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Abstract. A workmanlike, but nevertheless very effective combination
of statistical and relational learning uses a statistical learner to construct
models with features identified (quite often, separately) by a relational
learner. This form of model-building has a long history in Inductive Logic
Programming (ILP), with roots in the early 1990s with the LINUS sys-
tem. Additional work has also been done in the field under the cate-
gories of propositionalisation and relational subgroup discovery, where
a distinction has been made between elementary and non-elementary
features, and statistical models have been constructed using one or the
other kind of feature. More recently, constructing relational features has
become an essential step in many model-building programs in the emerg-
ing area of Statistical Relational Learning (SRL). To date, not much
work—theoretical or empirical—has been done on what kinds of rela-
tional features are sufficient to build good statistical models. On the face
of it, the features that are needed are those that capture diverse and
complex relational structure. This suggests that the feature-constructor
should examine as rich a space as possible, in terms of relational descrip-
tions. One example is the space of all possible features in first-order logic,
given constraints of the problem being addressed. Practically, it may be
intractable for a relational learner to search such a space effectively for
features that may be potentially useful for a statistical learner. Addi-
tionally, the statistical learner may also be able to capture some kinds
of complex structure by combining simpler features together. Based on
these observations, we investigate empirically whether it is acceptable
for a relational learner to examine a more restricted space of features
than that actually necessary for the full statistical model. Specifically,
we consider five sets of features, partially ordered by the subset relation,
bounded on top by the set Fd, the set of features corresponding to defi-
nite clauses subject to domain-specific restrictions; and bounded at the
bottom by Fe, the set of “elementary” features with substantial addi-
tional constraints. Our results suggest that: (a) For relational datasets
used in the ILP literature, features from Fd may not be required; and (b)
Models obtained with a standard statistical learner with features from
subsets of features are comparable to the best obtained to date.
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1 Introduction

The emerging area of statistical relational learning (SRL) is characterised by
a number of distinct strands of research. Especially prominent is research con-
cerned with the construction of models from data that use representations based
on either first-order logic programs augmented with probabilities or probabilis-
tic graphical models. The concerns here are the usual ones to do with expres-
sive power, estimation, and inference: what kinds of probabilistic models can
be constructed with one representation or the other; how can we estimate the
structure and parameters in the model; how do we answer queries exactly, given
data that is observed, and perhaps missing; and so on. The combination of re-
lational learning with statistical modeling, however, has a longer history within
Inductive Logic Programming (ILP), with origins at least as early as 1990, with
the LINUS system [14]. Since then, there are have been regular reports in the
literature on the use of ILP systems, as a tool for constructing relational features
for use in statistical modeling [22].

An argument can be made that construction of relational features must nec-
essarily require some form of first-order learning, of which ILP is an instance
(for example, see [13]). Arguments in-principle aside, the literature also suggests
that augmenting any existing features with ILP-constructed relational ones can
substantially improve the predictive power of a statistical model [24,4,22]. There
are thus good practical reasons to persist with this variant of statistical and
logical learning. On the other hand there has been some work done on compar-
ing the different kinds of propositionalisation techniques used to transform the
search space from the space of first-order hypothesis to the space of proposi-
tional features which can be handled by more scalable propositional/statistical
learners. [12] claims that of the two main kinds of propositionalization methods,
namely logic oriented and database-oriented, both have their specific advantages.
While logic-oriented methods can handle complex relational structures in the
form of background knowledge and provide more expressive relational models,
database-oriented models are much more scalable. According to their empiri-
cal findings, a combination of features from these two groups are necessary for
learning good models.

Even within this well-trodden corner of statistical relational learning (no more,
perhaps, than a “poor man’s SRL”), there are some issues that remain unad-
dressed. To date, not much work—theoretical or empirical—has been done on
what kinds of relational features are sufficient to build good statistical models.
On the face of it, the features that are needed are those that capture diverse and
complex relational structure. This suggests that the feature-constructor should
examine as rich a space as possible, in terms of relational descriptions. One ex-
ample is the space of all possible features in first-order logic, given constraints of
the problem being addressed. Practically, it may be intractable for a relational
learner to search such a space effectively for features that may be potentially
useful for a statistical learner. Additionally, the statistical learner may also be
able to capture some kinds of complex structure by combining simpler features
together. For example, a statistical learner like a support vector machine or
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logistic regression that may also be able to approximate the effect of a conjunc-
tion of these features using their weighted sum. Reports in the ILP literature
suggest at least 5 kinds of relational feature classes: (1) Fd: (the set of) features
from definite clauses with no restrictions other than those of the domain [22,24];
(2) Fi: features from “independent” clauses that place restrictions on the sharing
of existential variables [2]; (3) Fr: features denoting a class of relational subgroup
that place additional restrictions on the use of existential variables in indepen-
dent clauses [15]; (4) Fs: features from “simple” clauses in the sense described
in [17]; and (5) Fe: features developed from the class of “elementary” clauses de-
scribed in [16]. In this paper, we show certain subset relationships hold between
these sets. These are shown diagrammatically in Fig. 1. When exploring whether
smaller feature-spaces are adequate, we use these relationships to investigate em-
pirically whether exploring larger sets of features adds any significant predictiv-
ity to a statistical learner. Several Statistical Relational Learning approaches in
the past have focused on learning from specific classes of features and construct
more complicated ones if necessary by boosting. In [10,19] it has been empirically
shown in various learning settings, that boosting of weak features performs well.
The same technique of boosting applied on different settings, by using differnt
variants of the loss functions have been discussed repeatedly in SRL literature,
for example, in [5,8,9,21]. There has also been attempt at posing the relational
feature construction as a problem of combining macro-operators by statistical
learner and delegating search to them [1]. In this macro-operator paradigm, it
has been shown that by following a particular propositionalization technique,
the trade-off between feature construction cost and learning cost can be better
handled and infact the propositionalized dataset becomes PAC-learnable.

Fig. 1. Relationships between the sets of features considered in this paper

The rest of the paper is organised as follows. In Section 2 we describe the map-
ping between clauses and relational features. We also describe in greater detail
the five feature classes Fd–Fe. In Section 3 we derive the relationships shown in
Fig. 1 and enumerate some consequences that follow directly from them. Section
4 describes an empirical investigation, using standard statistical learners of the
smallest size feature class that appears to be useful for constructing predictive
models for several ILP benchmark datasets. Section 5 concludes the paper.
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2 Feature Classes

In this paper, we will take first-order relational features simply to be first-order
clauses that either maximize some objective either collectively or individually (ef-
fectively, a restatement of the distinction in [7] between strong andweakly relevant
features, in optimisation terms). Specifically, we will assume that is a one-to-one
correspondence between first-order relational features and definite clauses (alpha-
betic variants of a clause are treated as being the same clause). Formally, we adopt
the same notation as in [22] for a function that maps a first-order definite clause to
a feature. The set of examples provided to an ILP system can be defined as a binary
relation which is a subset of the Cartesian product X ×Y where X denotes the set
of individuals (i.e. structured objects consisting of first-order predicates) and Y
denotes the finite set of classes. The definite clauses obtained as an output of the
ILP system can be represented in the form hj(x, c) : Class(x, c)← Cpj(x) where
Cpj : X → {0, 1} is a nonempty conjunction of predicates on the variable x ∈ X
and c is the class variable specified in the head predicate. For convenience, we will
say Head(hj(x, c)) = Class(x, c) and Body(hj(x, c)) = Cpj(x). Given a clause
hj(x, c), a first-order feature can be defined as fj(x) = 1 iff Body(hj(x, c)) = 1
and 0 otherwise. Constraints on Body(hj(x, c)) allow us to define several kinds of
features. Following [17] (with a small difference) we distinguish between “source”
predicates and “sink” predicates in the language of clauses allowed in the domain.
The former are those that contain at least one output argument and any number
of input arguments (in the sense used by the mode declarations in [18]) and the
latter are those that contain no output arguments. In a clause, thus all new exis-
tentially quantified variables should be introduced in the source literals and not in
the sink literals. 1 Additionally, following [2], for a clause hj(x, c), the independent
components in Body(hj(x, c)) are partitions of the literals in Body(hj(x, c)) into
sets, such that each partition consists of a “connected” set of literals (once again,
using input and output variables in the sense of [18]), and that literals across par-
titions only share the head variable x. We are then able to define the following
kinds of relational feature classes:

The class Fd: This consists of first-order features obtained from definite clauses
hj(x, c) in the functional manner described above. That is, no constraints are
placed on Body(hj(x, c)). Features used in [24], for example, belong to this
class.

The class Fi: This is a restricted version of the class Fd, consisting of features
from clauses hj(x, c)) such that Body(hj(x, c)) consists of exactly 1 indepen-
dent component.

The class Fr: This is a restricted version of the class Fi, consisting of features
obtained from clauses hj(x, c) such that Body(hj(x, c)) consists of exactly 1
independent component, and with an additional constraint that all new exis-
tential variables introduced by a source literal appear in source or sink literals
in Body(hj(x, c)). The features in [15] are from this class, and the first-order

1 “Structural” predicates used in [16] are thus binary source literals that introduce a
single new variable, and “property” predicates are sink literals.
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features described in [16] are a special case of features in Fr (the special case
arising from restrictions on sources and sinks to structural and property pred-
icates as described earlier).

The class Fs: This consists of features obtained from clauses hj(x, c) such that
hj is a simple clause in the sense defined by [17]. That is, Body(hj(x, c)) con-
tains exactly 1 sink literal.

The class Fe: This is a restricted version of the class Fr, consisting of features
obtained from clauses hj(x, c) such thatBody(hj(x, c)) contains exactly 1 sink
literal. “Elementary” features described in [16] are a special case of features
in Fe.

3 Relationships between Feature Classes

Some of the relationships between feature classes are evident from the definitions.
That is: Fr ⊆ Fi ⊆ Fd. The following additional statements hold

– Fs ⊆ Fi

– Fs �⊆ Fr and Fr �⊆ Fs

– Fe = Fr ∩ Fs

Thus, the feature classes exhibit the following hierarchical structure:
Fe = (Fr ∩ Fs) ⊆ Fr ⊆ Fi ⊆ Fd

Fe = (Fr ∩ Fs) ⊆ Fs ⊆ Fi ⊆ Fd

Given these subset relationships between feature classes, it is also of some im-
portance to consider whether there exists a way of reconstructing, using logical
operations, every feature in a superset class by combining features from a subset
(or smaller) class (clearly, the reverse is always possible: a feature in a subset class
can always be constructed from a feature in the superset class). The interest here
is of course that if such logical relationships hold, then features in the larger class
may be approximated by statistical learners using weighted combinations of fea-
tures from the smaller class. The following logical relationships hold between the
feature classes:

– Every feature in Fi can be constructed from features in Fs

– Every feature in Fd can be constructed from features in Fi

Thus, every feature in Fd can be constructed from Fs. In addition:

– Not every feature in Fi can be constructed from features in Fr

– Not every feature in Fr can be constructed from features in Fe

– Not every feature in Fs can be constructed from features in Fe

The proofs of the relations have been elaborated in Appendix A. We now evaluate
empirically the utility of features from the different classes, proceeding from the
smallest (Fe) to the largest (Fd).
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4 Empirical Evaluation

4.1 Aims

Our aim is to obtain empirical evidence of the smallest feature class that is found
to yield good statistical models. Specifically, we mean that we wish to find using a
set of well-studied benchmark data sets and popular statistical learners, whether
there is a feature class such that adding features from larger classes yields no sig-
nificant increases in predictive accuracy.

4.2 Materials

Domains. We use biochemical datasets that have been used in a range of papers
in the ILP literature. These are tabulated below.These datasets have been used
widely: see, for example

Dataset No. of instances No. of instances

for positive class for negative class

Alz (Amine) [25] 343 344

Alz (Acetyl) [25] 443 443

Alz (Memory) [25] 321 321

Alz (Toxic) [25] 443 443

Carcin [25] 182 155

DSSTox [25] 220 356

Mut(188) [25] 125 63

Fig. 2. Datasets used in the paper

4.3 Algorithms and Machines

The statistical learners used in the paper are these:

– A support vector machine(SVM). Specifically, we examine SVMs with both
the L1-norm, also known in literature as L1-SVM (the LibLINEAR imple-
mentation) and the L2-norm, known as L2-SVM,(the LibSVM implementa-
tion) on the weight vector used as the regularizer. The L1-norm is known to
induce sparsity on the feature space, forcing a form of feature selection which
is important when the number of features is large.

– Logistic regression. Specifically, we consider a standard version of this tech-
nique and a faster andmore efficient variant called SMLR (SparseMultinomial
Logistic Regression) [11]

– Rule ensemble learning using maximum likelihood estimation (MLRules) [3].
This employs a greedy approach of maximising likelihood to construct an en-
semble of rules from the features. Like logistic regression, the weights of the
rules are derived from the conditional probability distribution learnt. So it can
be thought of as a generalization of Logistic Regression, where the space ex-
plored to construct rule ensembles can be considered as an approximation of
conjunctions of rules/features.
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All statistical learners here, compute the decision function as a weighted linear
combination of the features (which can be thought of as an approximation to a
logical conjunction). Features in each feature class are constructed using the ILP
system Aleph [23]. It is possible to enforce the constraints associated with each
feature class in a straightforward manner as part of background knowledge pro-
vided to this system.

All experiments were conducted on a machine equipped with a 8-core Intel i7
2.67GHz processors and 8 gigabytes of random access memory.

4.4 Method

The methodology adopted for providing the statistical learners features from fea-
ture classes Fe to Fd is as follows:

1. Select a total ordering on the classes Fe ≺ · · · ≺ Fd that is consistent with the
partial ordering imposed by subset relationships between these sets.

2. For each dataset and each statistical learner:
(a) For sets Sj from smallest (Fe) to the largest (Fd), in the total ordering ≺:
(b) Let F0 = ∅

i. Repeat R times:
A. Obtain a set of features F from Sj

B. Fj = Fj−1 ∪ F
C. Obtain an estimate of the predictive accuracyAj of the statistical

learner with features Fj

ii. Obtain the mean predictive accuracy Aj across the R repeats
3. Determine the smallest set Sk after which there are no significant changes in

mean predictive accuracy Ak

The following details are relevant:

1. There are only 2 total orderings possible, given the subset relationships be-
tween the feature classes: Fe ≺1 Fr ≺1 Fs ≺1 Fi ≺1 Fd and Fe ≺2 Fs ≺2

Fr ≺2 Fi ≺2 Fd. According to our incremental algorithm, here Fs in the 5th
column,Fs in≺1 andFr in≺2 actually refer to sets of features fromFr∪Fs, be-
cause of their order of appearance. The results we report here are with≺=≺1.
Our conclusions do not change with either ≺1 or ≺2.

2. All predictive accuracies are estimated using 10-fold cross-validation.
3. The results are averaged over R = 4 repetitions. Larger values of R would

result in smaller standard errors of the mean estimate.
4. Statistical learners have parameters that require optimisation. It has been

shown elsewhere [25] that using default values of parameters can result in sub-
optimal models, which can clearly confound the conclusions that can be drawn
here. For each set of training data in a cross-validation run, we set aside some
small part of the training data as a “validation” set, and use this to tune the
parameters of the statistical learner. The “best” parameter value that results
is then used to construct a model on the training data; and then evaluated on
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the test dataset of that cross-validation run. This does not necessarily yield
the best model possible, but accuracies are usually higher than those obtained
with the default settings for the parameters.

5. The feature-construction procedure employed by the ILP engine requires an
upper-bound k on the number of features produced for each class label in the
example data. For experiments reported here, k = 500. There is a randomised
element to the feature-construction procedure in Aleph, which can been seen
as selecting (non-uniformly) upto k features, from the set of all possible fea-
tures allowed. The selection of features is controlled by parameters that cor-
respond to precision and recall in the data mining literature. For experiments
here, these values have been deliberately left low (and hence, easy to obtain
for the ILP engine). The intent is that the statistical learner should be able to
combine these to obtain higher values.

6. We have elected to assess the utility of features from each feature class by
examining the improvements in mean accuracy by augmenting features al-
ready present from feature classes earlier in the ordering≺. The alternative of
simply comparing accuracies with a new set of features drawn from the from
each feature classX in the ordering would have confounded matters, since this
set could contain features from a class Y ⊆ X . It would not then be known
whether the increases in accuracy, if any, are due to features from a class X ,
or those from class Y .

7. It is known that for large R, mean accuracies are distributed normally.
For small R, it is known that the sampling distribution of the mean is a t-
distribution with R− 1 degrees of freedom. This is used in statistical compar-
isons when needed (as will be seen, it is often evident whether differences are
significant, and no undue statistical testing is needed).

4.5 Results and Discussion

The comparative performance of the models is shown in Fig. 3. The principal re-
sult from this tabulation is this: broadly, there is little value in including features
from Fd (the largest feature class considered here). Examining the table in greater
detail, we are able to obtain the number of “wins” for each feature class (that is,
the number of times the highest predictive accuracy results from using features in
that class). A cross-tabulation of this against the learners is shown in Fig. 4:

The data in Figs. 3 and 4 suggest that it is sufficient to consider features from
Fi (that is, features from clauses containing one independent component). Now,
while it is possible to reconstruct every feature in Fd exactly as a simple logical
conjunction, of some features in Fi, it is also possible to reconstruct several (but
not all) features in Fd by simple logical conjunction of select features in Fr, Fs and
Fe. This appears to be exploited by all of the statistical learners here, since it is by
nomeans necessary for any of them that features from Fd are consistently required
to produce the best results. This is reinforced further, if rather than considering
outright wins, we consider a model as being good enough if there no (statistically)
significant difference to the best model. Then, the performance tallies can be sum-
marized as in Fig. 5.
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Data Learner Using Features From

Fe Fr Fs Fi Fd

Alz(Amine)

L2-SVM 66.14±0.84 65.71±0.69 67.23±0.86 81.62±0.92 81.45±0.61

L1-SVM 65.50±0.15 65.84±0.14 64.91±1.65 78.34±4.18 80.31±1.57

LR 65.42±0.0 65.42±0.0 64.38±0.0 79.32±3.93 81.28±0.31

SMLR 65.42±0.0 66.05±0.22 67.12±0.38 81.20±2.56 81.63±2.77

MLRules 64.39±0.0 64.39±0.0 68.67±0.0 82.32±1.18 82.22±0.35

Alz(Acetyl)

L2-SVM 69.42±0.33 68.52±0.70 68.59±2.11 74.40±0.80 72.97±0.47

L1-SVM 69.85±0.05 68.55±0.0 66.20±0.0 74.06±0.91 72.78±1.44

LR 69.82±0.0 69.82±0.0 71.93±0.0 73.87±0.44 74.16±0.24

SMLR 70.36±0.11 70.32±0.14 72.17±0.12 73.34±1.38 73.20±0.65

MLRules 69.59±0.0 69.59±0.0 70.95±0.0 71.67±0.47 72.44±0.52

Alz(Memory)

L2-SVM 59.80±0.22 61.09±0.45 63.46±1.07 68.39±1.15 68.07±1.75

L1-SVM 56.99±1.29 62.89±1.07 64.33±0.25 71.29±1.04 67.96±0.41

LR 59.07±0.08 59.07±0.08 65.87±0.0 70.31±1.54 69.30±0.55

SMLR 59.69±0.0 58.44±1.32 66.34±0.73 70.10±1.26 71.83±1.67

MLRules 58.83±0.19 58.83±0.19 64.76±0.08 70.13±1.14 67.91±0.64

Alz(Toxic)

L2-SVM 70.72±1.0 71.97±1.99 77.17±0.82 83.01±0.73 82.04±2.40

L1-SVM 70.06±0.0 71.73±0.0 80.94±3.15 82.59±0.70 82.83±2.21

LR 72.84±0.0 72.09±1.51 77.91±0.0 81.65±0.79 83.32±0.87

SMLR 74.50±2.35 74.07±0.79 76.76±0.16 82.59±0.39 84.21±0.69

MLRules 73.18±0.0 73.18±0.0 77.44±0.0 84.50±0.44 84.19±0.56

Carcin

L2-SVM 60.59±1.58 62.15±1.75 59.49±1.75 62.03±1.28 59.85±1.67

L1-SVM 61.21±0.0 59.71±0.0 58.66±3.10 60.26±0.71 59.21±1.29

LR 59.00±0.0 57.71±0.16 54.01±2.79 51.80±1.37 52.52±3.49

SMLR 60.88±0.0 60.17±0.38 59.51±2.91 58.80±3.42 57.94±2.84

MLRules 59.39±0.25 59.20±0.15 58.83±1.96 57.94±2.31 56.64±0.94

DSSTox

L2-SVM 69.36±1.15 69.86±1.19 72.21±1.22 73.12±0.94 70.90±3.15

L1-SVM 69.25±0.25 69.00±0.25 70.77±1.60 71.91±1.77 69.21±1.34

LR 70.49±0.0 70.49±0.0 72.18±1.71 71.01±0.87 70.32±0.47

SMLR 72.24±0.0 72.29±0.09 70.71±2.62 70.95±2.94 71.02±1.38

MLRules 71.55±0.0 71.55±0.0 72.85±1.43 72.73±1.52 72.16±1.09

Mut(188)

L2-SVM – 65.80±1.25 85.84±1.36 86.49±0.28 84.63±1.58

L1-SVM – 63.70±0.30 84.92±0.65 85.27±0.31 85.52±0.48

LR – 67.12±0.0 74.85±1.74 77.48±3.38 77.61±2.88

SMLR – 73.44±0.0 88.06±1.57 85.83±1.81 84.10±2.02

MLRules – 71.86±0.0 85.04±0.76 86.50±1.40 85.70±1.55

Fig. 3. Mean predictive accuracies of statistical models including features from Fe to
Fd. “–” indicates no features in this class were possible given the domain constraints.
Here, refers to the Fs in the incremental order ≺1, hence it actually denotes the set of
features from Fr ∪ Fs. Same notation has been followed in Fig. 4. and Fig. 5.

Feature Number of Wins Total

Class L1-SVM L2-SVM LR SMLR MLRules Wins

Fe 1 0 1 1 1 4/35

Fr 0 1 1 1 0 3/35

Fs 0 0 1 1 1 3/35

Fi 3 6 1 1 4 15/35

Fd 3 0 4 3 1 11/35

Fig. 4. Number of outright wins for a feature class. This is number of occasions out of
the total number of possible occasions (i.e. 35) on which a statistical learners achieves
the highest mean predictive accuracy using features from that class.
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Feature Number of Good Enough Models Total No. of

Class L1-SVM L2-SVM LR SMLR MLRules Good Models

Fe 2 1 2 2 2 9/35

Fr 2 2 1 4 4 13/35

Fs 3 2 1 4 4 14/35

Fi 7 7 6 7 7 34/35

Fd 4 5 6 7 7 25/35

Fig. 5. Number of good enough models (out of all possible models i.e. 35), using a fea-
ture class. A model is taken to be good enough if its predictive accuracy is not statisti-
cally different to the model with the highest predictive accuracy.

Data Statistical Model ILP Model With

Parameter Selection & Optimization

Alz (Amine) 82.32±1.18 80.20

Alz (Acetyl) 74.16±0.24 77.40

Alz (Memory) 71.83±1.67 67.40

Alz (Toxic) 84.50±0.44 87.20

Carcin 62.15±1.75 59.10

DSSTox 73.12±0.94 73.10

Mut(188) 88.06±1.57 88.30

Fig. 6. Comparison of mean predictive accuracies of statistical models against the ILP
models constructed with parameter selection and optimisation (see [25])

These tabulations do suggest that of the classes Fe . . . Fd, the class Fi may be
the most useful. But how good are the models obtained with Fi, when compared
against the ILP models reported in the literature? Fig. 6 shows a comparison of
the best statistical models against the predictive accuracies of the ILP models
obtained after parameter selection and optimisation [25].

Finally, although not relevant to the aims of the experiment here, we note some
exceptional behaviour on the “Carcin” dataset, in which there is a fairly consis-
tent trend of decreasing predictive accuracies as we progress from Fe to Fd. An
examination of re-substitution (training-set) accuracies for this data shows the
opposite trend, suggesting that these data may be especially prone to overfitting.

We also experimented with≺=≺2 and found that the results were quite similar
with the ones with ≺=≺1 tabulated here. In interest of space, those results have
been omitted.

The methodology of experimentation discussed above, constructs a total or-
dering of the feature classes by cumulatively augmenting the features already ob-
tained from the feature classes earlier in the ordering ≺. But this process of
incrementally adding features can increase the size of the hypothesis space. In-
creasing the size of the hypothesis space naturally increases the possibility that
models perform better simply due to chance effects. We investigate for this by
sampling a fixed number of features from each feature- class only, without cumula-
tively augmenting the already present features generated by its subsumed feature
classes. The second set of experiments based on this setting has been elaborated
in Table 7 and the comparative study of the performance of the different feature
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Data Learner Using Features From

Fe Fr Fs Fr∪s Fi Fd

Alz(Amine)

L2-SVM 65.27 66.15 79.54 78.29 79.56 77.82

L1-SVM 63.95 68.19 76.91 78.12 77.38 74.61

LR 65.56 66.45 79.98 80.91 79.13 79.47

SMLR 67.12 67.75 79.10 78.76 79.33 79.17

MLRules 65.42 66.0 80.73 80.62 80.74 78.74

Alz(Acetyl)

L2-SVM 66.83 67.02 69.37 67.55 73.53 72.54

L1-SVM 65.13 65.28 69.22 67.55 73.53 72.54

LR 66.75 67.17 67.55 68.01 73.53 72.54

SMLR 66.68 68.14 68.09 71.01 69.88 70.2

MLRules 66.30 67.56 69.96 72.22 69.60 70.35

Alz(Memory)

L2-SVM 59.8 61.21 64.94 63.38 67.46 69.3

L1-SVM 59.8 61.21 64.94 63.38 67.46 69.3

LR 59.8 61.21 64.94 63.38 67.46 69.3

SMLR 60.88 59.17 67.73 71.01 68.04 67.17

MLRules 60.411 59.78 69.91 72.56 68.52 66.63

Alz(Toxic)

L2-SVM 70.47 74.86 77.08 76.52 82.06 81.59

L1-SVM 75.67 75.55 80.28 79.4 84.68 81.40

LR 70.47 74.86 77.08 76.52 82.06 81.59

SMLR 71.27 58.85 78.94 82.78 79.03 81.43

MLRules 70.33 55.90 80.33 82.22 79.79 81.43

Carcin

L2-SVM 58.81 63.87 59.29 58.41 63.23 57.58

L1-SVM 58.81 63.87 59.29 58.41 63.23 57.58

LR 58.81 63.87 59.29 58.41 63.23 57.58

SMLR 61.16 60.50 59.07 55.43 59.37 59.32

MLRules 60.52 55.26 56.64 54.23 57.29 55.67

DSSTox

L2-SVM 70.32 69.69 71.25 71.25 73.65 66.87

L1-SVM 70.32 69.69 71.25 71.25 73.65 66.87

LR 70.32 69.69 71.25 71.25 73.65 66.87

SMLR 71.77 73.67 72.01 71.06 69.63 71.48

MLRules 66.98 69.10 71.84 71.11 72.48 72.47

Mut(188)

L2-SVM – – 85.14 85.14 86.66 82.45

L1-SVM – – 85.14 85.14 86.77 82.45

LR – – 85.14 85.14 86.66 82.45

SMLR – – 73.43 73.43 64.95 72.72

MLRules – – 74.43 74.43 65.47 76.93

Fig. 7. Mean predictive accuracies of statistical models including features from Fe to
Fd. “–” indicates no features in this class were possible given the domain constraints.
Here, refers to the Fr∪s actually denotes the set of features from Fr∪Fs. Same notation
has been followed in Fig. 4. and Fig. 5.

Feature Class Total Number of Outright Wins Total Number of Good Models

Fe 2/35 3/35

Fr 4/35 3/35

Fs 1/35 9/35

Fr∪s 8/35 16/35

Fi 16/35 27/35

Fd 4/35 17/35

Fig. 8. Number of outright wins for a feature class and the Number of good enough
models generated from features obtained from those classes

classes in terms of number of outright wins and number of good enough statistical
models constructed, has been presented in 8.
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5 Concluding Remarks

In this paper we have explored the relationship between several feature spaces that
have been reported in ILP literature and examined empirically whether it is pos-
sible to construct good statistical models using features from smaller spaces. The
intuition underlying this is that statistical models may often be able to approx-
imate the effect of more elaborate features by weighted combinations of simpler
features. Our results suggests that the class Fi, consisting of features constructed
from clauses containing exactly one independent component seems to be particu-
larly useful. This makes some sense: a linear combination of multiple features from
Fi can approximate the reconstruction of a full first-order feature, since no vari-
able sharing is required between such features. In fact, this leads us to hypothesize
that statistical learners like [6] that perform conjunctive feature learning will not
perform any better than learners using weighted combinations of features from
Fi, and will incur a greater computational cost. Further, this also leads us to be-
lieve that weighted linear combinations of first order clauses in relational learning
models such asMLN [20], RelationalMarkovNetworks [26] and the boosting tech-
niques like [10,19] could be efficiently and effectively approximated by weighted
linear combinations of clauses from simpler classes such as Fi and is part of our
ongoing work. On the other hand the main focus of this paper has been directed
at learning a discriminative classification model whereas the general Statistical
Relational Learning also addresses a generative model learning setting. It would
be interesting to see how this study of learning from specific feature classes can
make the generative learning more efficient.
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of Computer Science, Oxford University; and a Visiting Professorial Fellow at the
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A Appendix A

A.1 Proofs of Results from Section 3

Relationship between Fe and Fs : Fe ⊆ Fs.

Proof. Every feature from the class Fe also belongs to the class Fs, since it
is minimal (i.e. cannot be decomposed into smaller features that share only
global variable), and contains a single sink (i.e. cannot be decomposed into
smaller features that share only a local variable). On the other hand, a feature
from the class Fs may not belong to the class Fe, since the former may have
some unused output variables, For example, in the trains problem originally
proposed by Ryzhard Michalski, eastbound(A) ← hasCar(A,B) is a valid
clause from Fs but it cannot belong to class Fe.

Relationship between Fs and Fr : Fs �⊂ Fr. And the reverse is neither true,
i.e. Fr �⊂ Fs.
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Proof. Every feature from the class Fs may not belong to the class Fr , at-
tributed to the same reason of local-variable reusal property that the latter
must satisfy, a property that need not hold for the former. The same clause
mentioned above as an example, viz., eastbound(A) ← hasCar(A,B), will
not yield a feature from Fr (or for that matter, from Fe), though it is a valid
clause from Fs. Also the reverse is not true i.e. every feature from Fr may
not belong to Fs, since the former can have any number of property nodes i.e.
sinks, which is not possible in the case of the latter.

Relationship between Fe, Fr and Fs : Fe = (Fr ∩ Fs).

Proof. By the very definition of a feature from class Fe, it must belong to class
Fr and since it cannot have more than one sink, it must also be a valid feature
from class Fs.

Relationship between Fr and Fi : Fr ⊆ Fi

Proof. Every feature from class Fr also belongs to class Fi because of the min-
imal property, but the reverse is not true i.e. not every feature from class Fi

is a valid feature from class Fr again because of the variable reusal property.
For example, eastbound(A) ← hasCar(A,B) is a valid feature from class Fi

but cannot belong to class Fr because of the unused output variable C intro-
duced by the structural predicate, hasCar(A,B). Also there may not exist
any property predicate in the clause from class Fi as in this example.

Relationship between Fs and Fi : Fs ⊆ Fi.

Proof. By the very definitions of features from class Fs and Fi, it can be seen
that every feature from class Fs is a valid feature from class Fi but the reverse
is not true.

Relationship between Fi and Fd : i.e. Fi ⊆ Fd

Proof. It is obvious that every feature from class Fi is a first-order definite
feature. But the reverse is not true, since there exist clauses such as the fol-
lowing one from the trains problem,
eastbound(A)← hasCar(A,B), hasCar(A,C), short(B), closed(C)
that are not independent (since they can be decomposed further into indepen-
dent components).

A.2 Reconstruction Property of Feature Classes

1. Every full first-order feature from definite clauses i.e. from Fd can be con-
structed from features from Fs.

Proof. The one-to-one mapping from clauses to features allows any feature
fd from Fd to be inverted to a definite clause cd. Also [17] states that every
definite clause can be constructed from simple causes. So given a set of simple
clauses Ss that can reconstruct the first order definite clause cd, the mapping
can be used to construct the set of features corresponding to the set Ss of
simple clauses used to reconstruct cd and hence feature fd.
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2. Every feature from Fi can be constructed from features from Fs.

Proof. Since every feature from Fi is also a full first-order feature (owing to
the subset relation) and every full first-order feature from Fd can be recon-
structed from features from Fs, it follows that every feature from Fi can be
reconstructed from features from Fs by performing a combination of logical
conjunction and (possibly) variable unification.

3. Every feature from Fr can be constructed from features from Fs.

Proof. Similar to the above justification of (2), since each feature from Fr is
also a feature from Fd, it can be constructed from features from Fs by per-
forming their logical conjunction and (possibly) variable unification.

4. Every feature from Fe can be constructed from features from Fs.

Proof. This follows from the subset relation Fe ⊆ Fs. In general, any feature
of a subclass can be constructed from its superclass. This is just stating the
obvious.

5. Every full first-order feature from Fd can be constructed from features
from Fi.

Proof. This follows from (1), since every full first-order feature from Fd can be
constructed from features from Fs and the latter is a subset of Fi. In this case
the reconstruction is much simpler since it is equivalent to logical conjunction
without any variable unification required.

6. Not every feature from Fr can be constructed from features from Fe.

Proof. Because of the redefined structural predicates that can introduce any
non-zero number of new variables, there can be features from Fr that reuse
these newly introduced variables separately in different property predicates.
In that case no single property predicatewill be sufficient to satisfy the variable-
reusal property. The clauses corresponding to these features from Fr cannot
be reconstructed from any number of clauses obtained by the inverse-mapping
from features from Fe. For example, the feature corresponding to the clause
eastbound(A)← hasCarFollowsCar(A,B,C), short(B), closed(C) is a valid
feature belonging to Fr which cannot be constructed from features obtained
from Fe class alone.

7. Not every full first-order feature from Fd can be constructed from features
from Fr.

Proof. Clauses corresponding to features from Fd that do not satisfy the
variable-reusal property cannot be reconstructed from any number of clauses
inverse-mapped from features from Fr.

For the same reason as above, the following two properties additionally hold.
8. Not every feature from Fi can be constructed from features from Fe.
9. Not every full first-order feature from Fd can be constructed from features

from Fe.
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