
File: /home/harshad/Documents/acad_…L-CSE-IITB/Lec05/codes/mbpo.pyPage 1 of 8

# -*- coding: utf-8 -*-
"""03.ModelBased.ipynb

Automatically generated by Colaboratory.
 
Original file is located at
    https://colab.research.google.com/github/yfletberliac/rlss-2019/blob/master/labs/
solutions/DRL.03.ModelBased_solution.ipynb
 
# Model-Based Reinforcement Learning
 
## Principle
We consider the optimal control problem of an MDP with a **known** reward function $R$ and
subject to **unknown deterministic** dynamics $s_{t+1} = f(s_t, a_t)$:
 
$$\max_{(a_0,a_1,\dotsc)} \sum_{t=0}^\infty \gamma^t R(s_t,a_t)$$
 
In **model-based reinforcement learning**, this problem is solved in **two steps**:
1. **Model learning**:
We learn a model of the dynamics $f_\theta \simeq f$ through regression on interaction
data.
2. **Planning**:
We leverage the dynamics model $f_\theta$ to compute the optimal trajectory $$
\max_{(a_0,a_1,\dotsc)} \sum_{t=0}^\infty \gamma^t R(\hat{s}_t,a_t)$$ following the learnt
dynamics $\hat{s}_{t+1} = f_\theta(\hat{s}_t, a_t)$.
 
(We can easily extend to unknown rewards and stochastic dynamics, but we consider the
simpler case in this notebook for ease of presentation)
 
 
## Motivation
 
### Sparse rewards
* In model-free reinforcement learning, we only obtain a reinforcement signal when
encountering rewards. In environment with **sparse rewards**, the chance of obtaining a
reward randomly is **negligible**, which prevents any learning.
* However, even in the **absence of rewards** we still receive a **stream of state
transition data**. We can exploit this data to learn about the task at hand.
 
### Complexity of the policy/value vs dynamics:
Is it easier to decide which action is best, or to predict what is going to happen?
* Some problems can have **complex dynamics** but a **simple optimal policy or value
function**. For instance, consider the problem of learning to swim. Predicting the
movement requires understanding fluid dynamics and vortices while the optimal policy
simply consists in moving the limbs in sync.
* Conversely, other problems can have **simple dynamics** but **complex policies/value
functions**. Think of the game of Go, its rules are simplistic (placing a stone merely
changes the board state at this location) but the corresponding optimal policy is very
complicated.
 
Intuitively, model-free RL should be applied to the first category of problems and model-
based RL to the second category.
 
### Inductive bias
Oftentimes, real-world problems exhibit a particular **structure**: for instance, any
problem involving motion of physical objects will be **continuous**. It can also be
**smooth**, **invariant** to translations, etc. This knowledge can then be incorporated in
machine learning models to foster efficient learning. In contrast, there can often be
**discontinuities** in the policy decisions or value function: e.g. think of a collision
vs near-collision state.
 
###  Sample efficiency
Overall, it is generally recognized that model-based approaches tend to **learn faster**
than model-free techniques (see e.g. [[Sutton, 1990]](http://papersdb.cs.ualberta.ca/
~papersdb/uploaded_files/paper_p160-sutton.pdf.stjohn)).
 



File: /home/harshad/Documents/acad_…L-CSE-IITB/Lec05/codes/mbpo.pyPage 2 of 8

### Interpretability
In real-world applications, we may want to know **how a policy will behave before actually
executing it**, for instance for **safety-check** purposes. However, model-free
reinforcement learning only recommends which action to take at current time without being
able to predict its consequences. In order to obtain the trajectory, we have no choice but
executing the policy. In stark contrast, model-based methods a more interpretable in the
sense that we can probe the policy for its intended (and predicted) trajectory.
 
## Our challenge: Automated Parking System
 
We consider the **parking-v0** task of the [highway-env](https://github.com/eleurent/
highway-env) environment. It is a **goal-conditioned continuous control** task where an
agent **drives a car** by controlling the gaz pedal and steering angle and must **park in
a given location** with the appropriate heading.
 
This MDP has several properties wich justifies using model-based methods:
* The policy/value is highly dependent on the goal which adds a significant level of
complexity to a model-free learning process, whereas the dynamics are completely
independent of the goal and hence can be simpler to learn.
* In the context of an industrial application, we can reasonably expect for safety
concerns that the planned trajectory is required to be known in advance, before execution.
 
###  Warming up
We start with a few useful installs and imports:
"""
 
""" Remove " > /dev/null 2>&1" to see what is going on under the hood"""
# Install environment and visualization dependencies 
!pip install git+https://github.com/eleurent/highway-env#egg=highway-env  > /dev/null 2>&1
!pip install gym pyvirtualdisplay > /dev/null 2>&1
!apt-get install -y xvfb python-opengl ffmpeg > /dev/null 2>&1
 
# Commented out IPython magic to ensure Python compatibility.
# Environment
import gym
import highway_env
 
# Models and computation
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from collections import namedtuple
# torch.set_default_tensor_type("torch.cuda.FloatTensor")
 
# Visualization
import matplotlib
import matplotlib.pyplot as plt
# %matplotlib inline
from tqdm import tnrange
from IPython import display as ipythondisplay
from pyvirtualdisplay import Display
from gym.wrappers import Monitor
import base64
 
# IO
from pathlib import Path
 
"""We also define a simple helper function for visualization of episodes:"""
 
display = Display(visible=0, size=(1400, 900))
display.start()
 
def show_videos(path="video"):
    html = []
    for mp4 in Path(path).glob("*.mp4"):



File: /home/harshad/Documents/acad_…L-CSE-IITB/Lec05/codes/mbpo.pyPage 3 of 8

        video_b64 = base64.b64encode(mp4.read_bytes())
        html.append('''<video alt="{}" autoplay 

loop controls style="height: 400px;">
                      <source src="data:video/mp4;base64,{}" type="video/mp4" />
                 </video>'''.format(mp4, video_b64.decode('ascii')))
    ipythondisplay.display(ipythondisplay.HTML(data="<br>".join(html)))
 
"""### Let's try it!
 
Make the environment, and run an episode with random actions:
"""
 
env = gym.make("parking-v0")
env = Monitor(env, './video', force=True, video_callable=lambda episode: True)
env.reset()
done = False
while not done:
    action = env.action_space.sample()
    obs, reward, done, info = env.step(action)
env.close()
show_videos()
 
"""The environment is a `GoalEnv`, which means the agent receives a dictionary containing
both the current `observation` and the `desired_goal` that conditions its policy."""
 
print("Observation format:", obs)
 
"""There is also an `achieved_goal` that won't be useful here (it only serves when the
state and goal spaces are different, as a projection from the observation to the goal
space).
 
Alright! We are now ready to apply the model-based reinforcement learning paradigm.
 
## Experience collection
First, we randomly interact with the environment to produce a batch of experiences 
 
$$D = \{s_t, a_t, s_{t+1}\}_{t\in[1,N]}$$
"""
 
Transition = namedtuple('Transition', ['state', 'action', 'next_state'])
 
def collect_interaction_data(env, size=1000, action_repeat=2):
    data, done = [], True
    for _ in tnrange(size // action_repeat, desc="Collect interaction data"):
        action = env.action_space.sample()
        for _ in range(action_repeat):
            previous_obs = env.reset() if done else obs
            obs, reward, done, info = env.step(action)
            data.append(Transition(torch.Tensor(previous_obs["observation"]),
                                   torch.Tensor(action),
                                   torch.Tensor(obs["observation"])))
    return data
 
data_size = 2000
data = collect_interaction_data(env, size=data_size)
assert len(data) == data_size
assert isinstance(data[0], Transition)
assert all([isinstance(field, torch.Tensor) for field in data[0]])
print("Sample transition:", data[0])
 
"""## Build a dynamics model
 
We now design a model to represent the system dynamics. We choose  a **structured model**
inspired from *Linear Time-Invariant (LTI) systems* 
 
$$\dot{x} = f_\theta(x, u) = A_\theta(x, u)x + B_\theta(x, u)u$$



File: /home/harshad/Documents/acad_…L-CSE-IITB/Lec05/codes/mbpo.pyPage 4 of 8

 
where the $(x, u)$ notation for states and actions comes from the Control Theory community
and is typically used when they are continuous. Intuitively, we learn at each point $(x_t,
u_t)$ the **linearization** of the true dynamics $f$ with respect to $(x, u)$.
 
We parametrize $A_\theta$ and $B_\theta$ as two fully-connected networks with one hidden
layer.
 
"""
 
class DynamicsModel(nn.Module):
    STATE_X = 0
    STATE_Y = 1
 
    def __init__(self, state_size, action_size, hidden_size, dt):
        super().__init__()
        self.state_size, self.action_size, self.dt = state_size, action_size, dt
        A_size, B_size = state_size * state_size, state_size * action_size
        self.A1 = nn.Linear(state_size + action_size, hidden_size)
        self.A2 = nn.Linear(hidden_size, A_size)
        self.B1 = nn.Linear(state_size + action_size, hidden_size)
        self.B2 = nn.Linear(hidden_size, B_size)
 
    def forward(self, x, u):
        """
            Predict x_{t+1} = f(x_t, u_t)
        :param Tensor x: a batch of states, of shape (N, S)
        :param Tensor u: a batch of actions, of shape (N, A)
        """
        xu = torch.cat((x, u), -1)
        xu[:, self.STATE_X:self.STATE_Y+1] = 0  # Remove dependency in (x,y)
        A = self.A2(F.relu(self.A1(xu)))
        A = torch.reshape(A, (x.shape[0], self.state_size, self.state_size))
        B = self.B2(F.relu(self.B1(xu)))
        B = torch.reshape(B, (x.shape[0], self.state_size, self.action_size))
        dx = A @ x.unsqueeze(-1) + B @ u.unsqueeze(-1)
        return x + dx.squeeze()*self.dt
 
 
dynamics = DynamicsModel(state_size=env.observation_space.spaces["observation"].shape[0],
                         action_size=env.action_space.shape[0],
                         hidden_size=64,
                         dt=1/env.unwrapped.config["policy_frequency"])
 
#  Forward a sample transition. 
#  unqueeze(0) is used to generate a batch of 1 element, by adding a new batch dimension
of size 1.
state, action = data[0].state.unsqueeze(0), data[0].action.unsqueeze(0)
next_state = dynamics(state, action).detach()  # detach() is used here because gradients
are unnecessary
assert next_state.shape == state.shape
assert not torch.equal(next_state, state)
print("Forward initial model on a sample transition:", next_state)
 
"""## Fit the model on data
We can now train our model $f_\theta$ in a supervised fashion to minimize an MSE loss
$L^2(f_\theta; D)$ over our experience batch $D$ by stochastic gradient descent:
 
$$L^2(f_\theta; D) = \frac{1}{|D|}\sum_{s_t,a_t,s_{t+1}\in D}||s_{t+1}- f_\theta(s_t,
a_t)||^2$$
"""
 
optimizer = torch.optim.Adam(dynamics.parameters(), lr=0.01)
 
# Split dataset into training and validation
train_ratio = 0.7



File: /home/harshad/Documents/acad_…L-CSE-IITB/Lec05/codes/mbpo.pyPage 5 of 8

train_data, validation_data = data[:int(train_ratio * len(data))], \
                              data[int(train_ratio * len(data)):]

def compute_loss(model, data_t, loss_func = torch.nn.MSELoss()):
    states, actions, next_states = data_t
    predictions = model(states, actions)
    return loss_func(predictions, next_states)
 
def transpose_batch(batch):
    return Transition(*map(torch.stack, zip(*batch)))
 
def train(model, train_data, validation_data, epochs=1500):
    train_data_t = transpose_batch(train_data)
    validation_data_t = transpose_batch(validation_data)
    losses = np.full((epochs, 2), np.nan)
    for epoch in tnrange(epochs, desc="Train dynamics"):
        # Compute loss gradient and step optimizer
        loss = compute_loss(model, train_data_t)
        validation_loss = compute_loss(model, validation_data_t)
        losses[epoch] = [loss.detach().numpy(), validation_loss.detach().numpy()]
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
    # Plot losses
    plt.plot(losses)
    plt.yscale("log")
    plt.xlabel("epochs")
    plt.ylabel("loss")
    plt.legend(["training", "validation"])
    plt.show()
 
train(dynamics, data, validation_data)
 
"""## Visualize trained dynamics
 
In order to qualitatively evaluate our model, we can choose some values of steering angle
*(right, center, left)* and acceleration *(slow, fast)* in order to predict and visualize
the corresponding trajectories from an initial state.  
 
"""
 
def predict_trajectory(state, actions, model, action_repeat=1):
    states = []
    for action in actions:
        for _ in range(action_repeat):
            state = model(state, action)
            states.append(state)
    return torch.stack(states, dim=0)
 
def plot_trajectory(states, color):
    scales =
np.array(highway_env.envs.parking_env.ParkingEnv.DEFAULT_CONFIG["observation"]["scales"])
    states = np.clip(states.squeeze(1).detach().numpy() * scales, -100, 100)
    plt.plot(states[:, 0], states[:, 1], color=color, marker='.')
    plt.arrow(states[-1,0], states[-1,1], states[-1,4]*1, states[-1,5]*1, color=color)
 
def visualize_trajectories(model, state, horizon=15):
    plt.cla()
    # Draw a car
    plt.plot(state.numpy()[0]+2.5*np.array([-1, -1, 1, 1, -1]),
             state.numpy()[1]+1.0*np.array([-1, 1, 1, -1, -1]), 'k')
    # Draw trajectories
    state = state.unsqueeze(0)
    colors = iter(plt.get_cmap("tab20").colors)
    # Generate commands
    for steering in np.linspace(-0.5, 0.5, 3):



File: /home/harshad/Documents/acad_…L-CSE-IITB/Lec05/codes/mbpo.pyPage 6 of 8

        for acceleration in np.linspace(0.8, 0.4, 2):
            actions = torch.Tensor([acceleration, steering]).view(1,1,-1)

# Predict trajectories
            states = predict_trajectory(state, actions, model, action_repeat=horizon)
            plot_trajectory(states, color=next(colors))
    plt.axis("equal")
    plt.show()
    
visualize_trajectories(dynamics, state=torch.Tensor([0, 0, 0, 0, 1, 0]))
 
"""Do the predicted trajectories look realistic? If not, you can try to:
- Collect more data in $D$
- Increase the model capacity (size of hidden layer, number of layers)
- Increase the number of training epochs or change the learning rate
- Add regularization 
## Reward model
We assume that the reward $R(s,a)$ is known (chosen by the system designer), and takes the
form of a **weighted L1-norm** between the state and the goal.
"""
 
def reward_model(states, goal, gamma=None):
    """
        The reward is a weighted L1-norm between the state and a goal
    :param Tensor states: a batch of states. shape: [batch_size, state_size].
    :param Tensor goal: a goal state. shape: [state_size].
    :param float gamma: a discount factor
    """
    goal = goal.expand(states.shape)
    reward_weigths = torch.Tensor(env.unwrapped.REWARD_WEIGHTS)
    rewards = -torch.pow(torch.norm((states-goal)*reward_weigths, p=1, dim=-1), 0.5)
    if gamma:
        time = torch.arange(rewards.shape[0],
dtype=torch.float).unsqueeze(-1).expand(rewards.shape)
        rewards *= torch.pow(gamma, time)
    return rewards
 
obs = env.reset()
print("Reward of a sample transition:",
reward_model(torch.Tensor(obs["observation"]).unsqueeze(0),
                                                     torch.Tensor(obs["desired_goal"])))
 
"""## Leverage dynamics model for planning
 
We now use the learnt dynamics model $f_\theta$ for planning.
In order to solve the optimal control problem, we use a sampling-based optimization
algorithm: the **Cross-Entropy Method** (`CEM`). It is an optimization algorithm
applicable to problems that are both **combinatorial** and **continuous**, which is our
case: find the best performing sequence of actions.
 
This method approximates the optimal importance sampling estimator by repeating two
phases:
1. **Draw samples** from a probability distribution. We use Gaussian distributions over
sequences of actions.
2. Minimize the **cross-entropy** between this distribution and a **target distribution**
to produce a better sample in the next iteration. We define this target distribution by
selecting the top-k performing sampled sequences.
 
![Credits to Olivier Sigaud](https://github.com/yfletberliac/rlss2019-hands-on/blob/
master/imgs/cem.png?raw=1)
 
Note that as we have a local linear dynamics model, we could instead choose an `Iterative
LQR` planner which would be more efficient. We prefer `CEM` in this educational setting
for its simplicity and generality.
"""
 
def cem_planner(state, goal, action_size, horizon=5, population=100, selection=10, 



File: /home/harshad/Documents/acad_…L-CSE-IITB/Lec05/codes/mbpo.pyPage 7 of 8

iterations=5):
    state = state.expand(population, -1)

action_mean = torch.zeros(horizon, 1, action_size)
    action_std = torch.ones(horizon, 1, action_size)
    for _ in range(iterations):
        # 1. Draw sample sequences of actions from a normal distribution
        actions = action_mean + action_std * torch.randn(horizon, population, action_size)
        actions = torch.clamp(actions, min=env.action_space.low.min(),
max=env.action_space.high.max())
        states = predict_trajectory(state, actions, dynamics, action_repeat=5)
        # 2. Fit the distribution to the top-k performing sequences
        returns = reward_model(states, goal).sum(dim=0)
        _, best = returns.topk(selection, largest=True, sorted=False)
        best_actions = actions[:, best, :]
        action_mean, action_std = best_actions.mean(dim=1, keepdim=True),
best_actions.std(dim=1, unbiased=False, keepdim=True)
    return action_mean[0].squeeze(dim=0)
  
  
# Run the planner on a sample transition
action = cem_planner(torch.Tensor(obs["observation"]),
                     torch.Tensor(obs["desired_goal"]),
                     env.action_space.shape[0])
assert env.action_space.contains(action.numpy())
print("Planned action:", action)
 
"""## Visualize a few episodes
 
En voiture, Simone !
"""
 
env = gym.make("parking-v0")
env = Monitor(env, './video', force=True, video_callable=lambda episode: True)
for episode in tnrange(3, desc="Test episodes"):
    obs, done = env.reset(), False
    while not done:
        action = cem_planner(torch.Tensor(obs["observation"]),
                             torch.Tensor(obs["desired_goal"]),
                             env.action_space.shape[0])
        obs, reward, done, info = env.step(action.numpy())
env.close()
show_videos()
 
"""Is the performance satisfying? 
If not, try to identify if the problem lies with the dynamics model or the planner.
If you think that the planner is at fault, you can try to:
- Increase the size of the population.
- Increase the planning horizon.
- Add action repeat in the planning procedure, in order to increase the effective planning
horizon without increasing
  the size of the optimization space (sampled sequences of actions).
 
## Limits
 
### Model bias
 
In model-based reinforcement learning, we replace our original optimal control problem by
another problem: optimizing our learnt approximate MDP. When settling for this approximate
MDP to plan with, we introduce a **bias** that can only **decrease the true performance**
of the corresponding planned policy. This is called the problem of model bias.
 
In some MDPs, even slight model errors lead to a dramatic drop in performance, as
illustrated in the beginning of the following video:
 
[![Approximate Robust Control of Uncertain Dynamical Systems](https://img.youtube.com/vi/
8khqd3BJo0A/0.jpg)](https://www.youtube.com/watch?v=8khqd3BJo0A)



File: /home/harshad/Documents/acad_…L-CSE-IITB/Lec05/codes/mbpo.pyPage 8 of 8

 
The question of how to address model bias belongs to the field of **Safe Reinforcement
Learning**.
 
### [L'appel du vide](https://www.urbandictionary.com/define.php?
term=L%27appel%20du%20vide)
 
The model will be accurate only on some region of the state space that was explored and
covered in $D$.
Outside of $D$, the model may diverge and **hallucinate** important rewards.
This effect is problematic when the model is used by a planning algorithm, as the latter
will try to **exploit** these hallucinated high rewards and will steer the agent towards
**unknown** (and thus dangerous) **regions** where the model is erroneously optimistic.
 
### Computational cost of planning
 
At test time, the planning step typically requires **sampling a lot of trajectories** to
find a near-optimal candidate, wich may turn out to be very costly. This may be
prohibitive in a high-frequency real-time setting. The **model-free** methods which
directly recommend the best action are **much more efficient** in that regard.
"""


