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A long-standing goal of artificial intelligence is an algorithm that learns, tabula rasa, su-

perhuman proficiency in challenging domains. Recently, AlphaGo became the first program

to defeat a world champion in the game of Go. The tree search in AlphaGo evaluated posi-

tions and selected moves using deep neural networks. These neural networks were trained

by supervised learning from human expert moves, and by reinforcement learning from self-

play. Here, we introduce an algorithm based solely on reinforcement learning, without hu-

man data, guidance, or domain knowledge beyond game rules. AlphaGo becomes its own

teacher: a neural network is trained to predict AlphaGo’s own move selections and also the

winner of AlphaGo’s games. This neural network improves the strength of tree search, re-

sulting in higher quality move selection and stronger self-play in the next iteration. Starting

tabula rasa, our new program AlphaGo Zero achieved superhuman performance, winning

100-0 against the previously published, champion-defeating AlphaGo.

Much progress towards artificial intelligence has been made using supervised learning sys-

tems that are trained to replicate the decisions of human experts 1–4. However, expert data is often

expensive, unreliable, or simply unavailable. Even when reliable data is available it may impose a

ceiling on the performance of systems trained in this manner 5. In contrast, reinforcement learn-

ing systems are trained from their own experience, in principle allowing them to exceed human

capabilities, and to operate in domains where human expertise is lacking. Recently, there has been

rapid progress towards this goal, using deep neural networks trained by reinforcement learning.

These systems have outperformed humans in computer games such as Atari 6, 7 and 3D virtual en-

vironments 8–10. However, the most challenging domains in terms of human intellect – such as the
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game of Go, widely viewed as a grand challenge for artificial intelligence 11 – require precise and

sophisticated lookahead in vast search spaces. Fully general methods have not previously achieved

human-level performance in these domains.

AlphaGo was the first program to achieve superhuman performance in Go. The published

version 12, which we refer to as AlphaGo Fan, defeated the European champion Fan Hui in October

2015. AlphaGo Fan utilised two deep neural networks: a policy network that outputs move prob-

abilities, and a value network that outputs a position evaluation. The policy network was trained

initially by supervised learning to accurately predict human expert moves, and was subsequently

refined by policy-gradient reinforcement learning. The value network was trained to predict the

winner of games played by the policy network against itself. Once trained, these networks were

combined with a Monte-Carlo Tree Search (MCTS) 13–15 to provide a lookahead search, using the

policy network to narrow down the search to high-probability moves, and using the value net-

work (in conjunction with Monte-Carlo rollouts using a fast rollout policy) to evaluate positions in

the tree. A subsequent version, which we refer to as AlphaGo Lee, used a similar approach (see

Methods), and defeated Lee Sedol, the winner of 18 international titles, in March 2016.

Our program, AlphaGo Zero, differs from AlphaGo Fan and AlphaGo Lee 12 in several im-

portant aspects. First and foremost, it is trained solely by self-play reinforcement learning, starting

from random play, without any supervision or use of human data. Second, it only uses the black

and white stones from the board as input features. Third, it uses a single neural network, rather

than separate policy and value networks. Finally, it uses a simpler tree search that relies upon this

single neural network to evaluate positions and sample moves, without performing any Monte-

Carlo rollouts. To achieve these results, we introduce a new reinforcement learning algorithm that

incorporates lookahead search inside the training loop, resulting in rapid improvement and precise

and stable learning. Further technical differences in the search algorithm, training procedure and

network architecture are described in Methods.
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1 Reinforcement Learning in AlphaGo Zero

Our new method uses a deep neural network fθ with parameters θ. This neural network takes as an

input the raw board representation s of the position and its history, and outputs both move probabil-

ities and a value, (p, v) = fθ(s). The vector of move probabilities p represents the probability of

selecting each move (including pass), pa = Pr(a|s). The value v is a scalar evaluation, estimating

the probability of the current player winning from position s. This neural network combines the

roles of both policy network and value network 12 into a single architecture. The neural network

consists of many residual blocks 4 of convolutional layers 16, 17 with batch normalisation 18 and

rectifier non-linearities 19 (see Methods).

The neural network in AlphaGo Zero is trained from games of self-play by a novel reinforce-

ment learning algorithm. In each position s, an MCTS search is executed, guided by the neural

network fθ. The MCTS search outputs probabilities πππ of playing each move. These search proba-

bilities usually select much stronger moves than the raw move probabilities p of the neural network

fθ(s); MCTS may therefore be viewed as a powerful policy improvement operator 20, 21. Self-play

with search – using the improved MCTS-based policy to select each move, then using the game

winner z as a sample of the value – may be viewed as a powerful policy evaluation operator. The

main idea of our reinforcement learning algorithm is to use these search operators repeatedly in

a policy iteration procedure 22, 23: the neural network’s parameters are updated to make the move

probabilities and value (p, v) = fθ(s) more closely match the improved search probabilities and

self-play winner (πππ, z); these new parameters are used in the next iteration of self-play to make the

search even stronger. Figure 1 illustrates the self-play training pipeline.

The Monte-Carlo tree search uses the neural network fθ to guide its simulations (see Figure

2). Each edge (s, a) in the search tree stores a prior probability P (s, a), a visit count N(s, a),

and an action-value Q(s, a). Each simulation starts from the root state and iteratively selects

moves that maximise an upper confidence bound Q(s, a)+U(s, a), where U(s, a) ∝ P (s, a)/(1+

N(s, a)) 12, 24, until a leaf node s� is encountered. This leaf position is expanded and evaluated just
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Figure 1: Self-play reinforcement learning in AlphaGo Zero. a The program plays a game s1, ..., sT against itself.

In each position st, a Monte-Carlo tree search (MCTS) αθ is executed (see Figure 2) using the latest neural network

fθ. Moves are selected according to the search probabilities computed by the MCTS, at ∼ πππt. The terminal position

sT is scored according to the rules of the game to compute the game winner z. b Neural network training in AlphaGo

Zero. The neural network takes the raw board position st as its input, passes it through many convolutional layers

with parameters θ, and outputs both a vector pt, representing a probability distribution over moves, and a scalar value

vt, representing the probability of the current player winning in position st. The neural network parameters θ are

updated so as to maximise the similarity of the policy vector pt to the search probabilities πtπtπt, and to minimise the

error between the predicted winner vt and the game winner z (see Equation 1). The new parameters are used in the

next iteration of self-play a.
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Figure 2: Monte-Carlo tree search in AlphaGo Zero. a Each simulation traverses the tree by selecting the edge

with maximum action-value Q, plus an upper confidence bound U that depends on a stored prior probability P and

visit count N for that edge (which is incremented once traversed). b The leaf node is expanded and the associated

position s is evaluated by the neural network (P (s, ·), V (s)) = fθ(s); the vector of P values are stored in the outgoing

edges from s. c Action-values Q are updated to track the mean of all evaluations V in the subtree below that action. d

Once the search is complete, search probabilities πππ are returned, proportional to N1/τ , where N is the visit count of

each move from the root state and τ is a parameter controlling temperature.

once by the network to generate both prior probabilities and evaluation, (P (s�, ·), V (s�)) = fθ(s
�).

Each edge (s, a) traversed in the simulation is updated to increment its visit count N(s, a), and to

update its action-value to the mean evaluation over these simulations, Q(s, a) = 1/N(s, a)
�

s�|s,a→s� V (s�),

where s, a → s� indicates that a simulation eventually reached s� after taking move a from position

s.

MCTS may be viewed as a self-play algorithm that, given neural network parameters θ and

a root position s, computes a vector of search probabilities recommending moves to play, πππ =

αθ(s), proportional to the exponentiated visit count for each move, πa ∝ N(s, a)1/τ , where τ is a

temperature parameter.

The neural network is trained by a self-play reinforcement learning algorithm that uses

MCTS to play each move. First, the neural network is initialised to random weights θ0. At each

subsequent iteration i ≥ 1, games of self-play are generated (Figure 1a). At each time-step t,

an MCTS search πππt = αθi−1
(st) is executed using the previous iteration of neural network fθi−1

,

and a move is played by sampling the search probabilities πππt. A game terminates at step T when
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both players pass, when the search value drops below a resignation threshold, or when the game

exceeds a maximum length; the game is then scored to give a final reward of rT ∈ {−1,+1} (see

Methods for details). The data for each time-step t is stored as (st,πππt, zt) where zt = ±rT is

the game winner from the perspective of the current player at step t. In parallel (Figure 1b), new

network parameters θi are trained from data (s,πππ, z) sampled uniformly among all time-steps of

the last iteration(s) of self-play. The neural network (p, v) = fθi(s) is adjusted to minimise the

error between the predicted value v and the self-play winner z, and to maximise the similarity of

the neural network move probabilities p to the search probabilities πππ. Specifically, the parame-

ters θ are adjusted by gradient descent on a loss function l that sums over mean-squared error and

cross-entropy losses respectively,

(p, v) = fθ(s), l = (z − v)2 − πππ� logp+ c||θ||2 (1)

where c is a parameter controlling the level of L2 weight regularisation (to prevent overfitting).

2 Empirical Analysis of AlphaGo Zero Training

We applied our reinforcement learning pipeline to train our program AlphaGo Zero. Training

started from completely random behaviour and continued without human intervention for approx-

imately 3 days.

Over the course of training, 4.9 million games of self-play were generated, using 1,600 simu-

lations for each MCTS, which corresponds to approximately 0.4s thinking time per move. Param-

eters were updated from 700,000 mini-batches of 2,048 positions. The neural network contained

20 residual blocks (see Methods for further details).

Figure 3a shows the performance of AlphaGo Zero during self-play reinforcement learning,

as a function of training time, on an Elo scale 25. Learning progressed smoothly throughout train-

ing, and did not suffer from the oscillations or catastrophic forgetting suggested in prior literature
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Figure 3: Empirical evaluation of AlphaGo Zero. a Performance of self-play reinforcement learning. The plot

shows the performance of each MCTS player αθi from each iteration i of reinforcement learning in AlphaGo Zero.

Elo ratings were computed from evaluation games between different players, using 0.4 seconds of thinking time per

move (see Methods). For comparison, a similar player trained by supervised learning from human data, using the

KGS data-set, is also shown. b Prediction accuracy on human professional moves. The plot shows the accuracy of the

neural network fθi , at each iteration of self-play i, in predicting human professional moves from the GoKifu data-set.

The accuracy measures the percentage of positions in which the neural network assigns the highest probability to the

human move. The accuracy of a neural network trained by supervised learning is also shown. c Mean-squared error

(MSE) on human professional game outcomes. The plot shows the MSE of the neural network fθi , at each iteration

of self-play i, in predicting the outcome of human professional games from the GoKifu data-set. The MSE is between

the actual outcome z ∈ {−1,+1} and the neural network value v, scaled by a factor of 1
4 to the range [0, 1]. The MSE

of a neural network trained by supervised learning is also shown.
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26–28. Surprisingly, AlphaGo Zero outperformed AlphaGo Lee after just 36 hours; for compari-

son, AlphaGo Lee was trained over several months. After 72 hours, we evaluated AlphaGo Zero

against the exact version of AlphaGo Lee that defeated Lee Sedol, under the 2 hour time controls

and match conditions as were used in the man-machine match in Seoul (see Methods). AlphaGo

Zero used a single machine with 4 Tensor Processing Units (TPUs) 29, while AlphaGo Lee was

distributed over many machines and used 48 TPUs. AlphaGo Zero defeated AlphaGo Lee by 100

games to 0 (see Extended Data Figure 5 and Supplementary Information).

To assess the merits of self-play reinforcement learning, compared to learning from human

data, we trained a second neural network (using the same architecture) to predict expert moves

in the KGS data-set; this achieved state-of-the-art prediction accuracy compared to prior work
12, 30–33 (see Extended Data Table 1 and 2 respectively). Supervised learning achieved better initial

performance, and was better at predicting the outcome of human professional games (Figure 3).

Notably, although supervised learning achieved higher move prediction accuracy, the self-learned

player performed much better overall, defeating the human-trained player within the first 24 hours

of training. This suggests that AlphaGo Zero may be learning a strategy that is qualitatively differ-

ent to human play.

To separate the contributions of architecture and algorithm, we compared the performance

of the neural network architecture in AlphaGo Zero with the previous neural network architecture

used in AlphaGo Lee (see Figure 4). Four neural networks were created, using either separate

policy and value networks, as in AlphaGo Lee, or combined policy and value networks, as in

AlphaGo Zero; and using either the convolutional network architecture from AlphaGo Lee or the

residual network architecture from AlphaGo Zero. Each network was trained to minimise the

same loss function (Equation 1) using a fixed data-set of self-play games generated by AlphaGo

Zero after 72 hours of self-play training. Using a residual network was more accurate, achieved

lower error, and improved performance in AlphaGo by over 600 Elo. Combining policy and value

together into a single network slightly reduced the move prediction accuracy, but reduced the value

error and boosted playing performance in AlphaGo by around another 600 Elo. This is partly due to
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Figure 4: Comparison of neural network architectures in AlphaGo Zero and AlphaGo Lee. Comparison of

neural network architectures using either separate (“sep”) or combined policy and value networks (“dual”), and using

either convolutional (“conv”) or residual networks (“res”). The combinations “dual-res” and “sep-conv” correspond

to the neural network architectures used in AlphaGo Zero and AlphaGo Lee respectively. Each network was trained on

a fixed data-set generated by a previous run of AlphaGo Zero. a Each trained network was combined with AlphaGo

Zero’s search to obtain a different player. Elo ratings were computed from evaluation games between these different

players, using 5 seconds of thinking time per move. b Prediction accuracy on human professional moves (from the

GoKifu data-set) for each network architecture. c Mean-squared error on human professional game outcomes (from

the GoKifu data-set) for each network architecture.
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improved computational efficiency, but more importantly the dual objective regularises the network

to a common representation that supports multiple use cases.

3 Knowledge Learned by AlphaGo Zero

AlphaGo Zero discovered a remarkable level of Go knowledge during its self-play training process.

This included fundamental elements of human Go knowledge, and also non-standard strategies

beyond the scope of traditional Go knowledge.

Figure 5 shows a timeline indicating when professional joseki (corner sequences) were dis-

covered (Figure 5a, Extended Data Figure 1); ultimately AlphaGo Zero preferred new joseki vari-

ants that were previously unknown (Figure 5b, Extended Data Figure 2). Figure 5c and the Sup-

plementary Information show several fast self-play games played at different stages of training.

Tournament length games played at regular intervals throughout training are shown in Extended

Data Figure 3 and Supplementary Information. AlphaGo Zero rapidly progressed from entirely

random moves towards a sophisticated understanding of Go concepts including fuseki (opening),

tesuji (tactics), life-and-death, ko (repeated board situations), yose (endgame), capturing races,

sente (initiative), shape, influence and territory, all discovered from first principles. Surprisingly,

shicho (“ladder” capture sequences that may span the whole board) – one of the first elements of

Go knowledge learned by humans – were only understood by AlphaGo Zero much later in training.

4 Final Performance of AlphaGo Zero

We subsequently applied our reinforcement learning pipeline to a second instance of AlphaGo Zero

using a larger neural network and over a longer duration. Training again started from completely

random behaviour and continued for approximately 40 days.

Over the course of training, 29 million games of self-play were generated. Parameters were

updated from 3.1 million mini-batches of 2,048 positions each. The neural network contained
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Figure 5: Go knowledge learned by AlphaGo Zero. a Five human joseki (common corner sequences) discovered

during AlphaGo Zero training. The associated timestamps indicate the first time each sequence occured (taking account

of rotation and reflection) during self-play training. Extended Data Figure 1 provides the frequency of occurence over

training for each sequence. b Five joseki favoured at different stages of self-play training. Each displayed corner

sequence was played with the greatest frequency, among all corner sequences, during an iteration of self-play training.

The timestamp of that iteration is indicated on the timeline. At 10 hours a weak corner move was preferred. At 47

hours the 3-3 invasion was most frequently played. This joseki is also common in human professional play; however

AlphaGo Zero later discovered and preferred a new variation. Extended Data Figure 2 provides the frequency of

occurence over time for all five sequences and the new variation. c The first 80 moves of three self-play games that

were played at different stages of training, using 1,600 simulations (around 0.4s) per search. At 3 hours, the game

focuses greedily on capturing stones, much like a human beginner. At 19 hours, the game exhibits the fundamentals

of life-and-death, influence and territory. At 70 hours, the game is beautifully balanced, involving multiple battles and

a complicated ko fight, eventually resolving into a half-point win for white. See Supplementary Information for the

full games.



40 residual blocks. The learning curve is shown in Figure 6a. Games played at regular intervals

throughout training are shown in Extended Data Figure 4 and Supplementary Information.

We evaluated the fully trained AlphaGo Zero using an internal tournament against AlphaGo

Fan, AlphaGo Lee, and several previous Go programs. We also played games against the strongest

existing program, AlphaGo Master – a program based on the algorithm and architecture presented

in this paper but utilising human data and features (see Methods) – which defeated the strongest

human professional players 60–0 in online games 34 in January 2017. In our evaluation, all pro-

grams were allowed 5 seconds of thinking time per move; AlphaGo Zero and AlphaGo Master

each played on a single machine with 4 TPUs; AlphaGo Fan and AlphaGo Lee were distributed

over 176 GPUs and 48 TPUs respectively. We also included a player based solely on the raw neural

network of AlphaGo Zero; this player simply selected the move with maximum probability.

Figure 6b shows the performance of each program on an Elo scale. The raw neural network,

without using any lookahead, achieved an Elo rating of 3,055. AlphaGo Zero achieved a rating

of 5,185, compared to 4,858 for AlphaGo Master, 3,739 for AlphaGo Lee and 3,144 for AlphaGo

Fan.

Finally, we evaluated AlphaGo Zero head to head against AlphaGo Master in a 100 game

match with 2 hour time controls. AlphaGo Zero won by 89 games to 11 (see Extended Data Figure

6) and Supplementary Information.

5 Conclusion

Our results comprehensively demonstrate that a pure reinforcement learning approach is fully fea-

sible, even in the most challenging of domains: it is possible to train to superhuman level, without

human examples or guidance, given no knowledge of the domain beyond basic rules. Further-

more, a pure reinforcement learning approach requires just a few more hours to train, and achieves

much better asymptotic performance, compared to training on human expert data. Using this ap-

12



Figure 6: Performance of AlphaGo Zero. a Learning curve for AlphaGo Zero using larger 40 block residual network

over 40 days. The plot shows the performance of each player αθi from each iteration i of our reinforcement learning

algorithm. Elo ratings were computed from evaluation games between different players, using 0.4 seconds per search

(see Methods). b Final performance of AlphaGo Zero. AlphaGo Zero was trained for 40 days using a 40 residual block

neural network. The plot shows the results of a tournament between: AlphaGo Zero, AlphaGo Master (defeated top

human professionals 60-0 in online games), AlphaGo Lee (defeated Lee Sedol), AlphaGo Fan (defeated Fan Hui), as

well as previous Go programs Crazy Stone, Pachi and GnuGo. Each program was given 5 seconds of thinking time

per move. AlphaGo Zero and AlphaGo Master played on a single machine on the Google Cloud; AlphaGo Fan and

AlphaGo Lee were distributed over many machines. The raw neural network from AlphaGo Zero is also included,

which directly selects the move a with maximum probability pa, without using MCTS. Programs were evaluated on

an Elo scale 25: a 200 point gap corresponds to a 75% probability of winning.
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proach, AlphaGo Zero defeated the strongest previous versions of AlphaGo, which were trained

from human data using handcrafted features, by a large margin.

Humankind has accumulated Go knowledge from millions of games played over thousands

of years, collectively distilled into patterns, proverbs and books. In the space of a few days, starting

tabula rasa, AlphaGo Zero was able to rediscover much of this Go knowledge, as well as novel

strategies that provide new insights into the oldest of games.
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Methods

Reinforcement learning Policy iteration 20, 21 is a classic algorithm that generates a sequence of

improving policies, by alternating between policy evaluation – estimating the value function of

the current policy – and policy improvement – using the current value function to generate a better

policy. A simple approach to policy evaluation is to estimate the value function from the outcomes

of sampled trajectories 35, 36. A simple approach to policy improvement is to select actions greedily

with respect to the value function 20. In large state spaces, approximations are necessary to evaluate

each policy and to represent its improvement 22, 23.

Classification-based reinforcement learning 37 improves the policy using a simple Monte-

Carlo search. Many rollouts are executed for each action; the action with the maximum mean value

provides a positive training example, while all other actions provide negative training examples; a

policy is then trained to classify actions as positive or negative, and used in subsequent rollouts.

This may be viewed as a precursor to the policy component of AlphaGo Zero’s training algorithm

when τ → 0.

A more recent instantiation, classification-based modified policy iteration (CBMPI), also

performs policy evaluation by regressing a value function towards truncated rollout values, similar

to the value component of AlphaGo Zero; this achieved state-of-the-art results in the game of Tetris
38. However, this prior work was limited to simple rollouts and linear function approximation using

handcrafted features.

The AlphaGo Zero self-play algorithm can similarly be understood as an approximate pol-

icy iteration scheme in which MCTS is used for both policy improvement and policy evaluation.

Policy improvement starts with a neural network policy, executes an MCTS based on that policy’s

recommendations, and then projects the (much stronger) search policy back into the function space

of the neural network. Policy evaluation is applied to the (much stronger) search policy: the out-

comes of self-play games are also projected back into the function space of the neural network.

These projection steps are achieved by training the neural network parameters to match the search
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probabilities and self-play game outcome respectively.

Guo et al. 7 also project the output of MCTS into a neural network, either by regressing

a value network towards the search value, or by classifying the action selected by MCTS. This

approach was used to train a neural network for playing Atari games; however, the MCTS was

fixed — there was no policy iteration — and did not make any use of the trained networks.

Self-play reinforcement learning in games Our approach is most directly applicable to zero-sum

games of perfect information. We follow the formalism of alternating Markov games described in

previous work 12, noting that algorithms based on value or policy iteration extend naturally to this

setting 39.

Self-play reinforcement learning has previously been applied to the game of Go. NeuroGo
40, 41 used a neural network to represent a value function, using a sophisticated architecture based

on Go knowledge regarding connectivity, territory and eyes. This neural network was trained by

temporal-difference learning 42 to predict territory in games of self-play, building on prior work
43. A related approach, RLGO 44, represented the value function instead by a linear combination

of features, exhaustively enumerating all 3 × 3 patterns of stones; it was trained by temporal-

difference learning to predict the winner in games of self-play. Both NeuroGo and RLGO achieved

a weak amateur level of play.

Monte-Carlo tree search (MCTS) may also be viewed as a form of self-play reinforcement

learning 45. The nodes of the search tree contain the value function for the positions encountered

during search; these values are updated to predict the winner of simulated games of self-play.

MCTS programs have previously achieved strong amateur level in Go 46, 47, but used substantial

domain expertise: a fast rollout policy, based on handcrafted features 48 13, that evaluates positions

by running simulations until the end of the game; and a tree policy, also based on handcrafted

features, that selects moves within the search tree 47.

Self-play reinforcement learning approaches have achieved high levels of performance in

other games: chess 49–51, checkers 52, backgammon 53, othello 54, Scrabble 55 and most recently
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poker 56. In all of these examples, a value function was trained by regression 54–56 or temporal-

difference learning 49–53 from training data generated by self-play. The trained value function was

used as an evaluation function in an alpha-beta search 49–54, a simple Monte-Carlo search 55, 57, or

counterfactual regret minimisation 56. However, these methods utilised handcrafted input features
49–53, 56 or handcrafted feature templates 54, 55. In addition, the learning process used supervised

learning to initialise weights 58, hand-selected weights for piece values 49, 51, 52, handcrafted restric-

tions on the action space 56, or used pre-existing computer programs as training opponents 49, 50 or

to generate game records 51.

Many of the most successful and widely used reinforcement learning methods were first

introduced in the context of zero-sum games: temporal-difference learning was first introduced

for a checkers-playing program 59, while MCTS was introduced for the game of Go 13. However,

very similar algorithms have subsequently proven highly effective in video games 6–8, 10, robotics
60, industrial control 61–63, and online recommendation systems 64, 65.

AlphaGo versions We compare three distinct versions of AlphaGo:

1. AlphaGo Fan is the previously published program 12 that played against Fan Hui in October

2015. This program was distributed over many machines using 176 GPUs.

2. AlphaGo Lee is the program that defeated Lee Sedol 4–1 in March, 2016. It was previously

unpublished but is similar in most regards to AlphaGo Fan 12. However, we highlight several

key differences to facilitate a fair comparison. First, the value network was trained from

the outcomes of fast games of self-play by AlphaGo, rather than games of self-play by the

policy network; this procedure was iterated several times – an initial step towards the tabula

rasa algorithm presented in this paper. Second, the policy and value networks were larger

than those described in the original paper – using 12 convolutional layers of 256 planes

respectively – and were trained for more iterations. This player was also distributed over

many machines using 48 TPUs, rather than GPUs, enabling it to evaluate neural networks

faster during search.
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3. AlphaGo Master is the program that defeated top human players by 60–0 in January, 2017 34.

It was previously unpublished but uses the same neural network architecture, reinforcement

learning algorithm, and MCTS algorithm as described in this paper. However, it uses the

same handcrafted features and rollouts as AlphaGo Lee 12 and training was initialised by

supervised learning from human data.

4. AlphaGo Zero is the program described in this paper. It learns from self-play reinforcement

learning, starting from random initial weights, without using rollouts, with no human super-

vision, and using only the raw board history as input features. It uses just a single machine

in the Google Cloud with 4 TPUs (AlphaGo Zero could also be distributed but we chose to

use the simplest possible search algorithm).

Domain Knowledge Our primary contribution is to demonstrate that superhuman performance

can be achieved without human domain knowledge. To clarify this contribution, we enumerate the

domain knowledge that AlphaGo Zero uses, explicitly or implicitly, either in its training procedure

or its Monte-Carlo tree search; these are the items of knowledge that would need to be replaced for

AlphaGo Zero to learn a different (alternating Markov) game.

1. AlphaGo Zero is provided with perfect knowledge of the game rules. These are used dur-

ing MCTS, to simulate the positions resulting from a sequence of moves, and to score any

simulations that reach a terminal state. Games terminate when both players pass, or after

19 · 19 · 2 = 722 moves. In addition, the player is provided with the set of legal moves in

each position.

2. AlphaGo Zero uses Tromp-Taylor scoring 66 during MCTS simulations and self-play train-

ing. This is because human scores (Chinese, Japanese or Korean rules) are not well-defined

if the game terminates before territorial boundaries are resolved. However, all tournament

and evaluation games were scored using Chinese rules.

3. The input features describing the position are structured as a 19 × 19 image; i.e. the neural

network architecture is matched to the grid-structure of the board.
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4. The rules of Go are invariant under rotation and reflection; this knowledge has been utilised

in AlphaGo Zero both by augmenting the data set during training to include rotations and

reflections of each position, and to sample random rotations or reflections of the position

during MCTS (see Search Algorithm). Aside from komi, the rules of Go are also invari-

ant to colour transposition; this knowledge is exploited by representing the board from the

perspective of the current player (see Neural network architecture)

AlphaGo Zero does not use any form of domain knowledge beyond the points listed above.

It only uses its deep neural network to evaluate leaf nodes and to select moves (see section below).

It does not use any rollout policy or tree policy, and the MCTS is not augmented by any other

heuristics or domain-specific rules. No legal moves are excluded – even those filling in the player’s

own eyes (a standard heuristic used in all previous programs 67).

The algorithm was started with random initial parameters for the neural network. The neural

network architecture (see Neural Network Architecture) is based on the current state of the art

in image recognition 4, 18, and hyperparameters for training were chosen accordingly (see Self-

Play Training Pipeline). MCTS search parameters were selected by Gaussian process optimisation
68, so as to optimise self-play performance of AlphaGo Zero using a neural network trained in

a preliminary run. For the larger run (40 block, 40 days), MCTS search parameters were re-

optimised using the neural network trained in the smaller run (20 block, 3 days). The training

algorithm was executed autonomously without human intervention.

Self-Play Training Pipeline AlphaGo Zero’s self-play training pipeline consists of three main

components, all executed asynchronously in parallel. Neural network parameters θi are continually

optimised from recent self-play data; AlphaGo Zero players αθi are continually evaluated; and the

best performing player so far, αθ∗ , is used to generate new self-play data.

Optimisation Each neural network fθi is optimised on the Google Cloud using TensorFlow,

with 64 GPU workers and 19 CPU parameter servers. The batch-size is 32 per worker, for a

total mini-batch size of 2,048. Each mini-batch of data is sampled uniformly at random from
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all positions from the most recent 500,000 games of self-play. Neural network parameters are

optimised by stochastic gradient descent with momentum and learning rate annealing, using the

loss in Equation 1. The learning rate is annealed according to the standard schedule in Extended

Data Table 3. The momentum parameter is set to 0.9. The cross-entropy and mean-squared error

losses are weighted equally (this is reasonable because rewards are unit scaled, r ∈ {−1,+1})

and the L2 regularisation parameter is set to c = 10−4. The optimisation process produces a new

checkpoint every 1,000 training steps. This checkpoint is evaluated by the evaluator and it may be

used for generating the next batch of self-play games, as we explain next.

Evaluator To ensure we always generate the best quality data, we evaluate each new neural

network checkpoint against the current best network fθ∗ before using it for data generation. The

neural network fθi is evaluated by the performance of an MCTS search αθi that uses fθi to evalu-

ate leaf positions and prior probabilities (see Search Algorithm). Each evaluation consists of 400

games, using an MCTS with 1,600 simulations to select each move, using an infinitesimal tem-

perature τ → 0 (i.e. we deterministically select the move with maximum visit count, to give the

strongest possible play). If the new player wins by a margin of > 55% (to avoid selecting on noise

alone) then it becomes the best player αθ∗ , and is subsequently used for self-play generation, and

also becomes the baseline for subsequent comparisons.

Self-Play The best current player αθ∗ , as selected by the evaluator, is used to generate data.

In each iteration, αθ∗ plays 25,000 games of self-play, using 1,600 simulations of MCTS to select

each move (this requires approximately 0.4s per search). For the first 30 moves of each game, the

temperature is set to τ = 1; this selects moves proportionally to their visit count in MCTS, and

ensures a diverse set of positions are encountered. For the remainder of the game, an infinitesimal

temperature is used, τ → 0. Additional exploration is achieved by adding Dirichlet noise to the

prior probabilities in the root node s0, specifically P (s, a) = (1− �)pa+ �ηa, where ηηη ∼ Dir(0.03)

and � = 0.25; this noise ensures that all moves may be tried, but the search may still overrule bad

moves. In order to save computation, clearly lost games are resigned. The resignation threshold

vresign is selected automatically to keep the fraction of false positives (games that could have been
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won if AlphaGo had not resigned) below 5%. To measure false positives, we disable resignation

in 10% of self-play games and play until termination.

Supervised Learning For comparison, we also trained neural network parameters θSL by super-

vised learning. The neural network architecture was identical to AlphaGo Zero. Mini-batches of

data (s,πππ, z) were sampled at random from the KGS data-set, setting πa = 1 for the human expert

move a. Parameters were optimised by stochastic gradient descent with momentum and learning

rate annealing, using the same loss as in Equation 1, but weighting the mean-squared error com-

ponent by a factor of 0.01. The learning rate was annealed according to the standard schedule

in Extended Data Table 3. The momentum parameter was set to 0.9, and the L2 regularisation

parameter was set to c = 10−4.

By using a combined policy and value network architecture, and by using a low weight on

the value component, it was possible to avoid overfitting to the values (a problem described in

prior work 12). After 72 hours the move prediction accuracy exceeded the state of the art reported

in previous work 12, 30–33, reaching 60.4% on the KGS test set; the value prediction error was also

substantially better than previously reported 12. The validation set was composed of professional

games from GoKifu. Accuracies and mean squared errors are reported in Extended Data Table 1

and Extended Data Table 2 respectively.

Search Algorithm AlphaGo Zero uses a much simpler variant of the asynchronous policy and

value MCTS algorithm (APV-MCTS) used in AlphaGo Fan and AlphaGo Lee.

Each node s in the search tree contains edges (s, a) for all legal actions a ∈ A(s). Each edge

stores a set of statistics,

{N(s, a),W (s, a), Q(s, a), P (s, a)},

where N(s, a) is the visit count, W (s, a) is the total action-value, Q(s, a) is the mean action-value,

and P (s, a) is the prior probability of selecting that edge. Multiple simulations are executed in

parallel on separate search threads. The algorithm proceeds by iterating over three phases (a–c in

Figure 2), and then selects a move to play (d in Figure 2).
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Select (Figure 2a). The selection phase is almost identical to AlphaGo Fan 12; we recapitulate

here for completeness. The first in-tree phase of each simulation begins at the root node of the

search tree, s0, and finishes when the simulation reaches a leaf node sL at time-step L. At each

of these time-steps, t < L, an action is selected according to the statistics in the search tree,

at = argmax
a

�
Q(st, a) + U(st, a)

�
, using a variant of the PUCT algorithm 24,

U(s, a) = cpuctP (s, a)

��
b N(s, b)

1 +N(s, a)

where cpuct is a constant determining the level of exploration; this search control strategy initially

prefers actions with high prior probability and low visit count, but asympotically prefers actions

with high action-value.

Expand and evaluate (Figure 2b). The leaf node sL is added to a queue for neural network

evaluation, (di(p), v) = fθ(di(sL)), where di is a dihedral reflection or rotation selected uniformly

at random from i ∈ [1..8].

Positions in the queue are evaluated by the neural network using a mini-batch size of 8; the

search thread is locked until evaluation completes. The leaf node is expanded and each edge (sL, a)

is initialised to {N(sL, a) = 0,W (sL, a) = 0, Q(sL, a) = 0, P (sL, a) = pa}; the value v is then

backed up.

Backup (Figure 2c). The edge statistics are updated in a backward pass through each step

t ≤ L. The visit counts are incremented, N(st, at) = N(st, at)+1, and the action-value is updated

to the mean value, W (st, at) = W (st, at) + v,Q(st, at) =
W (st,at)
N(st,at)

. We use virtual loss to ensure

each thread evaluates different nodes 69.

Play (Figure 2d). At the end of the search AlphaGo Zero selects a move a to play in the root

position s0, proportional to its exponentiated visit count, π(a|s0) = N(s0, a)
1/τ/

�
b N(s0, b)

1/τ ,

where τ is a temperature parameter that controls the level of exploration. The search tree is reused

at subsequent time-steps: the child node corresponding to the played action becomes the new root

node; the subtree below this child is retained along with all its statistics, while the remainder of
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the tree is discarded. AlphaGo Zero resigns if its root value and best child value are lower than a

threshold value vresign.

Compared to the MCTS in AlphaGo Fan and AlphaGo Lee, the principal differences are that

AlphaGo Zero does not use any rollouts; it uses a single neural network instead of separate policy

and value networks; leaf nodes are always expanded, rather than using dynamic expansion; each

search thread simply waits for the neural network evaluation, rather than performing evaluation

and backup asynchronously; and there is no tree policy. A transposition table was also used in the

large (40 block, 40 day) instance of AlphaGo Zero.

Neural Network Architecture The input to the neural network is a 19 × 19 × 17 image stack

comprising 17 binary feature planes. 8 feature planes Xt consist of binary values indicating the

presence of the current player’s stones (X i
t = 1 if intersection i contains a stone of the player’s

colour at time-step t; 0 if the intersection is empty, contains an opponent stone, or if t < 0). A

further 8 feature planes, Yt, represent the corresponding features for the opponent’s stones. The

final feature plane, C, represents the colour to play, and has a constant value of either 1 if black

is to play or 0 if white is to play. These planes are concatenated together to give input features

st = [Xt, Yt, Xt−1, Yt−1, ..., Xt−7, Yt−7, C]. History features Xt, Yt are necessary because Go is

not fully observable solely from the current stones, as repetitions are forbidden; similarly, the

colour feature C is necessary because the komi is not observable.

The input features st are processed by a residual tower that consists of a single convolutional

block followed by either 19 or 39 residual blocks 4.

The convolutional block applies the following modules:

1. A convolution of 256 filters of kernel size 3× 3 with stride 1

2. Batch normalisation 18

3. A rectifier non-linearity
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Each residual block applies the following modules sequentially to its input:

1. A convolution of 256 filters of kernel size 3× 3 with stride 1

2. Batch normalisation

3. A rectifier non-linearity

4. A convolution of 256 filters of kernel size 3× 3 with stride 1

5. Batch normalisation

6. A skip connection that adds the input to the block

7. A rectifier non-linearity

The output of the residual tower is passed into two separate “heads” for computing the policy

and value respectively. The policy head applies the following modules:

1. A convolution of 2 filters of kernel size 1× 1 with stride 1

2. Batch normalisation

3. A rectifier non-linearity

4. A fully connected linear layer that outputs a vector of size 192 + 1 = 362 corresponding to

logit probabilities for all intersections and the pass move

The value head applies the following modules:

1. A convolution of 1 filter of kernel size 1× 1 with stride 1

2. Batch normalisation

3. A rectifier non-linearity
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4. A fully connected linear layer to a hidden layer of size 256

5. A rectifier non-linearity

6. A fully connected linear layer to a scalar

7. A tanh non-linearity outputting a scalar in the range [−1, 1]

The overall network depth, in the 20 or 40 block network, is 39 or 79 parameterised layers

respectively for the residual tower, plus an additional 2 layers for the policy head and 3 layers for

the value head.

We note that a different variant of residual networks was simultaneously applied to computer

Go 33 and achieved amateur dan-level performance; however this was restricted to a single-headed

policy network trained solely by supervised learning.

Neural Network Architecture Comparison Figure 4 shows the results of a comparison between

network architectures. Specifically, we compared four different neural networks:

1. dual-res: The network contains a 20-block residual tower, as described above, followed by

both a policy head and a value head. This is the architecture used in AlphaGo Zero.

2. sep-res: The network contains two 20-block residual towers. The first tower is followed by

a policy head and the second tower is followed by a value head.

3. dual-conv: The network contains a non-residual tower of 12 convolutional blocks, followed

by both a policy head and a value head.

4. sep-conv: The network contains two non-residual towers of 12 convolutional blocks. The

first tower is followed by a policy head and the second tower is followed by a value head.

This is the architecture used in AlphaGo Lee.

Each network was trained on a fixed data-set containing the final 2 million games of self-

play data generated by a previous run of AlphaGo Zero, using stochastic gradient descent with
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the annealing rate, momentum, and regularisation hyperparameters described for the supervised

learning experiment; however, cross-entropy and mean-squared error components were weighted

equally, since more data was available.

Evaluation We evaluated the relative strength of AlphaGo Zero (Figure 3a and 6) by measuring

the Elo rating of each player. We estimate the probability that player a will defeat player b by

a logistic function p(a defeats b) = 1
1+exp (celo(e(b)−e(a))

, and estimate the ratings e(·) by Bayesian

logistic regression, computed by the BayesElo program 25 using the standard constant celo = 1/400.

Elo ratings were computed from the results of a 5 second per move tournament between

AlphaGo Zero, AlphaGo Master, AlphaGo Lee, and AlphaGo Fan. The raw neural network from

AlphaGo Zero was also included in the tournament. The Elo ratings of AlphaGo Fan, Crazy Stone,

Pachi and GnuGo were anchored to the tournament values from prior work 12, and correspond to

the players reported in that work. The results of the matches of AlphaGo Fan against Fan Hui and

AlphaGo Lee against Lee Sedol were also included to ground the scale to human references, as

otherwise the Elo ratings of AlphaGo are unrealistically high due to self-play bias.

The Elo ratings in Figure 3a, 4a and 6a were computed from the results of evaluation games

between each iteration of player αθi during self-play training. Further evaluations were also per-

formed against baseline players with Elo ratings anchored to the previously published values 12.

We measured the head-to-head performance of AlphaGo Zero against AlphaGo Lee, and

the 40 block instance of AlphaGo Zero against AlphaGo Master, using the same player and match

conditions as were used against Lee Sedol in Seoul, 2016. Each player received 2 hours of thinking

time plus 3 byoyomi periods of 60 seconds per move. All games were scored using Chinese rules

with a komi of 7.5 points.

Data Availability The datasets used for validation and testing are the GoKifu dataset (available

from http://gokifu.com/ ) and the KGS dataset (available from https://u-go.net/gamerecords/ ).
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KGS train KGS test GoKifu validation

Supervised learning (20 block) 62.0 60.4 54.3

Supervised learning (12 layer 12) 59.1 55.9 -

Reinforcement learning (20 block) - - 49.0

Reinforcement learning (40 block) - - 51.3

Extended Data Table 1: Move prediction accuracy. Percentage accuracies of move prediction for neural net-

works trained by reinforcement learning (i.e. AlphaGo Zero) or supervised learning respectively. For supervised

learning, the network was trained for 3 days on KGS data (amateur games); comparative results are also shown from

Silver et al 12. For reinforcement learning, the 20 block network was trained for 3 days and the 40 block network was

trained for 40 days. Networks were also evaluated on a validation set based on professional games from the GoKifu

data set.

KGS train KGS test GoKifu validation

Supervised learning (20 block) 0.177 0.185 0.207

Supervised learning (12 layer 12) 0.19 0.37 -

Reinforcement learning (20 block) - - 0.177

Reinforcement learning (40 block) - - 0.180

Extended Data Table 2: Game outcome prediction error. Mean squared error on game outcome predictions

for neural networks trained by reinforcement learning (i.e. AlphaGo Zero) or supervised learning respectively. For

supervised learning, the network was trained for 3 days on KGS data (amateur games); comparative results are also

shown from Silver et al 12. For reinforcement learning, the 20 block network was trained for 3 days and the 40 block

network was trained for 40 days. Networks were also evaluated on a validation set based on professional games from

the GoKifu data set.



Thousands of steps Reinforcement learning Supervised learning

0–200 10−2 10−1

200–400 10−2 10−2

400–600 10−3 10−3

600–700 10−4 10−4

700–800 10−4 10−5

>800 10−4 -

Extended Data Table 3: Learning rate schedule. Learning rate used during reinforcement learning and super-

vised learning experiments, measured in thousands of steps (mini-batch updates).
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Extended Data Figure 1: Frequency of occurence over time during training, for each joseki from Figure 5a

(corner sequences common in professional play that were discovered by AlphaGo Zero). The corresponding joseki are

reproduced in this figure as insets.
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Extended Data Figure 2: Frequency of occurence over time during training, for each joseki from Figure 5b, (cor-

ner sequences that AlphaGo Zero favoured for at least one iteration), and one additional variation. The corresponding

joseki are reproduced in this figure as insets.
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Game 11, B: AG Zero, W: AG Zero, Result: W+R
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Game 13, B: AG Zero, W: AG Zero, Result: W+R
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Game 15, B: AG Zero, W: AG Zero, Result: W+R
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Game 16, B: AG Zero, W: AG Zero, Result: W+R
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Game 17, B: AG Zero, W: AG Zero, Result: W+R
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Game 18, B: AG Zero, W: AG Zero, Result: B+R
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Game 19, B: AG Zero, W: AG Zero, Result: B+R
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Game 20, B: AG Zero, W: AG Zero, Result: W+R
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Extended Data Figure 3: AlphaGo Zero (20 block) self-play games. The 3 day training run was subdivided into

20 periods. The best player from each period (as selected by the evaluator) played a single game against itself, with 2

hour time controls. 100 moves are shown for each game; full games are provided in Supplementary Information.



Game 1, B: AG Zero, W: AG Zero, Result: B+R
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Game 3, B: AG Zero, W: AG Zero, Result: B+R
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Game 4, B: AG Zero, W: AG Zero, Result: W+R
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Game 5, B: AG Zero, W: AG Zero, Result: W+R
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Game 6, B: AG Zero, W: AG Zero, Result: W+R

1

2

3

4

5

6

7

89

10

11

12

13

14

15 16

17 18

19

2021

22

2324

25 26

27

28

29

30

31

32

33

34

35

36

37

38

39

40 41

42

43 4445

4647

48

49

50

51

5253

54

55

56

57

58

59

60 61

62

63

6465

66 67

68

6970

71

72

73

74

7576

7778 7980

81

82

83 84

85

86

87

88

89

90

91

92

93

94

9596

9798

99

100

Game 7, B: AG Zero, W: AG Zero, Result: W+R
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Game 8, B: AG Zero, W: AG Zero, Result: B+R
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Game 9, B: AG Zero, W: AG Zero, Result: W+R
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Game 10, B: AG Zero, W: AG Zero, Result: W+R
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Game 11, B: AG Zero, W: AG Zero, Result: B+R
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Game 12, B: AG Zero, W: AG Zero, Result: W+R
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Game 13, B: AG Zero, W: AG Zero, Result: B+R

1

2 3

4

5

67

8

9

10

11

12 13

14

1516 17

18

19 20

21

2223

24

25

26

27 28

29

30

31

32 33

34

35

36

37 38

39 40

41

42

43

4445

46

47

48

49

50

51

52

53

54

55

5657

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72 73

74

75 76

77

78

79

8182 83

84

85

86

87

8889

90

91

9293

94

95

96

97

98

99100

80 at 13

Game 14, B: AG Zero, W: AG Zero, Result: W+R
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Game 15, B: AG Zero, W: AG Zero, Result: W+R
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Game 16, B: AG Zero, W: AG Zero, Result: W+R
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Game 17, B: AG Zero, W: AG Zero, Result: B+R
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Game 18, B: AG Zero, W: AG Zero, Result: W+R
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Game 19, B: AG Zero, W: AG Zero, Result: W+R
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Game 20, B: AG Zero, W: AG Zero, Result: W+R
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Extended Data Figure 4: AlphaGo Zero (40 block) self-play games. The 40 day training run was subdivided into

20 periods. The best player from each period (as selected by the evaluator) played a single game against itself, with 2

hour time controls. 100 moves are shown for each game; full games are provided in Supplementary Information.



Game 1, B: AG Lee, W: AG Zero, Result: W+R

1 2

3

4

5 6

7

8

9

10

11

12

13

14

15

16

17

18

1920 21

22

23

24

25

26

27

28 29

30

31

32

33

34

35

36

37

3839

40

41 42

43

44

45

46

47

4849

50

51 52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68 69

70

71

72

73

74

75

76

7778 79

80 81

82

8384

85

86

87

88

89

90

91

92

93

94 95

96

97

98

99100

Game 2, B: AG Lee, W: AG Zero, Result: W+R
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Game 3, B: AG Lee, W: AG Zero, Result: W+R
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Game 4, B: AG Lee, W: AG Zero, Result: W+0.50
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Game 5, B: AG Lee, W: AG Zero, Result: W+R
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Game 6, B: AG Lee, W: AG Zero, Result: W+0.50
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Game 7, B: AG Lee, W: AG Zero, Result: W+R
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Game 8, B: AG Lee, W: AG Zero, Result: W+R
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Game 9, B: AG Lee, W: AG Zero, Result: W+R
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Game 10, B: AG Lee, W: AG Zero, Result: W+R
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Game 11, B: AG Zero, W: AG Lee, Result: B+R

12

34

5

6

7

8

9 10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25 26

27 28

29

30

31 32

33

34

35

36 37

38

39

40

4142

43

44

45

46

4748

4950

51

52

53

54

5556

57

58

59

6061 62

63

64

65

66

67

68 69

70

71

7273

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98 99

100

Game 12, B: AG Zero, W: AG Lee, Result: B+1.50
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Game 13, B: AG Zero, W: AG Lee, Result: B+R
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Game 14, B: AG Zero, W: AG Lee, Result: B+R
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Game 15, B: AG Zero, W: AG Lee, Result: B+R
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Game 16, B: AG Zero, W: AG Lee, Result: B+R
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Game 17, B: AG Zero, W: AG Lee, Result: B+R
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Game 18, B: AG Zero, W: AG Lee, Result: B+R
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Game 19, B: AG Zero, W: AG Lee, Result: B+1.50
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Game 20, B: AG Zero, W: AG Lee, Result: B+R
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Extended Data Figure 5: Tournament games between AlphaGo Zero (20 block, 3 day) versus AlphaGo Lee

using 2 hour time controls. 100 moves of the first 20 games are shown; full games are provided in Supplementary

Information.



Game 1, B: AG Master, W: AG Zero, Result: W+R
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Game 2, B: AG Zero, W: AG Master, Result: B+R
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Game 3, B: AG Master, W: AG Zero, Result: W+R
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Game 4, B: AG Zero, W: AG Master, Result: B+R
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Game 5, B: AG Master, W: AG Zero, Result: W+R
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Game 6, B: AG Zero, W: AG Master, Result: B+R
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Game 7, B: AG Master, W: AG Zero, Result: W+R
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Game 8, B: AG Zero, W: AG Master, Result: B+R
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Game 9, B: AG Master, W: AG Zero, Result: W+R
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Game 10, B: AG Zero, W: AG Master, Result: B+R
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Game 11, B: AG Master, W: AG Zero, Result: B+R
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Game 12, B: AG Zero, W: AG Master, Result: B+R
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Game 13, B: AG Master, W: AG Zero, Result: W+R
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Game 14, B: AG Zero, W: AG Master, Result: W+R
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Game 15, B: AG Master, W: AG Zero, Result: W+R
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Game 16, B: AG Zero, W: AG Master, Result: W+R
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Game 17, B: AG Master, W: AG Zero, Result: W+R
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Game 18, B: AG Zero, W: AG Master, Result: B+R
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Game 19, B: AG Master, W: AG Zero, Result: W+R
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Game 20, B: AG Zero, W: AG Master, Result: B+R
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Extended Data Figure 6: AlphaGo Zero (40 block, 40 day) versus AlphaGo Master tournament games using 2

hour time controls. 100 moves of the first 20 games are shown; full games are provided in Supplementary Information.
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