April 03‘,

___Model bas

erswe 7= fedavtoTro)de
CTS

Neural M

2024

N

(5,07 P) — dgkines MoP
N B B A U

%giﬂﬁm \(j\m wwo d Q) \PY&&U’\\/QJ o\, e

(mkvs\ {zn’\o\em: UV J = %Yv 113\;‘37'»; W, UZ’_\

\)fluz\’ cd ',

A Too Woxd Yo pdwe

™ Note fhak fanamith L Ay -0) =0 Gnd Usnwiveinky

Ol M\M\/\U\ \'\mvoa

]

— Ikb)\»m on

-~
et

Lewe \S@b Jn =

-

<7

C), whow n W nwxe;unﬂ

lsge, tapudt Uy, Vn) and) implement™ G‘V\}\(»j

0

%u)cldf. Then Mwe. o \{)\rnklu\r\ CkaAW\

Kiroan Yo be QMN(@X\/\QM umb@cm\/t TP ASWab\e

VL ol U o Lot
(W\)QSL

S

” ”

Moo doeh tid ook o datp RL? T [St | 0%)

g*/%&(/g‘lﬂaf) 7
/.l\ domple ag AT (-(Sg)
N '
Sx’?n Ser— St
/INC N N
N AT\
W

—b Replau,e k»;{ Q(5,4) of goma Muu, Tme thp ~ ! Mmets |

— Noed 4eme tdea shoud P(g' IQ Q) ~— Nlpote!‘

~> Need o deude krtqd)\’\r\, Aget\n d»bnawunrﬂ

7 Nete s Applicble 0 kot detpuumshic b odastic fblons

imy
Hew t vk aboud tWe mude] ?

® ED!Loduo T e deeuwunadtic w\)\A{

® gw/%!am Whwnadioy —° Aample %uw bud mep\,dQ me{(\(\um

® F\mmov\ oy OCimudioy mwwm & MBR L

& ,@\mumm — \X\ \PY5\>\UT\ Q\W& \\7

In model-based reinforcement learning, a model of the

dynamics is used to make predictions, which is used for

action selection. Let fg (s¢,a;) denote a learned discrete-time

dynamics function, parameterized by 6, that takes the current
state s; and action a; and outputs an estimate of the next

state at time ¢ + At. We can then choose actions by solving

the following optimization problem:

t+H~—1

a,) .., A H-1) = arg max Z ~* _tr(st',at’) (D)

t/ =t

connect to MPC

Medel-base o a\u{) KL \:Naaa)oam\iwal;\ %‘

' vho DU N (I uT

[AY
(2) Wan On © A\o Cg’o: dy) /Slm’ o |

dhond = = — Alw dapnami

Aesaning 85 Tolpfpl i ymol_bime sfeps

@ Rl out hvué’zdwieb with yondom adony %\Y\g .ge

® ik e bert W0y ecrosy ord plemend Flne juut agren

Pm?\ ’w\m — wwwg\mld branipute\e o w,, iR

o d Jf\mv\c\ —» Needd knrwn yowosd e cion

L— neX QX\NMA/\ (’/‘0-{)\0‘(&‘)\’\6\/\ k&fL M\Amyxd

\N&b\mb

o

{u fxe WUUJ IS g Sy %ex M?Uw\’\m

=

) ~—7 wm?ute, adhion p\edkiov Lo

@) Use g (als) ot initial ;“Do loa v TRfo

Data preprocessing: We slice the trajectories {7} into
training data inputs (s;,a;) and corresponding output labels

St+1 —S¢. We then subtract the mean of the data and divide by
the standard deviation of the data to ensure the loss function

weights the different parts of the state (e.g., positions and
velocities) equally. We also add zero mean Gaussian noise

to the training data (inputs and outputs) to increase model

robustness. The training data is then stored in the dataset D.

C. Model-Based Control

In order to use the learned model fg(St, a;), together with

a reward function r(s;, a;) that encodes some task, we for-

mulate a model-based controller that is both computationally

tractable and robust to inaccuracies in the learned dynamics

model. Expanding on the discussion in Sec. III, we first

optimize the sequence of actions AgH) = (az, -, g_1)
over a finite horizon H, using the learned dynamics model

to predict future states: reliable?
t+H—1

AgH) = arg max (8¢, az)
- AH)
t t' =t
St =S¢, 8¢y 41 = S + fo(8¢,ap). 4)

Newly generated data points can be added to buffer for training

A. Initializing the Model-Free Learner

We first gather example trajectories with the MPC controller
detailed in Sec. IV-C, which uses the learned dynamics
function fg that was trained using our model-based re-
inforcement learning algorithm (Alg. 1). We collect the
trajectories into a dataset D*, and we then train a neural
network policy m,(als) to match these “expert” trajectories
in D*. We parameterize m, as a conditionally Gaussian
policy ms(als) ~ N(ug(s),Xr,), in which the mean is
parameterized by a neural network fi4(s), and the covariance
Yr, 1s a fixed matrix. This policy’s parameters are trained
using the behavioral cloning objective

.1 :
mins 3" lla— p(s0)ll3, (5)

¢ .
(st,at)eD DAGGER:

which we optimize using stochastic gradient descent. To 1. Collect
achieve desired performance and address the data distribution 2. Train
problem, we applied DAGGER [40]: This consisted of 3. Rollout

iterations of training the policy, performing on-policy rollouts, 4. Correct

querying the “expert” MPC controller for “true” action labels
for those visited states, and then retraining the policy.

B. Model-Free Reinforcement Learning

After initialization, we can use the policy m;, which
was trained on data generated by our learned model-based
controller, as an initial policy for a model-free reinforcement
learning algorithm. Specifically, we use trust region policy
optimization (TRPO) [3]; such policy gradient algorithms
are a good choice for model-free fine-tuning since they do
not require any critic or value function for initialization [41],
though our method could also be combined with other model-
free RL algorithms.

6\(W\ QS\/ EH “J{urﬂ Q).(/ {j C(L \1 Dataset of Experience

Odemn o umrd wodel

r@ DW (L LM q 4t kg(m Wyj Leirned LT; Dynan:cs

%9(%,%) Bonani s,)&wuum‘&mpwwhmm 3“ gﬁ‘

J,» ~ lmos(kmo\hm
- - E

EY\N'(WW (NS AT 6\ o— o 510 al
Value and Action Learned

A}f &‘tm U\A\ by Latent Imagination

KL (D RL weed oo the Aol

® erpouionce wlleded by RL pelivy
. B

Wo‘(’c&v\‘r ?e«n’b

S Emg/mmm IoweAW el bML { el ne wontiuthion

\\-‘17 Need tvws Brend no st otiian Afeps ko (wdwil

§oe
p(St | st_l,at_l,ot) latest info

Real ~ Representation model:
Imaginedr,psition model: q(s¢ | si—1,ai-1) prediction L- Collect
ImaglnedReward model: q(re | se). 2. Train dynamics
without env
—O@i%—ﬂm
N / new policy

Oy the policy for

experience

raleckhinn-{(nont

conection \IIUL

pure random now)

Algorithm 1: Dreamer

for update step c = 1..C' do

v

t+H
T=t

t+H 1
T=t 2

Initialize dataset D with .S random seed episodes.
Initialize neural network parameters €, ¢, 1) randomly.
while not converged do

S,a,V

// Dynamics learning
Draw B data sequences {(a, 04, 74)
Compute model states s; ~ pg(s¢ | S¢—1,at—1,0¢).
Update ¢ using representation learning.

// Behavior learning
Imagine trajectories {(s.,a,)
Predict rewards E (go (77 | s;)) and values vy (s;).
Compute value estimates V (s,) via Equation 6.
Update ¢ «— ¢ + aVy >
Update ¢ <— v — aVy >

t+H
T=t

// Environment interaction

01 ¢ env.reset ()
for time step t = 1..T do

k+LND

Va(sy).
[0 (s7)-Valsa) ||

Model components

Transition qo(st | St-1,a41)
Reward qo(re | st)
Action qo(as | st)
Value vy (St)

Hyper parameters

Seed episodes

Collect interval

from each s;.

Batch size

Sequence length

Imagination horizon

Learning rate

Compute s; ~ pg(s¢ | S¢—1,at—1,0;) from history.
Compute a; ~ qg(a; | s¢) with the action model.
Add exploration noise to action.
rt,0p41 < env.step (ag) .
Add experience to dataset D < D U {(os,as,m¢)1,}.

Representation pg(s¢ | S¢.1,a4.1,0)
(

Oy ——>

—_—
O — >
_—\
01—
e
T ——
_\

O;_j ——>

\

< X

FoLaR: Foggy Latent Representations for
Reinforcement Learning with Partial Observability

Direct gradient path blocked

/ ‘~~
Encoder (shared weights)

Encoder (shared weights)

Encoder training

RNN (LSTM) >

Prediction
network

2t

Value V}, _
network
Policy ¢ -
>
network

Alpha bn (ond Mpha 0 Zewo)

—Puwn \«\‘Mf«\mm% Jodk oX ovby (podoviak \ov‘{\o\exv\b

— ’ﬁw\\)o{\—md{ 5\\ WYNJ WUL \Q@;\)Mu/w\s\

Ae)\x\ v\w(\)
> ‘(\Q)\M W\L/TS
—> Tn combinatoriod preijes) AN
\ ZNINS
bvw\’f\m (o) &e‘m\ (A)]
| : e = 5
Dow»,\@/&zux(Yien 0N 2.5V) .
ar Kme b o 9ok Yeauls Usmp ewky
k_/ \/\/ L_U/‘/\J e
whe T (9\%) Ghe V‘(S)

Foun Am/u 8 Mo\w\fu

[

Q Au‘)@)\/\b%\ }\’WV@\) Ye’)‘”’\ @‘) — Wwﬁa.l)\»(j e

Joy, T

e Womon el [g;/mcu»@wg /” hnan wive)

Fost (Droddow) v oI L W

E’LU\ ‘fo O&LMM

@ Qﬂ”\\ ?\“j} Nained P“\“& (g — frakp witn Po=Pe (o0

/ tmhahbmm

8,00 VN

@ wianeL peaoien Value fjradion g

v g0 oD

£

AW

The game of Go has long been viewed as the most challenging of classic games for artificial intelligence owing to its
enormous search space and the difficulty of evaluating board positions and moves. Here we introduce a new approach
to computer Go that uses ‘value networks’ to evaluate board positions and ‘policy networks’ to select moves. These deep
neural networks are trained by a novel combination of supervised learning from human expert games, and reinforcement
- learning from games of self-play. Without any lookahead search, the neural networks play Go at the level of state-

of-the-art Monte Carlo tree search programs that simulate thousands of random games of self-play. We also introduce a -

- new search algorithm that combines Monte Carlo simulation with value and policy networks. Using this search algorithm,
our program AlphaGo achieved a 99.8°% winning rate against other Go programs, and defeated the human European Go

~ champion by 5 games to 0. This is the first time that a computer program has defeated a human professional player in the
full-sized game of Go, a feat previously thought to be at least a decade away.

We train the neural networks using a pipeline consisting of several
stages of machine learning (Fig. 1). We begin by training a supervised
learning (SL) policy network p,, directly from expert human moves.
This provides fast, efficient learning updates with immediate feedback
and high-quality gradients. Similar to prior work'*!>, we also train a
fast policy p, that can rapidly sample actions during rollouts. Next, we
train a reinforcement learning (RL) policy network p, that improves
the SL policy network by optimizing the final outcome of games of self-
play. This adjusts the policy towards the correct goal of winning games,
rather than maximizing predictive accuracy. Finally, we train a value

network against itself. Our program AlphaGo efficiently combines the
policy and value networks with MCTS.

network vy that predicts the winner of games played by the RL policy

Rollout policy SL pollcy network RL policy network Value network Policy network Value network
Chabbaa e/qp _ A .Sb'fmo'w
P, 3 p @lS) ve) Acalor

R~ -
3
e
S

X E% B% g “ _
g L 's $

‘%df‘

> &

g
o
Human expert positions Self-play positions

Figure 1 | Neural network training pipeline and architecture. a, A fast the current player wins) in positions from the self-play data set.
rollout policy pr and supervised learning (SL) policy network p,, are b, Schematic representation of the neural network architecture used in
trained to predict human expert moves in a data set of positions. AlphaGo. The policy network takes a representation of the board position
A reinforcement learning (RL) policy network p,, is initialized to the SL sas its input, passes it through many convolutional layers with parameters
policy network, and is then improved by policy gradient learning to o (SL policy network) or p (RL policy network), and outputs a probability
maximize the outcome (that is, winning more games) against previous distribution p (a|s) or p,(a|s) over legal moves a, represented by a
versions of the policy network. A new data set is generated by playing probability map over the board. The value network similarly uses many
games of self-play with the RL policy network. Finally, a valye network vy convolutional layers with parameters 6, but outputs a scalar value vy(s’)

is trained by regression to predict the expected outcome (that is, whether that predicts the expected outcome in position s'.

rosovos [TV RN

\Y VIRU
a Selection b Expansion c Evaluation d Backup
Tt Tt Tt Nl r'an
! ? t gEx:
Q+UP) maN Q+ulP) '\ LN
+o+ +oe ot ftoe 13T '“gr'.*’ o Tee v A%’“
T T T 'If ~ 1 -~ T
Q
Q+u(P) Loax 0 u(P) - iy 4
> . K3) >
ST T w0 B | pELE
’ wan Y P [+
oW ORI / \l ~p. i :
, \\ 80 \(oiQkXb(() ;; |
p oy toomufn ()) ()08
Figure 3 | Monte Carlo tree search in AlphaGo. a, Each simulation is evaluated in two ways: using the value network vg; and by running
traverses the tree by selecting the edge with maximum action value Q, a rollout to the end of the game with the fast rollout policy p, then
plus a bonus u(P) that depends on a stored prior probability P for that computing the winner with function . d, Action values Q are updated to
edge. b, The leaf node may be expanded; the new node is processed once track the mean value of all evaluations r(-) and vy(-) in the subtree below
by the policy network p,, and the output probabilities are stored as prior that action. -

probabilities P for each action. ¢, At the end of a simulation, the leaf node

f)uring the match against Fan Hui, AlphaGo evaluated thousands

of times fewer positions than Deep Blue did in its chess match against
Kasparov*; compensating by selecting those positions more intelli-

gently, using the policy network, and evaluating them more precisely,

using the value network—an approach that is perhaps closer to how

humans play. Furthermore, while Deep Blue relied on a handcrafted

evaluation function, the neural networks of AlphaGo are trained
directly from gameplay purely through general-purpose supervised

and reinforcement learning methods.

Go is exemplary in many ways of the difficulties faced by artificial
33,34,

intelligence””": a challenging decision-making task, an intractable
search space, and an optimal solution so complex it appears infeasible

to directly approximate using a policy or value function. The previous

major breakthrough in computer Go, the introduction of MCTS, led to
corresponding advances in many other domains; for example, general

game-playing, classical planning, partially observed planning, sched-

uling, and constraint satisfaction®°. By combining tree search with

policy and value networks, AlphaGo has finally reached a professional

level in Go, providing hope that human-level performance can now be
achieved in other seemingly intractable artificial intelligence domains.

Jan 2016

Alpha Go Zero: October 2017

o clean 4lete

— A long-standing goal of artificial intelligence is an algorithm that learns, tabula rasa, su- —

— perhuman proficiency in challenging domains. Recently, AlphaGo became the first program o

to defeat a world champion in the game of Go. The tree search in AlphaGo evaluated posi-

tions and selected moves using deep neural networks. These neural networks were trained

by supervised learning from human expert moves, and by reinforcement learning from self-

play. Here, we introduce an algorithm based solely on reinforcement learning, without hu- Ad{j f’ taj

man data, guidance, or domain knowledge beyond game rules. AlphaGo becomes its own ;“?)

teacher: a neural network is trained to predict AlphaGo’s own move selections and also the o

winner of AlphaGo’s games. This neural network improves the strength of tree search, re- % a‘
sulting in higher quality move selection and stronger self-play in the next iteration. Starting W

tabula rasa, our new program AlphaGo Zero achieved superhuman performance, winning

100-0 against the previously published, champion-defeating AlphaGo.

Our program, AlphaGo Zero, differs from AlphaGo Fan and AlphaGo Lee '? in several im- -
portant aspects. First and foremost, it is trained solely by self-play reinforcement learning, starting -
from random play, without any supervision or use of human data. Second, it only uses the black -
and white stones from the board as input features. Third, it uses a single neural network, rather -
than separate policy and value networks. Finally, it uses a simpler tree search that relies upon this -

single neural network to evaluate positions and sample moves, without performing any Monte- l‘; :

Nete_ g
-t d

incorporates lookahead search inside the training loop, resulting in rapid improvement and precise q_ byeg

Carlo rollouts. To achieve these results, we introduce a new reinforcement learning algorithm that
and stable learning. Further technical differences in the search algorithm, training procedure and Aeogda X

network architecture are described in Methods. not ob M‘W)
o) MCTS

N ()’Wir anol Q= tmreﬂm

(
M(als) dpived bem Plals) using MUTS quided by be

Evonkudly | F ¥ hruined o sppYevumsd e 1,
and W) fYained fo predu ot Ay play winner 2

Impoxtonk” vwke & Tn MCTS, nedes oU braveny ed Whing

Plpviov) , §, (vewes) and W(vitrtarion Wum}&) wiPepud

cUing rowusl nskr wkil & beoh nede o o d,

&_,,/V -

oLeydﬂ ay\x,;r Pm{bw beru drduke Awked

Ro4s tumﬁmi L= CL'VJ’L* ’ﬂT}e;? + c\lel\L

(¢
e . L

Mg me‘)%oﬂﬁ L2 r@&«.lm\cm
T

8 S
& Py Loa ~m ’ a; ~ T

- EEENEIEN &;é.}m.}é :
/l\ /\ /\

* ™ T2 3 A -

— b. Neural Network Training -

- 31 S92 S3)

> -

Figure 1: Self-play reinforcement learning in AlphaGo Zero. a The program plays a game s1, ..., s against itself.
In each position s,, a Monte-Carlo tree search (MCTS) «y 1s executed (see Figure 2) using the latest neural network
fa. Moves are selected according to the search probabilities computed by the MCTS, a; ~ ;. The terminal position
sy is scored according to the rules of the game to compute the game winner z. b Neural network training in AlphaGo
~ Zero. The neural network takes the raw board position s, as its input, passes it through many convolutional layers
~ with parameters #, and outputs both a vector p¢, representing a probability distribution over moves, and a scalar value
— 14, representing the probability of the current player winning in position s;. The neural network parameters ¢ are -
— updated so as to maximise the similarity of the policy vector pg to the search probabilities m, and to minimise the -

__ error between the predicted winner v; and the game winner z (see Equation 1). The new parameters are used in the _

__next iteration of self-play a

