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Abstract

Reports of experiments conducted with an Inductive Logic Programming system rarely describe
how specific values of parameters of the system are arrived atwhen constructing models. Usu-
ally, no attempt is made to identify sensitive parameters, and those that are used are often given
“factory-supplied” default values, or values obtained from some non-systematic exploratory anal-
ysis. The immediate consequence of this is, of course, that it is not clear if better models could
have been obtained if some form of parameter selection and optimisation had been performed.
Questions follow inevitably on the experiments themselves: specifically, are all algorithms being
treated fairly, and is the exploratory phase sufficiently well-defined to allow the experiments to be
replicated? In this paper, we investigate the use of parameter selection and optimisation techniques
grouped under the study of experimental design. Screening and response surface methods deter-
mine, in turn, sensitive parameters and good values for these parameters. Screening is done here
by constructing a stepwise regression model relating the utility of an ILP system’s hypothesis to its
input parameters, using systematic combinations of valuesof input parameters (technically speak-
ing, we use a two-level fractional factorial design of the input parameters). The parameters used
by the regression model are taken to be the sensitive parameters for the system for that application.
We then seek an assignment of values to these sensitive parameters that maximise the utility of
the ILP model. This is done using the technique of constructing a local “response surface”. The
parameters are then changed following the path of steepest ascent until a locally optimal value is
reached. This combined use of parameter selection and response surface-driven optimisation has
a long history of application in industrial engineering, and its role in ILP is demonstrated using
well-known benchmarks. The results suggest that computational overheads from this preliminary
phase are not substantial, and that much can be gained, both on improving system performance and
on enabling controlled experimentation, by adopting well-established procedures such as the ones
proposed here.

Keywords: inductive logic programming, parameter screening and optimisation, experimental
design

∗. A.S. also holds an adjunct position at the School of CSE, University ofNew South Wales, Sydney; and visiting
position at the Oxford University Computing Laboratory, Oxford.

c©2011 Ashwin Srinivasan and Ganesh Ramakrishnan.



SRINIVASAN AND RAMAKRISHNAN

1. Introduction

We are concerned in this paper with Inductive Logic Programming (ILP) primarily as a tool for
constructing models. Specifications of the appropriate use of a tool, its testing, and analysis of
benefits and drawbacks over others of a similar nature are matters for the engineer concerned with
its routine day-to-day use. Much of the literature on the applications of ILP have, to date, been once-
off demonstrations of either the model construction abilities of a specific system, or of the ability
of ILP systems to represent and use complex domain-specific relationships (Bratko and Muggleton,
1995; Dzeroski, 2001). It is not surprising, therefore, that there has been little reported on practical
issues that arise with the actual use of an ILP system.

Assuming some reasonable solution has been found to difficult practical problems like the ap-
propriateness of the representation, choice of relevant “background knowledge”, poor user-interfaces,
and efficiency,1 we are concerned here with a substantially simpler issue. Like all model-building
methods, an ILP system’s performance is affected by values assigned to input parameters (the term
is used here in the sense understood by the computer scientist, and not the statistician). For exam-
ple, the model constructed by an ILP system may be affected by the maximal length of clauses, the
minimum precision allowed for any clause in the theory, the maximum number of newvariables
that could appear in any clause, and so. The ILP practitioner is immediately confronted with two
questions: (a) Which of these parameters are relevant for the particularapplication at hand?; and
(b) What should their values be in order to get a good model? In an industrialsetting, an engineer
confronted with similar questions about a complex system—a chemical plant, forexample—would
try to perform some form of sensitivity analysis to determine an answer to (a), and follow it with an
attempt to identify optimal values for the parameters identified. As it stands, experimental applica-
tions of ILP usually have not used any such systematic approach. Typically, parameters are given
”factory-supplied” default values, or values obtained from a limited investigation of performance
across a few pre-specified values. The immediate consequence of this is that it is not clear if better
models could have been obtained if some form of parameter selection and optimisation had been
performed. A measure of the unsatisfactory state of affairs is obtained byconsidering whether it
would be acceptable for a chemical engineer to take a similar approach whenattempting to identify
optimal operating conditions to maximise the yield of his plant.

Here take up the questions of screening and optimisation of parameters directly with the only
restrictions being that parameter and goodness values are quantitative in nature. The methods we
use have origins in optimising industrial processes (Box and Wilson, 1951)and been developed
under the broad area concerned with the design and analysis of experiments. This area is concerned
principally with discovering something about a black-box system by designing deliberate changes
to the system’s input variables, and analysing changes in its output response. The representation of
a system is usually as shown in Figure 1(a) (from Montgomery, 2005). The process being modelled
transforms some input into an output that is characterised a measurable responsey. The system
has some controllable factors, and some uncontrollable ones and the goals of an experiment could
be to answer questions like: which of the controllable factors are most influential on y; and what
levels should these factors be fory to reach an optimal value. The relevance of the setting to the ILP
problem we are considering here will be evident in Section 2.

1. In Srinivasan (2001a), experience gained from applications of ILP to problems in biochemistry were used to extract
some guiding principles of relevance to these problems for any ILP application.
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Figure 1: Model of a system used in experimental design (from Montgomery, 2005). The process
can be a combination of systems, each modelled by some input-output behaviour.

There are a wide variety of techniques developed within the area of experimental design: we
will be concentrating here on some of the simplest, based around the use of regression models.
Specifically, using designed variations of input variables, we will use a stepwise linear regression
strategy to identify variables most relevant to the ILP system’s output response. This resulting linear
model, or response surface, is then used to change progressively thevalues of the relevant variables
until a locally optimal value of the output is reached. We demonstrate this approach empirically on
some ILP benchmarks.

The rest of this paper is organised as follows. Section 2 describes a black-box view of ILP
systems that we adopt in this paper. Section 3 describes work in ILP and thebroader area of Machine
Learning related to the goals of this paper. Section 4 describes details of techniques from the field of
experimental design that are relevant to the paper. Section 5 describes,first, two empirical studies.
The studies demonstrate how, for a given set of inputs, parameter screening and selection using
designed experiments yields a better model than simply using default values, or performing an
exhaustive combination of pre-determined values for parameters. They also demonstrate how, if
inputs are changed, then both the set of relevant parameters and their values can change. These
experiments are then followed up with others that use six other well-known benchmark data sets.
The results confirm the findings from the primary investigation; and also demonstrate the relevance
of this work to the controlled comparisons of ILP systems. Section 6 concludes the paper. The paper
is accompanied by two appendices that provide standard material from the literature concerned with
the construction of linear models, and with specific aspects of the optimisation method used here.

2. An ILP System as a Black-Box

Inductive Logic Programming (ILP) has been largely characterised by two classes of programs. The
first, predictive ILP, has been concerned with constructing discriminative models (sets of rules; or
first-order variants of classification or regression trees) for distinguishing accurately amongst two
sets of examples (“positive” and “negative”), or more generally, amongst examples classified into
one of several classes. The second category of ILP programs, descriptive ILP, has been concerned
with generative models of relationships that hold amongst the background knowledge and examples.
This latter category includes programs that identifies logical constraints in a database (DeRaedt and
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Bruynooghe, 1992) and more recently, programs that capture complex probabilistic relationships
amongst objects (the area of statistical relational learning: see Getoor andTaskar, 2007).

While much effort has been invested in clarifying, in the form of a specification, what constitutes
different kinds ILP systems (see, for example Muggleton and Raedt, 1994), in this paper, we take
an engineer’s view. In this, an ILP implementation is simply a machine learning (ML) system that,
given some inputs—in usual ILP terminology, background knowledge andexamples—and settings
for parameters, some of which are under the control of the engineer, produces an output model by
performing some form of optimisation (see Figure 2). For example, many ILP systems that explore
the space of alternatives imposed by the inverse entailment setting proposedin Muggleton (1995)
could be seen as performing a form of discrete optimisation, using some approximation to a branch-
and-bound search procedure. The task of the system engineer is thento tune the parameters under
his or her control to enable the system to return the best performance.2 In Srinivasan (2001b), for
example, it is demonstrated how widely varying performance can be obtainedby varying a single
parameter (the minimum accuracy of clauses found in a search).

Model

(Utility  y)
ILP System

Irrelevant parameters/

Relevant parameters

Background

Examples

Built−in settings

Figure 2: An system engineer’s view of an ILP system. We are assuming here that “Background”
includes syntactic and semantic constraints on acceptable models. “Built-in settings”
are the result of decisions made in the design of the ILP system. An example is the
optimisation function used by the system.

The immediate difficulty is, of course, that it is usually impractical to examine the system’s
performance by enumerating every possible combination of values for the controllable parameters.
With ILP systems there are two further difficulties. First, it may often not be known beforehand
which parameters are actually relevant to system for the problem being solved. The system Aleph
(Srinivasan, 1999) provides perhaps the most clear instance of this: see Figure 3. Second, mod-
els constructed, and hence system performance, can vary even if all inputs and parameters have
fixed values: for example, the system may use a search strategy that employsome random choices
(Zelezny et al., 2002 provides an example of such a strategy).

2. This is different to improving the optimisation procedure performed bythe system itself. Rather, it is concerned with
enabling the existing optimisation procedure find better results, usually by changing the space of alternatives in some
principled manner. It is beyond the engineer’s remit to alter either the system’s inputs or its optimisation criterion as
a means of improving system performance.
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1. The following parameters can affect the size of the search space:
i, clauselength, nodes, minpos, minacc,
noise, explore, best, openlist, splitvars.

2. The following parameters affect the type of search:
search, evalfn, refine, samplesize.

3. The following parameters have an effect on the speed of execution:
caching, lazy_negs, proof_strategy, depth,
lazy_on_cost, lazy_on_contradiction, searchtime, prooftime.

4. The following parameters alter the way things are presented to the user:
print, record, portray_hypothesis, portray_search,
portray_literals, verbosity,

5. The following parameters are concerned with testing theories:
test_pos, test_neg, train_pos, train_neg.

Figure 3: A categorisation of some of the parameters of the ILP system Aleph(reproduced from
Srinivasan, 1999). Not all of these are relevant to every problem being solved.

3. Related Work on Parameter Screening and Optimisation

Within ILP, no significant attention has been paid to the problem of parameter screening or optimi-
sation. Reports in the literature rarely contain any discussion of sensitive parameters of the system
or their values. Of 100 experimental studies reported in papers presented between 1998 and 2008
to the principal conference in the area, none attempt any form of screening for relevant parameters.
17 describe settings for some pre-selected parameters—usually one—from performance estimates
obtained during an enumerative search over some small set of possible values (that is, effectively
using the wrapper approach of Kohavi and John, 1995). 38 reports, however, mention values as-
signed tosomeparameters, without elucidating how these values were reached (on occasions, these
were just the default values provided by the system). The work in Srinivasan (2001b) can be seen as
addressing the question of optimal values for several input parameters somewhat indirectly by first
constructing an “operating characteristic curve” that describes the performance of an ILP system
across a range of values for the relevant parameters. While no method is proposed for identifying
the parameters themselves, the characteristic curve provides a way of optimally selecting amongst
models, provided model goodness is restricted to a specific class (that of cost functions that are
linear in the error-rates). . Since each model is obtained from a particularcombination of values for
relevant parameters, we are able to identify the values that resulted in the best model for the task.
The procedure is somewhat reminiscent of putting the cart before the horse though, requiring us to
identify all models on the characteristic curve first.

Turning to the broader literature in ML, we have not been able to uncover any reports explic-
itly concerned with screening for relevant parameters. There have, however, been some reports of
techniques for optimal assignment for a set of relevant parameters. Bengio (2000) is most closely
related to the optimisation goals of this paper, in that it presents a methodology to optimise several
parameters (Bengio and the following papers call them hyperparameters,to avoid confusion with the
statistical term), based on the computation of the gradient of a model selection criterion expressed in
terms of the parameters. The main restriction is that this criterion must be a known, continuous and
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differentiable function of the parameters (almost) everywhere. While Bengioassumes a training cri-
terion that is quadratic in the parameters, Keerthi et al. (2006) present afast method for computing
the gradient of a validation function with respect to parameters for a rangeof SVM models. Their
method only needs a single linear system of equations to be solved. Unfortunately, it is not possible
to directly adapt these methods to ILP systems. In almost all ILP settings, the training criterion
cannot be even expressed in closed form, let alone being a differentiable and continuous function
of the parameters. That is, what can be done at best is to treat the ILP system is a black box (as we
have done in the previous section) and empirically observe variations in its response to changes in
the values of the parameters.

Methods have been developed that use such empirically observed responses to direct the assign-
ment of values to relevant parameters. The seminal work in Kohavi and John (1995) introduced the
“wrapper” approach to parameter optimisation, in which responses from aML system are used to
direct a heuristic search through combinations of possible values for the parameters. For tractabil-
ity, these values are discretiseda priori, and approach essentially performs a sub-optimal search
through a finite space of what are calledk-level full-factorial designs in this paper (thek refers to
the number of discrete values: more on such designs in the next section). In this paper, we use a
exhaustive search through such a space as a baseline for comparisonagainst a gradient-based opti-
misation method. The results from the exhaustive search clearly represent an upper-bound on the
results achievable by any heuristic search through the same space.

The work described in Baz et al. (2007) is concerned with determining parameter values that
minimise the computation time of mixed integer linear programming (MILP) systems. As withthe
ILP systems we consider here, the MILP solvers have many parameters, with no clear relationships
known amongst them; and the objective function cannot be expressed asa closed form function
of these parameters. Their approach is to select an initial set of values for the hyperparameters
using some sampling design. The response of the MILP solver is then obtained, from which a ML
system is used to construct a model relating the response to parameter values. This model is then
used to suggest new values for some subset of the parameters. For example, if the model used is a
regression tree, then the parameters used in the top 2 levels of the tree (the choice of 2 is arbitrary,
but no method is proposed for automating this choice) are selected and additional sets of values
obtained for the parameters (the exact procedure of how this is done is not elaborated upon). The
set that results in the best performance is returned. This work can be seen as a case of exhaustive
enumeration of responses in ak-level full factorial design, followed by a single stage ofad hoc
non-linear regression-based parameter screening and optimisation.

The problem of screening and tuning of parameters to optimise a system’s performance has been
studied extensively in areas of industrial engineering, using results obtained from the design and
analysis of experiments. It is our intention in this paper to investigate the application of techniques
developed in these areas to ILP, and we summarise some of the relevant ideas next.

4. Design and Analysis of Experiments

The area broadly concerned with the design of experiments (DOE) deals with devising deliberate
variations in the values of input variables, orfactors, and analysing the resulting variations in a set
of one or more output, orresponse, variables. The objectives of conducting such experiments are
usually: (a) Understand how variation or uncertainty in input values affects the output value. The
goal here is the construction of robust systems in which a system’s output isaffected minimally
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by external sources of variation; and (b) Maximise (or minimise) a system’s performance. In turn,
these raise questions like the following: which factors are important for the response variables; what
values should be given to these factors to maximise (or minimise) the values of theresponse vari-
ables; what values should be give to the factors in order that variability in the response is minimal,
and so on.

In this paper, we will restrict ourselves to a single response variable andthe analysis of ex-
perimental designs by multiple regression. It follows, therefore, that we are restricted in turn to
quantitative factors only. Further, by “experimental design” we will mean nothing more than a se-
lection of points from the factor-space, in order that a statistically sound relationship between the
factors and the response variable can be obtained. Each factor-levelcombination will constitute an
experiment, and a design will therefore require us to specify the experiments and, if necessary, the
number of replications of each experiment.

4.1 Screening using Factorial Designs

We first consider designs appropriate for screening. By this, we mean deciding which of a set of
potentially relevant factors are really important, statistically speaking. The usual approach adopted
is what is termed a 2-level factorial design. In this, each factor is taken to have just two levels
(encoded as “-1” and “+1”, say),3 and the effect observed on the response variable of changing the
levels of each factor. It is evident that withk factors, this will result in 2k experiments, each of which
may need to be repeated in case there is some source of random variation in the response variable.
For example, with two factors, conducting a 22 full factorial design will result in a table such as the
one shown in Figure 4

We are then able to construct a regression model relating the response variable to the factors:

y= b0+b1x1+b2x2+b3x1x2.

The model describes the effect of each factorx1,2 and interactive effectx1x2 of the two factors on
y.4 It is usual also to add “centre points” to the design in the form of experimentsthat obtain values
for y for x1 = 0 andx2 = 0. The results of these experiments will not contribute to estimation of the
coefficientsb1,2,3 (since thexi are all 0s), but allows us to obtain a better estimate for the value ofb0.
Further, it is also the case that with a 2-level full factorial design only linear effects can be estimated
(that is, the effect of terms likex2

i cannot be obtained: in general, anth order polynomial will require
n+1 levels for each factor). In this paper, we will use the coefficients of theregression model to
guide the screening of parameters: that is, parameters with coefficients significantly different from
0 will be taken to be relevant (more on this in Appendix A).

Clearly, the number of experiments required in a full factorial design constitute a substantial
computational burden, especially as the number of factors increase. Consider, however, the role
these experiments play in the regression model. Some are necessary for estimating the effects of
each factor (that is, the coefficients ofx1,x2,x3, . . .: usually called the “main effects”), others for
estimating the coefficients for two-way interactions (the coefficients ofx1x2, x1x3, . . . ) , others for
three-way interactions (x1x2x3, . . . ) and so on. However, in a screening stage, all that we wish to do
is to identify the main effects. This can usually be done with fewer than the 2k experiments needed

3. One way to achieve the coded valuex of a factorX is as follows. LetX− andX+ be the minimum and maximum

values ofX (these are pre-specified). Thenx= X−(X++X−)/2
(X+−X−)/2 .

4. Interaction effects happen if the effect of a factor, sayX1 on the response depends on the level of another factorX2.
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Expt. Factor Factor Response
x1 x2 y

E1 -1 -1 . . .
E2 -1 +1 . . .
E3 +1 -1 . . .
E4 +1 +1 . . .

(a)

x
1

2
x

−1 +1

−1

+1

(b)

Figure 4: (a) A 2-level full factorial design for two factors; and (b) agraphical representation of the
design.

for a full factorial design withk factors. The result is a 2-level “fractional” factorial design. Figure
5 below illustrates a 2-level fractional factorial design for 3 factors thatuses half the number of
experiments to estimate the main effects (from Steppan et al., 1998).

Expt. x1 x2 x3 y Expt. x1 x2 x3 y
E1 -1 -1 -1 . . . E2 -1 -1 +1 . . .
E2 -1 -1 +1 . . . E3 -1 +1 -1 . . .
E3 -1 +1 -1 . . . E5 +1 -1 -1 . . .
E4 -1 +1 +1 . . . E8 +1 +1 +1 . . .
E5 +1 -1 -1 . . .
E6 +1 -1 +1 . . .
E7 +1 +1 -1 . . .
E8 +1 +1 +1 . . .

Figure 5: A full 2-level factorial design for 3 factors (left) and a “halffraction” design (right).

The experiments in the fractional design have been selected so thatx1x2x3 = +1. Closer ex-
amination of the table on the right will make it clear that the following equalities also hold for this
table: x1 = x2x3; x2 = x1x3; andx3 = x1x2. That is, main effects and interaction terms are con-
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founded with each other. This has some direct implications when constructingregression models
using the fractional table. In effect, instead of the full regression model:

y= b0+b1x1+b2x2+b3x3+b4x1x2+b5x1x3+b6x2x3

we are reduced to obtaining the following model:

y= b0+b′1(x1+x2x3)+b′2(x2+x1x3)+b′3(x3+x1x2).

In fact, a regression program will be unable, for example, to distinguish the regression model above
from this one:

y= b0+b′′1x1+b′′2x2+b′′3x3

or even this:

y= b0+b′′′1 x1+b′′′2 x2+b′′′3 x1x2.

Theb′′i andb′′′i will differ from the b′i by a factor of 2, but this will not change the model’s fit of the
data, since the corresponding independent variables in the regressionequation would be halved (x1

instead ofx1+x2x3 and so on). Thus, the price for fractional experiments is therefore, that we will
in general, be unable to distinguish the effects of all the terms in the full regression model. However,
if it is our intention—as it is in the screening stage—only to estimate the main effects (such models
are also called “first-order” models), then we can ignore interactions (see Figure 6). Main effects
can be estimated with a table that is a fraction required by the full factorial design: for example, the
half fraction in Figure 5 is sufficient to obtain a regression equation with justthe main effectsx1, x2

andx3.5

1
x

2
x

y

1
x

2
x

y

Figure 6: A surface with a “twist” arising from interactions between the factors (left) and a planar
approximation that ignores this twist (right). For the purpose of estimating the main
effects, the surface on the right is adequate, as it shows thatx2 has a much bigger effect
thanx1 on the responsey (we are assuming here thatx1 andx2 represent coded values on
the same scale).

5. This is apparent from the fact thatn distinct data points are needed to fit a regression model withn terms. Thus, when
fitting a model with justx1,x2, andx3, we need 4 data points.
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More details on fractional designs are provided in Appendix B. We use thetechniques and
results described there to direct the screening of factors by focusing on a linear model that contains
the main effects only:

y= b0+b1x1+b2x2+ · · ·+bkxk.

Depending on the number of factors, this can be done with a fractional designs of “Resolution III” or
above (see Appendix B). Standard tests of significance can be performed on each of the coefficients
b1,b2, . . . ,bk to screen factors for relevance (the null and alternative hypotheses ineach case are
H0 : bi = 0 andH1 : bi 6= 0). In fact, this test is the basis for inclusion or exclusion of factors by
stepwise regression procedures (see Appendix A). Using such a procedure would naturally return a
model with only the relevant factors (the use of stepwise regression is alsothe preferred method for
sensitivity analysis suggested at the end of the extensive survey in Heltonet al., 2006).

4.2 Optimisation Using the Response Surface

Suppose screening in the manner just described yields a set ofk relevant factors from a original set
of n factors (which we will denote here asx1,x2, . . . ,xk for convenience). We are now in the position
of describing the functional relationship between the expected value of theresponse variable and
the relevant factors, by the “response surface”:

E(y) = f (x1,x2, . . . ,xk).

Usually, f is taken to be some low-order polynomial, either a first-order model involving only the
main effectsx1,x2, . . . (recall that if stepwise regression procedure is used at the screeningstage,
then this is the model that would be obtained):

y= b0+
k

∑
i=1

bixi

or a second-order model involving quadratic terms likex2
1,x

2
2, . . . and linear interaction terms like

x1x2,x1x3, . . .:

y= b0+
k

∑
i=1

bixi +
k

∑
i=1

bii x
2
i +

k

∑
i=1

∑
j>i

bi j xix j .

Clearly, if first-order models are adequate (this can be checked by an analysis of how well the
model fits the data: see Appendix A) then much of the effort expended in thescreening stage can
be re-used (for example, we can use the model constructed by stepwise regression as the response
surface model). A second-order model, on the other hand, will require experiments involving addi-
tional levels for each factor, and some effort has been invested in the literature on determining these
levels. Since first-order models are all that are used in this paper, we do not pursue this further here,
and refer the reader to a standard text like Montgomery (2005) for more details.

The principal approach adopted in optimising using the response surfaceis a sequential one.
First, a local approximation to the true response surface is constructed, using a first-order model.
Next, factors are varied along a path that improves the response the most (more on this in a moment).
Experiments are conducted along this direction and the corresponding responses obtained until no
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further increase in the response is observed. At this point, a new first-order response surface is
constructed, and the process repeated until it is evident that a first-order model is inadequate (or no
more increases are possible). If the fit of the first-order model is poor,a more detailed model is
then obtained—usually a second-order model, using additional levels for factors—and its stationary
point obtained. The basic idea is illustrated in Figure 7 (from Montgomery, 2005).

x

x

Path of steepest ascent

Contour of first−order response surface

Region of fitted
first−orderfirst−order

response
surface

1

2

Figure 7: Sequential optimisation of the response surface using the path ofsteepest ascent. A first-
order response surface is obtained in the shaded region. The factorsare then changed to
move along a direction that gives the maximum increase in the response variable.

Now, we can view the responsey to be given by a scalar fieldf that at each pointx1,x2, . . . ,xk

gives the responsef (x1,x2, . . . ,xk). Then, from standard vector calculus, the gradient off at the
point gives the direction in which the response will change most quickly (that is, the direction of

steepest ascent: see Appendix B). This gradient, usually denoted∇ f , is given by
(

∂ f
∂x1

, ∂ f
∂x2

, . . . , ∂ f
∂xk

)

.

The sequential optimisation of the response surface just described involves calculating the gradient
of the first-order model at the centre, or origin, of the experimental design (x1 = x2 = · · ·= 0). For a
model of the formf (x1, . . . ,xk) = b0+b1x1+ · · ·+bkxk, ∇ f is simply(b1, . . . ,bk). For convenience,
let us takeb1 to have the largest absolute value. Then, along the direction of∇ f , a unit change in
x1 will result in a change ofb2/b1 units of x2, b3/b1 units of x3 and so on. Sequential response
optimisation proceeds by starting at the origin and increasing thexi along ∇ f until increases in
the responsey is observed. Each such increase results in a new experiment to be performed (see
Figure 8, for an example with 3 factors).

4.3 Screening and Optimisation for ILP

We are now in a position to put together the material in the previous sections to state more fully a
procedure for screening and optimisation of parameters for an ILP system:

SO: Screen quantitative parameters using a two-level fractional factorial design, and optimise val-
ues using the response surface.

ScreenFrac. Screen for relevant parameters using the following steps:

S1. Decide on a set ofn quantitative parameters of the ILP system that are of potential
relevance. These are the factorsxi in the sense just described. Take some quantita-
tive summary of the model constructed by the system—for example, some estimate
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Expt. Factor Factor Factor Response
x1 x2 x3 y

E9 0 0 0 . . .
E10 δ b2

b1
δ b3

b1
δ . . .

E11 2δ 2b2
b1

δ 2b3
b1

δ . . .

E12 3δ 3b2
b1

δ 3b3
b1

δ . . .
. . . . . . . . . . . . . . .

Figure 8: Sequential experiments that obtain new values fory by moving in the direction of the
gradient tob0+b1x1+b2x2+b3x3. Experiments E1–E8 are as in Figure 5.

of its predictive accuracy—as the response variabley (we will assume here that we
wish to maximise the response).

S2. Decide on on two levels (“low” and “high” values) for each of the factors. These
are then coded as±1.

S3. Devise a two-level fractional factorial design of Resolution III or higher, and obtain
values ofy for each experiment (or replicates of values ofy, if so required).

S4. Construct a first-order regression model to estimate the role of the main effectsxi

ony. Retain only those factors that are important, by examining the magnitude and
significance of the coefficients of thexi in the regression model (alternatively, only
those factors found by a stepwise regression procedure are retained: see Appendix
A).

OptimiseRSM. Optimise values of relevant parameters using the following steps:

O1. Construct a first-order response surface using the relevant factors only (this is not
needed if stepwise regression was used at the screening stage). If noadequate
model is obtained, then return the combination of factor-values that gave thebest
response at the screening stage. Otherwise go to Step O2.

O2. Progressively obtain new values fory by changing the relevant parameters along
the gradient to the response surface. Stop when no increases iny are observed.6

O3. If needed, construct a new first-order response surface. If this surface is adequate,
then return to Step O2. Otherwise, go to Step O4.

O4. If needed, construct a second-order response surface. Return the optimum values
of the relevant factors using the second-order surface, or from thelast set of values
from StepO2.7

6. In practice, this is taken to mean that no increases have been observed for some number of consecutive experimental
runs: the so-called “k-in-a-row” stopping rule.

7. We note that the use of gradient ascent in this manner is only capable offinding local maxima iny values. A
question is raised about what is to be done if the local maximum found in this manner islower than a response value
known already—for example, from an experiment from the screeningstage. A modification would be return the
combination of factor-values that give the besty value obtained over all experiments. This would be at variance with
standard response-surface optimisation, and we do not consider it here.
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We contrast OptimiseRSM with the multi-level full factorial design below, which has been used
on a few occasions within the ILP literature:

OptimiseFact. Optimise values of relevant parameters using the following steps:

O1′. Decide on on multiple levels for each of the relevant factors.

O2′. Devise a full factorial design by combing each of the levels of the factorsagainst those
of the others. For each such combination, obtain values ofy for each experiment (or
replicates of values ofy, if so required).

O3′. Select the combination of values that yielded the highest value ofy (including those
obtained at the screening stage).

This procedure, a multi-level full factorial design, is the basis of the wrapper-based optimisation
method in Kohavi and John (1995), recast in the terminology of experimental design. A simplified
analysis gives us some feel of the complexity ofSO. SO conducts some fraction of 2n experiments in
theScreenFracstage, followed by those conducted in OptimiseRSM. Suppose we always conduct
a 2n−p-fractional design at the screening stage, and that this stage results in nomore thanr variables
being selected as relevant. Further, let each round of sequential optimisation consist ofsexperiments
in Step O2. Let there bem such rounds of sequential optimisation, each followed by a new first-
order model in Step O3 (since there arer variables, building this model will require an additional
r+1 experiments). Finally a second-order model is constructed (Step O4), using a central composite
design. Then the total number of experiments conducted bySO is: 2n−p (screening) +ms(sequential
optimisation) +(m−1)(r +1) (new first-order models) + 2r +1 (second-order model). In the case
that only one round of sequential experimentation is performed (that is,m= 1) and no additional
first- or second-order models are constructed, the number of experiments is simply 2n−p+ s. It is
evident that a procedureSO′ that employsScreenFracfollowed by OptimiseFactwould always
perform 2n−p+ l r experiments (assuming, for simplicity, that all relevant factors are taken to havel
levels during the optimisation stage). This is no more than 2n−p+ ln.

Clarification is needed on the following additional questions:

1. What is to be done if a first-order model cannot be constructed in the screening stage? The
usual approach in response-surface methodology is then to examine a second-order response
surface. We take the position in this paper that none of the parameters are especially relevant,
and simply assign them their default values.

2. Is the value of the response variable obtained after optimisation a good estimate of the per-
formance of the ILP system? We distinguish here between the following two performance
estimates: (a) The estimate of the ILP system’s accuracy usedduringparameter optimisation;
and (b) The estimate of the ILP systems’s accuracyafter parameter optimisation. Clearly, if
(a) and (b) are the same, we run the risk that the value obtained will be an optimistic estimate
of the ILP system’s accuracy. We attempt to minimise this by ensuring that the estimate (b)
is not, in any manner influenced by the estimate (a) (details are in Section 5.3 below). For
clarity, we will call estimate (a) the experimental performance of the ILP system and esti-
mate (b) it’s final performance. Of course, overuse of an estimate—whether experimental
or otherwise—can result in overfitting: especially as the number of experiments increase.
That is, we will sooner or later find an experiment that “looks good” simply by chance. By
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employing a gradient ascent method, we are clearly attempting to minimise the numberof
experiments by moving along the direction of maximum change. Experimental evidence of
overfitting usually also comes to light by increasing the number of data sets on which the
procedure is tested (see Section 5.4).

3. What is to be done if the local maximum reached, either by optimising the response-surface
or in the multi-level factorial design is not unique? That is, a number of different parameter
settings return a maximal value, and we take all of these as being equally likely.The final
performance values will thus be the average of the final performance values from each of
these settings.

5. Empirical Evaluation

We will first briefly state the aims of the experimental evaluation. Descriptions of the materials and
our experimental methodology will follow. We will finally present detailed experimental results.

5.1 Aims

Our aim here is to demonstrate the utility of the screening and optimisation procedure SO that we
have described in Section 4.3 (that is,SO is ScreenFracfollowed by OptimiseRSM). We assess
this utility by comparing the ILP system when it employsSO against the performance of the sys-
tem when it uses one of following alternatives:Default, in which no screening or optimisation
is performed and default values provided for all parameters are used;andSO′, in which screen-
ing is performed as inSO, but a multi-level full factorial design is used for optimisation (that is,
SO′ is ScreenFracfollowed byOptimiseFact). Specifically, we intend to investigate the following
conjectures:

C1. UsingSO is better than usingDefault; and

C2. UsingSO is better than usingSO′.

In both cases, “better” is short-form for stating that an ILP system that usesSO has better final
performance; or in the case of ties, requires fewer experiments than the alternative.

5.2 Materials

In this section we explain (i) the two datasets, (ii) the systems for experimental design and ILP and
(iii) the hardware employed in our experiments.

5.2.1 DOMAINS

The investigation is conducted first on the well-studied ILP biochemical problems concerned with
identifying mutagenic and carcinogenic chemicals. Although we will extend it later to other data sets
used in the literature, we have selected to focus on these problems first since they constitute perhaps
the most commonly used inputs for demonstrating the performance of ILP systems. The data have
been described extensively elsewhere (for example, see King et al., 1996 for mutagenesis; and King
and Srinivasan, 1996 for carcinogenesis) and we refer the readerto these reports for details. For
each application, the input to an ILP can vary depending on the background information used. We
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investigate the conjecturesC1 andC2 with minimal and maximal amount of background knowledge
contained in these benchmarks. That is:

Mutagenesis. We consider background information in the sets M0 and M0–M4, descriptions of
which are reproduced below from Srinivasan (2001b):

M0. Molecular description at the atomic level. This includes the atom and bond structure, the
partial charges on atoms, and arithmetic constraints (equalities and inequalities). There
are 5 predicates in this group;

M1. Structural properties identified by experts as being related to mutagenicactivity. These
are: the presence of three or more benzene rings, and membership in a class of com-
pounds called acenthrylenes. There are 2 predicates in this group;

M2. Chemical properties identified by experts as being related to mutagenic activity, along
with arithmetic constraints (equalities and inequalities) The chemical properties are: the
energy level of the lowest unoccupied molecular orbital (“LUMO”) in the compound,
an artificial property related to this energy level (see Debnath et al., 1991), and the
hydrophobicity of the compound. There are 6 predicates in this group;

M3. Generic planar groups. These include generic structures like benzene rings, methyl
groups,etc., and predicates to determine connectivity amongst such groups. There are
14 predicates in this group; and

M4. Three-dimensional structure. These include the positions of individual atoms, and con-
straints on distances between atom-pairs. There are 2 predicates in this group.

Carcinogenesis. We consider background information in the sets C0 and C0–C3, descriptions of
which reproduced below, once again from Srinivasan (2001b):

C0. Molecular description at the atomic level. This is similar to M0 above and is comprised
of 5 predicates;

C1. Toxicity properties identified by experts as being related to carcinogenic activity, and
arithmetic constraints. These are an interpretation of the descriptions in Ashby and
Tennant (1991), and are contained within the definitions of 5 predicates;

C2. Short-term assays for genetic risks. These include theSalmonellaassay, in-vivo tests
for the induction of micro-nuclei in rat and mouse bone marrowetc.The test results are
simply “positive” or “negative” depending on the response and are encoded by a single
predicate definition; and

C3. Generic planar groups. These are similar to M3 above, extended to 30predicate defini-
tions.

We will henceforth refer to background knowledge with the definitions in M0(respectively, C0)
asBmin and with the definitions in M0–M4 (respectively, C0–C3) asBmax.

5.2.2 ALGORITHMS AND MACHINES

Experimental design and regression models for screening and the response surface are constructed
by the procedures made available by the authors of Steppan et al. (1998). The ILP system used in
all experiments will be Aleph (Srinivasan, 1999). The programs are executed on a IBM Thinkpad
(T43p), equipped with an Intel 2 GHz Pentium processor with 1 gigabyte ofrandom access memory.
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5.3 Method

Our method for the preliminary experiments is straightforward:

For each problem (Mutagenesis and Carcinogenesis) and each level of background knowledge
(Bmin andBmax):

1. Construct a model with the ILP system using default values for all parameters of the
ILP system. Call this modelILP+Default.

2. Select a set ofn quantitative parameters of the ILP system as being potentially relevant.
Use the procedureScreenFracdescribed in Section 4.3 to screen this set using a frac-
tional factorial design of Resolution III or higher. Let this result in a setof relevant
variablesR.

3. Use the procedureOptimiseRSMin Section 4.3 to obtain values for variables inR. All
other parameters of the ILP system are left at their default values. Construct a model
using the ILP system with this set of values. Call this modelILP+SO.

4. Decide onl levels for each variable inRand use the procedureOptimiseFactin Section
4.3 to obtain values for the variables inR. All other parameters of the ILP system are left
at their default values. Construct a model using the ILP system with this setof values.
Call this modelILP+SO′.

5. Compare the performance of the ILP system when it produces as output each of
ILP+Default, ILP+SO, andILP+SO′ (see the details below).

We follow the preliminary experiments with experiments on additional data sets andwith an
additional ILP system. The following details concerning the preliminary experiments are relevant:

1. Since the tasks considered here are binary classification tasks, the performance of the ILP sys-
tem in all experiments will be taken to be the classification accuracy of the modelproduced
by the system. By this we mean the usual measure computed from a 2×2 cross-tabulation
of actual and predicted classes of instances. We would like the final performance measure
to be as unbiased as possible by the experimental estimates obtained during optimisation.
One way is to use a technique of “double” or nested cross-validation. That is, the final per-
formance value is obtained usingk-fold cross-validation (the “outer” cross-validation) and
experimental performance values during optimisation is the average of a further (“inner”) k-
fold cross-validation using each of the training data sets from the outer cross-validation. This
procedure is computationally expensive. We adopt a simpler alternative: we use a 10-fold
cross-validation estimate for the final estimate; and for the experimental estimates we use
the average of holdout (“validation” set) estimates on each of the training data sets from the
outer cross-validation. Thus, the test data in each of the outer cross-validation folds are not
available to the ILP system when performing parameter optimisation.

2. We have no general prescription for the selection of the initial set ofn parameters (Step 2).
We postpone a discussion of this limitation to Section 5.4. For our experiments we have
selected four parameters:C, the maximum number of literals in any acceptable clause con-
structed by the ILP system;Nodes, the maximum number of nodes explored in any single

642



SCREENING AND OPTIMISATION FOR ILP

search conducted by the ILP system;Minacc, the minimum accuracy required of any accept-
able clause; andMinpos, the minimum number of positive examples to be entailed by any
acceptable clause.C andNodesare directly concerned with the search space explored by
the ILP system.MinaccandMinposare concerned with the quality of results returned (they
are equivalent to “precision” and “support” used in the data mining literature). We propose
to examine a two-level fractional factorial design, using the levels shown below (the column
“Default” refers to the default values for the factors assigned by the Aleph system, and±1
refers to the coded values of the factors):

Factor Levels
Default Low (−1) High (+1)

C 4 4 8
Nodes 5000 5000 10000
Minacc +1 0.75 0.90
Minpos 1 5 10

3. We use a Resolution IV design, that comprises of a randomised presentation of the following
8 experiments (recall the full factorial design will require 24 = 16 experiments):

Expt. C Nodes Minacc Minpos Accuracy
E1 −1 −1 −1 −1 . . .
E2 −1 −1 +1 +1 . . .
E3 −1 +1 −1 +1 . . .
E4 −1 +1 +1 −1 . . .
E5 +1 −1 −1 +1 . . .
E6 +1 −1 +1 −1 . . .
E7 +1 +1 −1 −1 . . .
E8 +1 +1 +1 +1 . . .

This design was obtained using the software tools for experimental design provided with Step-
pan et al. (1998). The “Accuracy” column is the experimental performance obtained for each
task, and for each of the two sets of background knowledge in order to screen the four vari-
ables for relevance. Additional experiments, and corresponding experimental performance
values, will be needed in Step 3 to obtain values of the relevant parameters using the response
surface. We restrict ourselves to constructing just one first-order regression model for screen-
ing, using the stepwise regression procedure provided by the authors of Steppan et al. (1998).
This model is taken to approximate the local response surface: we then proceed to change
levels of factors along the normal to this surface in the manner described in Figure 8. Ex-
periments are stopped once a maximal value for the response variable is followed by three
consecutive runs that yield responses that are no higher.

4. In the event that all four parameters chosen are relevant, the step ofobtaining parameter values
using a multi-level full factorial design (Step 5) would require conductingl4 experiments. We
will take l = 5, which means that, in the worst case, no more than 625 experiments will be
conducted to obtain modelILP+SO′. Inspired by the choices made for a so-called “Central
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Composite” (or CC) design (Montgomery, 2005), we will take the (coded) levels to be 0,±1,
and±

√
2.

5. Comparisons of models will be done on the basis of their final performance estimates (see
(1) above) (parameter values are obtained from the experimental estimates). In the event of
ties, then the model requiring fewer experiments will be preferred. That is, a model is repre-
sented by the pair(A,E) (denoting estimated accuracy and number of experiments required
to identify the model). Comparisons are then based on the usual definition of alexicographic
ordering on such tuples.

Further, since it is of particular relevance to ILP practitioners, we also test for statistical dif-
ferences between the accuracies ofILP+SO andILP+ Default using results on six additional data
sets used in the ILP literature, and separately, by using two different ILPsystems. The relevant
statistical test is the Wilcoxon signed-rank test (Siegel, 1956). This is a non-parametric test of the
null hypothesis that there is no significant difference between the median performance of a pair
of algorithms. The test works by ranking the absolute value of the differences observed in perfor-
mance of the pair of algorithms. Ties are discarded and the ranks are then given signs depending
on whether the performance of the first algorithm is higher or lower than that of the second. If the
null hypothesis holds, the sum of the signed ranks should be approximately0. The probabilities
of observing the actual signed rank sum can be obtained by an exact calculation (if the number of
entries is less than 10), or by using a normal approximation. We note that the comparing a pair of
algorithms using the Wilcoxon test is equivalent to determining if the area underthe ROC curves of
the algorithms differ significantly (Hand, 1997).

5.4 Results and Discussion

We present first the results concerned with screening for relevant factors. Figure 9 show responses
from the ILP system for the preliminary experiments conducted for screening using the fractional
design described under “Methods”. The sequence of experiments following this stage for optimising
relevant parameter values using: (a) the response surface; and (b)a multi-level full factorial design
are in Figures 10 and 11. Finally, a comparison of the three proceduresILP+Default, ILP+SO, and
ILP+SO′ is in Figure 12. It is this last tabulation that is of direct relevance to the experimental aims
of this paper, and we note the following: (1) Although no experimentation is needed for the use of
default values, the model obtained withILP+Default usually has the lowest predictive accuracies
(the exception is Carcinogenesis, withBmin);8 (2) The classification accuracy ofILP+SO is never
lower than that of any of the other methods; (3) When the classification accuracies ofILP+SO and
ILP+SO′ are comparable, the number of experiments needed by the former is lower.

Taken together, these observations provideprima facieevidence for the conjectures made at the
outset of this section, namely:

C1. UsingSO is better than usingDefault; and

C2. UsingSO is better than usingSO′.

8. We recall that no adequate first-order regression model was obtained for Carcinogenesis (Bmin), resulting in default
values for all parameters. BothILP+SO andILP+SO′ suffer because of the experiments needed for the screening
stage.
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Expt. C Nodes Minacc Minpos Acc Expt. C Nodes Minacc Minpos Acc
E1 −1 −1 −1 −1 0.793 E1 −1 −1 −1 −1 0.911
E2 −1 −1 +1 +1 0.644 E2 −1 −1 +1 +1 0.870
E3 −1 +1 −1 +1 0.763 E3 −1 +1 −1 +1 0.899
E4 −1 +1 +1 −1 0.669 E4 −1 +1 +1 −1 0.899
E5 +1 −1 −1 +1 0.757 E5 +1 −1 −1 +1 0.899
E6 +1 −1 +1 −1 0.728 E6 +1 −1 +1 −1 0.905
E7 +1 +1 −1 −1 0.787 E7 +1 +1 −1 −1 0.905
E8 +1 +1 +1 +1 0.669 E8 +1 +1 +1 +1 0.876

(a) Mutagenesis (Bmin) (b) Mutagenesis (Bmax)
Acc= 0.726−0.049Minacc−0.018Minpos Acc= 0.896−0.009Minpos−0.008Minacc

Expt. C Nodes Minacc Minpos Acc Expt. C Nodes Minacc Minpos Acc
E1 −1 −1 −1 −1 0.464 E1 −1 −1 −1 −1 0.572
E2 −1 −1 +1 +1 0.461 E2 −1 −1 +1 +1 0.595
E3 −1 +1 −1 +1 0.444 E3 −1 +1 −1 +1 0.507
E4 −1 +1 +1 −1 0.447 E4 −1 +1 +1 −1 0.576
E5 +1 −1 −1 +1 0.457 E5 +1 −1 −1 +1 0.585
E6 +1 −1 +1 −1 0.451 E6 +1 −1 +1 −1 0.526
E7 +1 +1 −1 −1 0.467 E7 +1 +1 −1 −1 0.523
E8 +1 +1 +1 +1 0.461 E8 +1 +1 +1 +1 0.546

(c) Carcinogenesis (Bmin) (d) Carcinogenesis (Bmax)
No adequate model Acc= 0.554−0.028Minacc

Figure 9: Screening results (procedureScreenFracin Section 4.3). Acc refers to the estimated
accuracy of the model. The regression model is built using the “Autofit” option provided
in Steppan et al. (1998). This essentially implements the stepwise regression procedure
described in Appendix A.Acc refers to the experimental (validation-set) performance
of the ILP system. Note that no adequate model is obtained in (c), meaning thatthe
coefficients of all variables have values that are statistically insignificant. In this case, no
further optimisation is performed, and all parameters are left at their default values.

We now turn to some broader implications of these results, enumerated in orderof seriousness
to current ILP practice:

1. The results suggest that default levels for factors need not yield optimal models for all prob-
lems, or even when the same problem is given different inputs (here, different background
knowledge). This means that using ILP systems just based on default values for parameters—
the accepted practice at present—can give misleading estimates of the best response possible
from the system. This is illustrated in Figure 13, which shows estimated accuracies on other
data sets reported in the literature that also use the Aleph system with default values for all
parameters (these data sets have been used widely: see, for example, Landwehr et al., 2006
and Muggleton et al., 2008). Taken with our previous results for the mutagenesis and carcino-
genesis data (we will only use theBmax results, as these are the results used in the literature),
we are now able to make some statements of statistical significance. Figure 14 shows, across
the 8 data sets, differences between the optimised and default models. The probability of
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Expt. Coded Values Natural Values Acc Expt. Coded Values Natural Values Acc
Minacc Minpos Minacc Minpos Minpos Minacc Minpos Minacc

E9 0 0 0.83 8 0.769 E9 0 0 8 0.83 0.899
E10 −0.50 −0.18 0.79 7 0.793 E10 −0.50 −0.42 7 0.79 0.899
E11 −1 −0.36 0.75 7 0.781 E11 −1.0 −0.84 5 0.76 0.911
E12 −1.50 −0.54 0.71 6 0.781 E12 −1.50 −1.26 4 0.73 0.899
E13 −2.00 −0.72 0.67 6 0.692 E13 −2.00 −1.68 3 0.70 0.893

E14 −2.50 −2.10 2 0.67 0.751

(a) Mutagenesis (Bmin) (b) Mutagenesis (Bmax)

Expt. Coded Value Natural Value Acc
Minacc Minacc

E9 0 0.83 0.553
E10 −0.50 0.79 0.572
E11 −1 0.75 0.595
E12 −1.50 0.71 0.582
E13 −2.00 0.67 0.592
E14 −2.50 0.63 0.598
E15 −3.00 0.60 0.605
E16 −3.50 0.56 0.609
E17 −4.00 0.52 0.539
E18 −4.50 0.49 0.539
E19 −3.50 0.45 0.539

(c) Carcinogenesis (Bmax)

Figure 10: Optimisation using the response surface (procedureOptimiseRSMin Section 4.3). In
each case, the response surface used is the first-order regressionmodel found by step-
wise regression at the screening stage (shown in Figure 9). Parametersare varied along
the path of steepest ascent of experimental performance values for theresponse variable.
Experiments are stopped once a maximal value for the response variable is followed by
three consecutive runs that yield responses that are no higher. No optimisation is per-
formed for Carcinogenesis (Bmin) since no adequate first-order response surface was
found.

obtaining these results, under the hypothesis that the optimised and default procedures have
equivalent performance (correctly, that the median difference between their accuracies is 0)
is 0.02. In fact, since our research hypothesis is evidently directional (thataccuracy of op-
timised models is higher than that of “default models”), the one-tailed probabilityof 0.01
is more appropriate. Some readers would perhaps prefer only to rank those instances where
the optimised model was substantially higher. If we take “substantially higher” tomean “2
standard errors or more”, then the optimised model is substantially higher thanthe default
model in 6 out of the 8 cases (the two mutagenesis data sets are eliminated). Thecorrespond-
ing Wilcoxon probabilities are now 0.05 (two-tailed) and 0.025 (one-tailed). The statistical
evidence in favour of the optimised models therefore appears to be significant, perhaps even
highly so.
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Expt. Coded Values Natural Values Acc Expt. Coded Values Natural Values Acc
Minacc Minpos Minacc Minpos Minacc Minpos Minacc Minpos

E9 −1.41 −1.41 0.72 4 0.793 E9 −1.41 −1.41 0.72 4 0.883
E10 −1.41 −1 0.72 5 0.793 E10 −1.41 −1 0.72 5 0.911
E11 −1.41 0 0.72 8 0.769 E11 −1.41 0 0.72 8 0.905
E12 −1.41 +1 0.72 10 0.763 E12 −1.41 +1 0.72 10 0.899
E13 −1.41 +1.41 0.72 12 0.769 E13 −1.41 +1.41 0.72 12 0.864
E14 −1 −1.41 0.75 4 0.793 E14 −1 −1.41 0.75 4 0.899
E15 −1 −1 0.75 5 0.793 E15 −1 −1 0.75 5 0.911
E16 −1 0 0.75 8 0.763 E16 −1 0 0.75 8 0.905
E17 −1 +1 0.75 10 0.763 E17 −1 +1 0.75 10 0.899
E18 −1 +1.41 0.75 12 0.769 E18 −1 +1.41 0.75 12 0.864
E19 0 −1.41 0.82 4 0.799 E19 0 −1.41 0.82 4 0.911
E20 0 −1 0.82 5 0.793 E20 0 −1 0.82 5 0.911
E21 0 0 0.82 8 0.769 E21 0 0 0.82 8 0.899
E22 0 +1 0.82 10 0.775 E22 0 +1 0.82 10 0.899
E23 0 +1.41 0.82 12 0.787 E23 0 +1.41 0.82 12 0.864
E24 +1 −1.41 0.90 4 0.746 E24 +1 −1.41 0.90 4 0.905
E25 +1 −1 0.90 5 0.669 E25 +1 −1 0.90 5 0.899
E26 +1 0 0.90 8 0.645 E26 +1 0 0.90 8 0.882
E27 +1 +1 0.90 10 0.645 E27 +1 +1 0.90 10 0.870
E28 +1 +1.41 0.90 12 0.662 E28 +1 +1.41 0.90 12 0.858
E29 +1.41 −1.41 0.93 4 0.698 E29 +1.41 −1.41 0.93 4 0.899
E30 +1.41 −1 0.93 5 0.639 E30 +1.41 −1 0.93 5 0.888
E31 +1.41 0 0.93 8 0.592 E31 +1.41 0 0.93 8 0.864
E32 +1.41 +1 0.93 10 0.598 E32 +1.41 +1 0.93 10 0.858
E33 +1.41 +1.41 0.93 12 0.598 E33 +1.41 +1.41 0.93 12 0.858

(a) Mutagenesis (Bmin) (b) Mutagenesis (Bmax)

Expt. Coded Value Natural Value Acc
Minacc Minacc

E9 −1.41 0.72 0.586
E10 −1 0.75 0.595
E11 0 0.83 0.553
E12 +1 0.90 0.516
E13 +1.41 0.93 0.526

(c) Carcinogenesis (Bmax)

Figure 11: Optimisation by using a multi-level full factorial design (procedure OptimiseFactin
Section 4.3). In each case, relevant factors are those obtained by screening (Figure 9).
A 5-level full factorial design is then used to find the best values for these factors, using
experimental performance values for the response variable.
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Procedure (Accuracy,Expts.)
Mutagenesis Carcinogenesis

Bmin Bmax Bmin Bmax

ILP+Default (0.755±0.031,0) (0.846±0.026,0) (0.510±0.028,0) (0.504±0.028,0)
ILP+SO (0.803±0.029,13) (0.883±0.023,14) (0.510±0.028,8) (0.591±0.027,19)
ILP+SO′ (0.787±0.030,33) (0.883±0.023,33) (0.510±0.028,8) (0.579±0.027,13)

Figure 12: Comparison of procedures, based on their final performance, using the parameter val-
ues obtained from optimising experimental performance. The entries shownare 10-fold
cross-validation estimates and the number of experiments needed to obtain the opti-
mised value. There is no unbiased estimator of variance for the cross-validation esti-
mates (Bengio and Grandvalet, 2004): the standard error reported is computed using the
approximation in Breiman et al. (1984).

2. The screening results suggest that as inputs change, so can the relevance of factors (for exam-
ple, when the background changes fromBmin to Bmax in Carcinogenesis,Minaccbecomes a a
relevant factor). Further evidence for this comes from the “DSSTox” data set (see Figure 15).
This means that a once-off choice of relevant factors across all possible inputs can lead to
sub-optimal performances from the system for some inputs.

3. Screening, as proposed here, still requires identification of an initial set of variables as factors
to be varied (here, these wereC, Nodes, Minacc andMinpos). While the set can have any
number of elements (all quantitative of course, for the techniques here to be applicable), the
choice of these elements remains in the hands of the practitioner using the ILP system. Some
element of human expertise of this kind appears unavoidable (and indeed,is even desirable,
to prevent pointless experimentation). Additional assistance in the form of including, with
each ILP system, a set of potentially sensitive parameters, could be a great help.

4. Optimisation, as proposed here, requires the selection of an appropriate step-size and spec-
ification of a stopping criterion for a sequential search conducted along the gradient to the
response surface. We have followed the prevalent practice in the field,namely, obtaining the
step-size by a process of a binary search over the interval[0,1]; and using a “k-in-a-row”
stopping rule (that is, stopping the search ifk steps yield no improvement in response). Other
techniques exist, and are described in Appendix B.

5. Even if a set of relevant factors are available for a given input, a multi-level full factorial
design can be an expensive method to determine appropriate levels. Once done, performance
may still be sub-optimal. The results here suggests that experimental studies that ad hoc
discretisation followed by exhaustive combinations of the different discrete levels of relevant
parameters may not yield the best results.

Finally, a controlled comparison ofDefault, SO andSO′ has required us to enforce that the
ILP system used is the same in all experiments. In practice, we are often interested in controlled
comparisons of a different kind, namely, the performances of different ILP systems. The results
here suggest equipping each ILP system with the procedureSO could enable a controlled com-
parison of best-case performances: a practice which has hitherto not been adopted by empirical
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Data ILP+Default ILP+SO
Mut(42) 0.857±0.054 0.857±0.054
Alz (Amine) 0.714±0.017 0.802±0.015
Alz (Tox) 0.792±0.014 0.872±0.011
Alz (Acetyl) 0.527±0.014 0.774±0.011
Alz (Memory) 0.551±0.020 0.674±0.019
DSSTox 0.647±0.020 0.731±0.018

Figure 13: Estimated accuracies for the Aleph system from some additional data sets used in the
literature (Muggleton et al., 2008; Landwehr et al., 2006). The data sets are used in
comparative experiments (“System X versus Aleph”) that use default settings for all
parameters of Aleph. Accuracy estimates for such models are in the column headed
“ILP+Default” (although these exact values do not concern us here,we note that dif-
ferences, if any, to accuracies reported in the literature can be attributedto differences
in the cross-validation splits used). The column headed “ILP+SO” are final perfor-
mance estimates obtained using Aleph with theSO procedure described in the paper,
and the method used in the preliminary experiments. Standard errors are calculated as
before. The DSSTox background information differ slightly in Muggleton et al. (2008)
and Landwehr et al. (2006) and the models here use the variant from Muggleton et al.
(2008).

Data ILP+Default ILP+SO ∆ Signed Rank
Carcin 0.504 0.591 0.089 +4
Mut (188) 0.846 0.883 0.037 +1
Mut(42) 0.857 0.857 0 –
Alz (Amine) 0.714 0.802 0.088 +5
Alz (Tox) 0.792 0.872 0.080 +2
Alz (Acetyl) 0.527 0.774 0.247 +7
Alz (Memory) 0.551 0.674 0.123 +6
DSSTox 0.647 0.731 0.084 +3

Figure 14: Absolute differences in accuracy∆ between the proceduresILP+SO andILP+Default,
and their signed ranks (eliminating ties). The Wilcoxon probability of obtserving the
signed ranks under the null hypothesis that median differences are 0, is0.02 (0.01 for a
directional test).

Data ILP+Default ILP + SO

DSSTox (Muggleton et al., 2008) 0.647±0.020 0.731±0.018

DSSTox (Landwehr et al., 2006) 0.631±0.020 0.631±0.020

Figure 15: Estimated accuracies for the Aleph system for two variants of the“DSSTox” problem.
The data sets in the two variants use slightly different background information, resulting
in different accuracies for both default and optimised models. Screeningresults are also
different in the two cases:Minacc andC are relevant in DSSTox (Muggleton et al.,
2008); but none of the parameters are relevant in DSSTox (Landwehret al., 2006).

649



SRINIVASAN AND RAMAKRISHNAN

Data Toplog+Default Toplog+SO ∆ Signed Rank

Carcin 0.641 0.623 0.018 −2

Mut (188) 0.840 0.867 0.027 +3.5

Mut(42) 0.881 0.881 0 –

Alz (Amine) 0.704 0.704 0 –

Alz (Tox) 0.672 0.699 0.027 +3.5

Alz (Acetyl) 0.640 0.635 0.005 −1

Alz (Memory) 0.526 0.653 0.127 +5

DSSTox 0.618 0.618 0 –

Figure 16: Absolute differences in accuracy∆ between the proceduresToplog+SO and
Toplog+Default, and their signed ranks (eliminating ties). Once again, we differences,
if any, to accuracies reported in the literature can be attributed to differences in the
cross-validation splits used. Although the sum of the signed ranks (+9) is in favour of
Toplog+SO, the evidence is not statistically significant (that isp> 0.05)

ILP studies, but whose value is self-evident. Of course, screening and optimisation experiments
would have to be conducted for each system in turn, since the factors relevant to one system (and
its levels) would typically have no relation to those of any of the others. We illustrate this in
Figures 16–17. The former shows results of applying the procedureSO to a recently proposed
ILP system (Toplog) on the data sets we have considered thus far. Parameter screening and op-
timisation proceeds for a different set of parameters to those used for Aleph: we have used the
parametersMax literals in hypothesis(equivalent to the parameterC in the Aleph experiments),
Max singletonsin hypothesis, Examplein f lation, andMinpos(which has the same meaning as
Minposin the Aleph experiments). The choice of these parameters was based on their use in data
files provided with the Toplog program. It is evident from Figure 16 that there is an improve-
ment in performance after usingSO (the overall sum of signed ranks is in favour of Toplog+SO)
although the differences are not statistically significant. This statistical caveat notwithstanding, Fig-
ure 17 shows the perils of not comparing like-with-like. Figure 17(a) shows that having subject both
Toplog and Aleph to the same procedure for screening and optimisation (thatis, SO), we find no
significant difference in their performance. On the other hand, Figure 17(b) shows that performing
screening and optimisation on one (Aleph), but not the other (Toplog), can lead to misleading results
(that the performance of Aleph is significantly better than Toplog).

6. Concluding Remarks

As an ILP system moves from being a prototype for demonstrating a proof-of-concept to being a
tool for regular data analysis, it moves into the province of engineering. The requirements of a
system in this latter world are significantly more stringent than in the former: robustness is needed,
of course, as are mechanisms that facilitate ease of use, recovery fromfailures, and so on. It also
becomes no longer adequate simply to demonstrate that a modelcanbe constructed in some novel
manner, requiring instead that the model constructed is as good as possiblefor a given set of inputs
(by this we mean primarily the background knowledge and examples). Besides the obvious benefit
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Data Toplog+SO Aleph+SO ∆ Signed Rank

Carcin 0.623 0.591 0.032 −4

Mut (188) 0.867 0.883 0.016 +1

Mut(42) 0.881 0.857 0.024 −3

Alz (Amine) 0.704 0.802 0.070 +5

Alz (Tox) 0.699 0.872 0.173 +8

Alz (Acetyl) 0.635 0.774 0.139 +7

Alz (Memory) 0.653 0.674 0.021 +2

DSSTox 0.618 0.731 0.113 +6

(a)

Data Toplog+Default Aleph+SO ∆ Signed Rank

Carcin 0.641 0.591 0.050 −3

Mut (188) 0.840 0.883 0.043 +2

Mut(42) 0.881 0.857 0.024 −1

Alz (Amine) 0.704 0.802 0.098 +4

Alz (Tox) 0.672 0.872 0.200 +8

Alz (Acetyl) 0.640 0.774 0.134 +6

Alz (Memory) 0.526 0.674 0.148 +7

DSSTox 0.618 0.731 0.113 +5

(b)

Figure 17: (a) Absolute differences in accuracy∆ between the proceduresAleph+SO and
Toplog+SO, and their signed ranks (eliminating ties). Although the sum of the signed
ranks is in favour of Aleph+SO (+22), the evidence is not statistically significant (that
is p> 0.05). (b) Absolute differences in accuracy∆ between the proceduresAleph+SO
andToplog+Default, and their signed ranks (eliminating ties). The sum of the signed
ranks is in favour of Aleph+SO (+28), is now statistically significant (p = 0.05 for a
non-directional test,p = 0.025 for a directional test). Performing the comparison (b)
instead of (a) can result in the misleading conclusion that the Aleph system performs
significantly better than Toplog on these data sets.

to the modelling problem being addressed, it ensures that the performanceof ILP systems can
be assessed in a meaningful manner. Here, we have taken a system engineer’s approach to this
problem by identifying a set of critical parameters of the system, and then varying these to improve
performance. The principal tools we have used are those developed under the umbrella of design
and analysis of experiments. Our principal contribution here is to show howthese tools can be used
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to develop better models with ILP systems. To the best of our knowledge, this isthe first time9 any
such formal framework has been employed for this purpose in ILP.

There are a number of ways in which the work here can be extended further. On the conceptual
front, we have concentrated on the simplest forms of designed experiments(sometimes called “clas-
sical” DOE). Substantial effort has been expended in developing designs other than the fractional
factorial designs used here. Response surface optimisation could also involve more complex mod-
els than the simple first-order models used here. Both options could yield betterresults than those
obtained here. On the experimental front, our emphasis has been on a controlled study of fractional-
factorial screening and response-surface optimisation, using well-studied ILP benchmarks. There
are clearly many other data sets studied within ILP that could benefit from utilising the techniques
proposed. We have also modelled system performance by its estimated accuracy: clearly other
measures may be of interest (for example, some combination of the accuracyand complexity of
models, in the MDL sense). Finally, it is evident from our results in Figure 17that there are wider
implications of the results here to the work on the comparative study of ILP systems, and to the
development of ILP systems as tools for data analysis. Indeed, nothing restricts the procedures
here just to ILP, and the same comments apply to many other machine learning systems. Although
outside the scope of this paper, these directions are clearly of some importance, and worth pursuing.
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Appendix A. A Note on Linear Regression Models

In this section we provide details of regression models that are of relevance to this paper. All these
details can be obtained in any textbook on statistical modelling: we reproduce them here simply for
completeness.

Given a response variabley and variablesx1,x2, . . . ,xk, a regression model expresses a relation-
ship betweeny and thexi as follows:

y= f (x1,x2, . . . ,xk)+ ε

where f denotes a systematic functional relationship betweeny and thexi , andε denotes random
variation iny that is unrelated to thexi (usually called theerror). Usually f is specified as some
mathematical function (for example, a polynomial in thexi) andε by a probability density function
(PDF). The PDF forε is taken to have mean 0 and standard deviationσ: normally the distribution
is also taken to be Gaussian. Thus, in a slightly lop-sided way, for a given set of values for the
xi , it is easier to think of a random value being chosen forε and then constantf (x1, . . . ,xk) being

9. At the time of going to press, we have become aware of a recent paper by Janssen and Fürnkranz (2010) with a
motivation very similar to this paper (although not applied to ILP). The connection between the work reported there
and that in this paper, especially in the context of ILP, would be worth investigating further.
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added to give the final value ofy. From this is evident thaty will have a PDF with mean given by
E(y) =E( f (x1, . . . ,xk)+ε) = f (x1, . . . ,xk)+E(ε) = f (x1, . . . ,xk)); and standard deviationσ. Thus,
the regression function effectively specifies the expected, or mean value, ofy, given thexi . “Linear
regression” refers to the case when the functional relationship is a linearequation of the form:

f (x1, . . . ,xk) = β0+β1x1+ · · ·+βkxk.

Here, “linear” refers to being linear in the coefficientsβi . So, the following is also a case of linear
regression:

f (x1, . . . ,xk) = β0+β1x1+ · · ·+βkxk+βk+1x2
1+ · · ·+β2kx

2
k +β2k+1x1x2+ · · · .

To differentiate between these kinds of equation, we denote the former kindwhich only contain
termsx1,x2, . . . as first-order function; and equations of the latter kind which contain quadratic and
interaction terms as a second-order function.

In general, assuming we knew the form off (for example, that it was a first-order function,
with errors following a Gaussian distribution with zero mean and varianceσ2), and which of the
xi were functionally related toy, we still need to be able to obtain values of theβi from a set of
observations, or data points, giving values for the relevantxi and the corresponding values ofy.
Actually, the best we are able to do is obtain estimates ofβi , which we will denote here asbi , along
with some statistical statement on these estimates. The result is a regression model:

ŷ= b0+b1x1+b2x2+ · · · .

Thus, with each data pointk, we have an associated “residual” given by difference between the value
yk for that data point, and the value ˆyk obtained from the regression model. The usual approach for
obtaining the estimatesbi is the method of least squares, that attempts to minimise the sum of
squares of the residuals. The details can be found in any standard statistical textbook (for example,
Walpole and Myers, 1978).

We now turn to the first of our assumptions, namely, that of the form of the function. The validity
of this assumption can be tested by examining how well the model fits the observed data; and, if
used for prediction, estimating how well it will predict response values on new data. The degree
of model fit is obtained by examining the residuals and calculating first the statistical significance
of model. This tests the null hypothesisH0 : b0 = b1 = · · · = bk = 0 (that is, there is no linear
relationship betweeny and any of thexi). Specifically, the quantity:

F =
SSR/k

SSE/(N−1−k)

is calculated, where whereSSErefers to the sum of squared residuals (∑N
k=1(yk− ŷk))

2, N being
the number of data points); andSSRis the sum of squares of deviations of the model’s response
from the mean response (∑N

k=1(ŷ−y))2). F is known to follow the F-distribution withk,N−1−k
degrees of freedom (Walpole and Myers, 1978). So, the hypothesisH0 can be rejected at some level
of significanceα, if the F-value obtained is greater than the value tabulated forFα,k,N−1−k.

Assuming the null hypothesis is rejected, a quantity that is often used to quantify the degree of
fit is the thecoefficient of determination:

653



SRINIVASAN AND RAMAKRISHNAN

R2 = 1− SSE
SST

whereSSTis similar toSSR, being the sum of squares of deviations of the observed response from
the mean response (∑N

k=1(yk−y))2). A little arithmetical manipulation will showSSR+ SSE=
SST, and therefore:

R2 =
SSR
SST

.

Thus,R2 is the proportion of the variation iny “explained” by the model. Clearly,SSR≤ SSTand
therefore 0≤ R2 ≤ 1. In general, adding more terms to the regression model will only increaseR2

as the model tends to overfit the data. A quantity that takes overfitting into account is the “adjusted”
coefficient of determination:

R2
ad j = 1− N−1

N−k−1
(1−R2).

If there is a substantial difference betweenR2 andR2
ad j, then the model is taken to be overfitting the

data.
While R2 or R2

ad j denote how well the regression model fits the observed data, it does not have
anything to say on the model’s performance on new data. An estimate of the predictive power of
the model is obtained by performing a resampling exercise by leaving out each of theN data points,
and obtaining the corresponding residual based on the model constructed with the remainingN−1
points. This is used to calculate a coefficient of determination for predictionR2

pred. Since we will
not be using regression models for prediction in this paper, we will not pursue this further here.

Assumptions about the form of the regression model tacitly include assumptions about the er-
rors, namely that they are independent, identically distributed Gaussian variables with zero mean
and varianceσ2. The validity of these assumptions are normally checked by visual tests. Graphs
of the residual against the predicted response should show no specificpattern; and normal quantile-
quantile plots of the residuals should be a straight line (Jain, 1991).

We turn now to the second major assumption, namely that the factors of relevance are known
before obtaining the model. This requirement can now be relaxed, since weare able to also test the
hypothesis that each of the coefficientsbi are individually equal to zero (the earlier test of signifi-
cance simply tested thatall of thebi were zero: rejection of that hypothesis could still meansomeof
thebi were zero). This test allows us to eliminate as irrelevant all those factors whose coefficients
are not significantly different from zero. In fact, the test forms the basis for a “greedy” procedure
that examines the stepwise addition and removal of factors. We reproducethe implementation de-
scribed in Srinivasan (2001b) of this procedure in Figure 18. It is normal to start procedure with
I = /0. Although it is not guaranteed to find the most relevant subset of factors, and in the worst case,
the number of subsets examined can be exponential in|V| the method has been found to work well
in practice. Restricted variants of the method are also popular:forward selectionstarts withI = /0
and dispenses with the exclusion steps (Steps 6–7 in Figure 18);backward eliminationstarts with
I =V and dispenses with the inclusion steps (Steps 4–5 in in Figure 18). Both variants examine no
more thanO(|V|2) subsets.
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stepr(V, I ,Fin,Fout) : Given a set of potential regressor variablesV (factors in this paper); an initial
subset of variablesI ⊆V; and minimum values of theF statistic that a variable must achieve
to enter (Fin) or remain (Fout) in the regression equation, returns a subsetS⊆V identified by
a stepwise variable selection procedure.

1. i = 0

2. Si = I , Vi =V \ I

3. Incrementi

4. Letvin be the single best variable inVi−1 that can be included (that is, on inclusion, gives
the greatest increase in the coefficient of determination)

5. If f (vin|Si−1)≥ Fin thenS= Si−1∪{vin}; otherwiseS= Si−1

6. Letvout be the single best variable inS that can be excluded (that is, on exclusion, gives
the greatest increase in the coefficient of determination)

7. If f (vout|S\{vout})≤ Fout thenSi = S\{vout}; otherwiseSi = S

8. If Si = Si−1 then returnSi ; otherwise continue

9. Vi =V \Si

10. Go to Step 3

Figure 18: A stepwise variable selection procedure for multiple linear regression (reproduced from
Srinivasan, 2001b). The coefficient of determination (often denoted by R2) denotes the
proportion of total variation in the dependent variable that is explained by the fitted
model. Given a model formed with the set of variablesX, it is possible to compute the
observed change inR2 due to the addition of some variablev. The probability that the
true value of this change is 0 can be obtained from a use of theF statistic (Walpole
and Myers, 1978). The functionf (v|X) returns the value of theF distribution under
the null hypothesis that there is no change inR2 by adding variablev to those inX.
The thresholdsFin andFout thus specify acceptable probability levels for the inclusion
(and exclusion) of variables. It is evident thatFin > Fout in order to avoid the same
variable from repeatedly being included and excluded. A correct implementation of
svs(. . .) also requires sample data and the appropriate regression function to be provided
as parameters. We have ignored these here for simplicity.

Appendix B. A Note on Constructing and Optimising Response Surfaces

In this section we describe some issues that are relevant to constructing and optimising response sur-
faces. Specifically, we are concerned with: (1) A procedure for obtaining a fractional experimental
design that is suitable for estimating the main effects using the regression procedure described just
previously; (2) The search procedure along the gradient to the response surface.
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B.1 Fractional Factorial Designs

We begin by assuming that we havek main effects and that the response surface is approximated by
a first-order model with main effects only. That is, we are required to estimatek+1 coefficients in
a linear model. This requires at leastk+1 data points, and we simply reproduce a recipe described
in Jain (1991) that produces a suitable two-level fractional factorial design:

1. Two-level fractional designs are obtained by dividing the full factorial design ofk factors
by some number 2p (1 ≤ p < k). It is common to refer to such a design as a 2k−p design.
Thus, we want to reduce the number of experiments from 2k to some number 2k−p such that
2k−p ≥ (k+1). That is,p= ⌊k− log(k+1)⌋. Select anyk− p factors and construct a two-
level full factorial design with these factors. Clearly, this will containk− p columns (one for
each factor). Next, extend this table with columns containing all products of factors. Thus,
suppose we initially hadk= 4 factors (A,B,C,D say), and wanted to construct a 24−1 factorial
design (that isp = 1). We commence by selectingk− p = 3 factors (A,B,C) say, and first
construct the following table (this example is from Jain, 1991):

Expt. A B C AB AC BC ABC

E1 −1 −1 −1 +1 +1 +1 −1

E2 −1 −1 +1 +1 −1 −1 +1

E3 −1 +1 −1 −1 +1 −1 +1

E4 −1 +1 +1 −1 −1 +1 −1

E5 +1 −1 −1 −1 −1 +1 +1

E6 +1 −1 +1 −1 +1 −1 −1

E7 +1 +1 −1 +1 −1 −1 −1

E8 +1 +1 +1 +1 +1 +1 +1

It should be evident that the resulting table will contain 2k−p−1 columns.

2. From the 2k−p−1− (k− p) “product” columns on the right of this table, selectp columns
and rename them with thep factors not selected in the step above. For example, if we select
theABCcolumn and replace it withD:
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Expt. A B C AB AC BC D

E1 −1 −1 −1 +1 +1 +1 −1

E2 −1 −1 +1 +1 −1 −1 +1

E3 −1 +1 −1 −1 +1 −1 +1

E4 −1 +1 +1 −1 −1 +1 −1

E5 +1 −1 −1 −1 −1 +1 +1

E6 +1 −1 +1 −1 +1 −1 −1

E7 +1 +1 −1 +1 −1 −1 −1

E8 +1 +1 +1 +1 +1 +1 +1

This design will allow us to estimate the main effectsA,B,C,D, as well as the interactions
AB,AC andBC. However (by construction) it will be impossible to distinguish between the
effect ofD and that ofABC: the two effects are said to beconfoundedand the terms said to
bealiased. These are not the only effects that are confounded, and it can be verified that each
main effect is confounded with a three-way interaction (A= BCD and so on), and that each
two-way interaction is confounded with other two-way interactions (AC= BD and so on). If
we are only interested in estimating main effects, then, provided we can assumethat three-
way interaction effects are negligible, then a table containing just the fourA,B,C,D columns
above would be adequate. That is, the fractional design is:

Expt. A B C D

E1 −1 −1 −1 −1

E2 −1 −1 +1 +1

E3 −1 +1 −1 +1

E4 −1 +1 +1 −1

E5 +1 −1 −1 +1

E6 +1 −1 +1 −1

E7 +1 +1 −1 −1

E8 +1 +1 +1 +1

The reader will recognise this as the design used to estimate main effects in the paper. It is
clear that the choice of replacing theABC column withD was an arbitrary one (as indeed,
was the choice ofA,B,C in the first place): we could, for example, have elected to replace
the AB column withD. Thus, there are several 24−1 fractional factorial designs that could
have been devised. The difference lies in the assumptions that need to madewhen estimating
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main effects: in general, it is considered better to confound main effects withhigher order
interactions, as these are assumed to be smaller. That is, a design that confoundsD with AB
will probably yield poorer estimates of the effect ofD than one that confoundsD with ABC.

Some additional points are in order:

1. The column vectors in the two-level full and fractional factorial designs satisfy some proper-
ties: (a) The sum of each column is zero; (b) The sum of products of each column is zero;
and (c) The sum of squares of each column is equal to the number of experiments. These
properties result in some advantages in computing the main effects: see Jain (1991).

2. In a fractional design some factor combination, usually calledidentity and denoted byI ,
contains 1 in all rows. Such a combination is called thegeneratorfor the design. For example,
I = ABCD is the generator for the design above.

3. Two-level fractional factorial designs are categorised by theirresolution. The resolutionR
of a fractional factorial design can be computed as the smallest number of factors that are
confounded with the generatorI . In the 24−1 design above terms withI is confounded with
just one factor combination (ABCD). Thus the resolution of the design is 4. Resolutions are
normally denoted by Roman numeral subscripts. Thus, the fractional design in Figure 5 is
a 24−1

IV design (Montgomery, 2005). In Resolution II designs, main effects are aliased with
other main effects. In Resolution III designs, main effects are aliased with with two-factor
interactions, and two-factor interactions may be aliased with each other. In Resolution IV
designs, main effects are not aliased with each other or with two-factor interactions, but two-
factor interactions may be aliased with each other. In Resolution V designs, the only aliasing
that occurs is between two- and three-factor interactions, and so on.

4. Two desirable properties relating resolution and linear models with two-level factors (±1) are
those of orthogonality and rotatability. Orthogonal designs result in minimal variance when
estimating coefficients, and both full factorial designs and fractional designs in which main
effects are not aliased with each other (that is, Resolution III or more) are known to be orthog-
onal for first-order models (Montgomery, 2005). Rotatability concerns variance in prediction
across the factor space. Designs that yield predictions whose variancechanges symmetrically
from the centre of the factor space are said to be rotatable. That is, the variance of prediction
at points equidistant from the centre of the factor space should be the same. Once again,
full factorial designs and fractional designs of Resolution III or more are rotatable designs
for first-order models. Rotatable designs for models with higher order terms(x2

1,x
2
2, . . .) will

require additional experiments (we will describe these in the following section).

5. In general, if there is a variation in responsey even for fixed values of the factors, then
we will need to perform several replicates of each experiment, and attemptto model the
average responsey. Also, to ensure that there is no dependency in the response variable
across experiments, we may need to run the experiments in a randomised order. We will
ignore this aspect here, and assume a single replicate for each experiment. One consequence
of the latter assumption is that factor levels need to be spread out widely (thatis, in two-level
experiments, the difference between values corresponding to−1 and+1 should be as large
as possible), so that effect estimates are reliable (see Montgomery, 2005).
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It is evident from from these points that increasing the resolution will allow the construction
of models that contain more terms from the full factorial model. Thus, with Resolution III and IV
designs, it will only be possible to obtain models that contain the main effects (first-order mod-
els). With a Resolution V model, a model with both main effects and two-way interactions can
be obtained. Rotatable designs also provide some theoretical guarantees on the estimates, both of
coefficients and the response, on these models.

B.2 Gradient Ascent

The primary device used in the paper is to seek local improvements in the responsey by making
small movements in the direction of the gradient to a response surface. The rationale for gradient
ascent can be found in any text on optimization: we present a version here (from Bronson and
Naadimuthu, 1982) for completeness. Let us suppose that the responsesurface is given by a scalar
field f defined on points that are some subset ofℜk, and whose valuesf (x1,x2, . . . ,xk) we denote
using a vector notation asf (X). We wish to determine a pointx∗ for which f (x∗) is a (local)
maximum.

From the vector calculus, it is known that for any fixed pointx and a unit vectorU, the rate of
change off (X) atx in the direction ofU is given by∇ f |X=x ·U, where∇ f is ak-dimensional vector

of partial derivatives given by
(

∂ f
∂x1

, ∂ f
∂x2

, . . . , ∂ f
∂xk

)

and· denotes the inner, or scalar product of a pair

of vectors. For vectorsa andb the inner producta ·b is given by|a||b|cosθ, whereθ is the angle
between the vectorsa andb. With some slight abuse of notation, the rate of change off (X) at x in
the direction ofU is:

∇ f |X=x ·U = |∇ f ||U|cosθ = |∇ f |cosθ.

The rate of change is therefore greatest when cosθ = 1, orθ = 0. That is,U is in the same direction
of ∇ f . Thus, of all non-unit vector displacements of sizeδ from the pointx, the rate of change of
f (x) will be greatest for the vectorδ∇ f |x (since this vector is clearly along the direction of∇ f ).
Further, the best value ofδ will be the one that maximisesf (x+δ∇ f |x).

B.2.1 SEARCH ALONG THE GRADIENT

In order to use the differential calculus to obtain a value ofδ that maximisesf (x+ δ∇ f |x) in any
interval, the function has to be known analytically and the resulting equation for stationary points
f ′(x+δ∇ f |x)= 0 should be solvable algebraicly. In our case, we do not know the functional form of
f : the first-order response surface is simply a local approximation tof that ceases to be appropriate
after some value ofδ. We therefore have to adopt some form of search for an appropriate value ofδ.
The simplest of these—and widely used in response surface methods (Neddermeijer et al., 2000)—
is the enumerative search we have used in the paper, along with a “k-in-a-row” stopping rule (that is,
the search terminates whenk steps yield no improvement). Improved versions have been suggested
in the literature. The enumerative search could be improved by using better sequential search tech-
niques (for example, a three-point interval search, or a Fibonacci search). In fact, this search itself
can be posed as an optimisation problem. In Fu (1994) data from experimentsperformed along the
gradient are used to construct a higher order polynomial function of response values in terms of
δ. For example, with 3 data points along∇ f obtained from step sizes ofδ = δ1,δ2,δ3, and corre-
sponding response valuesy = y1,y2,y3 it will be possible to obtain least-squares estimates for the
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Expt. δ Acc

E9 0.0 0.769

E10 −0.5 0.793

E12 −1.5 0.781

E13 −2.0 0.692

Acc= 0.763−0.117δ−0.075δ2

δ∗ =−0.78

Figure 19: Data from steps of the gradient ascent used to estimate a polynomial regression model
relating response (Acc) to step-size (δ). The data shown here are from Figure 10(a). The
“optimal” valueδ∗ is obtained using standard techniques from the differential calculus
applied to this model.

αi in y= α0+α1δ+α2δ2. The optimal value forδ can then be easily estimated from this function,
asδ∗ = −a1

2a2
(wherea1 anda2 are the least-squares estimates ofα1 andα2). We illustrate this in

Figure 19 below, that uses data points from the gradient ascent steps in Figure 10. The procedure,
although not perfect, is reasonably good: the step size estimate (−0.78) results in an actual response
value of 0.787 (the regression model predicts 0.809).

Other techniques have been proposed as improvements on gradient search, which we do not
elaborate further here. We refer the reader to Safizadeh and Signorile(1994) for descriptions and
pointers to these.
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