
Tuning the Thresholds
As we mentioned in Section , plug-in classifiers learn a CPE
model to predict g(x) ≈ P [y = +1] and then tune a thresh-
old η to obtain a classifier f(x)sign(g(x) − η). The thresh-
old η is tuned in order to maximize the performance measure
of interest, be it classification accuracy or F-measure or G-
mean etc. A popular technique to perform this tuning is the
Empirical Utility Maximization (EUM) approach (Ye et al.
2012). The EUM approach suggests that a threshold be cho-
sen that maximizes the performance measure on the training
dataset.

For simplicity, consider a binary classification problem
where we have n labeled data points (xi, yi) where yi ∈
±1. The CPE model g can be used to obtain CPE scores
si = g(xi). The EUM approach seeks to find a thresh-
old ηopt such that the classifier sign(g(x) − ηopt) has, say
very high F-measure, on the dataset. However, this search
problem is daunting since thresholds are real valued in gen-
eral. However, other results such as those of (Kotłowski and
Dembczynski 2015; Narasimhan, Vaish, and Agarwal 2014)
assure us that the optimal threshold will definitely be one of
the CPE scores itself i.e. ηopt = si for some i.

MIMLperf adopts the same EUM approach in the MIML
setting as well. However, there are two key differences here

1. A separate threshold has to be tuned for the plug-in clas-
sifier corresponding to all the L labels.

2. The labels for a bag cannot be obtained from the instance
CPE scores directly since there is an aggregation step in-
volved.
More specifically, our classifier turns on the label j for a

bag i only if that label is turned on for some instance k in
that bag. Recall from Algorithm 2 that we set

ŷj =

nt∨
k=1

I
{
gj(x(k)) ≥ ηj

}
This presents a challenge since the number of CPE scores to
be tuned over can run into millions or more for large datasets
due to the large number of bags and large number of in-
stances in each bag. Checking each CPE score as a candidate
threshold is thus, not feasible.

We overcome this problem using a simple trick. Notice
that the plug-in classifier has a monotonicity property. If
sign(g(x) − η) = −1 then sign(g(x′) − η) = −1 for
all g(x′) ≤ g(x). Also, if sign(g(x) − η) = +1 then
sign(g(x′) − η) = +1 for all g(x′) ≥ g(x). Using this,
it is easy to see that a label j will be turned on for a bag i if
and only if the instance with the largest CPE score for that
label in the bag has been assigned that label. More specif-
ically, let s(i,j)max := maxk∈[ni] g

j(x
(k)
i ). Then the following

claim holds true
Lemma 2. For any data point i, label j, CPE model, gj and
threshold ηj , we have ŷj = 1 iff s(i,j)max ≥ ηj .

This shows us that while tuning thresholds for the plug-in
classifier corresponding to a certain label, it is sufficient to
only consider the maximum CPE score for that label in ev-
ery bag as a candidate threshold. This gives a huge speedup

since it decreases the number of thresholds being tuned over
from

∑N
i=1 ni to simply N . In practice we observe an order

of magnitude from this step alone.
However, this is still not sufficient since testing a can-

didate threshold itself takes O (N) time since that is the
amount of time taken to calculate the performance measure,
say F-measure, corresponding to that threshold. This brings
the total time taken to tune the L thresholds as O

(
N2 · L

)
which is simply infeasible in large scale settings.

Fortunately, the nice structure of the performance mea-
sures such as F-micro and F-macro measure come in handy
at this point. It turns out that all of these performance mea-
sures can be written as some function of the true positive
(TP) and true negative (TN) numbers of the classifier be-
ing considered. For example, if we look at the label-wise
F-measure which is used to define the macro F-measure, we
find that if we define

TPj(f ,X,Y) =

n∑
i=1

I
{
f j(xi) > 0 ∧ yi,j > 0

}
FPj(f ,X,Y) =

n∑
i=1

I
{
f j(xi) > 0 ∧ yi,j ≤ 0

}
FNj(f ,X,Y) =

n∑
i=1

I
{
f j(xi) ≤ 0 ∧ yi,j > 0

}
,

then we can write F jβ(f ;X,Y) as

TPj(f ,X,Y)

TPj(f ,X,Y) + β · FPj(f ,X,Y) + (1− β) · FNj(f ,X,Y)
.

Similar expressions can be obtained for a large family of
performance measures (Koyejo et al. 2014; Narasimhan,
Vaish, and Agarwal 2014; Narasimhan, Kar, and Jain 2015).
These expressions are very useful since the terms TPj ,FPj

etc can be calculated for all candidate thresholds in time
O (N logN). We simply need to sort all the candidate CPE
scores in increasing order and simply do a linear scan to find
out what value of TPj ,FPj etc does every candidate thresh-
old offer. This brings down the total time taken to tune the L
thresholds from O

(
N2 · L

)
to O (N logN · L).

We conclude this section by noting that while optimizing
macro F-measure, we tune a different threshold per label,
whereas we tune a single threshold while optimizing micro
F-measure.

Estimating the Hidden Variables
As mentioned in Section , MIMLperf uses the trained CPE
models to obtain CPE scores for every instance with re-
spect to every label. Thus, the method now has an estimate
gj(x

(k)
i ) of the probability that the kth instance in bag i ex-

presses label j. These are now used to reassign the hidden
variables. As discussed, we do not wish to trust these scores
completely as they are noisy. Thus, we do not wish to set
z
(i,j)
k = 1 only for the instances k with the highest values of
gj(x

(k)
i ). Instead we sample instances the instances accord-

ing to their CPE scores to reassign them labels.



More specifically, if a bag i has a label j (recall that
if the bag does not have label j then we can simply set
z(i,j) = 0 since no instance in that bag could be express-
ing label j) then we sample the kth instance with probabil-
ity gj(x(k)

i )/
∑ni
k′=1 g

j(x
(k′)
i ) where ni is the number of in-

stances in bag i. Using this procedure we create a set S(i,j)

of c(i,j) instances. We now simply set z(i,j)k = 1 if k ∈ S

and z(i,j)k = 0 otherwise.
The choice of c(i,j) can be varied. In our experiments,

we used c(i,j) = κ · ni in the initialization step where κ
is the expression rate parameter. In subsequent steps, we
used c(i,j) =

∑ni
k=1 I{gj(x

(k)
i ) ≥ ηj}, i.e. we ask the plug-

in classifier trained in the previous iteration, how many in-
stances in that bag were found to express a certain label.


