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What is a sequence?

Ordered set of elements: s = a,,a,,..a,

Each g, could be

— Categorical: domain a finite set of symbols Z, |Z|=m
— Numerical

— Multiple attributes

The length n of a sequence is not fixed

Order determined by time or position and could
be regular or irregular
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Motivation

Several real-life mining applications on
sequence data
Classical applications

— Speech, language, handwritten are all complex
sequences

Newer applications
— Bio-informatics: DNA and proteins

— Telecommunication: Network alarms, network
packet data

— Retail data mining: Customer behavior
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Outline

Three case studies

— Intrusion detection

— Information Extraction

— Bio-informatics: protein classification

Sequence mining operators
Approaches to sequence mining
Conclusions and future work
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Host-level attacks on privileged programs

Case study: intrusion detection

Intrusions could be detected at

— Host-level (attacks on privileged programs like Ipr, sendmail)
— Network-level (denial-of-service attacks, port-scans, etc)

* TCP-dumps
Method

— Signature-based (match signature of previous attacks)

» cannot detect new intrusions

— Anomaly-based (model normal usage and detect deviation)

Automatic Vs Manual:
— Manual:

* Might miss patterns, may not evolve as normal usage pattern

slowly drifts.
— Automated:

» Use historical audit trails and a learning algorithm

» May not provide full coverage
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Attacks exploit a loophole in the program
to do illegal actions

— Example: exploit buffer over-flows to run user-
code

What to monitor of an executing
privileged program to detect attacks?

Sequence of system calls

— || = set of all possible system calls ~100
Mining problem: given traces of previous
normal execution, monitor a new
execution and flag attack or normal

Challenge: is it possible to do this given
widely varying normal conditions?
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ioctl
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Bio-informatics

* Many recent advances in sequence analysis
due to bio-informatics

« Two main kinds of sequences:

— Genes:

» Sequence of 4 possible nuclectides, |Z|=4
+ AACTGACCTGGGCCCAATCC

— proteins:
» Sequence of 20 possible amino-acids, |Z|=20
» Length of sequence n varies between 100s to 10,000
» Sequence analysis in bio-informatics: rich and
varied, we will concentrate on one problem
— Protein family classification
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Protein family classification

* Protein families characterized by common
occurrence of a few scattered amino acids in a
background of other unrelated symbol

« Example: three aligned sequences of a family
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Information extraction

Sequence: text string with elements as words
— Example: Addresses, bib records

House Zi
g Cit 1p
number |  Building Road Area ity
156 [Hillside ctype |Scenic drive |Powai | Mumbai 400076
Author Year  Title Journal Volume

p.P.Wangikar, T.P. Graycar, D.A. Estell, D.S. Clark, 1.5, @2

Dordick (1993) Protein and Solvent Engineering of Subtilising
BPN' in Nearly Anhydrous Organic Media J.Amer. Chem. Soc.
[115], [12231-12237]

Mining problem:
Given a set of tags (labels) e.g. address fields,
classify parts of the sequence to different labels

Sarawagi
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Three case studies

Sequence mining operators

— Whole sequence classification

— Partial sequence classification (Tagging)
— Predicting next symbol of a sequence

— Clustering sequences

— Finding repeated patterns in a sequence
Approaches to sequence mining

Conclusion and future work
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Classification of whole sequences

Given:
— a set of classes C and
— a number of example of instances in each class c,
train a model so that for an unseen sequence we
can say to which class it belongs
Example:

— Given a set of protein families, find family of new
protein

— Given a sequence of packets, predict session as
intrusion or not

— Given several utterances of a set of words, classify a
new utterance to the right word
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Existing methods of classification

Generative classifiers

Discriminatory classifiers

Distance based classifiers: (Nearest neighbor)
Kernel-based classifiers
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Generative models

For each class /,
— train a generative model M,to = (=== Prixic,)*Pr(c)

maximize likelihood over all X
ini ; = Pr(x|c,)*Pr(c
training sequences in the class i @ (xle,)"Pr(c,)

Find Pr(c,) as fraction of = @222 Pr(xlcy) Pr(c)
training instances in class i

For new sequence X,

— find Pr(x|c) for each i

— choose j with largest value of
Pr(x|c)*P(c)

Need a generative model for sequence data

Sarawagi

Discriminatory methods

Treat training data as points in
n-dimensional space

Create boundaries such that all
points in the same region are in
the same class

Examples:

— Decision trees

— Neural networks

— Regression methods

Need to embed sequence data in a fixed coordinate space
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Kernel-based classifiers

» Define function K(x;, x) that intuitively defines similarity
between two sequences and satisfies two properties
— Kis symmetric i.e., K(x; x) = K(X, x;)
— Kiis positive definite

» Each class ¢ computes f(x,c) = £ w,K(x; x)+b, where x;,
is a training sequence

* Predicted class is ¢ with highest value f(x,c)

* Well-known kernel classifiers
— Nearest neighbor classifier
— Support Vector Machines
— Radial Basis functions

Need to define similarity functions between
sequences that also satisfy kernel properties
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Partial sequence classification (Tagging)
* The tagging problem:

— Given:
+ Asetoftags L

» Training examples of sequences showing the breakup of
the sequence into the set of tags

— Learn to breakup a sequence into tags
— (classification of parts of sequences)

* Examples:

— Text segmentation

» Break sequence of words forming an address string into
subparts like Road, City name etc

— Continuous speech recognition
+ ldentify words in continuous speech
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Approaches used for tagging

* Rule-based local models

« Adapt state-based generative models

— Separate model per tag

— Combined model with states labeled with tags

* Normal Generative models
» Special Conditional models
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(Collins 02)

Sequence clustering

» Given a set of sequences, create groups such

that similar sequences in

» Three kinds of clustering

— Distance-based:
« K-means

the same group
algorithms

Need similarity function

» Various hierarchical algorithms

— Model-based algorithms
» Expectation Maximization a

— Density-based algorithms

Need generative models

Igoritere

Need dimensional embedding
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Outline

¢ Three case studies
» Sequence mining operators

» Approaches to sequence mining: Three
primitives
— Embed sequence in a fixed dimensional space
= All conventional record mining techniques will apply
— Distance between two sequences
* Sequence classification: SVM and NN
» Clustering sequences: distance-based approach
— Generative models for sequence
» Sequence classification: whole and partial
» Clustering sequences: model-based approach
» Conclusion and future work
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Embedding sequences in fixed

dimensional space
» Extract aggregate features

— Real-valued elements: Fourier coefficients, \Wavelet
coefficients, Auto-regressive coefficients

— Categorical data: number of symbol changes
* Ignore order, each symbol a dimension

— extensively used in text classification and clustering
+ Sliding window techniques (k: window size)

— Define a coordinate for each possible k-gram o
O a-th co-ordinate is number of times a in sequence

* (k,m) mismatch score: a-th co-ordinate is number of k-
grams in sequence with m mismatches with o

— Define a coordinate for each of the k-positions
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Detecting attacks on privileged programs

» Short sequences of system calls made during
normal execution of system calls are very
consistent, yet different from the sequences of

its abnormal executions

« Each execution a trace of system calls:
— ignore online traces for the moment

« Two approaches
— STIDE

* Create dictionary of unique k-windows in normal traces,
count what fraction occur in new traces and threshold.

- IDS

¢ next..
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Sliding window examples

open One symbol per column
lseek M p
ioctl o |c |I i e |m
mmap 1 2 1 1 3 |2 1
execve 2
ioctl 3
ioctl
open . g . L .
oxecve|  Sliding window: window-size 3
mmap ioe |cli |[oli |lie |lim M A2 | A3
J 11 Jo [1 o |1 , .
0 | i
3 R . R . R ! I i m
. 1 H
mis-match scores: m=1 . _|m|€
ioe [ cli |oli |lie |lim -
12 (1 (1 o |1 ' e |c [m
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Classification models on k-grams trace data

* When both normal
and abnormal data

7-grams

class labels

426666413866

“normal”

avallable 555459105104 “abnormal”
— class label =

normal/abnormal:

6 attributes Class labels
* When only normal 1366 66 4 138 <66

trace, 555459 105 “104”
— class-label=k-th system -

call

Learn rules to predict class-label [RIPPER]
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Examples of output RIPPER rules

* Both-traces:

sequence is “normal”

sequence is “normal”

* Only-normal:

if the 2nd system call is vtimes and the 7th is vtrace, then the

if the 6th system call is /seek and the 7th is sigvec, then the

if none of the above, then the sequence is “abnormal”

— if the 3rd system call is /stat and the 4th is write, then the 7th is

stat

— if the 1st system call is sighlock and the 4th is bind, then the 7th

is setsockopt

— if none of the above, then the 7th is open

Sarawagi
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Experimental results on sendmail

. traces Only-normal BOTH

* The output rule sets contain  ~5;¢,5 13.5 370

~250 rules, each with 2 or 3 sscp-2 13.6 30.4

attribute tests sscp-3 13.6 30.4

syslog-remote-1|11.5 21.2

syslog-remote-2 | 8.4 15.6

* Score each trace by counting syslog-local-1 |6.1 11.1

fraction of mismatches and syslog-local-2 8.0 15.9
. decode-1 39 2.1
thresholding decode? 12 2.0
sm565a 8.1 8.0
. smSx 8.2 6.5
Summary: Only normal traces sendmail 0.6 o1

sufficient to detect intrusions

More realistic experiments

STIDE RIPPER
threshold Y%false-pos | threshold Y%false-pos
Site-1 lpr (12 0.0 3 0.0016
Site-2 lpr {12 0.0013 4 0.0265
named 20 0.0019 10 0.0
xlock 20 0.00008 |10 0.0

Different programs need different thresholds
Simple methods [stide] work as well
Results sensitive to window size

Is it possible to do better with sequence specific

methods?

Sarawagi
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Outline

Three case studies
Sequence mining operators

Approaches to sequence mining: Three
primitives

— Embed sequence in a fixed dimensional space

— Distance between two sequences

— Generative models for sequence
» Sequence classification: whole and partial
» Clustering sequences: model-based approach

Conclusion and future work
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Modeling sequences

Most sequences are naturally generated and
may not follow a well-defined statistical model

Complete modeling not possible

Approximate modeling still possible in many
applications because
— Sequences have short-term memory

— A partial aspect of the sequence might need to be
modeled

Sarawagi
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Probabilistic mgdels for sequences

Pr(ay,an,...,an) = H Pr(a;lay...a;_1)
=1
Independent model '

Pr(ajlaq...a;_1) = Pr(a;)

One-level dependence (Markov chains)
Pr(a;lay ...a;—1) = Pr(ajla;—1)

Fixed memory (Order-/ markov chains)
Pr(a;lal...a;—1) = Pr(ajla;_1...a;_;)

Variable memory models

Pr(ai|a1 Q1) = Pr(ai|a2~_1 ce ai—li)’ l; <l

More complicated models
— Hidden Markov Models
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Independent model

Pr(a;lat...a;—1) = Pr(a;)
* Model structure
— A parameter for each symbol in £
* Probability of a sequence s being generated
from the model
— example: Pr(AACA)
= P(A) P(A) P(C) P(A) = P(A)® P(C)
=0.12£0.9
* Training transitions probability between states
— Data T: setof sequences

— Count(s € T): total number of times substring s
appears in training data T

Pr(c) = Count(c € T) / length(T)

Sarawagi

Pr(A) = 0.1
Pr(C)=0.9
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Markov chains (Order(1))

6
Pr(ajlay...a;—1) = Pr(aila;—1) L)
* Model structure ‘ G
— A state for each symbol in £

— Edges between states with probabilities 0.1

» Probability of a sequence s being generated
from the model
— example: Pr(AACA)
= P(AJA) P(AJA) P(C|A) P(A|C)
=0.1%0.1*0.9*0.4
* Training transitions probability between states
Pr(c|B) = Count(Bo & T) / Count(B £ T)
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Higher order Markov Chains

Pr(ai\al . ai_l) = Pr(ai|ai_1 ce ai—l)
| = memory of sequence

« Model =2

— A state for each possible suffix of €O
length | = |Z|' states

— Edges between states with
probabilities and single symbols

« P(AACA)
= P(AJAC) P(A|CA)P(CJAA) P(AJAC)
=0.70.4*0.9*0.7

* Training model
Pr(c|s) = count(sc 2 T) / count(s 2 T)

Sarawagi
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Variable Memory models

Probabilistic Suffix Automata (PSA)

Pr(ai|a1 Q1) = Pr(ai|az~_1 ce ai—li)’ l; <l
* Model

— States: substrings of size no greater than |
where no string is suffix of another

+ Calculating Pr(AACA):
= P(AJCC)P(AJA)P(C|A)P(AJAC)
= 0.6*0.3*0.7*0.1

* Training: not straight-forward
— Eased by Prediction Suffix Trees
— PSTs can be converted to PSA after training

Cco09 CO0.6
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Prediction Suffix Trees (PST)

+ Suffix trees with emission probabilities of
observation attached with each tree node

P(AACA)=0.28*0.3*0.7*0.1

 Linear time algorithms exist for constructing
such PSTs from training data [Apostolico 2000]

Sarawagi
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Hidden Markov Models

: A |06
* Doubly stochastic models A |09
05 [Cl04
cloi
Pr(AACA) = Zijkl PY(AACA,SZSJSkSl) . S
PI’(AACA, SiSjSkSl) = PI’(Si) PI’(A|SZ) PI’(S]|SZ) PT(A|SZ) 0.1 0.5
0.8
Pr(AACA, S1595454) =1%0.9%0.9%0.6%05%0.7%0.2%0.3 S
S
+ Efficient dynamic programming (1%)
algorithms exist for Alos| |A]03
— Finding Pr(S) clos C 107

— The highest probability path P that
maximizes Pr(S|P) (Viterbii)

* Training model
— Baum-Welch algorithm
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Discriminative training of HMMs

* Models trained to maximize likelihood of data
might perform badly when
— Model not representative of data
— Training data insufficient

» Alternatives to Maximum-likelihood/EM

— Objective functions:
* Minimum classification error
+ Maximum posterior probability of actual label Pr(c|x)
+  Maximum mutual information with class

— Harder to train above functions, number of
alternatives to EM proposed
» Generalized probabilistic descent [Katagiri 98]
» Deterministic annealing [Rao 01]

Sarawagi
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HMMs for profiling system calls

 Training:
— Initial number of states = 40 (roughly equals number
of distinct system calls)
— Train using Baum Welch on normal traces

» Methods of testing:

— Need to handle variable length and online data

— For each call, find the total probability of outputting
given all calls before it.
« If probability below a threshold call it abnormal.

— Trace is abnormal if fraction of abnormal calls are
high
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More realistic experiments

STIDE RIPPER HMM

thresh | %false- threshold | %false- threshold | %false-

old pos pos pos
Site-1 lpr 12 0.0 3 0.0016 | 107 0.0003
Site-2 lpr 12 0.0013 |4 0.0265 |107 0.0015
named 20 0.0019 |10 0.0 107 0.0
xlock 20 0.00008 |10 0.0 107 0.0
HMMs [from Warrender 99]

— Take longer time to train
— Less sensitive to thresholds, no window parameter
— Best overall performance

VMM and Sparse Markov Transducers also shown to perform
significantly better than fixed window methods [Eskin 01]

Sarawagi
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Case study: classifying protein

sequences
+ Classifying proteins into its functional/structural
classes based on its sequence of amino acids
Methods proposed
— Nearest neighbor classifiers based on pair-wise
sequence alignment as the distance measure
— Consensus patterns using Motifs
— Profile Hidden Markov Models

— Support Vector Machines with various kernels
* Fisher’'s kernel (Fisher-SVM)
» Mismatch string kernels
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Profile Hidden Markov Models

Protein families characterized by common
occurrence of a few scattered amino acids in a
background of other unrelated symbol

MAQOWSLQRLAGRHPQDSYEDSTQSSIFTYTNSNSTRGPFEGPNYHIAPR
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Profile HMM

d, =2 d, d, d,

(ijm

Begi I, Mz [Frgmr] Ma My End

Profile HMM of a family has for each aligned symbol three
kinds of states:
— Match state: visited when symbol appears in a sequence
— Deletes states: to allow occasional drop of that symbol

— Inserts: to allow insertion of multiple symbols between aligned
states

[Above picture from
http://www.cse.ucsc.edu/research/compbio/html_format_papers/hughkrogh96/node
4 html
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SVMs on Fisher’s kernel

* Train a HMM for the positive class,
— 0: set of all parameters of the HMM
— 0, the trained values of parameters

» Fisher’s score for each sequence s is gradient
vector w.r.t 6,
thatis, r Pr(s|6)]|g=em
* Fortwo sequences s;, s, kernel is K(s;;s,) =
similarity between their fisher’s score

* Train SVM using this kernel

» Combines biological information in HMM with
discriminatory power of SVMs

Sarawagi
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HMMs for information extraction
Naive Model: One state per element
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Summary

» Several applications of sequence mining
* Record mining techniques on sequence data
may not be effective

» Many interesting options for sequence-specific
generative models
+ Case studies on three applications:
— Intrusion detection
— Protein classification
— Information Extraction

« Future work: practical general purpose data
mining tools for handling sequence data

Sarawagi
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