

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are Web tables important?

Why annotate

Related work

riciacca work

Algorithm

Evaluation

Conclusion

Reference

Packup clida

Annotating and Searching Web Tables Using Entities, Types and Relationships

M.Tech. Project

Girija Limaye

Under the guidance of

Prof. Sunita Sarawagi

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are Web tables important?

Why annotate Web tables?

Related work

Algorithm

Concidence

Reference:

Rackup slides

1 Why are Web tables important?

2 Why annotate Web tables?

3 Related work

4 System Overview

5 Algorithms and Evaluation

6 Conclusion

7 References

Keyword based search

Web Images Maps News Orkut Groups Gmail more ▼

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are Web tables important?

Why annotate Web tables?

Related Work

Overview

and Evaluation

Evaluatio

Google height of eiffel tower Search Advanced Search Search: • the web C pages from India Web Show options... Results 1 - 10 of about 290 000 for Eiffel Tower - Wikipedia, the free encyclopedia The main differences are that the Blackpool Tower is approximately half the height of the Eiffel Tower and is not freestanding, the base being contained ... History - Design of the tower - Tourism - Engraved names en.wikipedia.org/wiki/Eiffel Tower - Cached - Similar List of tallest buildings and structures in the world - Wikipedia ... Willis Tower (formerly Sears Tower) is highest in the final category: the greatest height to top of antenna of any building in the world at 527.3 m (1730 ... en.wikipedia.org/.../List of tallest buildings and structures in the world - Cached - Similar WikiAnswers - How tall is the Eiffel Tower The Eiffel tower was designed by a chemical engineer named Alexandre Gustave Eiffel. At 990 feet tall, it almost doubled the height of the tallest man-made ... wiki.answers.com/Q/How tall is the Eiffel Tower - Cached - Similar WikiAnswers - What is the height of eiffel tower in metres France question: What is the height of eiffel tower in metres? The Eiffel Tower is originally 300m high. But now it has a TV mast, it is 324m high! wiki.answers.com/.../What is the height of eiffel tower in metres - Cached - Similar Show more results from wiki answers.com Eiffel Tower Facts 7 May 1997 ... The Eiffel Tower is about the only tourist site in Paris that does ... 3rd level -

Keyword based search

Go through results

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are Web tables important?

Why annotate Web tables?

Related Work

System Overview

Algorithm and

Conclusio

Reference

Backup slide

Web Images Maps News Orkut Groups Gmail more ▼ Google height of eiffel tower Search Advanced Search Search: * the web * pages from India Web Show options... Results 1 - 10 of about 290 000 for Eiffel Tower - Wikipedia, the free encyclopedia The main differences are that the Blackpool Tower is approximately half the height of the Eiffel Tower and is not freestanding, the base being contained ... History - Design of the tower - Tourism - Engraved names en.wikipedia.org/wiki/Eiffel Tower - Cached - Similar List of tallest buildings and structures in the world - Wikipedia ... Willis Tower (formerly Sears Tower) is highest in the final category: the greatest height to top of antenna of any building in the world at 527.3 m (1730 ... en.wikipedia.org/.../List of tallest buildings and structures in the world - Cached - Similar WikiAnswers - How tall is the Eiffel Tower The Eiffel tower was designed by a chemical engineer named Alexandre Gustave Eiffel. At 990 feet tall, it almost doubled the height of the tallest man-made ... wiki.answers.com/Q/How tall is the Eiffel Tower - Cached - Similar WikiAnswers - What is the height of eiffel tower in metres France question: What is the height of eiffel tower in metres? The Eiffel Tower is originally 300m high. But now it has a TV mast, it is 324m high! wiki.answers.com/.../What is the height of eiffel tower in metres - Cached - Similar Show more results from wiki answers.com Eiffel Tower Facts 7 May 1997 ... The Eiffel Tower is about the only tourist site in Paris that does ... 3rd level -

Keyword based search

Go through results

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are Web tables important?

Why annotate Web tables?

Related Work

System

Algorithm and

Conclusio

Reference

Backup slide

Web Images Maps News Orkut Groups Gmail more ▼ Google height of eiffel tower Search Advanced Search Search: * the web * pages from India Web Show options... Results 1 - 10 of about 290 000 for Eiffel Tower - Wikipedia, the free encyclopedia The main differences are that the Blackpool Tower is approximately half the height of the Eiffel Tower and is not freestanding, the base being contained ... History - Design of the tower - Tourism - Engraved names en.wikipedia.org/wiki/Eiffel Tower - Cached - Similar List of tallest buildings and structures in the world - Wikipedia ... Willis Tower (formerly Sears Tower) is highest in the final category: the greatest height to top of antenna of any building in the world at 527.3 m (1730 ... en.wikipedia.org/.../List of tallest buildings and structures in the world - Cached - Similar WikiAnswers - How tall is the Eiffel Tower The Eiffel tower was designed by a chemical engineer named Alexandre Gustave Eiffel. At 990 feet tall, it almost doubled the height of the tallest man-made ... wiki.answers.com/Q/How tall is the Eiffel Tower - Cached - Similar WikiAnswers - What is the height of eiffel tower in metres France question: What is the height of eiffel tower in metres? The Eiffel Tower is originally 300m high. But now it has a TV mast, it is 324m high! wiki.answers.com/.../What is the height of eiffel tower in metres - Cached - Similar Show more results from wiki answers.com Eiffel Tower Facts 7 May 1997 ... The Eiffel Tower is about the only tourist site in Paris that does ... 3rd level -

No precise answer

A web table with required information

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are Web tables important?

Why annotate Web tables?

Related Work

System

Algorithm and

Conclusio

Reference

Backup slides

record from 🗹	record to	Name and Location 🖂	Constructed	Height (m) 🖂	Height (ft) ⊡	Notes 🖼
c. 2700 BC	c. 2600 BC	Pyramid of Djoser, Egypt	c. 2700 BC	62	203	
c. 2600 BC	c. 2570 BC	Red Pyramid of Sneferu, Egypt	c. 2600 BC	105	345	
c. 2570 BC	c. AD 1311	Great Pyramid of Giza in Egypt	c. 2570 BC	146	481	By AD 1439, the Great Pyramid had eroded to a height of approximately 139 m (455 ft).
1311	1549	Lincoln Cathedral in England	1092-1311	160	525	The central spire was destroyed in a storm in 1549. While the reputed height of 525 ft (160 m) is doubted by A.F. Kendrick, ⁽¹²⁾ other sources ^(action) agree on this height.
1549	1625	St. Olaf's Church in Tallinn, Estonia	1438-1519	159	522	The spire burnt down after a lightning strike in 1625 and was rebuilt several times. The current height is 123 m.
1625	1647	St. Mary's Church in Stralsund, Germany	1384–1478	151	495	The spire burnt down after a lightning strike in 1647. The current height is 104 m.
1647	1874	Strasbourg Cathedral in France	1439	142	469	
1874	1876	St. Nikolai in Hamburg, Germany	1846-1874	147	483	Precise and instantaneous answer
1876	1880	Cathédrale Notre Dame in Rouen, France	1202-1876	151	495	
1880	1884	Cologne Cathedral in Germany	1248-1880	15 7	515	
1884	1889	Washington Monument in Washington D.C., United States	1884	169	555	
1889	1930	Eiffel Tower in Paris, France	1889	300	986	First structure to exceed 300 metres in height. The addition of a telecommunications tower in the 1950s brought the overall height to 324 m.
1930	1931	Chrysler Building in New York, United States	1928-1930	319	1,046	
1931	1967	Empire State Building in New York, United States	1930–1931	381	1,250	First building with 100+ stories. The addition of a pinnacle and antennas later increased its overall height to 1,472 ft/448.7 m.
1967	1975	Ostankino Tower in Moscow, Russia	1963-1967	537	1,762	Remains the tallest in Europe. Fire in 2000 led to extensive renovation.
1975	2007	CN Tower in Toronto, Canada	1973-1976	553	1,815	Remains the tallest in the Americas
2007	present	Burj Dubai in Dubai, United Arab Emirates	2004-2009	818	2,684	Current holder of world's tallest freestanding structure. Topped out at 818 m (2,684 ft).

Exploiting tables on the Web

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are Web tables important?

Why annotate Web tables?

Related work

Algorithms and

and Evaluatior

Reference

Packup clidae

- Is this a genuine relation?
- What is the table about?
- What do columns contain?
 - Do they have headers? *tower, film, . . .*
 - Non-informative? *name*, *title*, . . .
- What do the cells represent?
- Are columns similar?
 - {Namesake, God of small Things, White Tiger, ...}
 - {Namesake, Hututu, Maachis, ...}

An example - Ambiguity in cell text

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limay

Why are Well tables important?

Why annotate Web tables?

Related work

System

Algorithm and

Evaluatio

Conclusio

Reference

Backup elider

Nr⊮	Name M	Year 🖂	
1.	Casino Royale [24]	1953	21 (0
2.	Live and Let Die [25]	1954	8
3.	Moonraker [26]	1955	11
4.	Diamonds Are Forever [27]	1956	7
5.	From Russia, with Love [28]	1957	2
6. (Dr. No ^[29]	1958	1
7.	Goldfinger [30]	1959	3

An example - Ambiguity in cell text

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are Web tables important?

Why annotate Web tables?

Related work

System

Algorithm and

Lvaiuatic

Conclusio

Reference

Da al.... alidas

lame

murc

smal SPEC

rocke

SPEC

fema

defer

Jame get ε Bonc

Another example - multiple specific types

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are Wel tables important?

Why annotate Web tables?

Related work

System

and

Evaluatio

- -

2008

Title	Director	
1920	Vikram Bhatt	
Anamika	Anant Mahadevan	
Aamir	Rajkumar Gupta	
A Wednesday	Neeraj Pandey	
Bachna Ae Haseeno	Siddharth Anand	
Bhootnath	Vivek Sharma	
Black and White	Subhash Ghai	
Bombay to Bangkok	Nagesh Kukunoor	
Chamku	Kabeer Kaushik	
Coffee House	Gurbeer Garewal	

Thus, we annotate Web tables

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are We tables important?

Why annotate Web tables?

Related work

C.

Algorithm

Evaluatio

Conclusio

Reference

Backup slides

Thus, we annotate Web tables

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are Web tables important?

Why annotate Web tables?

Related work

c .

Algorithm and

Evaluatio

Conclusio

Reference

Backup elides

with reference to a catalog

Dictionary / Ontology with set of types $\mathcal T$, set of entities $\mathcal E$, set of relationships $\mathcal B$

Thus, we annotate Web tables

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are Web tables important?

Why annotate Web tables?

Related work

Overview

Algorithms and Evaluation

Conclusion

Reference

Backun slides

with reference to a catalog

Dictionary / Ontology with set of types $\mathcal T$, set of entities $\mathcal E$, set of relationships $\mathcal B$

With the aim of

- Annotating cell text to an entity
- Annotating column to type(s)
- Finding relationship between columns

Annotated table

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are We tables

Why annotate Web tables?

Related work

System

and

Evaluation

Conclusion

Reference

Packup clida

Annotated table

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are Weltables important?

Why annotate Web tables?

Related work

Algorithm

Evaluatio

Conclusion

Reference

Backup slide

Annotated table

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are We tables important?

Why annotate Web tables?

Related work

Algorithms

Evaluatio

Conclusion

Reference

Rackup slide

Related Work

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are Web tables important?

Why annotate Web tables?

 ${\sf Related\ work}$

Algorithm

. . .

D . C

References

Backup elides

Web document annotation

- Linking to structured source
 - Learning to link with Wikipedia[MW08]
 - Collective annotation of Wikipedia entities in web text[KSRC09]

Querying on Web table corpus

- WebTables[CHW⁺08]
 - Attribute based statistics
 - No interpretation of cells, columns
 - Plain text, header based answering

YAGO[SKW07]¹- Overview

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are Web tables important?

Why annotate Web tables?

 ${\sf Related\ work}$

Algorithm

Evaluatio

Conclusio

Reference

Backup slide

Sources

- Wikipedia article names = entities (http://en.wikipedia.org/wiki/Sourav_Ganguly → Sourav_Ganguly)
- Wikipedia categories = classes i.e. types (Marathi_Language_Singer)
- Wikipedia Category lists = TYPE relations (Lata_Mangeshkar TYPE Marathi_Language_Singer)
- WordNet borrows concepts like singer, politician
- WordNet borrows taxonomy

¹Yet Another Great Ontology

YAGO - Example facts

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are Wel tables important?

Why annotate Web tables?

 ${\sf Related\ work}$

System Overview

Algorithm and Evaluation

Conclusio

Reference

Packup clidae

fact identifier	dentifier Arg 1		Arg 2	
#1	"Einstein"	MEANS	Albert_Einstein	
#2	"A. Einstein"	MEANS	Albert_Einstein	
#3	"Albert Einstein"	MEANS	Albert_Einstein	
#4	"Deutschland"	MEANS	Germany	
#5	Albert_Einstein	TYPE	Physicist	
#6	#6 Physicist		Scientist	
#8	#8 Albert_Einstein		NobelPrize	
#9 #8		YEAR	1921	

YAGO Terminologies²

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are We tables important?

Why annotate Web tables?

 ${\sf Related\ work}$

System

Algorithm

Conclusio

Reference

Backup slide:

²Figure taken from http://uniat5401.ag5.mpi-sb.mpg.de: 8180/webyago/html/graphViewer.html?entity=Sourav_Ganguly&n=5

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are We tables important?

Why annotat Web tables?

Related worl

System Overview

Algorithm

Evaluatio

References

Rackup elidae

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are We tables important?

Why annotate Web tables?

Related worl

System

Overview Algorithm

Evaluatio

Conclusio

Reference

Rackup slides

Input table

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are We tables important?

Why annotate Web tables?

Related work

System Overview

Algorithm

Evaluatio

Conclusio

Reference

Packup clida

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are We tables important?

Why annotate Web tables?

Related work

System Overview

Algorithm

Evaluatio

Conclusio

Reference

Backup slide

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are Well tables important?

Why annotate Web tables?

Related work

System Overview

Algorithm and

Evaluation

References

Packup clide

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are We tables important?

Why annotate Web tables?

Related work

System Overview

Algorithm and

Evaluation

D. C.....

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are We tables important?

Why annotate Web tables?

Related work

System Overview

Algorithm and

Evaluatio

Reference

Packup clida

An example

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are We tables important?

Why annotate Web tables?

Related work

System Overview

Algorithm and

Evaluation

Conclusio

Reference

Backup slider

Cell Text	Candidate Entities	Candidate Types for this cell	Candidate Types for entire column	
Naushad Ali	Naushad, NA	Filmfare award winners,	Filmfare award winners,	
		Indian Muslims,	Indian Muslims,	

An example

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are We tables important?

Why annotate Web tables?

Related work

System Overview

Algorithm and

Evaluation

Conclusio

Reference

Backup slide

Cell Text	Candidate	Candidate Types	Candidate Types
	Entities	for this cell	for entire column
Naushad Ali	Naushad, NA	Filmfare award winners,	Filmfare award winners,, Entity
		Indian Muslims,	Indian Muslims,
	Naushad_Ali _(cricketer), NA	Pakistani cricketor,	Pakistani cricketor, <u>Cricketor, Athlet,</u>

An example

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are Wel tables important?

Why annotate Web tables?

Related work

System Overview

Algorithm and

. . .

Reference

Da al..... alida.

Cell Text			Candidate Types
	Entities	for this cell	for entire column
Naushad Ali	Naushad, NA	Filmfare award winners,	Filmfare award winners, , Entity
		Indian Muslims,	Indian Muslims,
	Naushad_Ali _(cricketer), NA	Pakistani cricketor,	Pakistani cricketor, <u>Cricketor</u> , <u>Athlet</u> ,
Rajesh Roshan	Rajesh_Roshan, NA	Filmfare award winners,	Filmfare award winners,
		Indian film score composers,	Indian film score composers, Composer, <u>Musician</u> , , NA

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are Wel tables important?

Why annotate Web tables?

Related work

System

Algorithms and Evaluation

Conclusio

Reference

Da al..... alida.

LCA based annotator

For a column c,

- Set of all types T such that per cell (r, c) has at least one candidate entity E and $E \in ^+ T$
- AND no T' such that $T' \subseteq T$ is in the set

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are Wel tables important?

Why annotate Web tables?

Related work

System Overview

Algorithms and Evaluation

Conclusio

Reference

Daal...a alida

LCA based annotator

For a column c,

- Set of all types T such that per cell (r, c) has at least one candidate entity E and $E \in ^+ T$
- AND no T' such that $T' \subseteq T$ is in the set
- Choose entities which are instances of chosen types

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are Well tables important?

Why annotate Web tables?

Related work

Algorithms

Evaluation

Reference

Backup slides

Majority based annotator

Define vote(T) =

$$\left|\left\{E:T\in\bigcup_{E\in\mathcal{E}_{r,c}}\mathcal{T}(E)\right\}\right|$$

For a column c,

- Set of all types T Ruth that vote(T) is at least 50%
- AND no T' such that $T' \subset T$ is in the set

Annotating and Searching Web Tables Using Entities. Types and Relationships

Algorithms and Evaluation

Majority based annotator

Define vote(T) =

$$\left|\left\{E:T\in\bigcup_{E\in\mathcal{E}_{r,c}}\mathcal{T}(E)\right\}\right|$$

For a column c.

- Set of all types T Ruth that vote(T) is at least 50%
- AND no T' such that $T' \subset T$ is in the set
- Choose entities independently per cell (r, c)

Failure cases: LCA

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are We tables important?

Why annotate Web tables?

Related work

rtelacea worr

Algorithms and Evaluation

Б.

Daaliiia alidaa

Missing links

Over-generalization

wordnet_entity_100001740

Title

- 1. The Secret of the Old Clock The_Secret_of_the_Old_Clock
- 2. The Hidden Staircase The_Hidden_Staircase
- 3. The Bungalow Mystery The_Bungalow_Mystery
- 4. The Mystery at Lilac Inn The Mystery at Lilac Inn

Failure cases: Majority

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are We tables important?

Why annotate Web tables?

Related work

Algorithms and Evaluation

. . .

Reference

Backup slides

Ambiguity in Cell text Low Precision

Dataset and Evaluation

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are Wel tables important?

Why annotate Web tables?

Related work

System

Algorithms and Evaluation

Conclusio

Reference

Backup slides

Dataset	#Tables	Average	Total a	nnotatio	ons
		#rows	Entity	Type	Rel
	Manua	lly annotate	ed		
Wiki_Manual	36	37	1647	72	10
Web_Manual	371	35	9239	674	44
Web_Relations	30	51	-	-	36
Wiki_Link	6085	20	131807	_	

F1 score of for entity, type and relationship annotation

A glance at performance of baseline algorithm

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are We tables important?

Why annotate Web tables?

Related work

.....

System Overview

Algorithms and Evaluation

Evaluation

Deference

Why baseline algorithms fail?

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are Web tables important?

Why annotate Web tables?

Related work

Svstem

Algorithms and Evaluation

Conclusion

Reference

- Cell text is ambiguous
- Ontology is incomplete
 - Missing types and relationships, and their instances
- Links are missing in ontology
 - Not sure if link is absent or actually the entity is not an instance of that type
- Evidence from outside table text is ignored
 - say header text, when they are useful

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are Web tables important?

Why annotate
Web tables?

Related work

itelated work

Algorithms and

Evaluation

References

Backup slides

Combined Annotator Model

Features considering table text

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are We tables

Why annotate

Related work

Algorithms and

Evaluation

Conclusion

Reference

Cell Text - Entity		
$\mathbf{f}_1(r,c,E)$	$\max_{\ell \in L(E)} similarity(D_{r,c},\ell)$	

Features considering table text

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are We tables

Why annotate

Related work

Overview

Algorithms

and Evaluation

Deferen

Davidson albita

Cell Text - Entity		
$\mathbf{f}_1(r,c,E)$	$\max_{\ell \in L(E)} similarity(D_{r,c},\ell)$	

Column Header Text - Type		
$\mathbf{f}_2(c,t_c)$	$max_{\ell \in L(t_c)}$ similarity (H_c,ℓ)	

Features considering ontology structure

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are Wel tables important?

Why annotate Web tables?

Related work

Algorithms and

and Evaluation

Reference

Backup slide

 $\mathcal{E}(T)=$ the set of all entities which are direct or transitive instanced of type T

Type - Entity Compatibility		
$\mathbf{f}_3(t_c,e_{r,c})$	$\min_{E \in T'} \frac{ \mathcal{E}(T') \cap \mathcal{E}(T) }{ \mathcal{E}(T') } \frac{1}{\sqrt{\textit{dist}(T)}}$	

Features for relationships

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are Well tables important?

Why annotate Web tables?

Related work

C

Algorithms and Evaluation

. . .

Deference

Rackun slides

Type - Type - Relation

 $\mathbf{f}_4(b_{c,c'},t_c,t_{c'})$

number of entities under t (or t') that appear in relationship b with an entity in t' (or t)

Features for relationships

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are Wel tables important?

Why annotate Web tables?

Related wor

System

Algorithms and

Evaluation

Conclusio

Reference

Backup elider

Entity - Entity - Relation		
$\mathbf{f}_5(b_{c,c'},\mathbf{e}_{r,c},\mathbf{e}_{r,c'})$	$\begin{array}{c} 1: \ b_{c,c'}(e_{r,c}, e_{r,c'}) \ \text{exists} \\ 0.1: \ b_{c,c'} \ \text{is one-to-many} \\ \text{and} \ b_{c,c'}(e_{r,c}, e_{r,c'}) \ \text{doesn't exist} \\ -1: \ b_{c,c'} \ \text{is one-to-one} \ \text{and} \ b_{c,c'}(e_{r,c}, E') \ \text{for} \ E' \neq e_{r,c'} \end{array}$	

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are We tables

Why annotate Web tables?

Related work

Algorithms and

 ${\sf Evaluation}$

Conclusion

Reference

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are Well tables

Why annotate Web tables?

Related work

.

Algorithms and

Evaluation

Conclusion

Reference

t_1	t ₂	t ₃

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are Web tables

Why annotate Web tables?

Related work

Overview

Algorithms and Evaluation

. .

<i>t</i> ₁	t ₂	t ₃
e ₁₁	e ₁₂	e ₁₃
e ₂₁	e ₂₂	e ₂₃
e ₃₁	e ₃₂	e ₃₃

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are Web tables important?

Why annotate Web tables?

Related Work

System

Algorithms and Evaluation

Conclusio

References

b_{12} b_{13} b_{23}			
t_1	t ₂	t ₃	
e ₁₁	e ₁₂	e ₁₃	
e ₂₁	e ₂₂	e ₂₃	
e ₃₁	e ₃₂	e ₃₃	

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are Web tables important?

Why annotate Web tables?

Related work

Algorithms and

Evaluation

Reference

Packup clida

Potential	Notation	Definition
E Node	$\phi_1(r,c,e_{r,c})$	$\exp\left(\mathbf{w}_{1}^{\top}\mathbf{f}_{1}(r,c,e_{r,c})\right)$
T Node	$\phi_2(c,t_c)$	$\exp\left(\mathbf{w}_{2}^{\top}\mathbf{f}_{2}(c,t_{c})\right)$
E-T Edge	$\phi_3(t_c,e_{r,c})$	$\exp\left(\mathbf{w}_{3}^{\top}\mathbf{f}_{3}(t_{c},e_{r,c})\right)$
T-T'-R Clique	$\phi_4(b,t,t')$	$\exp\left(\mathbf{w}_{4}^{\top}\mathbf{f}_{4}(b,t,t')\right)$
E-E'-R Clique	$\phi_5(b,e,e')$	$\exp\left(\mathbf{w}_{5}^{\top}\mathbf{f}_{5}(b,e,e')\right)$

Table: Potentials assigned to the model

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are We tables important?

Why annotate Web tables?

Related work

System

Algorithms and Evaluation

Lvaluatio

Reference

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are We tables important?

Why annotate Web tables?

Related work

System

Algorithms and Evaluation

Reference

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are We tables important?

Why annotate Web tables?

Related work

System

Algorithms and Evaluation

Lvaluatio

Poforonco

Packup elider

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are We tables important?

Why annotate Web tables?

Related work

System

Algorithms and Evaluation

Evaluatio

Deference

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are We tables important?

Why annotate Web tables?

Related work

System

Algorithms and Evaluation

Evaluatio

Reference

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are We tables important?

Why annotate Web tables?

Related work

Algorithms and Evaluation

Evaluatio

D 6

Reference

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are We tables important?

Why annotate Web tables?

Related work

System

Algorithms and Evaluation

Evaluatio

Reference

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are We tables important?

Why annotate Web tables?

Related work

Algorithms and Evaluation

Evaluatio

Reference

Packup clide

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are We tables important?

Why annotate Web tables?

Related work

.....

Algorithms and Evaluation

Evaluatio

D . C

Reference

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are We tables important?

Why annotate Web tables?

Related work

Algorithms and Evaluation

Evaluatio

Reference

Optimization objective

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are Web tables important?

Why annotate Web tables?

Related work

Algorithms and

Evaluation

No relationships

$$\max_{\mathbf{e},\mathbf{t}} \underbrace{\prod_{c} \phi_2(c,t_c)}_{\text{columns}} \underbrace{\prod_{r,c} \phi_1(r,c,e_{r,c}) \phi_3(t_c,e_{r,c})}_{\text{cells}} \tag{1}$$

Optimization objective

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are Web tables important?

Why annotate Web tables?

Related work

riciacca morri

Algorithms and

Evaluation

Reference

Backun slides

No relationships

$$\max_{\mathbf{e},\mathbf{t}} \underbrace{\prod_{c} \phi_2(c, t_c) \prod_{r,c} \phi_1(r, c, e_{r,c}) \phi_3(t_c, e_{r,c})}_{\text{collumns}}$$
 (1)

With relationships

$$\max_{\mathbf{e},\mathbf{t},\mathbf{b}} \underbrace{\prod_{c,c'} \phi_4(b_{c,c'},t_c,t_{c'}) \prod_r \phi_5(b_{c,c'},e_{rc},e_{r,c'})}_{relation}$$

$$\underbrace{\prod_{c} \phi_{2}(c, t_{c})}_{\text{columns}} \underbrace{\prod_{r,c} \phi_{1}(r, c, e_{r,c}) \phi_{3}(t_{c}, e_{r,c})}_{\text{cells}}$$
 (2)

Approximate Inference using Message Passing algorithm

Comparison with baseline algorithm

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are Wel tables important?

Why annotate Web tables?

Related work

Algorithms

and Evaluation

Conclusio

Reference

Backup slide

Improves Entity annotation accuracy
Improves precision in Relationship and Type annotations

Analysis of Type-Entity compatibility feature

Annotating and Searching Web Tables Using Entities, Types and Relationships

Algorithms and

Evaluation

Entity Search

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are We tables important?

Why annotate

Related work

System Overview

Algorithms and Evaluation

Reference:

Rackun slides

Relations from YAGO

Ground truth from dbPedia

Baseline (without annotation)

With type annotation

With type and relationship annotation

Annotator performance

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are Wel tables

Why annotate Web tables?

Related Work

Algorithms and

Evaluation

Conclusion

References

Rate of annotation

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are Wel tables important?

Why annotate Web tables?

Related work

Algorithms

and Evaluation

Conclusio

Reference

Backup slide

Figure: Rate of annotation (Tables per second)

Conclusion

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are Web tables important?

Why annotate Web tables?

Related work

Algorithm and

and Evaluation

Conclusion

Packup clider

- Web tables = wealth of information, useful for structured queries
- Annotations help mapping them to entities, types and relationships
- Challenges due to ambiguities and ontology structure
- Combined model outperforms baseline algorithms
- To lead to efficient and precise answering to structured queries

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are We tables important?

Why annotate

Related work

System

Algorithm

Evaluation

Conclusion

Deference

Backup slides

Thank you!

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are Web tables important?

Why annotate Web tables?

Related work

Algorithms

Conclusio

References

Backup slide

Satanjeev Banerjee and Ted Pedersen.

An adapted lesk algorithm for word sense disambiguation using wordnet.

In Computational Linguistics and Intelligent Text Processing, 2002.

Michael J. Cafarella, Alon Halevy, Zhe Daisy Wang, Eugene Wu, and Yang Zhang.
Webtables: Exploring the power of tables on the web.
In International Conference on Very Large Data Bases
(VLDB), 2008.

Sayali Kulkarni, Amit Singh, Ganesh Ramakrishnan, and Soumen Chakrabarti.

Collective annotation of wikipedia entities in web text. In *Conference on Knowledge Discovery and Data Mining* (SIGKDD), 2009.

Annotating and Searching Web Tables Using Entities. Types and Relationships

References

Michael Lesk.

Automatic sense disambiguation using machine readable dictionaries: how to tell a pine cone from an ice cream cone.

In International conference on Systems documentation (SIGDOC), 1986.

David Milne and Ian H. Witten.

Learning to link with wikipedia.

In Conference on Information and Knowledge Management (CIKM), 2008.

Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum.

Yago - a core of semantic knowledge.

In World Wide Web Conference (WWW), 2007.

Annotating and Searching Web Tables Using Entities, Types and Relationships

Backup slides

▶ Pseudo-code for algorithms

Demo@ http://10.129.125.1:8090/demo/scripts/main.jsp

Inference in special case

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are We tables important?

Why annotate Web tables?

Related work

System

Algorithms

Conclusio

Deference

References

```
1: for each column c do
 2:
         for each type T \in T_c do
             A_T \leftarrow \phi_2(c,T)
 3:
             for each cell r, c in column c do
 4:
                 choose e_{r,c}^* = \arg\max_{E \in \mathcal{E}_{r,c}} \phi_1(r,c,E) \phi_3(T,E)
 5:
                 A_T \leftarrow A_T \cdot \phi_1(r, c, e_{r,c}^*) \cdot \phi_3(T, e_{r,c}^*)
 6:
 7:
             end for
         end for
 8:
         finalize t_c^* = \arg \max_T A_T
 9.
         recall and finalize cell assignments e_r^*
10:
11: end for
12: return t*, e*
```


Messages

Annotating and Searching Web Tables Using Entities. Types and Relationships

Backup slides

$$M(\phi_{3}(t_{c}, e_{rc}) \to t_{c}) = \max_{e_{rc}} \phi_{3}(t_{c}, e_{rc}) M(e_{rc} \to \phi_{3})$$

$$M(t_{c} \to \phi_{3}(t_{c}, e_{rc})) = \phi_{2}(c, t_{c}) \prod_{c'} M(\phi_{4}(b_{cc'}, t_{c}, t_{c'}) \to e_{rc}) \prod_{r' \neq r} M(\phi_{3}(t_{c}, e_{r', c}) \to t_{c})$$

$$M(\phi_{3}(t_{c}, e_{rc}) \to e_{rc}) = \max_{t_{c}} \phi_{3}(t_{c}, e_{rc}) M(t_{c} \to \phi_{3}). M(e_{rc} \to \phi_{5}(b_{cc'}, e_{rc}, e_{rc'})) =$$

$$\phi_{1}(r, c, e_{rc}) \prod_{c'' \neq c'} M(\phi_{5}(b_{cc''}, e_{rc}, t_{c''}) \to e_{rc}) \prod_{r} M(\phi_{3}(t_{c}, e_{r', c}) \to e_{rc})$$

$$M(e_{rc'} \to \phi_{5}(b_{cc'}, e_{rc}, e_{rc'})) = \text{similar to above}.$$

$$M(\phi_{5}(b_{cc'}, e_{rc}, e_{rc'}) \to b_{cr'}) = M(t_{c} \to \phi_{5}(b_{cc'}, e_{rc}, e_{rc'})) M(e_{rc'} \to \phi_{5}(b_{cc'}, e_{rc}, e_{rc'}))$$

 $M(b_{cc'} \to \phi_5(b_{cc'}, e_{rc}, e_{rc'})) = \prod_{r \neq r'} M(\phi_5(b_{cc'}, e_{r',c}, e_{r',c'}) \to b_{cc'}) M(\phi_4(b_{cc'}, t_c, t_{c'}) \to b_{cc'})$

 $M(e_{rc} \rightarrow \phi_3(t_c, e_{rc})) = \phi_1(r, c, e_{rc}) \prod_{c'} M(\phi_5(b_{cc'}, e_{rc}, e_{rc'}) \rightarrow e_{rc})$

Messages - Continued

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are Web tables important?

Why annotate Web tables?

Related work

Algorithms

Evaluatio

Reference

$$\begin{split} &M(\phi_5(b_{cc'},e_{rc},e_{rc'})\to e_{rc}) = \max_{e_{rc'},b_{cc'}} \phi_5(b_{cc'},e_{rc},e_{rc'})M(e_{rc'}\to\phi_5(b_{cc'},e_{rc},e_{rc'}))M(b_{cc'}\to\phi_5(b_{cc'},e_{rc},e_{rc'}))M(\phi_5(b_{cc'},e_{rc},e_{rc'})\to e_{rc'}) = \text{similar to above}. \\ &M(t_c\to\phi_4(b_{cc'},t_c,t_{c'})) = \phi_2(c,t_c)\prod_{c''\neq c'} M(\phi_4(b_{cc''},t_c,t_{c''})\to e_{rc})\prod_r M(\phi_3(t_c,e_{r'c})\to t_c)\\ &M(t_{c'}\to\phi_4(b_{cc'},t_c,t_{c'})) = \text{similar to above}. \\ &M(\phi_4(b_{cc'},t_c,t_{c'})\to b_{cc'}) = M(t_c\to\phi_4(b_{cc'},t_c,t_{c'}))M(t_{c'}\to\phi_4(b_{cc'},t_c,t_{c'}))\\ &M(b_{cc'}\to\phi_4(b_{cc'},t_c,t_{c'})) = \prod_r M(\phi_5(b_{cc'},e_{rc},e_{rc'})\to b_{cc'})M(\phi_4(b_{cc'},t_c,t_{c'})\to t_c) =\\ &\max_{t_{c'},b_{cc'}} \phi_4(b_{cc'},t_c,t_{c'})M(t_{c'}\to\phi_4(b_{cc'},t_c,t_{c'}))M(b_{cc'}\to\phi_4(b_{cc'},t_c,t_{c'}))\\ &M(\phi_4(b_{cc'},t_c,t_{c'}\to t_{c'})= \text{similar to above}. \end{split}$$

Parameter setting

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are Web tables important?

Why annotate Web tables?

Related work

Algorithm and

Evaluation

Conclusio

Reference

Parameter	Setting
Type-Entity compatibility	$1/\sqrt{dist(T)}$
Features used	$\mathbf{f}_1, \ldots, \mathbf{f}_5$
Type and Entity accuracy	$\phi_1, \ \phi_2, \ \phi_3$
Relationship accuracy	ϕ_1, \ldots, ϕ_5

Parameter	Value	Parameter	Value
max_hits	150	score_percent	0.1
USE_SQRT_LEVEL	true	consider_overlap	true
jazzy	false	useidf	true

Scope for improvement

Annotating and Searching Web Tables Using Entities. Types and Relationships

- Better training of parameters
- Candidate label generation
 - Most time consuming task
 - Better data structures to represent YAGO
- Join queries over tables

Work completed - Stage I

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are Web tables important?

Why annotate Web tables?

Related work

System

Algorithm and

Reference

- Literature Survey
- YAGO processing
- Basic feature design
- Trying out simple ideas
- Tool for collecting ground truth
- Gathering ground truth and basic evaluation

Work completed - Stage II

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are Web tables important?

Why annotate Web tables?

Related work

Algorithms and

Conclusio

Reference

- Read few more papers
- Combined model creation and integration with inference module
- More YAGO processing
- Trials with sampled ground truth
- Integrating with StructLearn for parameter training
- Generating ground truth for Wiki_Link dataset
- More experiments on annotator efficiency and performance
- Annotating Web corpus of tables
- Adding context related features
- Trying out MLE training

Top 50 types in a subset of annotated corpus

Annotating and Searching Web Tables Using Entities, Types and Relationships

Girija Limaye

Why are Wel tables important?

Why annotate Web tables?

Related Worl

Algorithm

Evaluation

Conclusio

Reference

Total types annotated	5443406	-
Annotated with NA	1966964	36%
Total types in top K	1799671	33%
Number of distinct types	248992	-

Rank	Few interesting types in top 50				
5	wordnet_village_108672738	73349	1.3%		
7	wordnet_city_108524735	57439	1.05%		
10	wordnet_movie_106613686	37218	0.68%		
17	wordnet_administrative_district_108491826	17349	0.31%		
19	wikicategory_States_of_the_United_States	15407	0.28%		
21	wordnet_university_108286163	15274	0.28%		
31	wordnet_company_108058098	10271	0.18%		
32	wordnet_organization_108008335	10057	0.18%		
33	wikicategory_American_films	10001	0.18%		
34	wordnet_country_108544813	9985	0.18%		
35	wikicategory_English-language_films	9714	0.178%		
38	wikicategory_Albums_produced_by_Marti_Frederiksen	9282	0.17%		
40	wordnet_player_110439851	9135	0.168%		
41	wordnet_town_108665504	9119	0.167%		
43	wordnet_municipality_108626283	8740	0.1605%		
47	wikicategory_Susan_Herndon_albums	8309	0.152%		
48	wikicategory_Physics_journals	7643	0.14%		
50	wordnet_magazine_106595351	7235	0.1329%		
30	Mordiner-magazine-100393331	1233	0.1329/0		