Maidn 29

[edie 0%

Lo |
Rewifion - Pelu ua/ 3@0\;@1\1@5

— Mohvation HMOUM\q CsyUh purk A dion Lp(w%

— JInpfead G/ VC\D\AW Aok, we | wsite the

Juuoun (fy Ub ﬂﬂb‘%\%m\/& QKUU/\UWW‘ CS\\ P°)* "I)

N d do cwou)m\N 63 (e

= Gnsideu (‘)Wua Ti(a|s;e)

/So:‘iM‘hdM—‘\i"e

—)= 2 T@lge) §lsa) = v (5)
V\Te@i) < VL):‘%_WCQ,S’; 5) @)BCQLQ)(\
Qdw sl Yai\able [y ¢ weplate oy Mawde {otlo
bﬂeﬁ\b%}\(w\& ’? 0 Yorun
= 9J(e) X ZMs) Z VTl (a]§;6) 6, (510)
l g
Fveqymxwa 6]0 VigtAto 5 > Tl Avrwadion v
| f\“d&"&fo%@\' Yid dz\

Me AL Ln AM\)'D\%

UJe) K E] 24T (a)58) . G (50) "\
% B

= YN

I 629 9T . b\
N 7 J

1 o
==

P S c M
176 & B4 [1 G |- Tk &)

B = 03 § B lrbgt e |
(oasning ke

Athy Outic metheds o DQQ,P RL

Bosic pau ot v 0] &
ch Papes,
e 1 \
YU o Aied)ot , mwty Atoble M‘WA:
Ty Jog 7 (ay |10)| b, - byls)) Ny
/’ - L—/‘\/\j ou g
Ao Adv

oy w, & — pamrv\mfu QWWA, bmw} &)‘)m roved nekwoy I

Ve — ?xapd\jw ok

Two imf)(fﬂ@!\hﬁdﬂ cﬂ[)ﬁo"m

[outic |
) YRV Y N W V T2
=i Y VO)~ VGe)
acoy | —+—— ‘
g\? -] ﬁ(ﬂy\st) %Iﬂ LG’H"\ %u; W\Q;
Tp Iy (o 1S¢) fy N WAL O LAY
Baokbong U
Ay X-outic
ét’» v ont | Q
\VAS A4 -3
. (bm%o_\:n]/
/ 0 O
S —

25 outic |— 8¢, o)

1% Jes Yot &0 Gen) - B0 4c)

T—el&a’oi — ‘ﬁ(_%[gt)

(7

v

Asynchronous Methods for Deep Reinforcement Learning

Volodymyr Mnih' VMNIH@ GOOGLE.COM
Adria Puigdoménech Badia' ADRIAP@GOOGLE.COM
Mehdi Mirza' 2 MIRZAMOM @ IRO.UMONTREAL.CA

S Alex Graves! GRAVESA@GOOGLE.COM
Tim Harley! THARLEY @ GOOGLE.COM

—— Timothy P. Lillicrap® COUNTZERO@GOOGLE.COM ——
David Silver! DAVIDSILVER @ GOOGLE.COM

— Koray Kavukcuoglu ! KORAYK@GOOGLE.COM ~—

|
o T’l(! 4 \pbkln contrast to value-based methods, policy-based model-

free methods directly parameterize the policy 7(a/|s; #) and y__
S QBM U'(S update the parameters € by performing, typically approx- A
) : W, v4e
- LMQ imate, gradient ascent on E[R;|. One example of such Hon &
O\L a method is the REINFORCE family of algorithms due o T
—mehh to Williams (1992). Standard REINFORCE updates the / v it
— policy parameters 6 in the direction I_Vg log m(a¢|s¢;) Ry, o
— which is an unbiased estimate of VIE|[R;|. It is possible to -‘l i

reduce the variance of this estimate while keeping it unbi- ad) wt

ased by subtracting a learned function of the state b (s;),
- known as a baseline (Williams, 1992), from the return. The j .e‘i
o resulting gradient is| Vg log 7w(a¢|s¢; 6) (R — be(st)). until
A learned estimate of the nction is commonly used
- as the baseline by(s;) ~ V™ (s;) leading to a much lower learner:
o variance estimate of the policy gradient. When an approx- fetentt

A learned estimate Won is commonly used
as the baseline b;(s;) ~ V™ (s;) leading to a much lower
variance estimate of the policy gradient. When an approx-
imate value function is used as the baseline, the quantity
R; — by used to scale the policy gradient can be seen as
an estimate of the advantage of action a; in state s;, or
Alay, s¢) = Q(as, s¢)—V (s¢), because Ry is an estimate of
Q™ (ay, s¢) and b; is an estimate of V™ (s;). This approach
can be viewed as an actor-critic architecture where the pol-
icy 7 is the actor and the baseline 0; is the critic (Sutton &

Barto, 1998; Degris et al., 2012). S\Qe o A0 now

Algorithm S3 Asynchronous advantage actor-critic - pseudocode for each actor-learner thread.

// Assume global shared parameter vectors 6 and 0, and global shared counter T' = 0
// Assume thread-specific parameter vectors 6’ and 0,
Initialize thread step counter ¢ < 1 P(% 9 @ Vs
repeat —_— —
Reset gradients: df <— 0 and df,, < 0.
Synchronize thread-specific parameters 8’ = 6 and 0., = 0,

Lstart =t \&\

Get state s; T T 3

repeat
Perform a; according to policy m(a|s¢; 6"))
Receive reward r; and new state s¢41
t+—t+1 prwe
T+ T+1 }
until terminal s; or t — tsiart == tmax
R { 0 for terminal s, 48 ,d8\v
1 Vs, 0.) for non-terminal s;// Bootstrap from last state
fori: € {t — 1, .. -,tstart} do
R+ ri+~vR b
Accumulate gradients wrt 0': df < df + Vg, log w(ai|si; 0")(R — V (si;0,,))
Accumulate gradients wrt 0),: df, < df, + & (R — V (si;0.,))> /86,
end for
Perform asynchronous update of € using df and of 6,, using d@,.
until 7’ > T)00

|

|

—— CONTINUOUS CONTROL WITH DEEP REINFORCEMENT

~—— LEARNING DOPLr —» Deap Askeswani AVTC
‘(’W‘;A waﬂs
Timothy P. Lillicrap; Jonathan J. Hunt; Alexander Pritzel, Nicolas Heess,

Tom Erez, Yuval Tassa, David Silver & Daan Wierstra

— Google Deepmind

London, UK
{countzero, jjhunt, apritzel, heess,
etom, tassa, davidsilver, wierstra} @ google.com

o ABSTRACT

We adapt the ideas underlying the success of Deep Q-Learning to the continuous
action domain. We present an actor-critic, model-free algorithm based on the de-
terministic policy gradient that can operate over continuous action spaces. Using

— the same learning algorithm, network architecture and hyper-parameters, our al-

gorithm robustly solves more than 20 simulated physics tasks, including classic
problems such as cartpole swing-up, dexterous manipulation, legged locomotion
and car driving. Our algorithm is able to find policies whose performance is com-
petitive with those found by a planning algorithm with full access to the dynamics
of the domain and its derivatives. We further demonstrate that for many of the
tasks the algorithm can learn policies “end-to-end”: directly from raw pixel in-

b

Many approaches in reinforcement learning make use of the recursive relationship known as the
Bellman equation: L

Qﬂ(st: at) = ETteSt-i-lNE [T’(St, at) +)|Eat+1~7" [QW(SH-lt at-l-l)]] (2)

W —3

If the target policy is deterministic we can describe it as a function p : § < A and avoid the inner

expectation: Ay (St, 0 S “vg
75 Q®(3t7 ai) = Er, sis1~nE [7(s¢,a¢) + Q" (541, /i(-9t‘3+1))] l ! S 3)

— — W\Rywa:j

The expectation depends only on the environment. This means that it is possible to learn Q# off-
— policy, using transitions which are generated from a different stochastic behavior policy /3.

— Q-learning (Watkins & Dayan, 1992), a commonly used off-policy algorithm, uses the greedy policy
~ u(s) = argmax, Q(s,a). We consider function approximators parameterized by 69, which we

optimize by minimizing the loss:

L(GQ) =]Estwpﬂﬁ,atwﬁ,rth |:(Q(St: at|0Q) - yt)Q] (4)

— where

yr = 1(s¢,at) + YQ(St41, f1(5141)]09). (5)

While v; is also dependent on #¥, this is typically ignored.

~ F’\(Gm }JL(*UL

Using chain rule:

Veue] ~ Estfvp-ﬁ [VGN Q(Sv a|9Q)|s=8t,a=u(st|9“)]

- IEsth.B [an(S, a|9Q)|3=st,a‘=u(st)v0#u(s Hu)ls:st]
™o oY

Algorithm 1 DDPG algorithm

Randomly initialize critic network Q(s, a|#?) and actor x(s|6*) with weights % and 6.
Initialize target network @’ and 1/ with weights 09" « 69, 6+ « g+

Initialize replay buffer R

for episode = 1, M do

Initialize a random process N for action exploration .

Receive initial observation state s; / Nefe, © Trntead rf\ & X‘c%b\’?\’ Po%‘ e fo “fP\AJ) J
fort=1,Tdo WU v\oib&{’b O v 4
Select action a; = pu(s¢|0") + N; according to the current policy and exploration noise ol oN\

Execute action a; and observe reward r; and observe new state sy 1
Store transition (¢, as, 74, S¢+1) in R
Sample a random minibatch of N transitions (s;, a;,7;, s;+1) from R

—— Setyi = 7i + Q' (si41, ' (5i41]0*)|09)

Update critic by minimizing the loss: L = & 3, (y; — Q(s;, a;/09))* — outic \oA A ’ .
Update the actor policy using the sampled policy gradient:
Arwoy 9

1
Vg = N Z VaQ(s, a|9Q)|s=s,~,a=u(s,~)v9“ﬂ(5’9#)|si — ooy \QM

Update the target networks:
609 « 769 + (1 —7)69 . ,bg\v UQang, — w%qk
OF «— 10" + (1 —7)0"

end for
end for

Soft Actor/Critic:

Learning with a Stochastic Actor

Off-Policy Maximum Entropy Deep Reinforcement

1

Tuomas Haarnoja' Aurick Zhou' Pieter Abbeel ' Sergey Levine '

2009). This challenge is further exacerbated in continuous

state and action spaces, where a separate actor network is

often used to perform the maximization in Q-learning. A
commonly used algorithm in such settings, deep determinis-

tic policy gradient (DDPG) (Lillicrap et al., 2015), provides

for sample-efficient learning but is notoriously challenging
to use due to its extreme brittleness and hyperparameter

~sensitivity (Duan et al., 2016; Henderson et al., 2017).

We explore how to design an efficient and stable model-

efesrdy

P adel
S
auoy M

Hal
a 1oV

m(mmw

w1th the expected entropy of the policy over p, (s;):

‘b?\%(= L]

The temperature parameter « determines the relative im

g

1) = 3 Binepe o) M)) %“”
t=0 / oﬂ)kd’

T TssTETT rTYTTTETY Y TTOoTT T e [=Ea e

-50”

AR

9

portance of the entropy term against the reward, and thus "4 Wi\

controls the stochasticity of the optimal policy. The maxi

mum entropy objective differs from the standard maximum o?
expected reward objective used in conventional reinforce- O\
ment learning, though the conventional objective can be SV
recovered in the limit as &« — 0. For the rest of this paper,

peot
m/oﬂ

MAIMJN

~ we will omit writing the temperature explicitly, as it can MVNM
— always be subsumed into the reward by scaling it by o™
o ‘6 oKW
This obiective has a number of conceptual and practical t\
a modified Bellman backup operator 7™ given by
T™Q(st,ar) = r(sp,ar) + vEs, i np [V(si1)], (2
where posimb rovml)
V(St) =]Eatf\.;ﬂ' [St, at log 7r(at|st)] (3)

L)

6"00

% Mo Jo (o [T

. exp (Q™ (s,)
new — D (-
Taew = a1g 1D (“(5e) || = Zmoa(s,)

/ ('

Dey (P14) = 2oy ¥a, 2

dalia pUllUy 'd.CCUlUlllg Lo unauuu J. LIS LIU'dllllly Cdll DC

A Ukl o o

= g ELN’M +)9&Z [gined M e
avs ay grediend e e .

Y = vawg ffnt. paremesesis (Stare-valpe)

o= MY S

rcritie § Polr oy

Algorithm 1 Soft Actor-Critic

Initialize parameter vectors v, 1, 6, ¢.

for each iteration do

for each environment step do

as 7r¢(at|st)
St4+1 ~ P(St+1/8t,ar)

D <« DU {(st,as,r(st,at),se+1)}

end for

for each gradient step do

b — A Vdu (1)
0; + 0; — /\QVGzJQ(gz) fori € {]. 2}

¢ ¢ — /\wvdﬂ]vr(d))

YT+ (1= 1)

end for

end for

