
Comparison between Explicit Learning and
Implicit Modeling of Relational Features in

Structured Output Spaces

Ajay Nagesh123, Naveen Nair123, and Ganesh Ramakrishnan21

1 IITB-Monash Research Academy, Old CSE Building, IIT Bombay
2 Department of Computer Science and Engineering, IIT Bombay

3 Faculty of Information Technology, Monash University
{ajaynagesh,naveennair,ganesh}@cse.iitb.ac.in

Abstract. Building relational models for the structured output classi-
fication problem of sequence labeling has been recently explored in a
few research works. The models built in such a manner are interpretable
and capture much more information about the domain (than models
built directly from basic attributes), resulting in accurate predictions.
On the other hand, discovering optimal relational features is a hard task,
since the space of relational features is exponentially large. An exhaustive
search in this exponentially large feature space is infeasible. Therefore,
often the feature space is explored using heuristics. Recently, we proposed
a Hierarchical Kernels-based feature learning approach (StructHKL) for
sequence labeling [?], that optimally learns emission features in the form
of conjunctions of basic inputs at a sequence position. However, Struc-
tHKL cannot be trivially applied to learn complex relational features
derived from relative sequence positions. In this paper, we seek to learn
optimal relational sequence labeling models by leveraging a relational
kernel that computes the similarity between instances in an implicit
space of relational features. To this end, we employ relational subse-
quence kernels at each sequence position (over a time window of obser-
vations around the pivot position) for the classification model. While this
method of modeling does not result in interpretability, relational subse-
quence kernels do efficiently capture relational sequential information on
the inputs. We present experimental comparison between approaches for
explicit learning and implicit modeling of relational features and explain
the trade-offs therein.

Keywords: Subsequence Kernels, StructSVM, Sequence Labeling

1 Introduction

Structured output classification has gathered significant interest in the machine
learning community during the last decade [?,?,?,?].The goal of such works is to
classify complex output structures such as sequences, trees, lattices or graphs,
in which the class label at each node/position of the structure has to be inferred



30

based on observed evidence data. The possible space of structured outputs tends
to be exponential and thus structured output classification is a challenging re-
search area. We, in our research work, focus on a specific structured output clas-
sification problem, popularly known as sequence labeling. As in any classification
setting, the sequence labeling domain is also characterized by complex relation-
ships among entities and uncertainties in their relationships. Efficient models
can be constructed by exploiting these relationships. However, discovering re-
lationships that enhance the discriminative power of classifiers is a hard task,
since the relationship space is often too large. Therefore, most of the research in
sequence labeling and other structured output space classification, either ignore
the complex relationships or use heuristics to learn the relationships. In this
work, we focus on exploiting complex relationships in both the input as well as
the output space in an efficient way to improve sequence labeling models. We
begin with a brief introduction to the task of sequence labeling.

The objective in sequence labeling is to assign a state (class label) to ev-
ery instance of a sequence of observations. Typical sequence labeling algorithms
learn probabilistic information about the neighboring states along with the prob-
abilistic information about the observations. Hidden Markov Models (HMM) [?],
Conditional Random Fields (CRF) [?] and StructSVM [?] are three models used
popularly for sequence labeling problems. The training objective can be posed
as learning feature weights that make the score F (F : X ×Y → R), of the true
output sequence Y greater than any other possible output sequence, given an
input sequence X. The score is defined as:

F (X,Y ; f) = 〈f ,ψ(X,Y )〉 (1)

where ψ is the feature vector (describing observations and transitions), and f is
the weight vector. Inference is performed by the decision function F : X → Y
defined by

F(X; f) = arg max
Y ∈Y

F (X,Y ; f) (2)

Recent works have shown that learning the relational structure between in-
put features improves the efficiency of sequence labeling models [?,?,?]. However,
the space of relational features is exponential in the number of basic observa-
tions, making the discovery of useful features a difficult task. For instance, the
simple case of learning features that are conjunctions of basic observations at
any single sequence position results in a feature space that is exponential. The
problem is further exacerbated if we consider complex relational features built
from observations at different relative positions. An exhaustive search in this ex-
ponentially large feature space is infeasible. Therefore, most systems that learn
relational features follow a greedy search strategy based on heuristics to select
useful features. These approaches start with an initial (possibly empty) set of
features and iteratively search (using some ordering of the feature space) for
refinements that improve the heuristic score.

In our previous work [?], we propose and develop a Hierarchical Kernels
based approach for optimally learning features which are conjunctions of basic



31

features at a particular sequence position (simple conjuncts or SCs) for each la-
bel. The approach is referred to as Hierarchical Kernel Learning for Structured
Output Spaces (StructHKL) 4. Although it optimally learns the most discrim-
inative SCs, its applicability in learning complex relational features that are
derived from observations at different relative positions in a sequence, is non-
trivial and challenging. To address this issue, our follow-up work [?], determines
simple feature classes that can be composed to yield complex ones, with the
goal of formulating efficient yet effective relational feature learning procedures.
We identify feature classes called absolute features (AF) and composite features
(CF) in increasing order of their complexity respectively 5. It is posited that
optimal relational features can be learned by enumerating AFs and discovering
their useful compositions (CF) using StructHKL. However, the space of AFs is
prohibitively large and it is not feasible to enumerate all of them in a domain. To
circumvent this issue, we propose to selectively enumerate AFs based on some
relevance criteria such as the support of AFs in the training set.

An AF is formed by combining one or more predicates which share variables.
The partial ordering of AFs does not comply with the requirement of StructHKL
that the descendant kernels should be summable in polynomial time. This limits
the possibility of leveraging StructHKL to optimally learn features in the space
of AFs (and its super-space of CFs). For this reason, in the current piece of
work, we leverage a relational kernel that computes the similarity between in-
stances in an implicit feature space of CFs. To this end, we employ the relational
subsequence kernel [?] at each sequence/pivot position (over a time window of
observations around it) for the classification model. We would like to learn com-
posite features which capture relational information about basic observations at
positions relative to the pivot position for every sequence step. This sequence
information would provide a rich feature space for the algorithm to learn a more
expressive model. However, explicitly enumerating such a feature space is not
feasible due to the high dimensionality of the feature space. Relational subse-
quence kernels implicitly capture the effectiveness of this rich feature space. We
also show that the feature space of CFs (explicit features) are captured by the
relational subsequence kernels (implicit features). While this way of modeling
does not result in interpretability, relational subsequence kernels do efficiently
capture the relational sequential information on the inputs.

We evaluate the performance of our approaches on publicly available activity
recognition datasets. Our experiments show improvements over other standard
and state-of-the-art sequence labeling techniques. The paper is organized as fol-
lows.

Section 2 discusses background work. We discuss our approach in Section 3.
Experimental setup and results are discussed in Section 4 and we conclude the
paper in Section 5.

4 StructHKL is derived from StructSVM in which we use sparsity inducing hierarchical
regulariser for observation features.

5 For the definitions and examples of AF , CF and other feature classes, please refer
to [?].



32

2 Background

Approaches to learning relationships for sequence labeling could be based on ba-
sic input features at a single sequence step or input features at multiple sequence
steps and/or relationships among output variables. Some of these approaches are
discussed below.

McCallum [?] as well as Nair et. al [?] propose feature induction methods that
iteratively construct feature conjunctions that increase an objective. These ap-
proaches start with an initial set of features (conjunctions or atomic) and at each
step, consider a set of candidate features that are refinements of the current set
of features. Features whose inclusion will lead to maximum increase in the objec-
tive are selected. Weights for the new features are trained. The steps are iterated
until convergence. While McCallum trains a CRF model and uses conditional
log-likelihood as the objective for the greedy induction, Nair et. al train an HMM
and use prediction accuracy on a held out dataset (part of the training data) as
the objective. This effectively solves the problem of incorrect assumption, that
individual observations are independent, while not dealing with exponential ob-
servation space. Although these greedy feature induction approaches have been
shown to improve performance, they cannot guarantee an optimal solution. An
exhaustive search to find the optimal solution is expensive due to the exponential
size of the search space.

Kersting et. al. [?] discusses the Logical Hidden Markov Model which is
a relational representation of HMM. However, this work does not investigate
learning the input structure. Thon et. al ([?], [?]) elaborate on relational markov
processes which are concerned with efficient parameter learning and inference.
They assume that a structure has been provided upfront. Similarly, a relational
bayesian network learning is discussed in [?] with the goal of learning the pa-
rameters given the structure of the bayes-net.

Hierarchical Kernel Learning for Structured Output Spaces (StructHKL) [?],
optimally and efficiently learns discriminative features for multi-class structured
output classification problems such as sequence labeling. StructHKL builds on
the Support Vector Machines for Structured Output Spaces (StructSVM) model
[?] for sequence prediction problems, wherein, all possible SCs form the input
features while the transition features are constructed from all possible transitions
between state labels. A ρ-norm hierarchical regularizer is employed to select a
sparse set of SCs. Since there is a need to preserve all possible transitions, a
conventional 2-norm regularizer is employed for state transition features. The
exponentially large observation feature space is searched using an active set
algorithm and the exponentially large set of constraints is handled using a cutting
plane algorithm.

In our follow-up work [?], we learn complex relational features derived from
relative sequence positions. We propose to enumerate AFs and leverage Struc-
tHKL to learn their compositions, which are CFs. However, it is noted that the
space of AFs is prohibitively large and therefore it is not feasible to enumerate
all AFs in a domain. As a solution we selectively enumerate AFs based on some
relevance criteria such as support of the AF in the training set. A feature is



33

considered to be strongly relevant if it helps the classification model to discern
classes optimally. On the other hand, a feature is weakly relevant if it covers at-
least a threshold percentage of examples. As discovering strongly relevant AFs
is a hard task, the focus is on discovering weakly relevant AFs using Inductive
Logic Programming tools. Pattern mining approaches are employed to discover
a relevant set of AFs. Specifically, a relational pattern miner called Warmr [?]
is used. Warmr uses a modified version of Apriori algorithm [?] to find frequent
patterns (AFs) which have minimum support, as specified by the user. Once a
set of relevant AFs are enumerated, StructHKL is used to learn useful composi-
tions of AFs and their parameters to get the final model. This can be viewed as
projecting the space of complex relational features such as CFs into the space
of SCs and leveraging StructHKL.

TildeCRF [?] has an objective similar to our approach, where the relational
structure and parameters of a CRF for sequence labeling are learned. Tilde-
CRF uses relational regression trees and gradient tree boosting for learning the
structure and parameters. Unlike in TildeCRF, in this work, we derive convex
formulations for learning relational models.

In this paper, we provide operative definitions of the feature classes such
as AF and CF . For a more detailed exposition of the feature classes and the
relationships between them, the reader is pointed to our previous work [?].

3 Implicit Modeling of Features for Sequence Labeling

In Section 1, we have stated our objective as exploiting complex relationships
among input variables in sequence labeling problems to improve the efficiency
of classification. We now formalize our intuitions and present our proposed ap-
proach in detail.

We have presented the training and inference objectives of sequence labeling
problems in equations (1) and (2), where the features and feature weights are
represented by ψ and f , respectively. Elements of ψ correspond to the emission
(basic input/observation) features and the transition features. We represent the
emission and transition parts of the vector ψ as ψE and ψT , respectively. We
assume that both ψE and ψT are vectors of dimension equal to the dimension
of ψ with zero values for all elements not in their context. That is, ψE has
dimension of ψ, but has zero values corresponding to the transition elements. In
the dual space, we represent the kernels corresponding to transition and emission
as κT and κT respectively. Our proposed approach is to leverage (implicitly
or explicitly) discriminative observation features (ψE) that capture complex
relationships among input variables in an implicit manner.

In the previous sections, we have identified CFs as the class of features that
explicitly capture complex relationships among input variables at relative se-
quence positions. We have also defined CFs as compositions of AFs and that,
since the partial ordering of AFs does not comply with the requirements of
StructHKL, it is not feasible to leverage StructHKL for learning features in the
space of AFs (and its super-space of CFs). For this reason, in the sequence



34

labeling model, we leverage a relational kernel that computes the similarity be-
tween instances in an implicit feature space of CFs. To this end, we employ the
relational subsequence kernel [?] at each sequence position (over a time window
of observations around the pivot position) for the classification model. We now
briefly discuss about relational subsequence kernels in the following paragraph.

Subsequence kernels have been used to extract relations between entities in
natural language text [?], where the relations are between protein names in
biomedical texts. The features are (possibly non-contiguous) sequences of word
and word classes anchored by the protein names at their ends. They extend the
string kernels [?] for this task.

We have defined CFs as explicit features that capture the subset of features
at the current position as well as its relative positions. To implicitly capture
this feature space, we employ a relational subsequence kernel at each position of
the input sequence, with the current position as the pivot position. Suppose we
consider an input xpi at position p for example i. Let the previous k positions

relative to p have inputs xp−1i , . . .xp−ki and next l positions relative to p have

inputs xp+1
i , . . .xp+li . Let there be N basic features at a time-step t denoted by

x1
t

. . . xN
t

.6 Essentially our sequence for the particular time-step pivoted at p,
denoted by Qp, is as follows:

Qp = {x1
p−k

, . . . xN
p−k

}, . . . , {x1
p−1

, . . . xN
p−1

},

{x1
p

, . . . xN
p

}, {x1
p+1

, . . . xN
p+1

} . . . {x1
p+l

, . . . xN
p+l

}

Given two sequences Qp and Qq, we define the relational subsequence kernel
SSK(Qp, Qq) as elaborated in [?]. This kernel will implicitly enumerate all pos-
sible common subsequences between Qp and Qq. We now show that the feature
space of CFs are captured by our relational subsequence kernel.

Claim: Relational subsequence kernels implicitly enumerate all the features in
the feature space defined by Composite Features (CF) given a constant context
window.

Proof. By their definition the relational subsequence kernel SSK(Qi, Qj) will
implicitly enumerate all possible common subsequences between Qi and Qj .
CFs are conjunctions of features in the present time-step with features present
in time-steps before and after the current time-step, which can be represented by
AFs. Since we are considering all the sub-sequences in the given context (time)
window in the relational kernel, we implicitly enumerate space of CFs.

We now define the kernel for StructSVM framework below, which represents
the kernel resulting from the difference in values for the original and the candi-
date sequences. This stands for the inner product, 〈ψi

δ(Y ),ψi
δ(Y

′
)〉 with ψδi (Y )

defined as: ψδi (Y ) = ψ(Xi, Yi)−ψ(Xi, Y ). The kernel, which is a combination of
transition (κT ) and emission (κE) kernels, is defined as follows:

6 Ignoring the example number i for simplicity



35

κ
(
(Xi, Yi, Y ), (Xj , Yj , Y

′
)
)

= κT (Yi, Y, Yj , Y
′
) + κE

(
(Xi, Yi, Y ), (Xj , Yj , Y

′
)
)

(3)

where

κT
(
Yi, Y, Yj , Y

′
) = κT (Yi, Yj) + κT (Y, Y

′
)− κT (Yi, Y

′
)− κT (Yj , Y ),

(4)

κT (Yi, Yj) =

li−1∑
p=1

lj−1∑
q=1

Λ(ypi , y
q
j )Λ(yp+1

i , yq+1
j )

=

li∑
p=2

lj∑
q=2

Λ(yp−1
i , yq−1

j )Λ(ypi , y
q
j ), (5)

Λ(ypi , y
q
j ) = 1 if ypi = yqj ; 0 otherwise. and

κE
(
(Xi, Yi, Y ), (Xj , Yj , Y

′
)
)

=

li∑
p=1

lj∑
q=1

κE(xpi , x
q
j)
(
Λ(ypi , y

q
j ) + Λ(yp, y

′q)− Λ(ypi , y
′q)− Λ(yp, yqj )

)
(6)

In our setting of subsequence kernels for StructSVM, the kernel κE(xpi , x
q
j) is

the relational subSequence kernel, where we may be considering some window
time steps before and after p and q, with p and q as pivots.

The dual of the primal SVM formulation as defined by Tsochantaridis et. al.
[?] for structured output spaces with the new kernel can be written as,

max
α

∑
i

∑
Y ∈Si

αiY −
1

2

∑
i

∑
Y ∈Si

∑
j

∑
Y
′∈Sj

αiY αjY ′
(
κδT (Yi, Y, Yj , Y

′
) + κδE

(
(Xi, Yi, Y ), (Xj , Yj , Y

′
)
))

s.t. ∀i,∀Y ∈ Si, αiY ≥ 0

∀i, m
∑
Y ∈Si

αiY
∆(Yi, Y )

≤ C. (7)

where α is the Lagrange dual variable, ∆ is the loss function, Si and Sj are
the active constraint sets for example i and j respectively.

Now the margin violation cost function for a candidate output sequence Y
for example i (for the cutting plane algorithm) can be written as,

H(Y ) =
(

1− 〈ψδi (Y ), f〉
)
∆(Yi, Y )

. =
(

1−
∑
j

∑
y
′∈Sj

αjY ′ 〈ψ
δ
i (Y ),ψδj(Y

′
)〉
)
∆(Yi, Y )

. =
(

1−
∑
j

∑
y
′∈Sj

αjY ′κ
(
(Xi, Yi, Y ), (Xj , Yj , Y

′
)
))
∆(Yi, Y ) (8)

where Sj is the active constraint set for example j.



36

The dual objective and the margin violation cost function can be plugged into
the cutting plane algorithm to solve the objective. While this way of modeling
does not result in interpretability, relational subsequence kernels do efficiently
capture the relational sequential information on the inputs.

As in typical sequence labeling systems, we perform inference using a dynamic
programming approach called the Viterbi algorithm [?].

The next section discusses our experiments and results.

4 Experiments

Our entire implementation is in Java. Our experiments are carried out on two
publicly available activity recognition datasets. The first is the data provided
by [?]. The dataset is extracted from a household fitted with 14 binary sensors.
Eight activities have been annotated for 4 weeks. Activities are daily house hold
activities like sleeping, usingToilet, preparingDinner, preparingBreakfast,
leavingOut, etc. A data instance is recorded for a time interval of 60 seconds
and there are 40006 such data instances. Since the authors of the dataset are
from the University of Amsterdam, we will refer to the dataset as the UA data.
The second data is the relational activity recognition data provided by [?] of
Katholieke University, Leuven. We refer to the data as KU data. The data has
been collected from a kitchen environment with 25 sensors/RFID attached to
objects. There are 19 activities annotated. The data has been divided into 20
sequences. In this data, we perform our experiments in a leave one out cross-
validation setup and report average of the accuracies returned from each fold.

In UA data, We use 25% of data for training and the rest for testing and
report all accuracies by average across the four folds (the dataset is split into
different sequences and each sequence is treated as an example). We report
both micro-average and macro-average prediction accuracies. The micro-average
accuracy is referred to as time-slice accuracy by [?], and is the average of per-
class accuracies, weighted by the number of instances of the class. Macro-average
accuracy, referred to as class accuracy by [?], is simply the average of the per-
class accuracies. Micro-averaged accuracy is typically used as the performance
evaluation measure. However, in data that is biased towards some classes, too
worse macro-average is an indicator of a bad prediction model.

As we discussed previously, we leverage a relational kernel that computes
the similarity between instances in an implicit feature space of CFs. To this
end, we employ the relational subsequence kernel [?] at each sequence position
(over a time window of observations around the pivot position) for the classifi-
cation model. We refer to this approach as Relational Subsequence Kernels for
StructSVM approach (SubseqSVM).

We have compared our approach against TildeCRF [?], StructSVM [?] and
enumAF [?]. While we treat StructSVM as a baseline for our experiments, Tilde-
CRF is a state-of-the-art approach for learning relational features for sequence
labeling, and operates in the same feature space that we are interested in. In



37

our experiments with StructSVM, individual basic features are assumed to be
conditionally independent given the label.

The comparison of results on the UA dataset is outlined in Table 1. Re-
sults show that enumAF and our approach for learning complex features for
sequence labeling viz. SubseqSVM performed better than the baseline approach
(StructSVM) and the state-of-the-art approach (TildeCRF). Although enumAF
optimally finds CFs as conjunctions of (selectively enumerated) AFs, the step
for selectively enumerating AFs is based on heuristics. In contrast, SubseqSVM
works on a convex formulation and learns an optimal model. This explains the
better performance of SubseqSVM.

The comparison of results on the KU dataset is outlined in Table 2. As a
single sequence step in this data has only one input feature, the feature space is
not rich enough to evaluate the efficiency of our approach. The baseline reported
the best performance. While the performance of SubseqSVM approach is slightly
inferior to the baseline and the state-of-the-art, enumAF performed poorly on
this dataset.

In the case of the UA dataset, both enumAF and SubseqSVM took 24 hours
approximately to train the model. In comparison, TildeCRF and StructSVM
took 0.5 hours and 20 hours, respectively. On the KU data, enumAF took around
24 hours and SubseqSVM took approximately 1.5 hours to train the model. In
comparison, TildeCRF and StructSVM took 10 minutes and 15 hours, respec-
tively. We now present an analysis of the progression of results on UA data,
using different categories of features we have experimented with.

Micro avg. Macro avg.

tildeCRF 56.22(±12.08) 35.36 (±6.55)
StructSVM 58.02 (±11.87) 35.00 (±05.24)
enumAF 60.36 (±6.99) 30.39 (±4.31)
SubseqSVM 65.25(±4.81) 29.34 (±2.78)

Table 1: Micro average accuracy and macro
average accuracy of classification in per-
centage using various approaches on UA
data.

Micro avg. Macro avg.

tildeCRF 66.04 (±13.50) 84.01 (±8.76)
StructSVM 66.35 (±17.16) 66.64 (±16.04)
enumAF 33.24 (±15.72) 23.02 (±11.13)
SubseqSVM 64.66 (±8.42) 63.08 (±7.05)

Table 2: Micro average accuracy and macro
average accuracy of classification in per-
centage using various approaches on KU
data.

The progression on experiments on UA data based on feature categories is
shown in Table 3. The baseline for sequence labeling can be one among the
approaches that assume conditional independence among individual features,
given the label. HMM, CRF, and StructSVM falls into this category. These
approaches consider input features at a sequence step and assumes conditional
independence among them given the label. Since StructSVM is the state-of-the-
art in this category, we use StructSVM results for comparison. The next level
of features is the set of simple conjuncts SC, which are conjunctions of input
features at a single sequence step. SCs capture relationships among co-occurring
features. We present the StructHKL results for this. Next is the category of CFs,



38

which are capable of capturing input relationships across time steps in sequence
labeling. We present the results of SubseqSVM in this category.

Feature Approach Micro avg. Macro avg.

Basic StructSVM 58.02 (±11.87) 35.00 (±05.24)
SC StructHKL 63.96 (±05.74) 32.01 (±03.04)
CF SubseqSVM 65.25(±4.81) 29.34 (±2.78)

Table 3: Progression on sequence labeling experiments on the UA dataset based on
feature categories.

5 Conclusion

Recent works have shown the importance of learning the input structure, in
the form of relational features, for sequence labeling problems [?,?,?]. Most of
the existing feature learning approaches employ greedy search techniques to dis-
cover relational features. In this work, we discussed approaches that looked into
learning optimal relational features for sequence labeling. We identify that the
relational feature space is exponentially large and therefore, learning explicit fea-
tures of arbitrary complexity in our most general feature subspace, is a hard task.
To this end, we presented an approach that learns relational sequence labeling
models (capturing the richness of relational features implicitly) by leveraging re-
lational subsequence kernels in the dual objective of the StructSVM framework.
From our discussions and empirical analysis, we conclude that it is desirable to
use powerful kernels that capture the relational features implicitly, although the
resulting model may not be interpretable.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proc. of
20th Intl. Conf. on VLDB. pp. 487–499 (1994)

2. Bunescu, R., Mooney, R.J.: Subsequence kernels for relation extraction. In: Sub-
mitted to the Ninth Conference on Natural Language Learning (CoNLL-2005).
Ann Arbor, MI (July 2006)

3. Dehaspe, L., Toivonen, H.: Discovery of frequent datalog patterns. Data Min.
Knowl. Discov. 3(1), 7–36 (Mar 1999)

4. Forney, G.J.: The viterbi algorithm. Proceedings of IEEE 61(3), 268–278 (1973)
5. Gutmann, B., Kersting, K.: Tildecrf: conditional random fields for logical se-

quences. In: Proceedings of the 17th European conference on Machine Learning.
pp. 174–185. ECML’06, Springer-Verlag, Berlin, Heidelberg (2006)

6. Joachims, T., Finley, T., Yu, C.N.J.: Cutting-plane training of structural svms.
Mach. Learn. 77(1), 27–59 (Oct 2009)

7. van Kasteren, T., Noulas, A., Englebienne, G., Kröse, B.: Accurate activity recog-
nition in a home setting. In: Proceedings of the 10th international conference on
Ubiquitous computing. pp. 1–9. UbiComp ’08, ACM, New York, NY, USA (2008)



39

8. Kersting, K., Raedt, L.D., Raiko, T.: Logical hidden markov models. Journal of
Artificial Intelligence Research 25, 2006 (2006)

9. Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: Probabilistic
models for segmenting and labeling sequence data (2001), iCML

10. Landwehr, N., Gutmann, B., Thon, I., Raedt, L.D., Philipose, M.: Relational
transformation-based tagging for activity recognition. Progress on Multi-Relational
Data Mining 89(1), 111–129 (2009)

11. Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., Watkins, C.: Text clas-
sification using string kernels. J. Mach. Learn. Res. 2, 419–444 (Mar 2002)

12. Mauro, N.D., Basile, T.M.A., Ferilli, S., Esposito, F.: Feature construction for
relational sequence learning (2010)

13. McCallum, A., Li, W.: Early results for named entity recognition with conditional
random fields, feature induction and web-enhanced lexicons. In: Proceedings of the
seventh conference on Natural language learning at HLT-NAACL 2003 - Volume 4.
pp. 188–191. CONLL ’03, Association for Computational Linguistics, Stroudsburg,
PA, USA (2003)

14. McCallum, A.K.: Efficiently inducing features of conditional random fields (2003),
proceedings of the Nineteenth Conference Annual Conference on Uncertainty in
Artificial Intelligence

15. Miao, X., Rao, R.P.: Fast structured prediction using large margin sigmoid belief
networks. Int. J. Comput. Vision 99(3), 302–318 (Sep 2012)

16. Nair, N., Nagesh, A., Ramakrishnan, G.: Probing the space of optimal markov logic
networks for sequence labeling. In: Proceedings of the 22nd international conference
on Inductive logic programming. Springer-Verlag, Berlin, Heidelberg (2012)

17. Nair, N., Ramakrishnan, G., Krishnaswamy, S.: Enhancing activity recognition
in smart homes using feature induction. In: Proceedings of the 13th international
conference on Data warehousing and knowledge discovery. pp. 406–418. DaWaK’11,
Springer-Verlag, Berlin, Heidelberg (2011)

18. Nair, N., Saha, A., Ramakrishnan, G., Krishnaswamy, S.: Rule ensemble learning
using hierarchical kernels in structured output spaces. In: AAAI (2012)

19. Rabiner, L.R.: Readings in speech recognition. chap. A tutorial on hidden Markov
models and selected applications in speech recognition, pp. 267–296. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA (1990)

20. Schulte, O., Khosravi, H., Kirkpatrick, A., Man, T., Gao, T., Zhu, Y.: Modelling
relational statistics with bayes nets. In: proceedings of 22nd International Confer-
ence on Inductive Logic Programming (ILP-2012). Springer (2012)

21. Taskar, B., Lacoste-Julien, S., Jordan, M.I.: Structured prediction, dual extragra-
dient and bregman projections. J. Mach. Learn. Res. 7, 1627–1653 (Dec 2006)

22. Thon, I.: Don’t fear optimality: sampling for probabilistic-logic sequence models.
In: Proceedings of the 19th international conference on Inductive logic program-
ming. pp. 226–233. ILP’09, Springer-Verlag, Berlin, Heidelberg (2010)

23. Thon, I., Landwehr, N., Raedt, L.: Stochastic relational processes: Efficient infer-
ence and applications. Mach. Learn. 82(2), 239–272 (Feb 2011)

24. Tsochantaridis, I., Hofmann, T., Joachims, T., Altun, Y.: Support vector machine
learning for interdependent and structured output spaces. In: Proceedings of the
twenty-first international conference on Machine learning. pp. 104–. ICML ’04,
ACM, New York, NY, USA (2004)


