
FoLaR: Foggy Latent Representations for
Reinforcement Learning with Partial Observability

Hardik Meisheri
TCS Research

Mumbai, India
hardik.meisheri@tcs.com

Harshad Khadilkar
TCS Research

Mumbai, India
harshad.khadilkar@tcs.com

Abstract—We propose a novel methodology for improving
the rate and consistency of reinforcement learning in partially
observable (foggy) environments, under the broader umbrella
of robust latent representations. The present work addresses
partially observable environments, which violate the canonical
Markov assumptions. We propose adaptations for any on-policy
model-free deep reinforcement learning algorithm, in order to
improve training in partially observable situations: (i) recurrent
layers for including information from previous observations, (ii)
predicting the step reward and the next latent representation
as auxiliary outputs from the same latent space as used for
inferring the action, and (iii) modification of the loss function
to penalise errors in the two auxiliary outputs, in addition to the
reward-based gradients used for policy training. We show that
the proposed changes substantially improve learning in several
environments over vanilla Proximal Policy Optimisation (PPO)
and other baselines in literature, especially in known challenging
environments with hard exploration.

Index Terms—reinforcement learning, partially observable set-
tings, robust latent representation

I. INTRODUCTION

Reinforcement learning (RL) in its canonical form is de-
signed to find optimal policies for Markov decision processes
(MDPs). This set of algorithms has produced remarkable
successes in fully observable settings, both deterministic [1],
[2] and stochastic [3]. However, it is well-known that the
learning degrades substantially in partially observable settings,
at least partly due to the violation of Markov assumptions. One
of the key reasons of poor performance of deep reinforcement
learning (Deep RL) in such situations is overfitting to noise
during training, which itself is a result of poor knowledge
of the environment. Recent work [4]–[8] has shown that
more robust latent representations within the Deep RL agent
can lead to substantial improvements. The goal of this work
is to adapt this idea for partially observable environments,
and to demonstrate its effectiveness compared to standard
RL algorithms. We call the concept FoLaR or Foggy Latent
Representations, because the partial observability is similar to
operating in a fog.

Most DRL techniques assume that the state is fully ob-
servable at each timestep, though they are frequently used in
scenarios where this assumption is violated. In such instances,
information available during the decision-making process is
neither perfect nor complete. In this paper, we deal with
partially observable environments where observations are a

subset of the true state at that timestep. Partial observability
results in a generalised version of MDP known as POMDP [9],
[10]. DRL is known to suffer from sample inefficiency, and
this issue is further exacerbated in POMDP settings. One way
to tackle this challenge is to learn robust latent representa-
tions, using a combination of value, policy, and other signals.
This idea has been used in robotics and control domains to
reconstruct either the next state or current state or both [6],
[7]. However, the latent representations are typically learnt
in advance using techniques such as variational autoencoders
(VAE). Learning latent representations decoupled from policy
and reward signal often leads to the encoding of information
that is irrelevant to the task at hand [8], [11], though such
models do have the advantage of being generalizable to similar
environments with zero or few shot learning [12].

Some recent studies have focussed on predicting the latent
representations, rather than the entire state or observation,
and have shown improvements in policy learning and sample
efficiency. However, their application has been primarily to
physical systems (such as the DeepMind Control Suite) or
to fully observable instances with hard exploration (such as
Montezuma’s Revenge) [8], [11], [13], [14]. By contrast,
this paper investigates the efficacy of predicting future latent
representations (in addition to usual outputs such as value
and policy) in POMDPs. Combined with noisy rewards and
partial and imperfect information, prediction of the next state
is at best approximate and noisy or foggy. We present our
algorithm which augments the loss function of any off the shelf
algorithm and trains it end-to-end (learning representations
and policy improvements at the same time), achieving better
sample efficiency or in some cases solving tasks which are not
solvable with vanilla algorithms. We present our findings in
an empirical manner and discuss some intriguing observations.
We hypothesize that augmenting latent representations with
predictive loss and learning end-to-end generates better policy
and sample efficiency as opposed to decoupled learning of
representations and policy. Our method operates entirely in
the latent space and does not rely on reconstructing raw states;
this helps in learning to encode information that is relevant to
the task. The key contributions of this paper are,

• Proposing a training paradigm and loss function to learn
robust latent representations in POMDP settings contex-



tualized on latent representations of belief state,
• Ability to modify any off-the-shelf RL algorithm to

improve the sample efficiency and exploration character-
istics, and

• Extensive evaluation on two partially observable environ-
ments with varying scales.

In the rest of the paper, we review prior work in building
latent representations and its nuances Section II. We describe
our methodology for implementing FoLaR in Section III. Sec-
tion IV provides detailed overview of experiments conducted
and different environments considered. Empirical results and
ablation studies are presented in Section V and finally we
conclude our work in Section VII along with some possible
future directions.

II. RELATED WORK

The idea of learning representations effectively for gen-
erating better policy and in turn solving tasks in a much
more efficient way has been studied from various perspectives.
Recently, it was proposed that the ideal representations should
allow prediction in value function space via any linear predic-
tion map [15], [16]. In general, there is a common consensus
that learning more robust representations of states (in case
of POMDP belief states) results in better policies and stable
value functions. One option is to learn better representations
by imposing a constraint of reconstructing the entire state or
observation from the latent representations, forcing the model
to encode all the information into dense representations [6],
[14], [17]. While this idea does prove to be effective, it can
force the model to encode information which irrelevant to the
task at hand [11].

Another paradigm which has received significant interest
is to decouple the representations learning from policy im-
provement [4], [18], [19]. These algorithms iterate between
policy updates and representation learning, to obtain contin-
uous improvement. We hypothesize that although decoupling
the representations learning works better in fully observable
environments, they do not perform well in partially observed
environments (where information is not complete and is often
noisy). Since the observations only partially describe the
state, the same latent representations may correspond to very
different true states, leading to noisy policy updates. We
postulate that co-learning these two tasks will lead to more
robust updates to both the latent representations and the policy.

Recently, the notion of making latent representations reflect
the state (dis)similarity has been proposed. Earlier, this was
achieved by adding a loss based on some similarity metric [20]
in the input space and latent space. One such metric is bisimu-
lation and is recently being used to learn better representations
without reconstruction [8], [11]. However, the metric presented
is computationally intensive to compute and difficult to adapt
to stochastic and/or partially observable environments, as the
notion of choosing the same actions in similar states is unclear
when the states are only partially observed [21].

In [22], authors present the equivalence of trace between
the belief state in POMDPs which is similar to the equiva-

lence of states in MDPs. In particular, two belief states are
said to be belief trajectory equivalent if, for any choice of
future actions, they generate the same distribution on future
observations and rewards. Such belief trajectory equivalence
is related to predictive state representation (PSR) [23]–[28]
which are a compression of the past history which is sufficient
to predict the future observations. The compression of past
state information can also be viewed as an aggregation of
partially observed states into belief state [29]. We, therefore,
contextualized the prediction of next state representations on
the history of belief state representations.

Self Imitation Learning (SIL) [5] proposes to learn latent
representations better by leveraging past experiences to solve
harder exploration problems. They augment the learning al-
gorithm by forcing the model to learn its past actions when
the expected reward is greater than the value approximated
by the agent in an actor-critic framework. They achieve the
state of the art results in Atari games and more specifically
Montezuma’s Revenge. We have used SIL as one of the
baselines for our experiments.

III. METHODOLOGY

A Markov decision process (MDP) can be modelled as
(S,A, T ,R, γ), where S represents the state space, A de-
notes the decision or action space, T represents transition
probabilities from one combination of state and action to the
next, R denotes the rewards, and γ is the discount factor for
future rewards [30], [31]. This formulation can be extended
to partially observable Markov decision processes (POMDPs)
with the inclusion of belief state and noisy information. These
are typically modelled as a controlled state and an agent which
makes noisy corrupted observations of the state [9], [32].

Actor-Critic extensions to policy gradient methods have
been very successful in solving complex and hard exploration
tasks in the past [1], [2], [33]–[35], since having a value
estimate of state V (s) helps in reducing the variance in the
policy updates. In general, policy update in the policy gradient
framework is defined as,

∆θ ∝ ∇θlog(πθ(at/st))A(st, at), (1)

where πθ represents the policy parameterized by θ and
A(st, at) represents the advantage. This function is defined
by A(st, at) = Qπ(at, st)−V π(st). An extension introduced
in [1] uses entropy regularization in gradient updates to
improve exploration and avoid local convergence. The gradient
update is modified as follows,

∆θ ∝ ∇θlog(πθ(at/st))A(st, at) + β∇θH(πθ(st)), (2)

where β is a hyperparameter known as entropy coefficient and
H is the entropy. A(st, at) is estimated using Generalized
Advantage Estimates (GAE) [36]. In this paper, instead of
estimating GAE from a small number of environment steps
per trajectory, we estimate from full rollouts and use whole
trajectory to make a single gradient update. This reduces the
variance in the gradients, a crucial requirement for the sparse
reward environments with terminal rewards that we consider.



Encoder (shared weights)

RNN (LSTM)

Prediction
network

Value
network

Policy
network

MSE
lossEncoder (shared weights)

Encoder training
gradient flow

X
Direct gradient path blocked

Fig. 1: System Architecture

As described in [29], the belief state in POMDPs (where a
partial observed state is denoted by Ot) can be estimated from
current and previous observations Ot, Ot−1, . . . , Ot−k using
recurrent memory, where k is the length of the time window
into the past (illustrated in Fig. 1). As shown in the figure, we
first generate an encoded version ht, ht−1, . . . , ht−k of these
observations, which are then passed to the recurrent portion of
the network. While the encoder could be of any architecture
in general, we use CNN layers in this work. Similarly, the
recurrent portion of the network could be anything in general,
but we use an LSTM (long short-term memory) [37] in
the present work to generate latent representations zt. This
representation is then used by three downstream networks:
(i) value network, (ii) policy network, and (iii) prediction
network.

Both policy and value networks use the same latent rep-
resentation zt as the input, leading to fewer trainable param-
eters and potentially richer representations. The task of the
prediction network in the proposed architecture is to predict
the encoded representation of the next observation, and this is
trained using the loss relation,

LNLt = minimum(η ×mse(hpredt+1 , ht+1), ε) (3)

where ht+1 is the encoded latent representation of next state
(available after one time step), η is a hyperparameter defining
the weight to be associated with this loss, and ε defines the clip
limit. We clip the loss to reduce the variance induced into the
latent representations, by providing a pessimistic lower bound
on the change in the latent representations before and after one
training batch. In addition, the gradients are not allowed to
flow directly to encoder from this loss (see Fig. 1). Allowing
gradients to directly flow from loss to encoder hampers the
training and leads to exploding/vanishing gradient problem,
as we show in Section V. This is in agreement with [13]. Our
proposition is that forcing zt to support three tasks (value,
policy, and next-observation) results in richer, more robust
latent representations. The specific environments and training
procedure are explained in the next section.

IV. EXPERIMENTATION

A. Environments

We evaluate the effectiveness of our approach on two types
of environments: partially observable (Dynamic Obstacles and
DoorKey from the Minigrid suite [38]) and fully observable
(Catcher from pygame suite [39]).

1) MiniGrid: It features a series of highly structured en-
vironments of increasing difficulty and partial observability.
Each environment features a task in a 2D gridworld setting
and shares a discrete 7-dimensional action space (Forward,
Turn Left, Turn Right, Open Door/Box, Pick Up Item, Drop
Item, Done). We use a 3-channel partially observed integer
state consisting of a 7× 7 grid size. The 3 channels represent
the object, its color and its status (for example, is a door open
or closed). The environment has multiple entities (agent, walls,
lava, boxes, doors, keys); objects can be picked up, dropped,
and moved around by the agent; doors can be unlocked by keys
of the same color (which might be hidden inside boxes). The
agents cannot see past walls and closed doors. The objective
is to reach a goal state in the quickest amount of time (which
is captured by assigning to the goal state a reward which
decays over time). We evaluate our approach on two Minigrid
environments: Dynamic Obstacles and Doorkey.

Dynamic Obstacles has randomly moving obstacles as
shown in Fig. 2. The agent receives a positive reward if it
reaches the goal, a negative reward if it comes in contact with
any of the obstacles (in addition to episode termination) and
zero reward otherwise (timeout). The reward decreases the
longer it takes to reach the goal state. DoorKey is a hard
exploration task, where an agent has to learn to pick up a key,
open a door, and move to another room to reach the goal state
(see Fig. 2). The terminal rewards are similar to the Dynamic
Obstacles environment.

2) Catcher: It is a relatively simple environment, where the
agent (paddle) has to catch falling tiles (illustrated in Fig. 2).
The action space is of size 3 (left, right, do nothing), and the
agent receives +1 reward for catching each tile and -1 if it
misses a tile. The episode ends when the agent misses 3 tiles.
We consider for our experiments a grid size of 32× 32. This
environment is fully observable, but the state is more complex
as we use raw pixel inputs rather than structured features. The



(a) (b) (c)

Fig. 2: Sample grids for (a) Dynamic Obstacles , (b) Doorkey
and (c) Catcher. (a-b) The agent is denoted by a red triangle,
the goal is a green square, and the moving obstacles are blue
circles. Solid grey cells are walls. The agent can only observe
information in the light grey cells. The Doorkey environment
also features a key and a door in the wall. c) The red “brick”
is generated at a random point on the top edge and falls in
every time step, and must be “caught” by the white line.

state is a 3-channel RGB image of size 32×32. We choose the
more challenging input type to better understand the capability
of condensing information into a dense state.

B. Training Details

We test two instances of each environment, one of small grid
size and another of large grid size. In addition, we report our
results over two settings of entropy values. We keep entropy
coefficient (β) of 0.01 in the first case and we exponentially
decay from 0.2 to 0.01 in the latter case. We have presented all
our results with PPO algorithm [33] as the base RL algorithms.

For all our experiments, we show the mean and 95% confi-
dence interval (shaded region) of the average return across 10
different seeds for smaller grid size and 5 random seeds for
larger grid size (due to computational constraints). All plots
show a trailing average of 1000 episodes. We train all variants
in all environments with 16 parallel actors, a learning rate of
0.001, a discount factor γ of 0.99 and a generalised advantage
estimator λGAE of 0.97.

In addition to results with PPO, we also show results with
A2C for Dynamic Obstacles with a smaller grid size. This
quantitatively substantiates our claim of being compatible with
any off-the-shelf algorithm. We validate our approach against
two baselines: vanilla PPO (where η = 0.0, no effect of LNLt )
and Self imitation learning [5]. We have chosen values of η as
0.1, 0.5, 1.0 and 10.0, with 10.0 being the extreme case which
can give us insights about effects of large η value. A study
with more granular values of η is done in Section VI.

V. RESULTS AND DISCUSSION

In this section, we present the results of experiments con-
ducted on the 3 environments: Doorkey, Dynamic Obstacles,
and Catcher. We start by explaining intuitively what effect our
proposed architecture has on learning.

A. Dynamic Obstacles

A consolidated set of results is shown in Table I for
all Minigrid environments, including Dynamic Obstacles and

TABLE I: Training results for all Minigrid environments with
PPO+FoLaR. Two baselines are included: η = 0 is vanilla
PPO, and we also show results for self-imitation learning
(SIL). Mean and best values are over the last 1000 episodes.

DoorKey
Algo. 6x6 (small) 8x8 (large)

β = 0.01 β = 0.2 → 0.01 β = 0.01 β = 0.2 → 0.01
mean best mean best mean best mean best

η =0 0.929 0.955 0.646 0.955 0.001 0.002 0.001 0.002
η =0.1 0.934 0.958 0.935 0.955 0.571 0.966 0.382 0.963
η =0.5 0.935 0.955 0.935 0.956 0.001 0.007 0.016 0.082
η =1 0.935 0.957 0.931 0.955 0.384 0.966 0.571 0.963
η =10 0.936 0.958 0.660 0.952 0.001 0.003 0.001 0.004
SIL 0.934 0.957 0.659 0.953 0.001 0.002 0.001 0.005

Dynamic Obstacles
Algo. 6x6 (small) 16x16 (large)

β = 0.01 β = 0.2 → 0.01 β = 0.01 β = 0.2 → 0.01
mean best mean best mean best mean best

η =0 -0.003 0.008 0.834 0.950 -0.005 0.000 0.158 0.619
η =0.1 0.894 0.949 0.931 0.950 0.679 0.949 0.879 0.955
η =0.5 0.528 0.949 0.927 0.949 0.529 0.949 0.720 0.955
η =1 0.261 0.948 0.836 0.950 0.356 0.948 0.758 0.948
η =10 0.077 0.863 0.738 0.950 -0.164 0.000 -0.002 0.000
SIL -0.005 0.000 0.836 0.950 -0.025 0.000 0.057 0.617

Fig. 3: Training results with PPO+FoLaR for Dynamic Obsta-
cles with 6x6 grid size. β is kept constant at 0.01.

Doorkey. We first describe results in Dynamic Obstacles.
Training plots are generated with moving average of 1000
episodes.

1) 6 × 6: Fig. 3 shows the training for the lower entropy
setting (constant β = 0.01) on the 6× 6 grid. We can clearly
observe that η = 0.1 outperforms both baselines, not just in the
expected rewards but also in rate of convergence. In addition,
we can conclude that apart from η = 10.0 which is an extreme
value for η, all other values perform better than the baselines. It
is also important to note that in a dynamic partially observable
environment and without explicit entropy encouragement, SIL
is unable to learn even for small grid size.

This issue can be resolved by decaying β from a starting
value of 0.2 to a final value of 0.01, with results shown in Fig.
4. There is still a small difference in the final expected reward
as shown in Table I, but all the algorithms converge to ≈ 0.95.
Lower values of η (0.1 and 0.5) perform slightly better than
rest of the algorithms. The results suggest that having a higher
entropy coefficient allows for for better exploration even in
vanilla PPO, reducing the impact of η for this relatively simple
case. We shall see greater distinction in subsequent discussion.



Fig. 4: Training with PPO+FoLaR for Dynamic Obstacles with
6x6 gird size. β is exponentially decayed from 0.2 by a factor
of 0.999 per episode, clipping at 0.01.

Fig. 5: Training with A2C+FoLaR for Dynamic Obstacles with
6x6 gird size. β is exponentially decayed from 0.2 by a factor
of 0.999 per episode, clipping at 0.01.

Finally, we also demonstrate the versatility of the approach
by augmenting the prediction network to advantage actor critic
(A2C) with entropy maximisation. The results are shown in
Fig. 5. We observe that all values of η apart from η = 10
outperform vanilla A2C. Note also that none of these curves
are able to reach positive rewards, in contrast to Fig. 4. A
reward of 0 indicates the ability to avoid obstacles (relatively
simple task), but without reaching the goal.

2) 16×16: Fig. 6 shows the training curve for 16×16 grid
size with fixed low entropy coefficient. We note that none
of SIL, vanilla PPO or the high-η version of our algorithm
are able to learn to reach the goal in 80000 episodes, and
only acquire the skill of avoiding obstacles. Among the rest,
η = 0.1 has the best performance, followed by η = 0.5.

While Fig. 4 failed to differentiate between the algorithms
in a 6×6 grid with higher entropy, we see a marked difference
for the 16×16 grid as shown in Fig. 7. Curves corresponding
to η = 0.1, 0.5, and 1 are much better as compared to
the baselines. Overall, we can observe consistent trend in

Fig. 6: Training with PPO+FoLaR for Dynamic Obstacles with
16x16 grid size. β is kept constant at 0.01.

Fig. 7: Training with PPO+FoLaR for Dynamic Obstacles with
16x16 grid size. β is decayed from 0.2 by a factor of 0.999
per episode, clipping at 0.01.

Dynamic Obstacles, with η = 0.1 doing the best, followed by
η = 0.5 and η = 1. Dynamic obstacles is a highly dynamic
environment and having higher weight to the predictive loss
LNLt leads to poorer performance. The probable cause is that
the agent refers to remain in one place, which has more
predictable observations. We shall find a different trend in the
more predictable Catcher environment, as shown later.

B. Doorkey

1) 6×6: Fig. 8 shows the training graph for 6×6 size with
entropy coefficient kept constant at 0.01. We observe that η =
1 and η = 0.5 perform best followed by η = 0.1 and η = 0
and SIL, and η = 10 performs the worst. The differences in
learning curves are relatively minor for this small environment;
this is probably because the 6×6 size is nearly the same as the
observable window. In fact, Fig. 9 shows that the performance
for η = 10, η = 0, and SIL degrades in the higher entropy
coefficient training. FoLaR with any value apart from η = 10
is unaffected.

2) 8×8: On the other hand, there is a remarkable difference
in results for the 8× 8 environment as shown in Fig. 10. We



Fig. 8: Training with PPO+FoLaR for Doorkey with 6x6 grid
size. β is kept constant 0.01.

Fig. 9: Training with PPO+FoLaR for Doorkey with 6x6 grid
size. β is decayed from 0.2 by a factor of 0.999 per episode,
clipping at 0.01.

see that only FoLaR with η = 0.1 and η = 1 are able to
solve this hard exploration task. The same trend is visible in
Fig. 11, where β is exponentially decayed. We note that 8×8
DoorKey is typically not solvable from scratch by vanilla RL
algorithms; the fact that FoLaR is able to do so is therefore
encouraging.

C. Catcher

Fig. 12 and Fig. 13 show the results with the low and high
(decaying) entropy scenarios as before, for the 32×32 Catcher
environment with an 800 step timeout and normalised rewards.
The variance for the low-entropy training case is very large.
The high decaying β case indicates that FoLaR with the three
higher η values performs well, but the variance is still high.

D. Hypothesis: What is η doing?

Intuitively, the losses in the value and policy networks
in Fig. 1 directly target improved rewards, but this is not
true of the prediction network. This fact raises the question
of what effect the prediction loss (and its magnitude as
defined by η) has on learning, if any. As we observe in

Fig. 10: Training with PPO+FoLaR for Doorkey with 8x8 grid
size. β is kept constant 0.01.

Fig. 11: Training with PPO+FoLaR for Doorkey with 8x8 grid
size. β is decayed from 0.2 by a factor of 0.999 per episode,
clipping at 0.01.

Fig. 12: Training with PPO+FoLaR for Catcher with 32x32
grid size. β is kept constant 0.01.



Fig. 13: Training with PPO+FoLaR for Catcher with 32x32
grid size. β is decayed from 0.2 by a factor of 0.999 per
episode, clipping at 0.01.

this section, η has a definite positive effect on the success
of learning; lower values of η are better in more dynamic
environments, while higher values of η are better in more
static or predictable environments. We therefore conclude that
the prediction loss complements the value and policy losses by
focussing exploration in regions with both high rewards and
better predictability. In this regard, it has a more subtle effect
than pure exploration (or higher entropy); while the latter
prefers novelty for its own sake, prediction loss specifically
latches onto high-reward, more predictable trajectories. More
dynamic environments do not provide such trajectories easily,
and high η in such cases leads to overemphasis on predictabil-
ity. However, a small prediction loss nevertheless significantly
helps focus exploration in more promising regions. In more
predictable environments, it is easier to find predictable high-
reward trajectories, and we can afford to work with a higher
η. We also believe that use of additional loss term smoothens
out the objective function landscape which is similar to how
higher entropy achieves better results in hard exploration tasks
as stated in [40], however, it does warrant more detailed
experiments which we treat it as a one of direction for future
work.

VI. ABLATION STUDY

A. Effect of gradient propagation

As mentioned in Section III, we do not allow gradient
propagation directly from LNLt to the encoder. For counterfac-
tual analysis, we train the 6× 6 DoorKey environment while
allowing gradients to flow directly. The results are shown in
Fig. 14. We can observe that for all the values of η, there is
degradation in performance. As the value of η increases (larger
gradients), degradation becomes much more prominent. This
is also in line with the findings in [13].

B. Effect of η value

In order to understand the effect of η on expected rewards,
we trained FoLaR on 6×6 Dynamic Obstacles with η ranging

Fig. 14: Effect of propagating gradients to encoder from LNLt
on DoorKey 6x6.

Fig. 15: Mean of last 1000 episodes of training in dynamic
obstacles with 6x6 grid size, entropy coefficient β was kept
constant at 0.01. Results are generated using 10 random seeds.

from 0.1 to 1. Fig. 15 shows the results. For each value of η
it was trained for 60, 000 episodes same as figure 3. We can
observe that low values of η provide better average rewards
and also lower variance among the different random seeds.
High values of η prove to be detrimental to the learning and
overwhelm the policy and value loss during training, which
reinforces our earlier hypothesis.

C. Testing on out-of-distribution environments

Fig. 16 shows the results of testing a previously trained
policy (16× 16 Dynamic Obstacles) on an out of distribution
environment called Empty Room [38], which contains a single
room with the goal (no obstacles or doors). We use the best-
performing η for FoLaR, and compare with SIL and vanilla
PPO. We observe that FoLaR performs significantly better
when β = 0.01, which is also evident in earlier experiments,
where higher entropy negated the gains introduced by η.

VII. CONCLUSION

In this paper, we presented FoLaR, a method to learn robust
latent representations in partially observable environments.
We showed that the methodology could be applied to any
RL algorithm, and demonstrated results using PPO and A2C.
The hyperparameter η controls the magnitude of prediction
loss, and can be tuned based on the predictability of the
environment, but most reasonable values result in superior



Fig. 16: Policies learned on 16×16 Dynamic Obstacles tested
on three sizes of Empty Room without retraining. Rewards are
averaged over 5 random seeds.

performance compared to baselines. FoLaR performs espe-
cially well in hard exploration tasks and larger grid sizes
where entropy coefficient is kept static, indicating improved
latent representations that lead to more focussed exploration.
In future work, it would be interesting to look at adaptive η,
which could learn better policies even faster.

REFERENCES

[1] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-
forcement learning,” in International conference on machine learning,
2016, pp. 1928–1937.

[2] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
“Deterministic policy gradient algorithms,” 2014.

[3] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan,
and D. Hassabis, “A general reinforcement learning algorithm that
masters chess, shogi, and go through self-play,” Science, vol. 362, no.
6419, pp. 1140–1144, 2018.

[4] J. Subramanian, A. Sinha, R. Seraj, and A. Mahajan, “Approximate
information state for approximate planning and reinforcement learning
in partially observed systems,” arXiv preprint arXiv:2010.08843, 2020.

[5] J. Oh, Y. Guo, S. Singh, and H. Lee, “Self-imitation learning,” arXiv
preprint arXiv:1806.05635, 2018.

[6] D. Ha and J. Schmidhuber, “Recurrent world models facilitate policy
evolution,” in Advances in Neural Information Processing Systems.
Curran Associates, Inc., 2018, pp. 2450–2462.

[7] D. R. Ha and J. Schmidhuber, “World models,” ArXiv, vol.
abs/1803.10122, 2018.

[8] C. Gelada, S. Kumar, J. Buckman, O. Nachum, and M. G. Bellemare,
“Deepmdp: Learning continuous latent space models for representation
learning,” arXiv preprint arXiv:1906.02736, 2019.

[9] K. J. Astrom, “Optimal control of markov processes with incomplete
state information,” Journal of mathematical analysis and applications,
vol. 10, no. 1, pp. 174–205, 1965.

[10] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and
acting in partially observable stochastic domains,” Artificial intelligence,
vol. 101, no. 1-2, pp. 99–134, 1998.

[11] A. Zhang, R. McAllister, R. Calandra, Y. Gal, and S. Levine, “Learning
invariant representations for reinforcement learning without reconstruc-
tion,” arXiv preprint arXiv:2006.10742, 2020.

[12] I. Higgins, A. Pal, A. A. Rusu, L. Matthey, C. P. Burgess, A. Pritzel,
M. Botvinick, C. Blundell, and A. Lerchner, “Darla: Improving zero-shot
transfer in RL,” arXiv preprint arXiv:1707.08475, 2017.

[13] M. Schwarzer, A. Anand, R. Goel, R. D. Hjelm, A. Courville, and
P. Bachman, “Data-efficient reinforcement learning with self-predictive
representations,” in International Conference on Learning Representa-
tions, 2021.

[14] A. X. Lee, A. Nagabandi, P. Abbeel, and S. Levine, “Stochastic latent
actor-critic: Deep reinforcement learning with a latent variable model,”
arXiv preprint arXiv:1907.00953, 2019.

[15] M. Bellemare, W. Dabney, R. Dadashi, A. A. Taiga, P. S. Castro,
N. Le Roux, D. Schuurmans, T. Lattimore, and C. Lyle, “A geometric
perspective on optimal representations for reinforcement learning,” in
Advances in Neural Information Processing Systems, 2019.

[16] R. Dadashi, A. A. Taı̈ga, N. L. Roux, D. Schuurmans, and M. G.
Bellemare, “The value function polytope in reinforcement learning,”
arXiv preprint arXiv:1901.11524, 2019.

[17] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and
J. Davidson, “Learning latent dynamics for planning from pixels,” in
ICML. PMLR, 2019, pp. 2555–2565.

[18] S. Lange and M. Riedmiller, “Deep auto-encoder neural networks in
reinforcement learning,” in IJCNN. IEEE, 2010, pp. 1–8.

[19] S. Lange, M. Riedmiller, and A. Voigtländer, “Autonomous reinforce-
ment learning on raw visual input data in a real world application,” in
The 2012 international joint conference on neural networks (IJCNN).
IEEE, 2012, pp. 1–8.

[20] N. Ferns, P. Panangaden, and D. Precup, “Metrics for finite markov
decision processes.” 2004.

[21] P. S. Castro, “Scalable methods for computing state similarity in deter-
ministic markov decision processes,” in AAAI Conference on Artificial
Intelligence, vol. 34, no. 06, 2020, pp. 10 069–10 076.

[22] P. S. Castro, P. Panangaden, and D. Precup, “Equivalence relations in
fully and partially observable markov decision processes,” in Twenty-
First International Joint Conference on Artificial Intelligence, 2009.

[23] M. L. Littman and R. S. Sutton, “Predictive representations of state,” in
Advances in neural information proc. systems, 2002, pp. 1555–1561.

[24] S. P. Singh, M. L. Littman, N. K. Jong, D. Pardoe, and P. Stone,
“Learning predictive state representations,” in International Conference
on Machine Learning, 2003, pp. 712–719.

[25] M. T. Izadi and D. Precup, “A planning algorithm for predictive state
representations,” in IJCAI. Citeseer, 2003, pp. 1520–1521.

[26] M. R. James, S. Singh, and M. L. Littman, “Planning with predictive
state representations,” in International Conference on Machine Learning
and Applications, 2004. Proceedings. IEEE, 2004, pp. 304–311.

[27] M. Rosencrantz, G. Gordon, and S. Thrun, “Learning low dimensional
predictive representations,” in Proceedings of the twenty-first interna-
tional conference on Machine learning, 2004, p. 88.

[28] B. Wolfe, M. R. James, and S. Singh, “Learning predictive state
representations in dynamical systems without reset,” in International
conference on Machine learning, 2005, pp. 980–987.

[29] D. Wierstra, A. Foerster, J. Peters, and J. Schmidhuber, “Solving
deep memory pomdps with recurrent policy gradients,” in International
Conference on Artificial Neural Networks. Springer, 2007, pp. 697–706.

[30] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[31] D. P. Bertsekas and J. N. Tsitsiklis, “Neuro-dynamic programming: an
overview,” in Proceedings of 1995 34th IEEE Conference on Decision
and Control, vol. 1. IEEE, 1995, pp. 560–564.

[32] R. D. Smallwood and E. J. Sondik, “The optimal control of partially
observable markov processes over a finite horizon,” Operations research,
vol. 21, no. 5, pp. 1071–1088, 1973.

[33] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optim. algorithms,” preprint arXiv:1707.06347, 2017.

[34] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” CoRR, vol. abs/1801.01290, 2018.

[35] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[36] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estimation,”
arXiv preprint arXiv:1506.02438, 2015.

[37] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[38] M. Chevalier-Boisvert, L. Willems, and S. Pal, “Minimalistic grid-
world environment for openai gym,” https://github.com/maximecb/gym-
minigrid, 2018.

[39] N. Tasfi, “Pygame learning environment,”
https://github.com/ntasfi/PyGame-Learning-Environment, 2016.

[40] Z. Ahmed, N. Le Roux, M. Norouzi, and D. Schuurmans, “Understand-
ing the impact of entropy on policy optimization,” in Proceedings of the
36th International Conference on Machine Learning, ser. Proceedings
of Machine Learning Research, vol. 97, 09–15 Jun 2019, pp. 151–160.


