
Soft Actor-Critic

A. Maximum Entropy Objective
The exact definition of the discounted maximum entropy objective is complicated by the fact that, when using a discount
factor for policy gradient methods, we typically do not discount the state distribution, only the rewards. In that sense,
discounted policy gradients typically do not optimize the true discounted objective. Instead, they optimize average reward,
with the discount serving to reduce variance, as discussed by Thomas (2014). However, we can define the objective that is
optimized under a discount factor as

J(π) =

∞∑
t=0

E(st,at)∼ρπ

[∞∑
l=t

γl−t Esl∼p,al∼π [r(st,at) + αH(π(· |st))|st,at]
]
. (14)

This objective corresponds to maximizing the discounted expected reward and entropy for future states originating from
every state-action tuple (st,at) weighted by its probability ρπ under the current policy.

B. Proofs
B.1. Lemma 1

Lemma 1 (Soft Policy Evaluation). Consider the soft Bellman backup operator T π in Equation 2 and a mapping
Q0 : S ×A → R with |A| <∞, and define Qk+1 = T πQk. Then the sequence Qk will converge to the soft Q-value of π
as k →∞.

Proof. Define the entropy augmented reward as rπ(st,at) , r(st,at) + Est+1∼p [H (π(· |st+1))] and rewrite the update
rule as

Q(st,at)← rπ(st,at) + γ Est+1∼p,at+1∼π [Q(st+1,at+1)] (15)

and apply the standard convergence results for policy evaluation (Sutton & Barto, 1998). The assumption |A| < ∞ is
required to guarantee that the entropy augmented reward is bounded.

B.2. Lemma 2

Lemma 2 (Soft Policy Improvement). Let πold ∈ Π and let πnew be the optimizer of the minimization problem defined in
Equation 4. Then Qπnew(st,at) ≥ Qπold(st,at) for all (st,at) ∈ S ×A with |A| <∞.

Proof. Let πold ∈ Π and let Qπold and V πold be the corresponding soft state-action value and soft state value, and let πnew

be defined as

πnew(· |st) = arg min
π′∈Π

DKL (π′(· |st) ‖ exp (Qπold(st, ·)− logZπold(st)))

= arg min
π′∈Π

Jπold
(π′(· |st)). (16)

It must be the case that Jπold
(πnew(· |st)) ≤ Jπold

(πold(· |st)), since we can always choose πnew = πold ∈ Π. Hence

Eat∼πnew
[log πnew(at|st)−Qπold(st,at) + logZπold(st)] ≤ Eat∼πold

[log πold(at|st)−Qπold(st,at) + logZπold(st)],
(17)

and since partition function Zπold depends only on the state, the inequality reduces to

Eat∼πnew
[Qπold(st,at)− log πnew(at|st)] ≥ V πold(st). (18)

Next, consider the soft Bellman equation:

Qπold(st,at) = r(st,at) + γ Est+1∼p [V πold(st+1)]

≤ r(st,at) + γ Est+1∼p
[
Eat+1∼πnew [Qπold(st+1,at+1)− log πnew(at+1|st+1)]

]
...
≤ Qπnew(st,at), (19)

where we have repeatedly expanded Qπold on the RHS by applying the soft Bellman equation and the bound in Equation 18.
Convergence to Qπnew follows from Lemma 1.

Soft Actor-Critic

B.3. Theorem 1

Theorem 1 (Soft Policy Iteration). Repeated application of soft policy evaluation and soft policy improvement to any π ∈ Π
converges to a policy π∗ such that Qπ

∗
(st,at) ≥ Qπ(st,at) for all π ∈ Π and (st,at) ∈ S ×A, assuming |A| <∞.

Proof. Let πi be the policy at iteration i. By Lemma 2, the sequence Qπi is monotonically increasing. Since Qπ is bounded
above for π ∈ Π (both the reward and entropy are bounded), the sequence converges to some π∗. We will still need to
show that π∗ is indeed optimal. At convergence, it must be case that Jπ∗(π∗(· |st)) < Jπ∗(π(· |st)) for all π ∈ Π, π 6= π∗.
Using the same iterative argument as in the proof of Lemma 2, we get Qπ

∗
(st,at) > Qπ(st,at) for all (st,at) ∈ S ×A,

that is, the soft value of any other policy in Π is lower than that of the converged policy. Hence π∗ is optimal in Π.

C. Enforcing Action Bounds
We use an unbounded Gaussian as the action distribution. However, in practice, the actions needs to be bounded to a finite
interval. To that end, we apply an invertible squashing function (tanh) to the Gaussian samples, and employ the change of
variables formula to compute the likelihoods of the bounded actions. In the other words, let u ∈ RD be a random variable
and µ(u|s) the corresponding density with infinite support. Then a = tanh(u), where tanh is applied elementwise, is a
random variable with support in (−1, 1) with a density given by

π(a|s) = µ(u|s)
∣∣∣∣det

(
da

du

)∣∣∣∣−1

. (20)

Since the Jacobian da/du = diag(1− tanh2(u)) is diagonal, the log-likelihood has a simple form

log π(a|s) = logµ(u|s)−
D∑
i=1

log
(
1− tanh2(ui)

)
, (21)

where ui is the ith element of u.

Soft Actor-Critic

D. Hyperparameters
Table 1 lists the common SAC parameters used in the comparative evaluation in Figure 1 and Figure 4. Table 2 lists the
reward scale parameter that was tuned for each environment.

Table 1. SAC Hyperparameters

Parameter Value

Shared
optimizer Adam (Kingma & Ba, 2015)
learning rate 3 · 10−4

discount (γ) 0.99
replay buffer size 106

number of hidden layers (all networks) 2
number of hidden units per layer 256
number of samples per minibatch 256
nonlinearity ReLU

SAC
target smoothing coefficient (τ) 0.005
target update interval 1
gradient steps 1

SAC (hard target update)
target smoothing coefficient (τ) 1
target update interval 1000
gradient steps (except humanoids) 4
gradient steps (humanoids) 1

Table 2. SAC Environment Specific Parameters

Environment Action Dimensions Reward Scale

Hopper-v1 3 5
Walker2d-v1 6 5
HalfCheetah-v1 6 5
Ant-v1 8 5
Humanoid-v1 17 20
Humanoid (rllab) 21 10

Soft Actor-Critic

E. Additional Baseline Results
Figure 4 compares SAC to Trust-PCL (Figure 4. Trust-PC fails to solve most of the task within the given number of
environment steps, although it can eventually solve the easier tasks (Nachum et al., 2017b) if ran longer. The figure also
includes two variants of SAC: a variant that periodically copies the target value network weights directly instead of using
exponentially moving average, and a deterministic ablation which assumes a deterministic policy in the value update
(Equation 6) and the policy update (Equation 13), and thus strongly resembles DDPG with the exception of having two
Q-functions, using hard target updates, not having a separate target actor, and using fixed exploration noise rather than
learned. Both of these methods can learn all of the tasks and they perform comparably to SAC on all but Humanoid (rllab)
task, on which SAC is the fastest.

0.0 0.2 0.4 0.6 0.8 1.0
million steps

0

1000

2000

3000

4000

av
er

ag
e

re
tu

rn

Hopper-v1

(a) Hopper-v1

0.0 0.2 0.4 0.6 0.8 1.0
million steps

0

1000

2000

3000

4000

5000

6000

av
er

ag
e

re
tu

rn

Walker2d-v1

(b) Walker2d-v1

0.0 0.5 1.0 1.5 2.0 2.5 3.0
million steps

0

5000

10000

15000

av
er

ag
e

re
tu

rn

HalfCheetah-v1

(c) HalfCheetah-v1

0.0 0.5 1.0 1.5 2.0 2.5 3.0
million steps

0

2000

4000

6000

av
er

ag
e

re
tu

rn

Ant-v1

(d) Ant-v1

0 2 4 6 8 10
million steps

0

2000

4000

6000

8000

av
er

ag
e

re
tu

rn

Humanoid-v1

(e) Humanoid-v1

0 2 4 6 8 10
million steps

0

2000

4000

6000

av
er

ag
e

re
tu

rn

Humanoid (rllab)

SAC

SAC (hard target update)

SAC (hard target update, deterministic)

Trust-PCL

(f) Humanoid (rllab)

Figure 4. Training curves for additional baseline (Trust-PCL) and for two SAC variants. Soft actor-critic with hard target update (blue)
differs from standard SAC in that it copies the value function network weights directly every 1000 iterations, instead of using exponentially
smoothed average of the weights. The deterministic ablation (red) uses a deterministic policy with fixed Gaussian exploration noise,
does not use a value function, drops the entropy terms in the actor and critic function updates, and uses hard target updates for the target
Q-functions. It is equivalent to DDPG that uses two Q-functions, hard target updates, and removes the target actor.

