
Document classification through interactive
supervision on both document and term labels

Shantanu Godbole, Abhay Harpale, Sunita Sarawagi, and Soumen
Chakrabarti

IIT Bombay
Powai, Mumbai, 400076, India

Contact: shantanu@it.iitb.ac.in

Abstract. Effective incorporation of human expertise, while exerting
a low cognitive load, is a critical aspect of real-life text classification
applications that is not adequately addressed by batch-supervised high-
accuracy learners. Standard text classifiers are supervised in only one
way: assigning labels to feature vectors derived from whole documents.
They are thus deprived of the enormous wisdom that humans carry about
the significance of words and phrases in context. We present HIClass,
an interactive and exploratory labeling package that actively collects
user opinion on feature representations and choices, as well as whole-
document labels, while minimizing redundancy in the input sought. Pre-
liminary experience suggests that, starting with essentially an unlabeled
corpus, very little cognitive labor suffices to set up a meaningful labeled
collection on which standard classifiers perform well.

1 Introduction

Motivated by applications like spam filtering, e-mail routing, Web di-
rectory maintenance, and news filtering, text classification has been re-
searched extensively in recent years [10, 7, 13] by the machine learning
community. State-of-the-art classifiers like Support Vector Machines (SVMs)
now achieve up to 90% accuracy on well-known benchmarks. Almost
all machine learning research related to text classification assumes some
fixed, simple class of feature representation (such as bag-of-words). They
also assume at least a partially labeled corpus. Statistical learners also de-
pend on the deployment scenario to be reasonably related to the training
population.

Many of these assumptions do not hold in real-life applications. Dis-
crimination between labels can be difficult unless features are engineered
and selected with extensive human knowledge, not left to a standard bag-
of-words representation. Often, there is no labeled collection to start with.
In fact, even the label set may not be specified up front, and must evolve

with the administrator or user’s understanding of the application. Several
projects reported at the annual Operational Text Classification workshops
[1] describe applications spanning law, journalism, libraries and scholarly
publications in which automated, batch-mode techniques were not sat-
isfactory; substantial human involvement was required before a suitable
feature set, label system, labeled corpus, rule base, and resulting system
accuracy were attained. However, not all the techniques used in commer-
cial systems are publicly known, and few general principles can be derived
from these systems.

There is much scope for building machine learning tools which engage
the user in an active dialog to acquire human knowledge about features
and labels. In the special case where supervision is available only as label
assignments, a large body of research on active learning has provided some
clear principles [4, 5] and strategies for maximum payoffs from the dialog.
We wish to significantly extend the active learning paradigm to include
both feature engineering and document labeling conversations, exploiting
rapidly increasing computing power to give the user immediate feedback
on her choices.

Our contributions: In this paper we present the design of a system HIClass
(Hyper Interactive text Classification) for providing this tight interaction
loop. We extend SVMs to naturally absorb human inputs in the form
of feature engineering, term inclusion/exclusion and term and document
labels. In the past, such actions were performed through ad hoc means
and as a distinct processing step before classification construction. We
make these more effective by (1) providing the user easy access to a rich
variety of summaries about the learnt model, the input data and aggregate
performance measures, (2) drawing the user’s attention to terms, classes
or documents in greatest need of inspection, and (3) helping the user
assess the effect of every choice on the accuracy on test data.

Outline: We describe the HIClass workbench in Section 2 and review the
design choices and various modes of user interaction. Section 3 describes
our method of active learning on documents. Section 4 introduces the idea
of active learning on terms. We report our experiences with the workbench
and experimental results in Section 5. We review related work in Section 6
and conclude in Section 7.

2 The HIClass workbench for text classification

We present an overview of HIClass in Fig. 1. The lower layer shows the
main data entities and main processing units in the system. There is a
small pool of labeled documents (usually sampled into a training and test
set) and a large unlabeled pool. A feature extractor turns the documents
into feature vectors. Features are usually words, but the user can inter-
actively refine features to be more complex; this is described next. The
system can store and access by name multiple classifiers with their fitted
parameters at any given time, assisting comparative analysis of parame-
ters, performance on held-out data, and drill-down error diagnostics. The
upper layer shows the prominent menus/modes in which a user can in-
teract with the system. In the rest of this section, we will describe the
important building blocks shown in Fig. 1.

Labeled
DocumentsLabeled

DocumentsLabeled
Documents

Labeled
DocumentsLabeled

DocumentsUnlabeled
Documents

Feature
Extractors

Models
and

Params

Learner Diagnostic
Summary

� Suggest documents to label
� Suggest labels for documents
� Check label consistency

� Suggest influential terms
� Accept engineered features
� Add/drop features

� Term by class parameters
� Drill down into documents
� Accuracy summaries

Document-level interaction Word-level interaction Model+data exploration

Fig. 1. The architecture of HIClass

2.1 Document and classification models

The first step of the design of HIClass is to choose a flexible classification
model template that (1) suits state-of-the-art automated learners and
(2) can be easily interpreted and tuned by the user.

A document is a bag of features. By default, and most often, features
are words after minor processing like stemming and case-normalization.
But the user can also (dynamically) define features to reflect domain
knowledge. E.g., month names or currency names may be conflated into
synthetic features. On the other hand, the user may notice harmful con-
flation between “blood bank” and “bank”, and define “blood bank” as a

single compound feature. We will continue to use term, word and feature
interchangeably where no confusion can result. With any given feature
representation, a document is represented in the common vector space
model, normalized to unit L1 or L2 norm.

Labeled documents can be associated with more than one class in
general. HIClass supports linear additive classifier models, where each
class c is associated with a set of weights wc

1, . . . w
c
T corresponding to the

T terms in a vocabulary. Each document is represented by a vector of
non-negative weights x = (x1, . . . , xT), each component corresponding to
a feature. The classifier assigns a document all class labels c for which wc ·
x + bc ≥ 0 where bc is a scalar per-class bias parameter. Since documents
vectors have only non-negative components, both the magnitude and sign
of components of wc give natural interpretations of the salience of a term
with respect to a class.

The linear additive model generalizes a number of widely-used classi-
fiers, including naive Bayes (NB), maximum entropy, logistic regression,
and support vector machines (SVMs). Here we focus on SVMs. Given doc-
uments di with labels yi ∈ {−1,+1}, a two-class linear SVM finds a vector
w and a scalar constant b, such that for all documents yi(wc · di + b) ≥ 1,
and ||wc|| is minimized.

When the application demands more than two classes, one can (1) rewrite
the above optimization slightly, with one w vector per class, so that the
discriminant wcj · di + bj is largest for the correct class cj ; or (2) build
an ensemble of SVMs, each playing off one class against another (“one-
vs-one”), and assigning the document to the class that wins the largest
number of matches; or (3) build an ensemble of SVMs, as many as there
are classes, each predicting an yes/no label for its corresponding class
(“one-vs-rest” or “one-vs-others”). In practice, all these approaches are
comparable in accuracy [6]. We use one-vs-others as it is easily extended
to make multi-labeled prediction and is efficient.

2.2 Exploration of data/models/performance summaries

HIClass facilitates the user to view the trained classifier scores, aggregate
as well as drill-down statistics about terms, documents and classes, and
accuracy measures on user-chosen corpus subsets.

After building an initial classifier using the starting labeled set L,
the user can view the learnt model as a matrix of class-by-term scores.
Simple inspection of term-class scores in this OLAP-like tool enables the
expert to propose changes to per-class classification models like including,
excluding and ignoring certain terms for certain classes. The user-interface

is tightly coupled to allow easy movement from a term-centric to a class-
centric analysis. In either of the term/class-centric interface, the user can
see a projection of documents which contain particular terms contained
in various classes, with proper term highlighting.

With every proposed change, the user can study the impact of the
change by observing its performance on the test dataset. The user can
inspect graphs for the accuracy of the whole system through iterations.
Micro/macro-averaged precision and recall for the whole system as well
as per-class precision and recall statistics are available. The user can iden-
tify classes which are hampering the overall performance of the system.
The user can then concentrate on this class further or choose to add
more labeled documents actively. A confusion matrix view could reveal
two classes that confuse a lot with each other and the user can visual-
ize/modify discriminating terms by exploring the results of a one-vs-one
SVM on these two classes.

Various aggregate statistics of the data can also be seen at any active
iteration. Per-class population, similarity distribution and uncertainty
distribution help the user get an idea of the state of the system.

2.3 Feature Engineering

Fast evaluation over a variety of test data enables a user to easily identify
limitations of a trained model and perhaps the associated feature set.
Consider an example of the well-known Reuters-21578 dataset in Figure 2
which shows a few example rows and columns from the score matrix of a
trained SVM model.

Most users, on inspection of the set of scores, will be able to propose
a number of modifications to the classifiers. Some of these modifications
may not impact performance on the available test set but it could be
beneficial in improving the robustness and performance of the classifier
on future unseen instances. Close inspection of some of the terms shown
to have a high positive weight for the class crude in Figure 2 reveals that
– “Reagan” is found to be a positive indicator of the class crude though

proper names should be identified. “Ecuador” and “Ecuadorean” show
the insufficiency of the stemming algorithm used.

– Another frequent phenomenon is the inadequate combination of words.
“World bank” and “Buenos Aires” should always occur together as a
bi-gram; “Union”, a high weight term for crude should be associated
with “Pacific Union” in crude and “Soviet Union” in other classes.

– Aggregation: Month names, currencies, date formats, proper nouns
should be recognized and grouped into appropriate aggregate terms.

Fig. 2. Reuters started with 10 documents in each class. Term weights for the class
‘crude’ are shown in the OLAP-like tool to inspect documents, classes and terms.

2.4 Document labeling assistant

When unlabeled data is abundant and labeled data is limited, a user can
choose to add labels to some of the unlabeled documents. Active learning
has proven to be highly effective in interactively choosing documents for
labeling so that the total number of documents to be labeled is minimized.
However, this number may not be an accurate indicator of cognitive load
on the user. In the end, we would like to minimize the “think time” of
the user while maximizing learning rate. To that end, our system assists
the user in the labeling task through a number of mechanisms:

– We group together related documents for labeling so that the user can
bulk-label a number of documents in one shot.

– We provide a set of suggested class labels and for each suggested class
the user can inspect the set of documents in it most similar to the
document to be labeled.

– Document labeling is a complicated task and sometimes users make
mistakes. We have a built-in conflict checker module that checks for
gross violation in the consistency of the labeled set and shows them
to the user.

Detailed mechanisms of performing the above tasks appear in Section 3.

2.5 Term-level active learning

The high accuracy of linear SVMs at text classification [7] suggests that
the class membership decision depends on the combination of “soft” evi-
dence from a class-conditional subset of the corpus vocabulary. E.g., high
rate of occurrence of one or more of the words wicket, run, stump, and
ball leads us to believe a document is about (the game) cricket.

Given enough training documents, good classifiers can learn the im-
portance of these terms. But in the initial stages of bootstrapping a la-
beled corpus, it is far more natural for the user to directly specify these
important features as being positively associated with the class “cricket”,
rather than scan long documents for the trigger words to be able to assign
yes/no labels to whole documents.

In HIClass we allow users to label terms with classes just like docu-
ments. We expect the cognitive load of labeling terms to be lower because
the user does not have to waste time reading long documents where most
of the words are either clearly associated with a class or are irrelevant.
HIClass helps a user in spotting such terms by doing active learning on
terms. We elaborate on this in Section 4.

3 Active learning on documents

The system starts with a small training pool of labeled documents L and
a large pool of unlabeled documents U . Assume that the number of class
labels is k and that documents can be assigned multiple labels. We train
k one-vs-others SVMs on L.

Our goal during active learning is to pick some unlabeled documents
about whose predictions the classifier is most uncertain. Various measures
are used for calculating uncertainty in the literature for SVMs in text
classification setting [12]. However, these assume binary, single-labeled
documents. We extend these to the multi-labeled setting as described
next.

3.1 Uncertainty

Each unlabeled document gets k discriminant values, one from each SVM
in the one-vs-others ensemble. We arrange these values on the number
line, and find the largest gap between adjacent values. A reasonable policy
for multilabel classification using one-vs-others SVMs is that discriminant
values to the right of the gap (larger values) correspond to SVMs that

should be assigned a positive label to the document and the rest should
be negative.

We need this policy because, in our experience with one-vs-others
ensembles, as many as 30% of documents may be labeled negative by all
members of the ensemble. For single label classification, it is common to
pick the maximum discriminant even if it is negative. Our policy may be
regarded as an extension of this heuristic to predict multiple labels.

With this policy, we declare that document to be most uncertain
whose this largest gap is the smallest among all documents. When docu-
ments are restricted to have one label, this reduces to defining certainty
(confidence) in terms of the gap between two highest scores.

3.2 Bulk-labeling

The user could label these uncertain documents one by one. But expe-
rience suggests that we can do better: often, many of these documents
are quite similar, and if we could present tight clusters that the user can
label all at once, we can reduce the cognitive load on the user and speed
up the interaction.

We pick the u most uncertain documents and compute pairwise vector-
space similarity between documents in the uncertain set, and prepare for
the user a cluster/subset of fixed size (set by the parameter s) that has
the largest sum of pairwise similarities.

When showing these uncertain clusters to the user, we also provide
an ordered list of suggested labels. The ordering is created by taking
the centroid of each uncertain cluster and finding its similarity to the k
centroids of positive training data of the k classes.

(An alternative is to use the existing classifier itself to propose sugges-
tions based on the confidence with which the documents in the uncertain
cluster are classified into various classes. However, we feel keeping the
same suggestion list for all documents in each uncertain cluster reduces
the cognitive load on the user. Also, empirically we found in the initial
stages this provides better suggestion than the SVMs.)

The user provides feedback to the system by labeling all documents
in an uncertain cluster in one shot. The labeled documents are inspected
by a conflict check module for consistency. We defer discussion of this
topic due to lack of space. Once the user confirms the labels, the newly
labeled documents are removed from U and added to L. The system then
iterates back to re-training the SVM ensemble.

Start with a labeled pool L and an unlabeled pool U .
while user wants to continue with active labeling do

Train a A-vs-notA SVM ensemble on T
Calculate uncertainty on all documents in U :
for all documents d ∈ U do

Get k scores by applying the k SVMs to d. Find the largest gap in score
values.

end for
Sort the |U | gaps in ascending order and add top u to the uncertain set.
Select the s most similar documents from top u
Suggesting ranked list of labels for the group s:
for all k classes do

Find similarity between centroid of s and centroid of positive training data of
class k

end for
Sort these distances in a suggested list of classes
Present s and the ranked list of k suggestions to the user for active labeling
Accept multi-labeled suggestions for all documents in s. Check for conflicts
Add these s documents to L with user provided labels and remove from U

end while

Fig. 3. The algorithm for active learning on documents

4 Active learning involving terms

As mentioned in Section 2.5, users generally find it easier to bootstrap
the labeled set using trigger terms (that they already know) rather than
start outright with a tedious scrutiny of lengthy documents for the known
triggers. We first demonstrate this with a concrete example from the
Reuters dataset.

Num labeled=1 Num labeled=50

Term w Term w

forecast 0.40 rate 2.08
bank 0.29 fe 1.97
noon 0.20 pct 1.65
account 0.20 market 1.26
oper 0.14 custom 1.01
market 0.14 interest 0.92
england 0.09 forecast 0.92

stg 0.87
bank 0.83

We trained two SVMs using the interest class in Reuters. One SVM
was given one positive example labeled interest and one negative example
from each of the other classes. The other SVM was given 50 documents
with positive interest labels, and 50 negative examples from each of the

other classes. Each SVM estimated a weight vector. For each SVM, we
report some terms corresponding to the maximum weight components in
the table.

The SVM that uses more data elicits terms like “rate” “fe” (foreign
exchange), “pct” (percent), and “interest”: terms that a user can readily
recognize as being positively associated with the label interest. But note
that the SVM that uses very small amounts of training data cannot gather
this evidence on its own, from document labels alone.

We argue that the user already knows many such trigger terms, and
should not need to go through a document scrutiny and labeling process
to make these important triggers be known to the system. Instead, we
allow a direct process of proposing trigger terms within the additive linear
framework. We believe such manual addition of terms will be most useful
in the initial phases to bootstrap a starting classifier which is subsequently
strengthened using document-level active learning.

We propose a mechanism analogous to active learning on documents
to help a user spot such terms. The SVM treats labeled terms as mini-
documents whose vector representation has a 1 at the term’s position and
0 everywhere else, thus having length 1 like regular documents

We develop a criterion for term active learning that is based on the
theoretically optimum criterion of minimizing uncertainty on the unla-
beled set but avoids the exhaustive approach required to implement it [4,
12, 5] by exploiting the special nature of single-term documents.

Consider adding a term t whose current weight is wt in the trained
SVM. For terms not in any of the labeled documents wt = 0. Suppose
we add t as a “mini-document” with the user-assigned label yt. Let the
new SVM weight vector be w′. Since the term t is a mini-document whose
vector has xt = 1 and ∀t′ 6= t, xt′ = 0, we can assume that in the new
w′ only wt is changed to a new w′

t and no other wt′ is affected. This
is particularly true for terms that do not already appear in the labeled
set. Also, we know from the formulation of the SVM that for the term,
yt(w′

t + b) ≥ 1. If the current wt is such that |wt + b| > 1 then adding
t will probably not have any affect. So we consider only those ts where
|wt+b| < 1. Adding t with a label +1 will enforce w′

t+b = 1 i.e., w′
t = 1−b

and with a label of −1 will make it w′
t = −1−b. For each possible value of

yt = c, we get a new value of w′
t(c). Thus we can directly compute the new

uncertainty of each unlabeled document x by computing the change in
the distance from separator value as (w′

t(c)−wt)xt. This gives us a way to
compute the total uncertainty over the unlabeled set without retraining
a SVM for each candidate term. The final algorithm is given in Fig. 4.

for all unlabeled documents xi ∈ U do
Compute current distance from separator di

end for
for all term t with |wt + b| < 1 do

for all class labels c do
Calculate Pr(c, t): the probability that t will be labeled with c
Pr(c, t) = fraction of all docs that contain t and are predicted c
Estimate the new w′

t as (1− b) when c = 1 and as (−1− b) when c = −1
Compute the new distance for each unlabeled doc x as (w′

t − wt)xt + di

Compute uncertainty U(c, t) with respect to the new distances
end for
score(t) =

∑
c
U(c, t) Pr(c, t)

end for
Choose some terms with low value of scores

Fig. 4. The algorithm for term-based active learning

5 Experimental study

We have experimented with several text classifications tasks ranging from
well-established benchmarks like Reuters-21578 and 20-newsgroups to
more noisy classification tasks chosen from Web directories [11]. It is
difficult to quantify the many ways in which HIClass is useful. Therefore
we pick a few measures like the benefits of active learning with terms and
document to report as performance numbers.

HIClass consists of roughly 5000 lines of C++ code for the backend
and 1000 lines of PHP scripts to manage frontend user interactions. The
frontend is a web browser, readily available on any user’s desktop. XML
is used to pass messages between the frontend and the server backend.
LibSVM [3] is used as the underlying SVM classifier. Porter stemming
and the SMART stoplist is used upon user preference.

All our development and experiments were done on a dual-processor
P3 server running Debian Linux and with 2GB RAM. Due to space limi-
tations we report numbers for fixed settings of some of our system param-
eters. Unless otherwise stated, the number of initial documents per class
is set to 1, the number of documents selected for bulk labeling is 5 and
the number of uncertain documents over which we pick similar clusters
in the algorithm of Section 3 is set to 75.

5.1 Document-level active learning

We now show how active learning on documents can reduce the number
of documents for which the user needs to provide labels in a multiclass,

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

M
ic

ro
 F

1

Training Set Size

random
active

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

M
ac

ro
 F

1

Training Set Size

random
active

Fig. 5. Reuters-21578 - Micro and Macro-averaged F1 on held-out test data while
increasing training set size, randomly versus using document level active learning.

multi-labeled settting. We started with one document in each class and
added 5 documents in each round. All graphs are averaged over 30 random
runs. Fig. 5 compares the micro and macro averaged F1, of selecting 5
documents per round using active learning and using random selection for
Reuters (other datasets omitted due to lack of space). We see that active
learning outperforms randomly adding documents to L and reaches its
peak accuracy faster.

5.2 Reducing labeling effort

We next show the effectiveness of the two techniques that we proposed in
Section 3 for reducing the effort spent for labeling a document. For lack of
space we only show results with Reuters in this sub-section; results with
other datasets were similar.

Quality of Suggestions We quantify the quality of suggestions pro-
vided to the user by the average rank of the true labels in the suggested
list. We see in Figure 6 that even in the initial stages of active learn-
ing the true classes on an average are within rank 4 whereas the total
number of possible classes is 20 for this dataset. We also see that the
suggestions with u (the uncertain set size) fixed at 75 are better than at
10 as expected.

Bulk-labeling We quantify the benefit of bulk-labeling by measuring
inverse similarity, defined as the number of true distinct labels in a
batch of s documents as a fraction of the total number of label assignments
in this batch. For example, if s = 5 and each document in a batch has
one label and all of them are the same, then the inverse similarity is 1

5 .

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 50 100 150 200

S
ug

ge
st

io
n

Q
ua

lit
y

Training Set Size

10
75

Fig. 6. Reuters - Quality of suggestion
measured as the rank at which correct la-
bels are found in the suggested labels

 0

 0.5

 1

 1.5

 2

 0 20 40 60 80 100

In
ve

rs
e

S
im

ila
rit

y

Training Iterations

3
5

10

Fig. 7. Reuters - Benefits of bulk-labeling
measured as inverse similarity defined in
section 5.2

It is reasonable to assume that the cognitive load of labeling is propor-
tional to the number of distinct labels that the user has to assign. Subject
to this assumption, Fig. 7 establishes that our chosen set of similar docu-
ments reduce cognitive load by a factor of 2. The benefits are higher in the
initial stages of active learning because then there are several documents
with high uncertainty to choose from. Also, as we increase the number of
documents per batch, the benefits get larger.

Of course, we cannot set s to be very high because there is a tradeoff
between reducing effort per label by bulk labeling similar documents and
increasing number of labels by possibly including redundant documents
per batch. If we calculated labeling cost in terms of number of documents
to be labeled, the optimum strategy is to label the most uncertain single
document per batch. But the effort the user has to spend in deciding on
the right label for rapidly changing document contexts will be high. The
right tradeoff can only be obtained through experience and will vary with
datasets and user’s familarity with the data.

5.3 Term-level active learning

In these experiments our goal is to evaluate the efficacy of training with
labeled terms. Therefore we conduct the following idealized experiment.

We take all available labeled documents for a class and train a one-
vs-rest SVM for that class. All single-term documents that are predicted
as positive or negative with very large margins (above b/3 in this exper-
iment) are labeled with the predicted class and the rest are not labeled.
We then start with a SVM trained initially with a single labeled docu-

ment on each side and keep adding these collected labeled terms in order
of their magnitude.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

F
1

Training Size

earn : Active
acq : Active

money-fx : Active
grain : Active
crude : Active

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

F
1

Training Size

Camping : Active
Equipment : Active

Fishing : Active
Guides_and_Outfitters : Active

Hiking : Active

Fig. 8. Adding labeled terms in score order Reuters (left) and Outdoors (right)

In Fig. 8 we show the resulting accuracy on various classes of Reuters
and the Outdoors dataset [11]. These graphs show some very interesting
patterns. First, in almost all classes the addition of the first 20 terms
achieves big jumps in accuracy for most classes and the accuracy goes
from 5% with just one labeled document to 50-70% for Reuters. A similar
jump is observed on the Outdoors dataset. However, unlike documents we
cannot continue finding relevant terms and eventually unrelated terms can
hurt accuracy. This confirmed our intuition that term-level active learning
is best viewed as a bootstrapping technique which is later followed by
document-level active learning. More experiments were terms to be added
are selected via active learning are part of ongoing work.

6 Related Work

Most earlier work on applying active learning to text categorization [12,
9] assume a single binary SVM whereas our proposed scheme is for multi-
ple one-vs-othersSVMs and for multi-labeled classification. Active learn-
ing has also recently been applied to the problem of selecting missing
attributes of labeled instances whose values should be filled in by the
user [8]. This differs from our setting of term active learning because our
goal is to add terms as additional labeled instances. [2] uses term labeling
for building lexicons of terms related to a concept. So the goal there is
not to assign documents to categories but to exploit the co-occurrence
patterns of terms in documents to categorize terms.

7 Conclusion

We have described HIClass, an interactive workbench for text classifica-
tion which combines the cognitive power of humans with the power of
automated learners to make statistically sound decisions. The system is
based on active learning, starting with a small pool of labeled documents
and a large pool of unlabeled documents. We introduce the novel concept
of active learning on terms for text classification. We describe our OLAP-
like interface for browsing the term-class matrix of the classifier cast as
a linear additive model. The user can tune weights of terms in classes
leading to better, more understandable classifiers. HIClass provides user
continuous feedback on the state of the system, drawing her attention to
classes, documents, and terms which would benefit by manual tuning.

In future work, we would like to engineer our system and make it
more scalable to handle very large datasets. Another interesting avenue
for further work is adding capabilities for adaptively evolving the label
set as the classification process proceeds.

References

1. 3rd workshop on operational text classification. OTC 2003.
2. H. Avancini, A. Lavelli, B. Magnini, F. Sebastiani, and R. Zanoli. Expanding

domain-specific lexicons by term categorization. In SAC, 2003.
3. C.-C. Chang and C.-J. Lin. Libsvm: a library for support vector machines (version

2.31).
4. D. A. Cohn, Z. Ghahramani, and M. I. Jordan. Active learning with statistical

models. Advances in Neural Information Processing Systems, volume 7, pages
705–712. The MIT Press, 1995.

5. Y. Freund, H. S. Seung, E. Shamir, and N. Tishby. Selective sampling using the
query by committee algorithm. Machine Learning, 28(2-3):133–168, 1997.

6. C. Hsu and C. Lin. A comparison of methods for multi-class support vector ma-
chines, 2001.

7. T. Joachims. Text categorization with support vector machines: learning with
many relevant features. Proceedings of ECML-98

8. D. Lizotte, O. Madani, and R. Greiner. Budgeted learning of naive-bayes classifiers.
In UAI, 2003.

9. A. K. McCallum and K. Nigam. Employing EM in pool-based active learning for
text classification. Proceedings of ICML-98

10. K. Nigam, J. Lafferty, and A. McCallum. Using maximum entropy for text classi-
fication, 1999.

11. S. Sarawagi, S. Chakrabarti, and S. Godbole. Cross-training: Learning probabilistic
mappings between topics. In SIGKDD, 2003.

12. S. Tong and D. Koller. Support vector machine active learning with applications
to text classification. Journal of Machine Learning Research, 2:45–66, Nov. 2001.

13. J. Zhang and Y. Yang. Robustness of regularized linear classification methods in
text categorization. In SIGIR, 2003.

