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Abstract. Discovering relational structure between input features in se-
quence labeling models has shown to improve their accuracies in several
problem settings. The problem of learning relational structure for se-
quence labeling can be posed as learning Markov Logic Networks (MLN)
for sequence labeling, which we abbreviate as Markov Logic Chains
(MLC). This objective in propositional space can be solved efficiently
and optimally by a Hierarchical Kernels based approach, referred to as
StructRELHKL, which we recently proposed. However, the applicabil-
ity of StructRELHKL in complex first order settings is non-trivial and
challenging. We present the challenges and possibilities for optimally and
simultaneously learning the structure as well as parameters of MLCs (as
against learning them separately and/or greedily). Here, we look into
leveraging the StructRELHKL approach for optimizing the MLC learn-
ing steps to the extent possible. To this end, we categorize first order
MLC features based on their complexity and show that complex fea-
tures can be constructed from simpler ones. We define a self-contained
class of features called absolute features (AF), which can be conjoined
to yield complex MLC features. Our approach first generates a set of
relevant AFs and then makes use of the algorithm for Struct RELHKL
to learn their optimal conjunctions. We demonstrate the efficiency of
our approach by evaluating on a publicly available activity recognition
dataset.

Keywords: Feature Induction, Hierarchical Kernel Learning, Markov
Logic Networks, Sequence labeling.

1 Introduction

Learning and prediction problems in real world have to deal with complex re-
lationships among entities combined with uncertainties in these relationships.
These complex relationships are quite often represented compactly in the form
of first order logical statements. The uncertainties are typically captured in the
form of probabilities or probabilistic weights. The systems capable of handling
such complex logical relationships and their uncertainties are generally classified
as Statistical Relational Learning (SRL) systems [1l[2]. One of the most popular
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SRL frameworks is the Markov Logic Network (MLN) [3I4I56], which combines
the expressive representation formalism of first order logic and the ability of
probabilistic graphical models to handle uncertainty [3/4]. Our focus, in this pa-
per, is learning MLNs for the specific problem of sequence labeling. We first
briefly introduce MLNs in the following paragraph and then proceed to define
our sequence labeling problem.

Markov Logic Networks: MLNs [3] extend first order logical systems by in-
corporating probabilistic information to the clauses/rules. They are typically
represented as a collection of first order clauses with real valued weights at-
tached to each clause. Each vertex in the graphical representation is a first order
predicate. The edges between these predicates represent the logical connectives
in a first order formula. Therefore, a clique in the graph represents a first order
clause. A grounde MLN is a Markov Network in the propositional space.
MLNs define a probability distribution over a possible world I as,

Pl B) = , ] ey M

CeHUB

where H is the hypothesis, B is the background knowledge, ¢c = e’¢, fc is the
weight attributed to the clause C, n¢(I) is the number of true groundings of C'
in I and Z is the normalization constant. Therefore, an ideal MLN should have
hypothesis,

H* = argmax H P(I|H, B) (2)
a Iei

where I is the set of true interpretations.

Conventional MLN systems tend to learn the structure and parameters sep-
arately. There have been a few approaches recently to learn the structure and
parameters simultaneously [7/89]. However since the feature space is exponen-
tial, all the MLN structure learning approaches are greedy and thus cannot
guarantee optimal models. Therefore, learning optimal MLNs is a hard task. In
this paper, we propose an approach that optimizes a substantial part of MLN
structure learning, wherein we learn the final set of features and their parameters
simultaneously from simpler features by leveraging an optimal feature learning
algorithm.

We now briefly discuss the sequence labeling problem. The contributions of
this paper can be extended to other acyclic structured output classification set-
tings. Since we derive our approach for structured output spaces, which is more
general, the derivations trivially cover simpler MLN settings.

Sequence Labeling: Sequence labeling is the task of assigning a class label
to each instance in a sequence of observations. Typical sequence labeling algo-
rithms learn probabilistic information about the neighboring states along with

! Grounding is replacing variables with constants/objects.
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the probabilistic information about the observations. Hidden Markov Models
(HMM) [10] and Conditional Random Fields (CRF) [I1] are two traditional sys-
tems used popularly for sequence labeling problems. A HMM makes use of the
assumption that, in a sequence, the label y; at sequence step t is independent
of all previous labels given y; 1 at time ¢ — 1 and the observation x; at time ¢
is independent of all other variables given y;, and factorize the joint probability
distribution in the form of the transition (label-label) distribution and the emis-
sion (label-observation) distribution. During the training phase, parameters that
maximize the joint probability of the input and output sequences in the training
data are learned. Whereas, a CRF maximizes the conditional probability of the
output sequence given the input sequence to learn parameters. These param-
eters are later used to identify the (hidden) label sequence that best explains
a given sequence of observations. Inference is typically performed efficiently by
a dynamic programming algorithm called the Viterbi algorithm [12]. Recently,
Tsochantaridis et al. proposed a maximum margin framework for structured
output spaces such as sequence labeling, which is referred to as StructSVM [13].
It generalizes the standard Support Vector Machines (SVM) with the margin
defined as the difference in the score of the original output sequence with any
other possible output sequence.

Recent works, including ours, have looked into the problem of learning bet-
ter sequence labeling models by discovering the structure in the input space
in the form of conjunctions [14I15]. However since these approaches employ a
greedy search to discover useful conjunctions, an optimal model is not guaran-
teed. In [I6], we proposed a Hierarchical Kernels based learning approach for
Structured Output Spaces (StructRELHKL) for learning optimal conjunctive
(propositional) features for sequence labeling. In this work, we look into lever-
aging the StructRELHKL framework to learn first order features. Before going
into the details of our approach, we now give a brief introduction to one of the
application areas of sequence labeling called the activity recognition domain,
which is our motivating problem.

Activity Recognition: Activity recognition systems are ubiquitous in the mod-
ern era of smart systems. One specific example is the use of activity recognition
systems and approaches to monitor the activities of users in domicile environ-
ments; for instance, to monitor the activities of daily living of elderly people
living alone, for estimating their health condition [I7/I8/19]. Such non-intrusive
settings typically have on/off sensors installed at various locations in a home.
Binary sensor values are recorded at regular time intervals. The joint state of
these sensor values at a particular time forms our observation. The user activity
at a particular time forms the hidden state or label. The history of sensor read-
ings and (manually) annotated activities can be used to train prediction models
such as the Hidden Markov Model (HMM) [I0], the Conditional Random Field
(CRF) [11] or StructSVM [13], which could be later used to predict activities
based on sensor observations [I8/T5].
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Activity recognition datasets tend to be sparse; that is, one could expect
very few sensors to be on at any given time instance. Moreover, in a setting
such as activity recognition, one can expect certain combinations of (sensor)
readings to be directly indicative of certain activities. While HMMs, CRFs and
StructSVM attempt to capture these relations indirectly, Nair et al. illustrate
that discovering activity specific conjunctions of sensor readings (as emission
features in HMM) can improve the accuracy of prediction [I5]. McCallum [20]
follows a similar approach for inducing features for a CRF model to solve Nat-
ural Language Processing tasks. Both these approaches, since they employ a
greedy search for discovering features, have the limitation that an optimal model
is not guaranteed. An exhaustive search for optimal features is not feasible in
real world settings. We, in [16], proposed a hierarchical kernels based learn-
ing approach (StructRELHKL) for learning optimal feature conjunctions for
sequence labeling, which we build on for learning first order relational features
in this work. We now present the sequence labeling problem in a Markov Logic
framework.

Sequence Labeling as Markov Logic Network: The training objective in
sequence labeling can be posed as learning features that make the score,

F:XxY—>R (3)

of the original output sequence Y greater than any other possible output
sequence, given an input sequence X . The score is defined as,

F(X,Y;56) = ({f,9(X,Y)) (4)

where 1 is the feature vector (features describing observation structure and
transitions), and f is the weight vector. Inference is performed by the decision
function F : X — ) defined by

F(X;f) = argmax F(X,Y;f) (5)
Yey

In this work, we intend to learn first order features for the emission relationships
and their weights, while learning the weights for all the transition relationships.
Therefore, our v will include label specific emission features in first order along
with the transition features. For example, rules of the form activity(T, prepare-
BreakFast) < microwave(T), previousltemMoved(T, X), breakFastItem(X) can
be an emission rule/feature. Whereas transition rules can include rules such as
activity(T, eatBreakFast) < activity(T-1, prepareBreakFast).

This can be viewed as a Markov Logic Network. We refer to this MLN for
sequence labeling as a Markov Logic Chain (MLC). In this context, HMM, CRF,
StructSVM, etc. can be viewed as special instances of MLC. Learning first order
MLC (or MLN) is challenging due to the huge feature space. Conventional MLN
systems learn the structure using greedy search algorithms and thus could lead
to local optimum models.
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We have recently proposed a hierarchical kernels based approach for struc-
tured output classification to learn MLC features in propositional space, which
is a sub-instance of general MLCs. The Hierarchical kernel learning approach,
originally proposed by Bach [2I] for binary classification problems, learns an
optimal set of sparse and simple features that has an ordering defined. We have
extended the HKL approach in [I6] to structured output spaces, which we call
Rule Ensemble Learning using Hierarchical Kernels in Structured Output Spaces
(StructRELHKL). StructRELHKL, in sequence labeling, exploits the hierarchi-
cal structure in the (exponential) space of emission features and efficiently learns
a sparse set of simple propositional features and their weights. One of the fun-
damental requirements of these approaches is the summability of kernels over
descendants in polynomial time. Since our focus here is to learn features in first
order settings, that has inherent complexities such as huge number of ground-
ings, variable sharing, background knowledge, refinement operators using uni-
fications and anti-unifications, subsume equivalence etc., it is hard to sum the
descendant kernels in polynomial time. Therefore, the first order extension of
StructRELHKL is non-trivial and is a challenging problem. In this paper, we in-
vestigate the possibility of leveraging StructRELHKL in discovering first order
features. We briefly introduce the intuitions for our approach next.

Leveraging StructRELHKL for Learning First Order MLCs: We in-
tend to learn first order features for sequence labeling. An example of first order
feature is a feature that capture input relationships across sequence steps. Gut-
mann and Kersting recently proposed a first order extension of CRF (TildeCRF)
that captures input relationships across sequence steps [22]. However, this ap-
proach also employs a greedy search to discover useful features. To the best of
our knowledge, no previous work has explored the possibility of incorporating
optimal feature learning in any step of MLC structure learning.

As discussed in the previous paragraphs, it is not feasible to apply Struc-
tRELHKL directly to learn first order MLCs. Although, grounding the first
order predicates with all possible constants (according to the language bias) and
leveraging StructRELHKL to learn optimal conjunctions of them seems to solve
the problem, it is not feasible in large settings due to the huge search spaces.
We therefore propose to employ StructRELHKL for learning optimal conjunc-
tions of a powerful subclass of features, in the process of learning MLC features.
To this end, we categorize first order MLN features based on their complexity
and identify the class of features that can be efficiently constructed from simpler
ones by StructRELHKI[. We identify a self-contained class of features called the
absolute features (AF) as the building blocks, whose unary/multiple conjunc-
tions result in the final model. Our approach first generates AFs that cover a
threshold number of examples (weak relevance) and employs the Struct RELHKL
algorithm to simultaneously learn optimal conjunctions of AFs and their weights

2 In this work, we restrict our discussion to function-free first order definite features.
A class specific feature can be constructed by conjoining the body literals of a definite
clause whose head depicts the class label.
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(as against learning them separately and/or greedily). We learn optimal MLCs
with respect to weakly relevant AFs. To summarize, we present the challenges
and possibilities for optimally and simultaneously learning the structure as well
as parameters of MLCs. We evaluate the efficiency of our approach on a publicly
available activity recognition dataset and compare our results against Tilde-
CRF [22], the state-of-the-art relational sequence tagging tool. A brief summary
of some of the related approaches is given in the next paragraph.

Related Work: Huynh and Mooney in [23] propose an online weight learning
algorithm for MLNs using a max-margin framework. The approach is for learning
only the weights, whereas, our focus is on learning the structure as well as
parameters for sequence labeling problems. In [24], Huynh and Mooney discusses
their online algorithm for learning the structure and parameters of MLNs. In each
iteration of their approach, the current model is used to predict the output, and if
the prediction is wrong, the incorrect prediction is treated as a negative example,
new clauses are learned that differentiate the true and false examples. The new
clauses are learned by searching for atoms that are in the true example and not
in the false one. This is performed by a relational path finding algorithm. Weight
learning is then performed by an L1 regularized formulation, which also nullifies
many non relevant clauses in the current structure. In contrast, our approach
employs a batch learning algorithm. It learns a large number of candidate clauses
called absolute clauses, which are then conjoined optimally to learn the final
model. Our approach optimizes a convex formulation to learn structure and
parameters with respect to the absolute clauses (features). A Logical Hidden
Markov Model is discussed in [25], which deals with sequences over logical atoms.
A model selection approach for Logical Hidden Markov Model is proposed in [26],
which is based on Expectation Maximization algorithm and Inductive Logic
Programming principles. Our approach differs from their approach in the sense
that our objective is to explore the relationships among multiple observations
at a sequence step to improve efficiency of sequence labeling. Thon et al. in
[27] and [28] elaborate on relational markov processes which are concerned with
efficient parameter learning and inference. They assume that a structure has been
provided upfront. Similarly, a relational bayesian network learning is discussed
in [29] with the goal of learning the parameters given the structure of the bayes-
net.

TildeCRF [22] has an objective similar to our approach, where the relational
structure and parameters of a CRF for sequence labeling are learned. TildeCRF
uses relational regression trees and gradient tree boosting for learning the struc-
ture and parameters. The main difference of our approach with TildeCRF is
that in our approach, unlike in TildeCRF, we derive convex formulations for a
significant portion of learning steps.

Paper Organization: In section 2] the complexity based categorization of fea-
tures is discussed. We discuss our approach in section Bl Experimental setup and
results are discussed in section ] and we conclude the paper in section
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2 First Order Definite Features for Markov Logic Chains

Most of the Inductive Logic Programming (ILP) systems and their statistical
extensions (SRL systems) learn clauses by searching a space (often a lattice)
of clauses in the domain. The search space is typically controlled by language
restrictions, which define the type of clauses to be learned. One common way
to solve a classification problem is to learn definite clauses (clauses having one
head predicate conditioned on the values of zero or more body predicates). Since
we are interested in such a setup, we confine our discussion to the space of
definite clauses. We use the terms first order definite clause and first order feature
interchangeably, as one can be derived from the other. We start by defining
categories of predicates and then discuss the complexity based classification of
features.

Similar to structural and property predicates in 1BC clauses [30], we define
two types of predicates, viz. (inter) relational and quality predicates. A relational
predicate is a binary predicate that represents the relationship between types or
between a type and its parts, where a type is an entity described by its attributes.
A quality predicate is a predicate that reveals a quality/property of a part (or
subset) of a type. From the example clauses given below, microwave( , ), and
before( , ) are relational predicates and all other predicates are quality predi-
cates.

1. prepareDinner(T) :- microwave(T,X1), soak(X1)
2. prepareDinner(T) :- microwave(T,X1)
3. prepareLunch(T) :- microwave(T,X1), powdered(X1), cereal(X1)
4. prepareLunch(T) :- microwave(T,X1), dry(X1), microwave(T,X2),
. before(X1,X2), wet(X2), cereal(X2)
5. prepareDinner(T) :- microwave(T,X1), soak(X1), microwave(T,X2),

nonSoak (X2)

We now categorize first order definite features based on complexity into Ab-
solute Features (AF), Primary Features (PF), Composite Features (CF) and
Definite Features (DF). The definitions of AF and CF are used in this paper,
while the other categories are presented for supporting the definitions for these.

Absolute Features (AF):

In absolute features (clauses), new local variables can only be introduced in a
relational predicate, where a local variable is a variable not present in the head
predicate. Unlike in 1BC clauses, any number of new local variables can be intro-
duced in a relational predicate. Any number of relational and quality predicates
can be conjoined to form a AF such that the resultant AF is minimal and the
local variables introduced in relational predicates are consumed by some other
relational or quality predicates. Here a minimal clause is one which cannot be
constructed from smaller clauses that share no common variables other than
that in the head. So clauses 1, 3 and 4 above are AFs whereas clauses 5 (since
it is not minimal) and 2 (since variable X1 is not consumed) are not.
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Primary Features (PF):

Primary features (clauses) are absolute clauses (features) that have at-most one
quality predicate for every new local variable introduced. This is similar to ele-
mentary features in [30] except that elementary features allow only one new local
variable in a structural predicate. Clause 1 is a PJF whereas the other clauses do
not conform to the restrictions imposed.

Composite Features (CF):

Composite Features (clauses) are definite clauses that are formed by the con-
junction of one or more AFs without unification of body literals. Only the head
predicates are unified. As in AFs, every local variable introduced in a relational
predicate should be consumed by other relational or quality predicates. Clauses
1, 3, 4 and 5 are CFs where as 2 is not.

First Order Definite Features (DF):
First order definite features (clauses) are features with none of the above restric-
tions. Therefore, all the given examples are DFs.

We now state some of the relationships between these categories of features.

Claim 1. The set of primary features is a proper subset of the set of Absolute
Features. That is, PF C AF.

Proof. From definition, PF's are AF with the restriction that a new local variable
introduced should be transitively consumed by a single quality predicate. Hence
PF C AF. Now, consider the clause 3 above, which is an AF but not a PF.
Hence, PF # AF.

Claim 2. The set of absolute features is a proper subset of the set of composite
features. That is, AF C CF.

Proof. From definition, C F's are conjunctions of one or more AF's. Therefore, all
AF's are CF's (unary conjunctions). Now, consider the clause 5 above, which is
a CF but not a AF'. Hence, AF # CF.

Claim 3. The set of composite features is a proper subset of the set of full first
order definite features. CF C DF.

Proof. From definition, DF's are first order definite clauses without any restric-
tions imposed for CF's. Therefore, CF' C DF. Now consider the clause 2 above,
which is a DF but not a CF. Therefore, CF # DF.

Claim 4. Every AF can be constructed from P F's using unifications.

Proof. The difference an AF has with PF' is that it can have more than one
quality predicates for each local variable introduced. Let [, be a relational lit-
eral in the body of a AF' clause which introduces only one local variable. Let
l1,l2,...,lp—1 be the set of relational literals in the body, which [, depends on.
Let there be n > 0 number of dependency chains starting from [, to some quality
predicates, each of which is represented as l; U T l,ic. We define [, as a pivot
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literal if n > 1. For simplicity, we assume there is only one pivot in a clause.
Now, we can construct n PF clauses from this with the body of the i*" clause
as ly,1o, .. .,lp_l,lp,l;H, ..., lt, where [} is a quality predicate. It is trivial to
see that these n clauses can be unified to construct the original AF'. For multi-
ple pivot literal clauses, the above method can be applied recursively until PF
clauses are generated. The proof can be extended to pivot literals with multiple
new local variables by using a dependency tree structure in place of chain.

Claim 5. Every CF can be constructed from AF's by conjunctions.
Proof. By definition.

We briefly discuss below some of the existing complexity based categorization of
first order definite features in the following paragraph.

1BC clauses and elementary clauses introduced in [30] are similar to AF's
and PF's respectively with the restriction that a structural predicate can have
only one new local variable. Simple clauses are defined in [31] as the clause with
at-most one sink literal, where a sink literal is one which has no other literal
dependent on it. Simple clauses need not have a sink for a local variable and
thus differs from P F's. We present the proposed approach for learning first order
features for sequence labeling in the next section.

3 Towards Optimal Feature Learning for Markov Logic
Chains

We now formalize our intutions explained in the introduction section for lever-
aging StructRELHKL to learn first order MLC features.

As explained in the introduction section, we focus on learning first order
features for sequence labeling. An example class of first order features in se-
quence labeling domain is the features that capture input relationships across
sequence steps. TildeCRF [22] is an existing approach that explores such fea-
ture space. However the approach pursued is greedy. Although the Hierarchical
Kernels based feature learning approach for structured output spaces (Struc-
tRELHKL) [16], that we proposed recently, learns optimal conjunctive features
in propositional settings, it has limitations in exploring first order space. The
main limitation is that, due to the complex refinement operators using uni-
fication and anti-unification, any ordering of the first order features restricts
the requirement of StructRELHKL to sum the descendant kernels in polyno-
mial time. Alternatively, grounding the first order predicates with all possible
constants and then leveraging StructRELHKL to learn optimal features is not
feasible due to the huge feature space. Moreover, such settings could lead to
less effective models, due to the redundant information present in the models
learned. Here, we explore the space of first order features, wherein, our optimal
conjunctive feature learning algorithm is leveraged to the extent possible in the
learning step.
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MLC Features: Our objective is to learn label specific relational features as
observation features for sequence labeling. These types of features can be rep-
resented in the form of definite clauses. As discussed in section 2 Composite
Features (CF) are first order definite features with the restriction that local
variables introduced in relational predicates have to be used by other relational
or quality predicates. This category of features is particularly interesting in our
case, because they are powerful to represent a large part of definite clauses. CF's
are not defined to include clauses such as clause 2 in section 2l In predicting
smaller granular activities such as prepareBreakFast, prepareLunch, etc., what
is being cooked in the microwave oven becomes interesting. Absence of such in-
formation doesn’t give meaning to the rule. On the other hand, if one wants to
predict larger granular activities such as whether the current activity is cook-
ing or not, then what is being cooked inside microwave is less important. To
this effect, a new predicate microwaveOn(T) can be defined and we can con-
struct CF's from this. We have also proved that composite features (CF') can
be constructed from absolute features (AF') with unary/multiple conjunctions
without unifications and AF's can be constructed from primary features (PF)
with unifications. Therefore, the space of CF's can be defined as a partial order
over PF's with unifications and conjunctions. As discussed before, the optimal
feature learning approach (StructRELHKL) is not applicable in a partial order
with unifications. However, since the space of CF's is a partial order over con-
junctions of AF's, it is possible to leverage the StructRELHKL framework to
learn CF's from AF's. With proper language restrictions, AF's can be generated
by ILP methods. Our approach is to generate AF's using ILP techniques and em-
ploy StructRELHKL to find optimal conjunctions of AF's. The next paragraph
gives some insight into the optimality of the resultant MLC.

We define an AF' as strongly relevant if it is constructed from optimal unifi-
cations of PF's, which is a hard task. On the other hand, we consider a feature
to be weakly relevant if it covers at-least a threshold percentage of examples.
We are interested in AF's that are at-least weakly relevant and our approach
learns optimal MLCs with respect to the weakly relevant AF's. We now derive
our approach in the following paragraph.

Optimizing MLC Feature Learning Steps: The objective is to first learn
self contained weakly relevant AF's by employing ILP methods and then learn
optimal conjunctions of AF's and their weights simultaneously by leveraging the
StructRELHKL approach. Since there is a plethora of literature available on
ILP approaches for searching clauses with language restrictions [2/1], we skip
the discussion on generating AF's and move on to give an overview of Struc-
tRELHKL [16] framework to construct CF’s.

An MLC should have features defining transition relationships between the
labels as well as the observation relationships. Let 1) represent the feature vec-
tor corresponding to all transition features and ¥cr represent the feature vector
corresponding to all observation features (space of all possible conjunctions of
AF's). For the sake of visualization, lets assume there is a partial order of CF's



Probing the Space of Optimal MLNs for Sequence Labeling 203

for each label in a multi-class setup. As defined in the introduction section,
represents a combination of ¥ and Ycr. We assume that both ¥cr and
are of dimension equal to the dimension of ¢ with zero values for all elements
not in their context. In similar spirit, the feature weight vector f can be con-
structed from fecg and fr. Similarly, V), the indices of the elements of 1), can be
constructed from Vgor and V. Our objective is to simultaneously select a sparse
set of CF's and their weights along with all the transition feature weights. To
achieve this we build on the StructSVM framework [I3] and employ a sparsity
inducing hierarchical regularizer [21132] on emission features and the standard
2-norm regularizer for transition features (as sparsity is desired only in the ob-
servation space). The margin of this Support Vector Machine (SVM) setup is
defined as the difference in scores (defined in (@) of the original output sequence
and any other possible output sequence. Therefore, the objective can be stated
as learning a sparse and simple set of observation features and all transition
features that maximize the difference in scores of original sequences with any
other possible sequence in the training data. These features can later be used
during inference to find the best sequence among the set of possible sequences
for a given observation. The SVM objective can be stated as,

1
I?isn QQCF(fCF) + QT fT Zfza
| e &
Vi,VY e Y\Y;: (£,¢;(Y)) > 1 A(Y;,Y)
Vi: & >0 (6)

where 2cr(for) is the hierarchical (1,p) norm regularizer [32] defined as,
> dv || fecrp) llpy p € (1,2], dy, > 0is a prior parameter showing useful-

vEVCF

ness of the feature conjunctions, D(v) represents the set of descendants (includ-

ing itself) of node v in the partial order (similarly A(v) represents the set of an-

cestors of node v), fopp(y) is the vector with elements as || forw |2, Yw € D(v),
and || . ||, represents the p-norm , 27 (fr) is the 2-norm regularizer (3" f#;) 5, m

is the number of examples, C' is the regularization parameter, £’s aré the slack
variables introduced to allow errors in the training set in a soft margin SVM
formulation, X; € X and Y; € ) represent the i*" input and output sequences
respectively, <f,zpf(Y)> represents the value (f,¢(X;,Y;)) — (£,9(X;,Y)), and
A(Y,Y) represents the loss when the true output is ¥ and the prediction is Y.

The 1-norm in 2cr(fcr) forces many of the || fcrp(yy ||, to be zero. Even in
cases where || fcpp(w) ||, is not forced to zero, the p- norm forces many of node
v’s descendants to zero. This ensures a sparse and simple set of features.

The above SVM setup has to deal with two exponential spaces. The first is that
of the exponential space of features and the second problem is the exponential
number of constraints for the objective. The next paragraph outlines solution
to this.

By solving (@), most of the emission feature weights are expected to be zero. As
illustrated in [32I16], the solution to the problem when solved with the original
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set of features is the same but requires less computation when solved only with
features having non zero weights at optimality. Therefore, an active set algorithm
can be employed to incrementally find the optimal set of non zero weights.
In each iteration of the active set algorithm, since the constraint set in ()
is exponential, a cutting plane algorithm has to be used to find a subset of
constraints of polynomial size so that the corresponding solution satisfies all
the constraints with an error not more than e. The MLC objective is solved
by deriving a dual for (@) with the feature set reduced to active features and a
sufficient condition to check for optimality. The active set algorithm starts with
the top nodes in the partial order as active set and at each iteration, solves the
dual of (@]), checks a sufficient condition for optimality, adds those nodes in the
sources (subset of a set of nodes in a partial order that have no parent in the
set) of the active set’s complement that violate the sufficient condition to the
active set. The process continues until there are no nodes violating the sufficient
condition. The dual of (@) is derived as,

i 7
R 90n) (7)

where g(n) is defined as,

1
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A sufficient condition for optimality, with the current actlve set W, with a duality
gap less than € is derived as
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Inference is performed by applying dynamic programming methods [12]. We now
discuss the experimental setup in the following section.

4 Experiments

Our approach first learns a weakly relevant set of absolute features and then
learns their optimal conjunctions using StructRELHKL. We use Warmr [3334],
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an ILP data mining algorithm that learns frequent patterns reflecting one to
many and many to many relationships, to learn absolute features. Warmr uses
an efficient level wise search through the pattern space. With proper language
bias, absolute features can be generated by Warmr. The absolute features learned
by Warmr are then input to StructRELHKL code to learn the structure and pa-
rameters of the final Markov Logic Chain. Our StructRELHKL is a java program,
which implements the active set algorithm. In each iteration of the active set
algorithm, the dual objective is solved using the current model, a sufficiency
condition for optimality is checked on the nodes in the complement of active set
that has parents only in the active set, and the violating nodes are added to the
active set. The sub-problem of solving the dual is performed by a cutting plane
algorithm, which starts with an empty set of constraints. In each iteration, the
algorithm solves the objective with the current set of constraints and adds new
constraints that violate the margin (defined by the current model) at-least by a
threshold value.

Our experiments are carried out on a publicly available activity recognition
dataset. This data, provided by Kasteren et al. [I§], has been extracted from
a household fitted with 14 binary sensors at bedroomDoor, bathroomDoor,
microwave, fridge, cupboards, etc.. Fight activities have been annotated for
4 weeks by a subject. Activities are daily house hold activities like sleeping,
usingT oilet, preparingDinner, preparingBreak fast, leavingOut, etc. There
are 40006 data instances. The dataset is skewed. For instance, the activity
leavingOut occurs about 56.4% of time, while the activity preparingBreak fast
occurs only 0.3% of time. Since the authors of the dataset are from the University
of Amsterdam, we will refer to the dataset as the UA data.

The data is split into different sequences and each sequence is treated as an
example. We perform our experiments in a four fold cross-validation setup. On
each fold, we train our model on 25% of data and test on the remaining 75%8.
We report performance in terms of micro-average and macro-average labeling ac-
curacies. The micro-average accuracy, referred to as time-slice accuracy in [I§],
is the weighted average of per-class accuracies, weighted by the number of in-
stances of the class. Macro-average accuracy, referred to as class accuracy in [18],
is the average of the per-class accuracies.

We compare our approach with the TildeCRF [22]. The TildeCRF is the state-
of-the-art ILP approach for learning relational features for sequence labeling, and
works in the same feature space that we are interested in. The comparison is
outlined in Table [I1

It can be observed that our results are competitive to the state-of-the-art
sequence labeling approach, TildeCRF. Our approach returned better micro-
average accuracy than TildeCRF, while reporting lesser macro-average accu-
racy. Micro-averaged accuracy is typically used as the performance evaluation
measure. However in data that is biased towards some classes, macro-average

3 Since in real world problems such as activity recognition, a trained model has to be
used for a period much longer than the period training data is collected, here we
considered training on a small part of the data and testing on the rest.
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Table 1. Micro average accuracy (%), and macro average accuracy (%) using TildeCRF
and the proposed MLC approach on UA dataset

Micro avg. (%) Macro avg. (%)
TildeCRF 56.22 (+12.08) 35.36 (+6.55)
MLC 60.36 (£6.99) 30.39 (+4.31)

accuracy being too low is considered to be a poor performance. Our standard
deviation values are also less compared to the competitor algorithm. Our ap-
proach on average took about 25 hours for training while TildeCRF took 2.5
hours.

5 Conclusion

Recent works have shown the importance of learning the input relational struc-
ture (features) in sequence labeling problems [I4J15]. Most of the existing fea-
ture learning approaches employ greedy search techniques to discover relational
features. We have recently proposed a hierarchical kernels based approach for
structured output classification (Struct RELHKL) that is capable of learning op-
timum feature conjunctions to build propositional sequence labeling models [16].
However, Struct RELHKL works in propositional domain and has limitations in
exploring first order space. In this paper, we presented the challenges and pos-
sibilities of leveraging StructRELHKL to optimize first order feature learning
steps. To this end, we categorized first order features based on complexity and
identified the class of features that can be constructed using StructRELHKL
from simpler ones. We therefore learn a simple and powerful sub-class of first
order features called the absolute features using Inductive Logic Programming
techniques and learn their optimal conjunctions using StructRELHKL to build
the final model. Our experiments show competitive performance compared to
the state-of-the-art relational sequence labeling tool, the TildeCRF.
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