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a b s t r a c t

In this paper, we apply Sequential Unconstrained Minimization Techniques (SUMTs) to the classical

formulations of both the classical L1 norm SVM and the least squares SVM. We show that each can be

solved as a sequence of unconstrained optimization problems with only box constraints. We propose

relaxed SVM and relaxed LSSVM formulations that correspond to a single problem in the corresponding

updating individual Lagrange multipliers. The methods yield comparable or better results on large

benchmark datasets than classical SVM and LSSVM formulations, at substantially higher speeds.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, support vector machines (SVMs) have emerged
as a powerful paradigm for pattern classification and regression
[18,1–3]. The classical maximum margin SVM classifier aims to
minimize an upper bound on the generalization error through
maximizing the L1 norm margin between two disjoint half planes
[18,2]. A popular alternative formulation is due to Suykens and
Vandewalle who proposed the ‘‘least squares SVM’’ (LSSVM) [16].
The LSSVM employs equality constraints.

Both the SVM and the LSSVM formulations require the solution
of a constrained quadratic optimization problem. When the
sample set size is large, the computational and memory costs of
solving the constrained Quadratic Programming Problem (QPP)
can be prohibitive. Over the past decade, a lot of efforts have
focused on solving these QPP efficiently. In the case of SVM,
decomposition based methods that solve a series of subproblems
of smaller size have been proposed [13,12]. Further extensions to
these methods that focus on how to choose a good subproblem in
each iteration so that maximum progress towards the optimal
solution is made have also been proposed [14,10,15,8,7]. For the
LSSVM formulation, Suykens and Vandewalle showed a more
ll rights reserved.

ac.in (G. Ramakrishnan),
efficient approach for the LSSVM that involves solving two sets of
linear equations [16]. SMO type update algorithms for LSSVM
have also been proposed [19,9].

In this paper, we examine the use of Sequential Unconstrained
Minimization Techniques (SUMTs) [4] for solving SVM as well as
LSSVM optimization problems. Solving a constrained optimization
problem C with SUMT involves solving a sequence of unconstrained
optimization problems {U1, U2, y, Un}. At each step, an uncon-
strained optimization problem is obtained by adding a penalty term
to the objective function of the constrained problem. The addition of
a penalty term favours points from the feasible region. At any step, if
the solution of Ui lies within the feasible region of the original
constrained problem C, then we stop. Otherwise, a new but related
unconstrained optimization problem is constructed, and the solution
to earlier unconstrained problem is used as the initialization point.

In the case of SVM and LSSVM, we derive a sequence of box
constrained problems. We refer to any of the box constrained
optimization problems that need to be solved for the SVM as a
relaxed SVM. Similarly, each of the optimization problems in the
SUMT sequence for the LSSVM is referred to as a relaxed LSSVM.
We show that solving the sequence of relaxed SVM and relaxed
LSSVM problems leads to the solution of the original SVM and
LSSVM, respectively.

Interestingly, solving only one of the relaxed SVM or relaxed
LSSVM problems, instead of the entire sequence, yields compar-
able or better solutions as compared to the classical SVM and
LSSVM, respectively. We derive an update rule for the relaxed
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versions, termed as 1SMO in the sequel, that allows a single
variable to be updated at a time. The standard SMO uses a nested
loop to update pairs of variables [13]. Empirically, we find that the
relaxed SVM and relaxed LSSVM, solved by using the 1SMO
algorithm, provide identical or superior generalization perfor-
mance as compared to the classical SVM and LSSVM, respectively,
but are 2–4 times faster.

The relaxed SVM problem that we propose is similar to the
formulation proposed in [17]. However, we additionally show that
solving a sequence of different but related relaxed SVM problems,
lead to solving the classical SVM problem. The relaxed LSSVM
formulation that we propose is entirely new. In a nutshell, the
specific contributions made in this paper are three fold. First we
provide a SUMT based framework for solving both, classical SVM as
well as LSSVM problems. We show that the classical formulations of
both, which are linearly constrained optimization problems with box
constraints, can be solved as a sequence of box constrained optimiza-
tion problems. Second, we propose relaxed SVM and relaxed LSSVM
formulations that correspond to a single problem in the correspond-
ing SUMT sequence. Third, we propose the 1SMO algorithm to solve
relaxed SVM and relaxed LSSVM formulations that works by updat-
ing individual Lagrange multipliers. Relaxed SVM and relaxed LSSVM
formulations, solved with 1SMO, yield comparable or better results
than their classical counterparts, at substantially higher speeds.

The remainder of the paper is organized as follows. In Section 2,
we describe the SUMT framework and discuss the classical SVM and
LSSVM formulations. Section 3 discusses the solution of SVM and
LSSVM formulations by posing them as sequences of unconstrained
sub-problems under the SUMT framework. We also propose relaxed
SVM and relaxed LSSVM formulations in this section. In Section 4 we
provide an efficient algorithm to solve the relaxed SVM and relaxed
LSSVM formulations. In Section 5, we discuss SUMT based reformu-
lations and provide their primal versions. In Section 6 we describe
the experimental set up and results. Section 7 is devoted to
concluding remarks and scope for future work.
2. Background material

2.1. Sequential Unconstrained Minimization Techniques (SUMT)

Given an optimization problem of the form

min f ðxÞ ð1Þ

subject to constraints

hjðxÞ ¼ 0, j¼ 1;2, . . . ,L ð2Þ

the solution to (1)–(2) may be found by solving a sequence of
unconstrained optimization problems [4] of the form

min EpðxÞ ¼ f ðxÞþap

XL

j ¼ 1

h2
j ðxÞ ð3Þ

A procedure to achieve this may be summarized as follows:
1.
 Set p¼ 0. Choose the value of the coefficient a0, and an initial
state x0.
2.
 Find the minimum of Ep(x). Denote the solution as xpn

.

3.
 If all the constraints in (2) are satisfied, stop.

4.
 If not, choose xpn

as the new initial state, and choose apþ1 such
that apþ14ap. Set p¼ pþ1. Go to step 2.
5.
 In the limit, as p-1, the sequence of minima x1n

,x2n

, . . . xpn

,
. . ., will converge to the solution of the original problem (1)–(2).

For the sake of brevity, we skip the mathematical details and
conditions under which convergence is guaranteed. The interested
reader is referred to [4]. Suffice it to say that in the case of the SVM
and the LSSVM, we are dealing with convex programming problems
with equality constraints and the SUMT approach can be applied.

2.2. The classical SVM

Given a set of M data points fx1,x2, . . . ,xMg, where xiARN , and
their associated class labels yiAf�1;1g, the classical maximum
soft margin SVM classifier aims to find a hyperplane of the form
hþ ¼wTfðxÞþb¼ 0 such that data points with different class
labels lie on opposite sides of the hyperplane. The parameters w

and b of the hyperplane are found by solving the following
quadratic optimization problem:

min
q,w

1
2wT wþCeT q ð4Þ

subject to the constraints

yk½w
TfðxkÞþb�Z1�qk

qkZ0, k¼ 1;2, . . . ,M ð5Þ

where e is a vector of ones of dimension M, and q is a vector of
error variables. In practice, the dual formulation is solved, which
is given by

min
l

1
2

XM
i ¼ 1

XM
j ¼ 1

yiyjliljKij�
XM
i ¼ 1

li ð6Þ

subject to the linear equality constraint

XM
i ¼ 1

liyi ¼ 0 ð7Þ

and bound/box constraints on the dual variables

0rlirC, i¼ 1;2, . . . ,M ð8Þ

Here, li, i¼ 1;2, . . . ,M denote the Lagrange multipliers, and the
matrix K with entries Kij ¼ ½fðxiÞ

TfðxjÞ� is termed as the Kernel
matrix.

Platt’s Sequential Minimal Optimization (SMO) algorithm [13]
is an efficient way to solve (8). It begins by assigning all multiplier
values to zero, and iteratively updates two Lagrange multipliers
at a time, in a manner that constraints (7) and (8) are always
satisfied.

2.3. The classical LSSVM

Suykens and Vandewalle proposed the least squares SVM
which solves the following QPP:

min
q,w

1
2wT wþCqT q ð9Þ

subject to the constraints

yi½w
TfðxiÞþb�þqi ¼ 1, i¼ 1;2, . . .M ð10Þ

where C40 is a parameter. The first term on the R.H.S. of (9) is a
regularization one, whereas the second term is the empirical
error. The constant C determines the relative importance of the two.
Writing the Karush–Kuhn–Tucker (KKT) necessary and sufficient
optimality conditions and simplifying, Suykens and Vandewalle
showed that the LSSVM classifier parameters w and b may be
determined by solving the following linear system of equations:

0 �yT

y Kþ I
C

" #
b

l

� �
¼

0

e

� �
ð11Þ

where l is the vector of Lagrange multipliers, e is a vector of M ones,
I is an identity matrix of size M�M, and K is the kernel matrix,
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whose entries are given by

Kij ¼ ½fðxiÞ�TfðxjÞ, i,j¼ 1;2, . . . ,M ð12Þ

As pointed out by Suykens and Vandewalle [16], the system of
equations in (11) can be solved by iterative methods. However,
the matrix on the L.H.S. of (11) is not positive definite. By using
appropriate transformations such as preconditioning, the matrix
may be transformed into a positive definite one so that iterative
methods such as conjugate gradient or successive over-relaxation
may be applied.

The Lagrangian of (9) subject to the constraints (10) is given by

L¼
1

2
wT wþ

C

2
qT q�

XM
k ¼ 1

lk½1�qk�yk½w
T ðfðxkÞþb�� ð13Þ

The KKT optimality conditions can be given as

rwL¼ 0) w¼
XM
k ¼ 1

lkykfðxkÞ ð14Þ

@L

@b
¼ 0)

XM
k ¼ 1

lkyk ¼ 0 ð15Þ

@L

@qk
¼ 0) qk ¼

lk

C
ð16Þ

yk½w
TfðxkÞþb� ¼ 1�qk ¼ 1�

lk

C
ð17Þ

The dual formulation is obtained by maximizing L, which on
simplification yields

min
l

1

2

Xm
i ¼ 1

XM
j ¼ 1

yiyjliljPij�
XM
i ¼ 1

li ð18Þ

subject to the constraints

XM
i ¼ 1

liyi ¼ 0 ð19Þ

where

Pij ¼

Kij, ia j

Kiiþ
1

C
, i¼ j

8<
:

9=
; ð20Þ
3. Solving SVM and LSSVM formulations using SUMT

3.1. SVM using SUMT and relaxed-SVM

To apply SUMT to the classical SVM, we consider the optimi-
zation problem (6) subject to constraints (7)–(8). We note that
our updates always ensure that constraints (8) are satisfied, hence
these are not considered separately; the feasible region being
convex, we are ensured of convergence to the global optimum.
The SUMT based procedure outlined in Section 2.1 indicates that we
need to solve a sequence of minimization problems ðp¼ 1;2, . . .Þ of
the form

min
l

1

2

XM
i ¼ 1

XM
j ¼ 1

yiyjliljKij�
XM
i ¼ 1

liþap

XM
i ¼ 1

yili

�����
�����
2

¼min
l

1

2

XM
i ¼ 1

XM
j ¼ 1

yiyjliljðKijþapÞ�
XM
i ¼ 1

li ð21Þ

Note that the sequence of minima of (21), ðp¼ 1;2, . . .Þ, subject
to (8), converge to the solution for the classical SVM formulation,
in the limit, as p-1.
The relaxed SVM solves only a single problem from the sequence,
i.e. it solves the optimization problem

min
l

1

2

Xm

i ¼ 1

XM
j ¼ 1

yiyjliljðKijþapÞ�
XM
i ¼ 1

li ð22Þ

subject to the constraints

0rlirC, i¼ 1;2, . . . ,M ð23Þ

The problem (22) subject to constraints (23) is a QPP with only
box constraints, and without the usual linear constraint. In the
sequel, we see that it is easier to solve than the conventional SVM
formulation. We subsequently develop an efficient algorithm,
termed as 1SMO, for determining the Lagrange multipliers.

3.2. LSSVM using SUMT and relaxed-LSSVM

The SUMT based procedure outlined in Section 2.1 indicates
that we need to solve a sequence of minimization problems
ðp¼ 1;2, . . .Þ of the form

min
l

1

2

XM
i ¼ 1

XM
j ¼ 1

yiyjliljPij�
XM
i ¼ 1

liþap

XM
i ¼ 1

yili

�����
�����
2

¼min
l

1

2

XM
i ¼ 1

XM
j ¼ 1

yiyjliljðPijþapÞ�
XM
i ¼ 1

li ð24Þ

Note that the sequence of minima of (24), ðp¼ 1;2, . . .Þ, subject
to (19), yields the solution to the classical LSSVM formulation in
the limit p-1.

The relaxed LSSVM solves only one problem in the sequence,
i.e. it minimizes the objective function

1

2

Xm
i ¼ 1

XM
j ¼ 1

yiyjliljðPijþapÞ�
XM
i ¼ 1

li ð25Þ

Since the qi’s are unconstrained, the box constraints are absent in
this case. The problem (25) is a QPP without the usual linear
constraint.
4. Solving relaxed-SVM and relaxed-LSSVM

We proposed the relaxed-SVM (RSVM) and relaxed-LSSVM
(RLSSVM) formulations in Section 2.1. The duals of the RSVM and
RLSSVM are very similar to each other and can be written in a
unified way as follows:

min
l

1

2

XM
i ¼ 1

XM
j ¼ 1

yiyjliljðQijÞ�
XM
i ¼ 1

li ð26Þ

where Qij ¼ Kijþap in case of RSVM and Qij ¼ Pijþap in case of
RLSSVM, where Pij is given by (20). Box constraints are present in
the case of the RSVM only. Since the linear constraint of the form
(7) is absent from these formulations, we propose to update one
multiplier at a time. To this end, we develop the 1SMO algorithm.

4.1. The 1SMO algorithm

We consider the following optimization problem:

1

2

XM
i ¼ 1

XM
j ¼ 1

yiyjliljðQijÞ�
XM
i ¼ 1

li ð27Þ

Note that the box constraints

0rlirC, i¼ 1;2, . . . ,M ð28Þ

where present are considered during the update of the multi-
pliers. Without loss of generality, let l1 be the multiplier that is to



Fig. 2. The 1SMO-RLSSVM algorithm for the relaxed LSSVM.
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be updated. The objective function in (27) may be rewritten as a
function of l1 only as

Q ðl1Þ ¼�l1�
XM
j ¼ 2

ljþl1y1

XM
j ¼ 2

ljyjðQ1jÞþ
1

2
l2

1ðQ11Þ

þ
1

2

XM
i ¼ 2

XM
j ¼ 2

yiyjliljðQijÞ ð29Þ

We assume Q to be symmetric and use y2
1 ¼ 1 for (29). For the

new value of l1 to lie at an extremal point of Q ðl1Þ, we have
@Q=@l1 ¼ 0:

) 1�lnew
1 ðQ11Þ�y1

XM
j ¼ 2

ljyjðK1jÞ ¼ 0 ð30Þ

For the extremal point to be a minimum we require

@2Q

@l2
1

40) ðQ11Þ40 ð31Þ

From (30) we obtain

lnew
1 ðQ11Þ ¼ 1�y1

XM
j ¼ 2

ljyjðQ1jÞ ð32Þ

Defining f ðxÞ ¼wTfðxÞþb, (32) can be written as

lnew
1 ðQ11Þ ¼ lold

1 ðQ11Þþ1�y1f oldðx1Þ ð33Þ

which gives us the following update rule:

lnew
k ¼ lold

k þ
1�ykf oldðxkÞ

ðQkkÞ
ð34Þ

where we have written the rule for any k in place of 1. The box
constraints (23) are considered during the update; if any multi-
plier crosses the bounds, it is held at the boundary value. The
update rule (34) translates to

lnew
k ¼ lold

k þ
1�ykf oldðxkÞ

ðKkkþapÞ
ð35Þ

in the case of the relaxed SVM, and to

lnew
k ¼ lold

k þ
1�ykf oldðxkÞ

ðPkkþapÞ
ð36Þ

in the case of the relaxed LSSVM, where Pkk is given by (20). Since
the update rule updates one multiplier at a time, updating pairs of
multipliers as in the case of the SMO [13] is no longer necessary.
This leads to the 1SMO-RSVM algorithm for relaxed SVM and
1SMO-RLSSVM algorithm for relaxed LSSVM, which are summar-
ized in Figs. 1 and 2 respectively. These algorithms serially update
all the multipliers until convergence is achieved.

In the following section, we discuss the primal formulations
that lead to the relaxed duals discussed above. In deriving the
dual formulations from their primal versions, we find that the use
Fig. 1. The 1SMO-RSVM algorithm for the relaxed SVM.
of KKT conditions can be used to make the multiplier updates
more efficient, since multipliers that do not violate the KKT
conditions do not need to be modified. In the process, we obtain
a more efficient version of the 1SMO algorithm, that we employ in
all of our experiments.
5. Discussion on the SUMT-based reformulations

5.1. The relaxed SVM primal

We derived the relaxed SVM and the relaxed LSSVM by using
the dual formulations. In this section, we obtain similar construc-
tions starting from the primal formulations. Consider the follow-
ing optimization problem in its primal form:

min
q,w

1

2
wT wþ

A

2
b2þCeT q ð37Þ

subject to constraints

yk½w
TfðxkÞþb�Z1�qk

qkZ0, k¼ 1;2, . . . ,M ð38Þ

This differs from the classical SVM formulation because of
addition of ðA=2Þb2 in the objective function. The constraints are
the same as those in the classical SVM formulation. Here, A is a
constant whose choice we discuss in the sequel. Note that for
A¼ 1, we obtain the formulation of [11], which is also related to
the Kernel Adatron [5]. The Lagrangian for the problem (37)–(38)
is given by

L¼
1

2
ðwT wþAb2

ÞþCeT q�
XM
k ¼ 1

bkyk�
XM
k ¼ 1

lk½1�qk�yk½w
TfðxkÞþb��

ð39Þ

The KKT optimality conditions are given by

rwL¼ 0) w¼
XM
k ¼ 1

lkykfðxkÞ ð40Þ

@L

@b
¼ 0) b¼

1

A

XM
k ¼ 1

lkyk ð41Þ

@L

@qk
¼ 0) C�lk�bk ¼ 0) lkþbk ¼ C ð42Þ

From (41) and (42), we observe that

wTfðxÞþb¼
XM
k ¼ 1

lkyk Kðxk,xÞþ
1

A

� �
ð43Þ

where the kernel K is defined in the usual manner.
With a little algebra, we obtain the dual problem as

min
l

1

2

Xm
i ¼ 1

XM
j ¼ 1

yiyjlilj Kijþ
1

A

� �
�
XM
i ¼ 1

li ð44Þ
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subject to the constraints

0rlirC, i¼ 1;2, . . . ,M ð45Þ

Observe that (44)–(45) is identical to the relaxed SVM for-
mulation of (22)–(23), with ap ¼ 1=2A. It is tempting to relate the
dual formulations to a conventional SVM by considering the limit
as A-1. However, we see from the earlier discussion on SUMTs
that this limit must be obtained by considering the sequence, and
cannot be obtained simply by setting 1=2A to zero.

5.2. The relaxed LSSVM primal

Consider the optimization problem

min
q,w

1

2
wT wþ

A

2
b2þCqT q ð46Þ

subject to the constraints

yi½w
TfðxiÞþb�þqi ¼ 1, i¼ 1;2, . . .M ð47Þ

The Lagrangian for the problem (46)–(47) is given by

L¼
1

2
ðwT wþAb2

ÞþCqT q�
XM
k ¼ 1

lk½1�qk�yk½w
TfðxkÞþb�� ð48Þ

The KKT optimality conditions are given by

rwL¼ 0) w¼
XM
k ¼ 1

lkykfðxkÞ ð49Þ

@L

@b
¼ 0) b¼

1

A

XM
k ¼ 1

lkyk ð50Þ

@L

@qk
¼ 0) qk ¼

lk

C
ð51Þ

From (50) and (51), we observe that

wTfðxÞþb¼
XM
k ¼ 1

lkyk Kðxk,xÞþ
1

A
þ

1

C

� �
ð52Þ

where the kernel K is defined in the usual manner.
On simplifying, we obtain the dual problem as

1

2

Xm

i ¼ 1

XM
j ¼ 1

yiyjlilj Pijþ
1

A

� �
�
XM
i ¼ 1

li ð53Þ

where Pij is given by (20).
Observe that (53) is identical to the relaxed SVM formulation

of (25), with ap ¼ 1=2A. Once again, we note that the limiting case
when 1=A tends to zero cannot be obtained in a single step, and
the sequence of minima must be considered in order to reach the
minimum of the original LSSVM solution. In the sequel, we
illustrate this through a simple experiment.
6. Experimental evaluation

6.1. Experimental setup

In order to evaluate the effectiveness of the proposed methods, we
conducted four different experiments. In our first experiment we
observe the effect of the parameter ‘‘A’’ on the performance of the
1SMO algorithm. In the second experiment, we compare the perfor-
mance of 1SMO-RSVM with two state-of-the art implementations of
SVM, viz. LibSVM and SVMLight, on 13 benchmark datasets from the
UCI repository.1 In the third experiment, we compare the perfor-
mance of 1SMO-RLSSVM and LSSVM on the same 13 benchmark
1 http://archive.ics.uci.edu/ml/datasets.html
datasets. In the fourth and the final experiment we examine how
solutions to classical SVM and LSSVM problems can be obtained
using the SUMT based methods.

All our algorithms were implemented in Cþþ. The experiments
were performed on a dual 3.2 GHz Xeon server with 4 GB RAM.
We used the RBF kernel in all our experiments, with the value of
the exponent (gamma) set to 1. The value of the slack parameter C
was also chosen to be 1. Unless otherwise mentioned, in all our
experiments, the kernel entries were computed on a need basis
and cached for further use. All results are reported by following
the standard 10-fold cross-validation methodology.
6.2. The effect of A on the performance of 1SMO

In order to understand the effect of the parameter A, we varied
it from 1 to 104 and observed its effect on the performance of
1SMO-RSVM as well as on 1SMO-RLSSVM. While accuracy is
unaffected by changes in the value of A, the training time reduces
drastically with increasing values of A. Fig. 3 shows how training
time for 1SMO-RSVM varies as a function of log(A) for the mush-
room and kr-vs-kp datasets. The y-coordinate has been normalized
with respect to the largest training time for each dataset, i.e. by
dividing the training time with that for A ¼ 1. The plot indicates that
the rate of decrease of training time varies inversely with the value
of A; the lower the value of A, the greater is the rate at which the
training time decreases. The training time saturates beyond a
sufficiently large value of A (104). This behavior may be understood
from (35). A larger value of A corresponds to a larger step size, and
the algorithm converges faster, leading to a lower value of training
time. The rate of change of the step size is larger for smaller values
of A. This explains why the curve has a much larger slope for lower
values of A. Therefore, a sufficiently large value of A is a prudent
choice for 1SMO-RSVM. We observe similar behavior for 1SMO-
RLSSVM.
6.3. Comparison between 1SMO-RSVM, LibSVM and SVMLight

We next conducted a set of experiments on 15 different two-
class datasets from the UCI repository. The datasets were picked
to cover a wide range of number of features and instances. The
number of instances varied from 57 to 8124 and the number of
features varied from 9 to 126.

The first column of Table 1 presents the number of instances
and features for each dataset in the corresponding order as
comma-separated values along with the name of the dataset.
The table indicates the training times, accuracy, and number of
support vectors yielded by 1SMO, LibSVM and SVMLight on each
Fig. 3. Plot of variation of training time with increasing value of log(A) for the

mushroom and kr-vs-kp datasets. The training times are averaged over 10 folds.

http://archive.ics.uci.edu/ml/datasets.html


Table 1
Comparison between training times for 1SMO-RSVM, LibSVM and SVMLight. In

nearly all cases, the three algorithms find solutions with the same number of

support vectors, and show the same generalization performance.

Dataset Method Training

time

# S. V. ACC7std

Breast-Cancer

(286,51)

LibSVM 0.015 215 67.0270.98

SVMLight 0.016 215 67.0270.98

1SMO 0.006 215 72.0971.32

Breast-W

(699,10)

LibSVM 0.051 353 83.8771.12

SVMLight 0.054 353 83.8771.12

1SMO 0.021 353 93.2570.8

Credit-G

(1000,64)

LibSVM 0.389 783 69.7870.76

SVMLight 0.274 783 69.7870.76

1SMO 0.157 783 69.7870.76

Heart-C (302,23) LibSVM 0.03 240 54.7271.16

SVMLight 0.028 240 54.7271.16

1SMO 0.013 240 54.7271.16

Heart-H (294,25) LibSVM 0.028 233 66.3570.85

SVMLight 0.026 233 66.3570.85

1SMO 0.011 233 66.3570.85

Heart-Statlog

(270,14)

LibSVM 0.023 214 58.2472.42

SVMLight 0.019 214 58.2472.42

1SMO 0.008 214 58.2472.42

Hepatitis

(155,30)

LibSVM 0.009 123 79.8171.9

SVMLight 0.008 123 79.8171.9

1SMO 0.003 123 79.8171.9

Ionosphere

(350,35)

LibSVM 0.021 167 93.1470.95

SVMLight 0.029 167 93.1470.95

1SMO 0.011 189 93.0570.93

Kr Vs Kp

(3196,41)

LibSVM 3.48 2488 96.5270.28

SVMLight 2.76 2488 96.5270.28

1SMO 1.06 2488 97.0570.19

Mushroom

(8124,126)

LibSVM 19.62 6340 10070

SVMLight 18.27 6340 10070

1SMO 9.85 6340 10070

Pima-Indian

(768,9)

LibSVM 0.17 601 65.9670.95

SVMLight 0.14 601 65.9670.95

1SMO 0.07 601 65.9670.95

Sick (3772,33) LibSVM 4.94 2890 93.8570.17

SVMLight 3.93 2890 93.8570.17

1SMO 1.97 2890 93.8570.17

Sonar (208,61) LibSVM 0.011 134 78.5571.48

SVMLight 0.016 134 78.5571.48

1SMO 0.005 134 78.3571.74

Table 2
Comparison between training times for 1SMO-LSSVM and LSSVM. In nearly all

cases, the two algorithms find solutions with the same number of support vectors,

and show the same generalization performance.

Dataset Method Training

time (s)

# S.V. ACC7std

Breast-Cancer

(286,51)

LSSVM 0.023 215 67.0270.98

1SMO 0.009 215 66.6071.14

Breast-W (699,10) LSSVM 0.044 359 85.5371.10

1SMO 0.020 357 91.1970.88

Credit-G (1000,64) LSSVM 0.204 783 69.7870.76

1SMO 0.157 783 69.7870.76

Heart-C (302,23) LSSVM 0.019 240 54.7271.16

1SMO 0.012 240 54.7271.16

Heart-H (294,25) LSSVM 0.017 233 66.3570.85

1SMO 0.011 233 66.3570.85

Heart-Statlog

(270,14)

LSSVM 0.04 165 79.4570.87

1SMO 0.03 165 79.4370.96

Hepatitis (155,30) LSSVM 0.009 113 77.8671.52

1SMO 0.001 113 81.4571.54

Ionosphere

(350,35)

LSSVM 0.056 230 93.1271.24

1SMO 0.017 230 94.8270.88

Kr Vs Kp (3196,41) LSSVM 0.905 1582 89.8671.67

1SMO 0.450 1582 92.6271.11

Mushroom

(8124,126)

LSSVM 7.05 4030 99.9870.02

1SMO 4.27 4030 10070

Pima-Indian

(768,9)

LSSVM 0.1 601 65.9670.95

1SMO 0.073 601 65.9670.95

Sick (3772,33) LSSVM 3.13 2890 93.8570.17

1SMO 2.09 2890 93.8570.17

Sonar (208,61) LSSVM 0.018 146 83.6171.49

1SMO 0.007 146 82.5071.61

Fig. 4. Plot of variation of lT y with increasing iteration numbers for the SUMT

based algorithm on the sick dataset.
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of the 15 datasets. Based on the results of the first experiment, we
chose A ¼ 104 for 1SMO-RSVM.

Table 1 summarizes the results. In nearly all cases, the three
algorithms find solutions with the same number of support vectors,
and show the same generalization performance. It can be observed
that the training time of 1SMO-RSVM is consistently lower than the
training time of LibSVM and SVMLight. For the larger datasets, 1SMO-
RSVM achieves higher speedup factors, roughly between 2 and 4.
For each dataset, the lowest training time is marked in bold-face in
Table 1. We note that all three algorithms converge to solutions with
approximately the same number of support vectors, on all datasets.
The accuracy of 1SMO-RSVM on every dataset is either equal to or
slightly higher than the accuracies achieved by LibSVM and SVMLight.
1SMO-RSVM therefore emerges as an attractive alternative to the
widely used SMO approach for training SVMs.

The slight discrepancy between number of support vectors and
accuracy could be attributed to the difference in the ways the
value of b is computed in the case of the classical SVM and the
relaxed SVM.
6.4. Comparison between 1SMO-LSSVM and LSSVM

We next compare the performance of 1SMO-LSSVM and
LSSVM algorithms on the same 13 datasets. Table 2 shows the
dataset, the method compared, training time, number of support
vectors and accuracy achieved along with standard deviation in
the respective columns. It is clear from the comparison as made in
the table, that 1SMO-RLSSVM is 2–3 times faster than LSSVM.
6.5. Convergence of the SUMT solution

In our final experiment, we solve the classical SVM problem by
solving a sequence of relaxed-SVM problems. Each of the relaxed-



Fig. 5. Plot of JlSUMT�lSVMJ vs. iteration number for the SUMT based algorithm on

the sick dataset.
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SVM problem is solved using the 1SMO-RSVM algorithm. We use
the sick dataset from the UCI repository. We initialize A with a
value of 104 and successively reduce A by a factor of r¼ 0:9. We
observe the value of lT y after each iteration. Fig. 4 shows how lT y

reduces as a function of the number of SUMT-iterations. As
expected, the value of lT y decreases with successive iterations
and quickly converges to 0.

Fig. 5 shows how the Lagrange multipliers for 1SMO-RSVM
converge to the solution obtained by SVMLight, as iterations
progress. The plot demonstrates that the sequence of relaxed
SVM sub-problems converges to the solution of the classical SVM.
We observe similar behaviour on all the datasets for relaxed-SVM
as well as for relaxed-LSSVM problems.
7. Concluding remarks

In this paper, we used Sequential Unconstrained Minimization
Techniques (SUMTs) to show that the classical SVM and LSSVM
formulations can be solved through a sequence of unconstrained
optimization problems using the dual formulations. We showed that
solving an appropriate problem in that sequence can yield compe-
titive solutions with large reductions in training times. This led us to
alternative approaches termed as the relaxed SVM and the relaxed
LSSVM methods. Both the relaxed-SVM as well as relaxed-LSSVM
formulations turn out to be variants of the original SVM and LSSVM
formulation in the primal. Some of these variants have been
reported in the literature in the past, albeit not through the frame-
work introduced in this paper. The relaxed-SVM formulation is
related to the kernel adatron machine [17]. The relaxed-LSSVM
problem has similarities with proximal SVM [6]. There are many
other flavours of SVM, that use other notions of class separability.
Relaxed versions of these offer similar advantages. Additionally,
kernel optimization can be speeded up by using relaxed variants.
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