solver. In: Journal of Artificial Intelligence Research Volume
31, Issue 1 1-32 (2008)

5. Jacek Kisynski, David Poole: Lifted aggregation in directed first-order probabilis-
tic models. In: Proceedings of the 21st international jont conference on Artifical
intelligence, California, USA 1922-1929 (2009)

6. Martin Davis, Hilary Putnam, George Logemann and Donald W. Loveland: A Ma-
chine Program for Theorem Proving. In: Communications of the ACM 5 (7): 394-397
(1962)

7. Parag Singla, Pedro Domingos: Discriminative training of Markov Logic Networks.
In: AAAI-05, 868-873 (2005)

8. Parag Singla, Pedro Domingos: Memory-Efficient Inference in Relational Domains.
In: Proceedings of the Twenty-First National Conference on Artificial Intelligence
(pp. 488-493), 2006. Boston, MA, AAAI Press(2006)

9. Teresa Alsinet, Felip Many, Jordi Planes: An efficient solver for weighted Max-SAT.
In: Journal of Global Optimization, Springer Netherlands, 61-73 (2008)

10. Jude Shavlik, Sriraam Natarajan: Speeding up inference in Markov logic net-
works by preprocessing to reduce the size of the resulting grounded network.
In:Proceedings of the 21st international JCAI (2009)

11. Alan Fern: A Penalty-Logic Simple-Transition Model for Structured Sequences.
In:Computational Intelligence, 302?334 (2009)

12. Lilyana Mihalkova, Matthew Richardson: Speeding up inference in statistical rela-
tional learning by clustering similar query literals. In:ILP 2009 (2009)

13. http://alchemy.cs.washington.edu/


