fesk- e, suforence nobel /um o (Repeatedfor |

7

§ hudalsilivy 8 owar L
© hize Jh fable

ORI VRV & €38 Y gatend
© V!M’\’\v\z [ING Lsuh)?

%@Wﬁv&t&—@ \wv\A PNTSUTL NS YTV W N

)
- \ &,(5:@)
a_ "
~ &(glq \
@ S-—_v @;LQ ﬂ'u)
&b(ﬁLA%)

G
:
=
3
&

O oy ol Facn)
—ﬁHﬁdWW\—@de*m—ﬂgﬁa—o

4 uv

o £ pusdy ubing Belimon eqpefion |0 58, O <

I

) Tarus Wit boric DOGN \Sq:“«?‘r}\aszgﬂwmo\'\

Blswy= Y+Y'8(Clo) (sa,s)

Leomm note 'Pouub’ 2 - A%lﬁ)&aﬁ\m methads

) ﬂoaT&W«{)iofv\a 6)\(049[@\/\; Qy(s‘,m) = Y%V‘Q

use Wg@b netwe vk
(ohso wsed in the 2015 DAN ,D»rpen/wou)

® Grvelated Jomfier prddem < O P

S

N \‘7% plicy
[IRAY L
\‘C?/ ij rfiovfﬁ,bul @v‘)eru'm& va{aly

handpit_emp e 2 Veplay

O/MU
wafborm\‘fsv\— emf\mfﬁ’w\/\ dslomvpns O/\%
|p\5’i)'|'“w'"u1 /t’ 6"""""
v Casatnl ‘/IJ{\V"‘AA%
- —

Loukiony @) Divected wn%\ormm r& (

6 ooy Sakes . J

© W%'M :;A/Num b ot cwuagna < Ahavt Taun

@ novely

© Gwhm UUd“U@ &— '\(G:VNTQJ) d:bwwv\‘vu\hh}\&)e\m

/Qimé)lexl’ #grum 5]0 nwig; emfjnwd‘im bevuu

S ”? ~ A r
' I

Aeversl Himen

Besren onplorahion bevwses © Vever Qve Up Aw’r S%

I&wwfe MQF Towatd 1o Vg = @%7 +%“w

CIMY]MI@

Non—wrdwhov bore d |poww Utieg - Jurion pouittence

ﬂ

vc—ywdz s 'uui{j

eipm PYO'UUM o flam)&ha/('-

Value bored mefeds ot MMWM when ouputh wig
(m)(\MdV\A 0

é

mave k5 poliw gradiond
| Jd 0

Human-level control through deep reinforcement

learning

Volodymyr Mnih'*, Koray Kavukcuoglul*, David Silver™*, Andrei A. Rusu', Joel Veness', Marc G. Bellemare', Alex Graves!,
Martin Riedmiller’, Andreas K. Fidjeland', Georg Ostrovski', Stig Petersen!, Charles Beattie!, Amir Sadik’, Ioannis Antonoglou’,

Helen King', Dharshan Kumaran', Daan Wierstra', Shane Legg' & Demis Hassabis'

Q' (s,a) = mngE[n 1+t s =5, a=a, 7,

which is the maximum sum of rewards r; discounted by y at each time-

step t, achievable by a behaviour policy © = P(a|s), after making an

observation (s) and taking an action (a) (see Methods)".

Reinforcement learning is known to be unstable or even to diverge

when a nonlinear function approximator such as a neural network is
used to represent the action-value (also known as Q) function®”. This

instability has several causes: the correlations present in the sequence

of observations, the fact that small updates to Q may significantly change
the policy and therefore change the data distribution, and the correlations

between the action-values (Q) and the target values r +7 max Q(s', a’).

We address these instabilities with a novel variant of Q-learning, which

uses two key ideas. First, we used a biologically inspired mechanism
termed experience replay*' > that randomizes over the data, thereby

removing correlations in the observation sequence and smoothing over

changes in the data distribution (see below for details). Second, we used

an iterative update that adjusts the action-values (Q) towards target

values that are only periodically updated, thereby reducing correlations
with the target. \— online) A nexlsoy kb

While other stable methods exist for training nedral networks in the

Convglution Convslution Fully cgnnected Fully cgnnected
(Noinput])

‘ o e . 0 OJ(SNM)
/] N /P A\l 3 &(5142)
. . o\ ER
[- . . °\\ I8 :

-
L3 L] . \
=2 /P A\ A
B/ . . . “
B @ i@
5 - D|:| Q l‘g N Q . . . y_O |
\ - A ° . L]
W\ A \ . . .
=0 mE\e Y YE,
\ ‘\‘ o \ * * . N+0O !
|\ / . L] L)
o e Y .
L L L]
. Q(ﬁy%}

PRIORITIZED EXPERIENCE REPLAY

Tom Schaul, John Quan, Ioannis Antonoglou and David Silver @/Ja) Yy %)_
Google DeepMind \

{schaul, johnquan, icannisa,davidsilver}@google.com Cg La ,15’_3%7’);

CSA, '{LS\ / &>

ABSTRACT
(L)) Experience replay lets online reinforcement learning agents remember and reuse
experiences from the past. In prior work, experience transitions were uniformly
% sampled from a replay memory. However, this approach simply replays transitions

at the same frequency that they were originally experienced, regardless of their

significance. In this paper we develop a framework for prioritizing experience,
so as to replay important transitions more frequently, and therefore learn more

efficiently. We use prioritized experience replay in Deep Q-Networks (DQN), a
reinforcement learning algorithm that achieved human-level performance across

many Atari games. DQN with prioritized experience replay achieves a new state-
of-the-art, outperforming DQN with uniform replay on 41 out of 49 games.

3.2 PRIORITIZING WITH TD-ERROR

The central component of prioritized replay is the criterion by which the importance of each transi-
tion is measured. One idealised criterion would be the amount the RL agent can learn from a tran-

sition in its current state (expected learning progress). While this measure is not directly accessible,
a reasonable proxy is the magnitude of a transition’s TD error §, which indicates how ‘surprising’

or unexpected the transition is: specifically, how far the value is from its next-step bootstrap esti-
mate (Andre et al., 1998). This is particularly suitable for incremental, online RL algorithms, such

as SARSA or Q-learning, that already compute the TD-error and update the parameters in propor-
tion to §. The TD-error can be a poor estimate in some circumstances as well, e.g. when rewards are
noisy; see Appendix A for a discussion of alternatives.

To overcome these issues, we introduce a stochastic sampling method that interpolates between
pure greedy prioritization and uniform random sampling. We ensure that the probability of being

sampled is monotonic in a transition’s priority, while guaranteeing a non-zero probability even for
the lowest-priority transition. Concretely, we define the probability of sampling transition ¢ as

(a%

P;
k Pl

P(i) = (e))

where p; > 0 is the priority of transition ¢. The exponent v determines how much prioritization is

used, with o = 0 corresponding to the uniform case.

The first variant we consider is the direct, proportional prioritization where p; = |§;| + €, where €
is a small positive constant that prevents the edge-case of transitions not being revisited once their
error is zero. The second variant is an indirect, rank-based prioritization where p; = where

1
rank(z)’
rank(¢) is the rank of transition ¢ when the replay memory is sorted according to |d;|. In this case,

P becomes a power-law distribution with exponent . Both distributions are monotonic in |§|, but
the latter is likely to be more robust, as it is insensitive to outliers. Both variants of stochastic

prioritization lead to large speed-ups over the uniform baseline on the Cliffwalk task, as shown on
Figure 2 (right).

Algorithm 1 Double DQN with proportional prioritization

1

2
3
4
5:
6
7
8

9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

: Input: minibatch k, step-size 7, replay period K and size N, exponents « and 3, budget 7'.
: Initialize replay memory H =), A = 0,p; = 1

: Observe Sy and choose Ay ~ m4(Sp)
:fort=1to 7T do

Observe Sy, Ry, vt
Store transition (S;_1, A¢—1, R¢, V¢, St) in H with maximal priority p; = max; ¢ p;

if t=0 mod K then

for j = 1to kdo
Sample transition j ~ P(j) = p§/ >, pf

Compute importance-sampling weight w; = (N - P(j))_ﬂ / max; w;
Compute TD-error §; = R + ; Quarger (S, arg max, Q(S;j,a)) — Q(Sj—1.4;-1)

Update transition priority p; < |d;]|
Accumulate weight-change A <~ A+ w; - §; - VoQ(Sj-1,4,-1)

end for
Update weights 6 <— 6 +n - A, reset A =0

From time to time copy weights into target network Oyrpe; <— ¢
end if

Choose action A; ~ 7y (.S;)
end for

O

sT alx.[¢ \ | Hindsight Experience Replay [lsr)
A Y G =10
—— =

S

o i? |
‘::
=
)
-
o

n Andrychowicz*, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong,

Peter Welinder, Bob McGrew, Josh Tobin, Pieter Abbeel’, Wojciech Zaremba'
OpenAl

. CI(L% Upere)

Abstract (00>

./g Y
Dgaling with sparse rewards is one of the biggegwfha enges in Reinforcement

earning (RL). We present a novel technique called Hindsight Experience Replay
which allows sample-efficient learning from rewards which are sparse and binary

and therefore avoid the need for complicated reward engineering. It can be com-
bined with an arbitrary off-policy RL algorithm and may be seen as a form of

implicit curriculum.

:Beach, CA, USA.

Rerord j o

OYC‘MW e b Omd |

T Chve wwl)riglt

— P c% ’r(u‘))wilj
B So/ QT T AemX
‘ “(r u &W et al., 2015), DDPG (Lillicrap et al., 2015), NAF (Gu et al., 2016) or SDQN (Metz et al., 2017).

. Q,

— bt § “°
A)SBQSUU\J\J
ond o w9

3.3 Algorithm

The idea behind Hind%ight Experience Replay (HER) is very simple: after experiencing some episode

S0, S1,--., ST we store in the replay buffer every transition s; — s;+1 not only with the original
goal used for this episode but also with a subset of other goals. Notice that the goal being pursued
influences the agent’s actions but not the environment dynamics and therefore we can replay each
trajectory with an arbitrary goal assuming that we use an off-policy RL algorithm like DQN (Mnih

One choice which has to be made in order to use HER is the set of additional goals used for replay.
In the simplest version of our algorithm we replay each trajectory with the goal m(sr), i.e. the goal
which is achieved in the final state of the episode. We experimentally compare different types and
quantities of additional goals for replay in Sec. 4.5. In all cases we also replay each trajectory with

Mp\,‘(ﬁ;e original goal pursued in the episode. See Alg. 1 for a more formal description of the algorithm.

ER may be seen as a form of implicit curriculum as the goals used for replay naturally shift from
ones which are simple to achieve even by a random agent to more difficult ones. However, in contrast
to explicit curriculum, HER does not require having any control over the distribution of initial
environment states. Not only does HER learn with extremely sparse rewards, in our experiments
it also performs better with sparse rewards than with shaped ones (See Sec. 4.4). These results are
indicative of the practical challenges with reward shaping, and that shaped rewards would often
constitute a compromise on the metric we truly care about (such as binary success/failure).

=0l 5
o daef ™M

Algorithm 1 Hindsight Experience Replay (HER)

Given:
e an off-policy RL algorithm A,
e astrategy S for sampling goals for replay,
e areward functionr : S x A x G — R.

Initialize A
Initialize replay buffer R

for episode=1, M do
Sample a goal g and an initial state s.

fort = 0,7 —1do

at < mp(stl|g)

end for
fort = 0,7 —1do

ry = T(Staatvg)

for ¢’ € Gdo

r’i=r(s,at,g)

end for
end for

fort = 1, N do

end for

end for

Execute the action a; and observe a new state s¢41
Store the transition (s¢||g, a¢, r¢, s¢v1]|g) in R

Sample a set of additional goals for replay G := S(current episode)

Sample a minibatch B from the replay buffer R
Perform one step of optimization using A and minibatch B

>e.g. DQN, DDPG, NAF, SDQN
>e.g. S(sg,...,s7) = m(sr)

>e.g.

r(s,a,9) = —[fq(s) = 0]

> e.g. initialize neural networks

Sample an action a; using the behavioral policy from A:

> || denotes concatenation

> standard experience replay

Store the transition (s¢||g’, a¢, ', s¢x1||lg’) in R

> HER

Rainbow: Combining Improvements in Deep Reinforcement Learning

Matteo Hessel Joseph Modayil Hado van Hasselt

DeepMind DeepMind DeepMind

Will Dabney Dan Horgan Bilal Piot

DeepMind DeepMind DeepMind
Abstract

The deep reinforcement learning community has made sev-
eral independent improvements to the DQN algorithm. How-
ever, it is unclear which of these extensions are complemen-
tary and can be fruitfully combined. This paper examines
six extensions to the DQN algorithm and empirically studies
their combination. Our experiments show that the combina-
tion provides state-of-the-art performance on the Atari 2600
benchmark, both in terms of data efficiency and final perfor-
mance. We also provide results from a detailed ablation study
that shows the contribution of each component to overall per-
formance.

Introduction

The many recent successes in scaling reinforcement learn-
ing (RL) to complex sequential decision-making problems
were kick-started by the Deep Q-Networks algorithm (DQN;
Mnih et al. 2013, 2015). Its combination of Q-learning with
convolutional neural networks and experience replay en-
abled it to learn, from raw pixels, how to play many Atari

Median human-normalized score

200%

100%

0%

Tom Schaul Georg Ostrovski

DeepMind DeepMind

Mohammad Azar David Silver
DeepMind DeepMind

DQN

DDQN

—— Prioritized DDQN
Dueling DDQN
A:E;cI / N

Rainbow

o
X

2.
111“-

Distributional DQN
Noisy DQN

V

Ve

’,‘l.f-’d"”w M o

|]
100 200
Millions of frames

Double Q-learning. Conventional Q-learning is affected
by an overestimation bias, due to the maximization step in
Equation 1, and this can harm learning. Double Q-learning
(van Hasselt 2010), addresses this overestimation by decou-
pling, in the maximization performed for the bootstrap tar-
get, the selection of the action from its evaluation. It is pos-
sible to effectively combine this with DQN (van Hasselt,
Guez, and Silver 2016), using the loss

(Rt+1+%+1qg(5t+1,argrpaxma(sm,a'))—%(St,At))Q- bb

This change was shown to reduce harmful overestimations
that were present for DQN, thereby improving performance.

NEVER GIVE UP: LEARNING DIRECTED
EXPLORATION STRATEGIES

Adria Puigdomeénech Badia® Pablo Sprechmann™ Alex Vitvitskyi Daniel Guo

Bilal Piot Steven Kapturowski Olivier Tieleman Martin Arjovsky

Alexander Pritzel Andew Bolt Charles Blundell

DeepMind {adriap, psprechmann, avlife, danielguo,
piot, skapturowski, tieleman,
apritzel, abolt, cblundell}@google.com

"Cg 1 INTRODUCTION

The problem of exploration remains one of the major challenges in deep reinforcement learning.
. In general, methods that guarantee finding an optimal policy require the number of visits to each
YLULGL UW kL state—action pair to approach infinity. Strategies that become greedy after a finite number of steps
i A»'t 4 to |2aywy may never learn to act optimally; they may converge prema.turelyvto suboptimal poli(':ies, vand never —
. gather the data they need to learn. Ensuring that all state-action pairs are encountered infinitely often
— 7 ey wath s the general problem of maintaining exploration (Francois-Lavet et al., 2018; Sutton & Barto, 2018). —
The simplest approach for tackling this problem is to consider stochastic policies with a non-zero
WW probability of selecting all actions in each state, e.g. e-greedy or Boltzmann exploration. While these
techniques will eventually learn the optimal policy in the tabular setting, they are very inefficient and
the steps they require grow exponentially with the size of the state space. Despite these shortcomings,
they can perform remarkably well in dense reward scenarios (Mnih et al., 2015). In sparse reward
settings, however, they can completely fail to learn, as temporally-extended exploration (also called W’J Yondwn
— deep exploration) is crucial to even find the very few rewarding states (Osband et al., 2016).

wdipng w v
- “Equal contribution. Ah‘e [T v —
vy \col\ &

Randowt nuiwoyk duphilaiieny

T M W""}J
w“?h,sﬁwmw“‘m /5ahwk»afwbvw;}mmbn

—
. o RND random network
life-long novelty ~ e
multiplicative

@)
classifier i, é
[}

T :
|
& bwkl) — |
| [RND predictionnetwork |
,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
@ k-nearest

I
|
) Ty | neighbors
\ - =T - s I controllable state)
| episodic |
- - I % -
| 1 |
N .) | . |
episodic novelty | embedding network 6&\0 |
Ty T4 module | |
| episodic memory M |
.. /A —— J

2
Figure 1: (left) Training architecture for the embeddinb network (right) NGU’s reward generator.

WAL é\
X

|
p(a|:vt, -TH—I) module l Iﬁ o modulation r . ~ \
i o . wiringic portion
|
i
|

Cm\io%;j

e . "
N t‘% X %r{\: riP4 . min {fmax {ay, 1}, L}

Tt o @ [plow - AbN(J‘U

Agent57: Outperforming the Atari Human Benchmark

Adria Puigdoménech Badia ™' Bilal Piot“' Steven Kapturowski“' Pablo Sprechmann”' Alex Vitvitskyi '
Daniel Guo' Charles Blundell !

- at
‘T

I;.

()

ACTORS
[w} Environment

Prioritised sampling

LEARNER REPLAY BUFFER

Updated priorities

Figure 2. A schematic depiction of a distributed deep RL agent

Recal -

3. Improvements to NGU

3.1. State-Action Value Function Parameterization

The proposed architectural improvement consists in split-
ting the state-action value function in the following way:

N GU WA e— Q(x,a,5;0) = Q(z,a,j; 6°) + B;Q(x, a, j; 0°),

Ln

where Q(z, a, j; 0¢) and Q(x, a, j; 6") are the extrinsic and

&) bw\Mntrinsic components of Q(x,a, j; 0) respectively. The sets

of weights ¢ and 6" separately parameterize two neural
networks with identical architecture and # = 6* U §¢. Both
Q(x,a,j;6° and Q(z,a, j; ") are optimized separately in
the learner with rewards ¢ and r* respectively, but with
the same target policy 7(z) = argmax,c 4 Q(z,a,j;0).
More precisely, to train the weights #¢ and 0°, we use
the same sequence of transitions sampled from the re-
play, but with two different transformed Retrace loss func-
tions (Munos et al., 2016). For Q(z, a, j; 0¢) we compute
an extrinsic transformed Retrace loss on the sequence tran-
sitions with rewards r“ and target policy m, whereas for
Q(z,a, j;0") we compute an intrinsic transformed Retrace
loss on the same sequence of transitions but with rewards
r* and target policy w. A reminder of how to compute a
transformed Retrace loss on a sequence of transitions with
rewards r and target policy 7 is provided in App. C.

To—|0 0 —= 0

0= 0502

w0 7 ol |
LQM«‘\\

