
ar
X

iv
:1

91
2.

02
87

5v
2 

 [
cs

.A
I]

  2
3 

Ju
n 

20
20

Reinforcement Learning Upside Down:

Don’t Predict Rewards - Just Map Them to Actions

NNAISENSE/IDSIA Technical Report

Jürgen Schmidhuber

The Swiss AI Lab, IDSIA, USI & SUPSI

NNAISENSE, Lugano, Switzerland

23 June 2020 (based on version v1 of 5 Dec 2019)
Earlier drafts: 21 Dec, 31 Dec 2017, 20 Jan, 4 Feb, 9 Mar, 20 Apr, 16 Jul 2018

Abstract

We transform reinforcement learning (RL) into a form of supervised learning (SL) by turning

traditional RL on its head, calling this

RL

or Upside Down RL (UDRL). Standard RL predicts

rewards, while

RL

instead uses rewards as task-defining inputs, together with representations of

time horizons and other computable functions of historic and desired future data.

RL

learns to

interpret these input observations as commands, mapping them to actions (or action probabilities)

through SL on past (possibly accidental) experience.
RL

generalizes to achieve high rewards or

other goals, through input commands such as: get lots of reward within at most so much time!

RL

can also learn to improve its exploration strategy. A separate paper [63] on first experiments with

RL

shows that even a pilot version of

RL

can outperform traditional baseline algorithms on certain

challenging RL problems.

We also conceptually simplify an approach [60] for teaching a robot to imitate humans. First

videotape humans imitating the robot’s current behaviors, then let the robot learn through SL to

map the videos (as input commands) to these behaviors, then let it generalize and imitate videos

of humans executing previously unknown behavior. This Imitate-Imitator concept may actually

explain why biological evolution has resulted in parents who imitate the babbling of their babies.

Note: This is a minor update of recent work [56].
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1 Basic Ideas

Traditional RL machines [24, 67, 76] learn to predict rewards, given previous actions and observa-

tions, and learn to transform those predictions into rewarding actions. Our new method UDRL or

RL

is radically different. It does not predict rewards at all. Instead it takes rewards as inputs. More

precisely, the

RL

machine observes commands in form of desired rewards and time horizons, such

as: “get so much reward within so much time.” Simply by interacting with the environment, it learns

through gradient descent to map self-generated commands of this type to corresponding action prob-

abilities. From such self-acquired knowledge it can extrapolate to solve new problems such as: “get

even more reward within even less time.” Remarkably, a simple

RL

pilot version already outperforms

traditional RL methods on certain challenging problems [63].

Let us outline this new principle in more detail. An

RL

agent may interact with its environment

during a single lifelong trial. At a given time, the history of actions and vector-valued [43, 44] costs

(e.g., time, energy, pain & reward signals) and other observations up to this time contains all the agent

can know about the present state of itself and the environment. Now it is looking ahead up to some

future horizon, trying to obtain a lot of reward until then.

For all past pairs of times (time1 < time2) it can retrospectively [1, 36] invent additional, consis-

tent, vector-valued command inputs for itself, indicating tasks such as: achieve the already observed

rewards/costs between time1 and time2. Or: achieve more than half this reward, etc.

Now it may simply use gradient-based SL to train a differentiable general purpose computer C

such as a recurrent neural network (RNN) [73, 78, 39][53] to map the time-varying sensory inputs,

augmented by the special command inputs defining time horizons and desired cumulative rewards etc,

to the already known corresponding action sequences.

If the experience so far includes different but equally costly action sequences leading from some

start to some goal, then C will learn to approximate the conditional expected values (or probabilities,

depending on the setup) of appropriate actions, given the commands and other inputs.

The single life so far may yield an enormous amount of knowledge about how to solve all kinds

of problems with limited resources such as time / energy / other costs. Typically, however, we want

C to solve user-given problems, in particular, to get lots of reward quickly, e.g., by avoiding hunger

(negative reward) caused by near-empty batteries, through quickly reaching the charging station with-

out painfully bumping against obstacles. This desire can be encoded in a user-defined command of

the type (small desirable pain, small desirable time), and C will generalize and act based on what it

has learned so far through SL about starts, goals, pain, and time. This will prolong C’s lifelong expe-

rience; all new observations immediately become part of C’s growing training set, to further improve

C’s behavior in continual [38] online fashion.

For didactic purposes, well first introduce formally the basics of

RL

for deterministic environ-

ments and Markovian interfaces between controller and environment (Sec. 3), then proceed to more

complex cases in a series of additional Sections.

A separate paper [63] describes the concrete

RL

implementations used in our first experiments

with

RL

, and presents remarkable experimental results.

2 Notation

More formally, in what follows, let m, n, o, p, q, u denote positive integer constants, and h, i, j, k,

t, τ positive integer variables assuming ranges implicit in the given contexts. The i-th component of

any real-valued vector, v, is denoted by vi.
To become a general problem solver that is able to run arbitrary problem-solving programs, the

controller C of an artificial agent must be a general-purpose computer [14, 7, 68, 35]. Artificial
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recurrent neural networks (RNNs) fit this bill, e.g., [53]. The life span of our C (which could be an

RNN) can be partitioned into trials T1, T2, . . . However, possibly there is only one single, lifelong

trial. In each trial, C tries to manipulate some initially unknown environment through a sequence of

actions to achieve certain goals. Let us consider one particular trial and its discrete sequence of time

steps, t = 1, 2, . . . , T .

At time t, during generalization of C’s knowledge so far in Step 3 of Algorithm A1 or B1, C

receives as an input the concatenation of the following vectors: a sensory input vector in(t) ∈ R
m

(e.g., parts of in(t) may represent the pixel intensities of an incoming video frame), a current vector-

valued [44, 46] cost or reward vector r(t) ∈ R
n (e.g., components of r(t) may reflect external positive

rewards, or negative values produced by pain sensors whenever they measure excessive temperature

or pressure or low battery load, that is, hunger), the previous output action out′(t − 1) (defined as

an initial default vector of zeros in case of t = 1; see below), and extra variable task-defining input

vectors horizon(t) ∈ R
p (a unique and unambiguous representation of the current look-ahead time),

desire(t) ∈ R
n (a unique representation of the desired cumulative reward to be achieved until the

end of the current look-ahead time), and extra(t) ∈ R
q to encode additional user-given goals (as we

have done since 1990, e.g., [45, 57, 52]).

At time t, C then computes an output vector out(t) ∈ R
o used to select the final output ac-

tion out′(t). Often (e.g., Sec. 3.1.1) out(t) is interpreted as a probability distribution over possible

actions. For example, out′(t) may be a one-hot binary vector ∈ R
o with exactly one non-zero com-

ponent, out′i(t) = 1 indicates action ai in a set of discrete actions {a1, a2, . . . , ao}, and outi(t) the

probability of ai. Alternatively, for even o, out(t) may encode the mean and the variance of a multi-

dimensional Gaussian distribution over real-valued actions [77], from which a high-dimensional ac-

tion out′(t) ∈ R
o/2 is sampled accordingly, e.g., to control a multi-joint robot. The execution of

out′(t) may influence the environment and thus future inputs and rewards to C.

Let all(t) denote the concatenation of out′(t − 1), in(t), r(t). Let trace(t) denote the sequence

(all(1), all(2), . . . , all(t)).

3 Deterministic Environments With Markovian Interfaces

For didactic purposes, we start with the case of deterministic environments, where there is a Marko-

vian interface [46] between agent and environment, such that C’s current input tells C all there is to

know about the current state of its world. In that case, C does not have to be an RNN - a multilayer

feedforward network (FNN) [22, 53] is sufficient to learn a policy that maps inputs, desired rewards

and time horizons to probability distributions over actions.

The following Algorithms A1 and A2 run in parallel, occasionally exchanging information at

certain synchronization points. They make C learn many cost-aware policies from a single behavioral

trace, taking into account many different possible time horizons. Both A1 and A2 use local variables

reflecting the input/output notation of Sec. 2. Where ambiguous, we distinguish local variables by

appending the suffixes “[A1]” or “[A2],” e.g., C[A1] or t[A2] or in(t)[A1].
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Algorithm A1: Generalizing through a copy of C (with occasional exploration)

1. Set t := 1. Initialize local variable C (or C[A1]) of the type used to store controllers.

2. Occasionally sync with Step 3 of Algorithm A2 to set C[A1] := C[A2] (since C[A2] is contin-

ually modified by Algorithm A2).

3. Execute one step: Encode in horizon(t) the goal-specific remaining time, e.g., until the

end of the current trial (or twice the lifetime so far [21]). Encode in desire(t) a desired

cumulative reward to be achieved within that time (e.g., a known upper bound of the max-

imum possible cumulative reward, or the maximum of (a) a positive constant and (b) twice

the maximum cumulative reward ever achieved before). C observes the concatentation of

all(t), horizon(t), desire(t) (and extra(t), which may specify additional commands - see

Sec. 3.1.6 and Sec. 4). Then C outputs a probability distribution out(t) over the next possi-

ble actions. Probabilistically select out′(t) accordingly (or set it deterministically to one of

the most probable actions). In exploration mode (e.g., in a constant fraction of all time steps),

modify out′(t) randomly (optionally, select out′(t) through some other scheme, e.g., a tradi-

tional algorithm for planning or RL or black box optimization [53, Sec. 6] - such details are not

essential for

RL

). Execute action out′(t) in the environment, to get in(t+ 1) and r(t + 1).

4. Occasionally sync with Step 1 of Algorithm A2 to transfer the latest acquired information about

t[A1], trace(t+ 1)[A1], to increase C[A2]’s training set through the latest observations.

5. If the current trial is over, exit. Set t := t+ 1. Go to 2.

Algorithm A2: Learning lots of time & cumulative reward-related commands

1. Occasionally sync with A1 (Step 4) to set t[A2] := t[A1], trace(t+1)[A2] := trace(t+1)[A1].

2. Replay-based training on previous behaviors and commands compatible with observed

time horizons and costs: For all pairs {(k, j); 1 ≤ k ≤ j ≤ t}: train C through gradi-

ent descent-based backpropagation [29, 25, 71][53, Sec. 5.5] to emit action out′(k) at time k
in response to inputs all(k), horizon(k), desire(k), extra(k), where horizon(k) encodes

the remaining time j − k until time j, and desire(k) encodes the total costs and rewards
�j+1

τ=k+1
r(τ) incurred through what happened between time steps k and j. (Here extra(k)

may be a non-informative vector of zeros - alternatives are discussed in Sec. 3.1.6 and Sec. 4.)

3. Occasionally sync with Step 2 of Algorithm A1 to copy C[A1] := C[A2]. Go to 1.

3.1 Properties and Variants of Algorithms A1 and A2

3.1.1 Learning Probabilistic Policies Even in Deterministic Environments

In Step 2 of Algorithm A2, the past experience may contain many different, equally costly sequences

of going from a state uniquely defined by in(k) to a state uniquely defined by in(j + 1). Let us first

focus on discrete actions encoded as one-hot binary vectors with exactly one non-zero component

(Sec. 2). Although the environnment is deterministic, by minimizing mean squared error (MSE), C

will learn conditional expected values

out(k) = E(out′ | all(k), horizon(k), desire(k), extra(k))
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of corresponding actions, given C’s inputs and training set, where E denotes the expectation opera-

tor. That is, due to the binary nature of the action representation, C will actually learn to estimate

conditional probabilities

outi(k) = P (out′ = ai | all(k), horizon(k), desire(k), extra(k))

of appropriate actions, given C’s inputs and training set. For example, in a video game, two equally

long paths may have led from location A to location B around some obstacle, one passing it to the left,

one to the right, and C may learn a 50% probability of going left at a fork point, but afterwards there

is only one fast way to B, and C can learn to henceforth move forward with highly confident actions,

assuming the present goal is to minimize time and energy consumption.

RL

is of particular interest for high-dimensional actions (e.g., for complex multi-joint robots),

because SL can easily deal with those, while traditional RL does not. See Sec. 6.1.3 for learning

probability distributions over such actions, possibly with statistically dependent action components.

3.1.2 Compressing More and More Skills into C

In Step 2 of Algorithm A2, more and more skills are compressed or collapsed into C, like in the

chunker-automatizer system of the 1991 neural history compressor [47], where a student net (the

“automatizer”) is continually re-trained not only on its previous skills (to avoid forgetting), but also

to imitate the behavior of a teacher net (the “chunker”), which itself keeps learning new behaviors.

3.1.3 No Problems With Discount Factors

Some of the math of traditional RL [24, 67, 76] heavily relies on problematic discount factors. Instead

of maximizing
�T

τ=1
r(τ), many RL machines try to maximize

�T
τ=1

γτ r(τ) or
�

∞

τ=1
γτr(τ) (as-

suming unbounded time horizons), where the positive real-valued discount factor γ < 1 distorts the

real rewards in exponentially shrinking fashion, thus simplifying certain proofs (e.g., by exploiting

that
�

∞

τ=1
γτr(τ) is finite).

RL

, however, explicitly takes into account observed time horizons in a precise and natural way,

does not assume infinite horizons, and does not suffer from distortions of the basic RL problem.

3.1.4 Representing Time / Omitting Representations of Time Horizons

What is a good way of representing look-ahead time through horizon(t) ∈ R
p? The simplest way

may be p = 1 and horizon(t) = t. A less quickly diverging representation is horizon(t) =�t
τ=1

1/τ . A bounded representation is horizon(t) =
�t

τ=1
γττ with positive real-valued γ < 1.

Many distributed representations with p > 1 are possible as well, e.g., date-like representations.

In cases where C’s life can be segmented into several time intervals or episodes of varying lengths

unkown in advance, and where we are only interested in C’s total reward per episode, we may omit

C’s horizon()-input. C’s desire()-input still can be used to encode the desired cumulative reward

until the time when a special component of C’s extra()-input switches from 0 to 1, thus indicating

the end of the current episode. It is straightforward to modify Algorithms A1/A2 accordingly.

3.1.5 Computational Complexity

The replay [28] of Step 2 of Algorithm A2 can be done in O(t(t + 1)/2) time per training epoch. In

many real-world applications, such quadratic growth of computational cost may be negligible com-

pared to the costs of executing actions in the real world. (Note also that hardware is still getting

exponentially cheaper over time, overcoming any simultaneous quadratic slowdown.) See Sec. 3.1.8.
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3.1.6 Learning a Lot From a Single Trial - What About Many Trials?

In Step 2 of Algorithm A2, for every time step, C learns to obey many commands of the type: get

so much future reward within so much time. That is, from a single trial of only 1000 time steps,

it derives roughly half a million trainig examples conveying a lot of fine-grained knowledge about

time and rewards. For example, C may learn that small increments of time often correspond to small

increments of costs and rewards, except at certain crucial moments in time, e.g., at the end of a board

game when the winner is determined. A single behavioral trace may thus inject an enormous amount

of knowledge into C, which can learn to explicitly represent all kinds of long-term and short-term

causal relationships between actions and consequences, given the initially unknown environment. For

example, in typical physical environments, C could automatically learn detailed maps of space / time

/ energy / other costs associated with moving from many locations (at different altitudes) to many

target locations [57, 45, 52, 1, 36] encoded as parts of in(t) or of extra(t) - compare Sec. 4.1.

If there is not only one single lifelong trial, we may run Step 2 of Algorithm A2 for previous trials

as well, to avoid forgetting of previously learned skills, like in the POWERPLAY framework [52, 64].

3.1.7 How Frequently Should One Synchronize Between Algorithms A1 and A2?

It depends a lot on the task and the computational hardware. In a real world robot environment,

executing a single action in Step 3 of A1 may take more time than billions of training iterations in

Step 2 of A2. Then it might be most efficient to sync after every single real world action, which

immediately may yield for C many new insights into the workings of the world. On the other hand,

when actions and trials are cheap, e.g., in simple simulated worlds, it might be most efficient to

synchronize rarely.

3.1.8 On Reducing Training Complexity by Selecting Few Relevant Training Sequences

To reduce the complexity O(t(t + 1)/2) of Step 2 of Algorithm A2 (Sec. 3.1.5), certain SL methods

will ignore most of the training sequences defined by the pairs (k, j) of Step 2, and instead select only

a few of them, either randomly, or by selecting prototypical sequences, inspired by support vector

machines (SVMs) whose only effective training examples are the support vectors identified through a

margin criterion [69, 58], such that (for example) correctly classified outliers do not directly affect the

final classifier. In environments where actions are cheap, the selection of only few training sequences

may also allow for synchronizing more frequently between Algorithms A1 and A2 (Sec. 3.1.7).

Similarly, when the overall goal is to learn a single rewarding behavior through a series of trials,

at the start of a new trial, a variant of A2 could simply delete/ignore the training sequences collected

during most of the less rewarding previous trials, while Step 3 of A1 could still demand more reward

than ever observed. Assuming that C is getting better and better at acquiring reward over time, this

will not only reduce training efforts, but also bias C towards recent rewarding behaviors, at the risk of

making C forget how to obey commands demanding low rewards.

There are numerous applicable SL tricks of the trade (e.g., [31]) and sophisticated ways of selec-

tively deleting past experiences from the training set to improve and speed up SL.

4 Other Properties of the History as Command Inputs

A single trial can yield even much more additional information for C than what is exploited in Step

2 of Algorithm A2. For example, the following addendum to Step 2 trains C to also react to an input

command saying “obtain more than this reward within so much time” instead of “obtain so much

7
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reward within so much time,” simply by training on all past experiences that retrospectively match

this command.

2b. Additional replay-based training on previous behaviors and commands compatible with

observed time horizons and costs for Step 2 of Algorithm A2: For all pairs {(k, j); 1 ≤
k ≤ j ≤ t}: train C through gradient descent to emit action out′(k) at time k in response

to inputs all(k), horizon(k), desire(k), extra(k), where one of the components of extra(k)
is a special binary input morethan(k) := 1.0 (normally 0.0), where horizon(k) encodes the

remaining time j − k until time j, and desire(k) encodes half the total costs and rewards
�j+1

τ=k+1
r(τ) incurred between time steps k and j, or 3/4 thereof, or 7/8 thereof, etc.

That is, C now also learns to generate probability distributions over action trajectories that yield

more than a certain amount of reward within a certain amount of time. Typically, their number greatly

exceeds the number of trajectories yielding exact rewards, which will be reflected in the correspond-

ingly reduced conditional probabilities of action sequences learned by C.

A natural corresponding modification of Step 3 of Algorithm A1 is to encode in desire(t) the

maximum conditional reward ever achieved, given all(t), horizon(t), and to activate the special bi-

nary input morethan(t) := 1.0 as part of extra(t), such that C can generalize from what it has

learned so far about the concept of obtaining more than a certain amount of reward within a certain

amount of time. Thus

RL

can learn to improve its exploration strategy in goal-directed fashion.

4.1 Desirable Goal States / Locations

Yet another modification of Step 2 of Algorithm A2 is to encode within parts of extra(k) a final

desired input in(j+1) (assuming q > m), like in previous work where extra inputs are used to define

goals or target locations [57, 45, 52, 1, 36], such that C can be trained to execute commands of the

type “obtain so much reward within so much time and finally reach a particular state identified by

this particular input.” See Sec. 6.1.2 for generalizations of this.

The natural corresponding modification of Step 3 of Algorithm A1 is to encode such desired

inputs [57] in extra(t), e.g., a goal location that has never been reached before.

4.2 Infinite Number of Computable, History-Compatible Commands

Obviously there are infinitely many other computable functions of subsequences of trace(t) with bi-

nary outputs true or false that yield true when applied to certain subsequences. In principle, such

computable predicates could be encoded in Algorithm A2 as unique commands for C with the help of

extra(k), to further increase C’s knowledge about how the world works, such that C can better gen-

eralize when it comes to planning future actions in Algorithm A1. In practical applications, however,

one can train C only on finitely many commands, which should be chosen wisely.

Note the similarity to POWERPLAY (2011) [52, 64] which allows for arbitrary computable task

specifications as extra inputs to an RL system. Since in general there are many possible tasks, POW-

ERPLAY has a built-in way of selecting new tasks automatically and economically. POWERPLAY,

however, not only looks backwards in time to find new commands compatible with the observed his-

tory, but can also actively set goals that require to obtain new data from the environment through

interaction with it.
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5 Probabilistic Environments

In probabilistic environments, for two different time steps l 6= h we may have all(l) = all(h),
out(l) = out(h) but r(l + 1) > r(h + 1), due to “randomness” in the environment. To address

this, let us first discuss expected rewards. Given all(l), all(h) and keeping the Markov assumption of

Sec. 3, we may use C’s command input desire(.) to encode a desired expected immediate reward of

1/2[r(l+ 1) + r(h+ 1)] which, together with all(h) and a horizon() representation of 0 time steps,

should be mapped to out(h) by C, assuming a uniform conditional reward distribution.

More generally, assume a finite set of states {s1, s2, . . . , su}, each with an unambiguous encoding

through C’s in() vector, and actions {a1, a2, . . . , ao} with one-hot encodings (Sec. 2). For each pair

(si, aj) we can use a real-valued variable zij to estimate [18] the expected immediate reward for

executing aj in si. This reward is assumed to be independent of the history of previous actions and

observations (Markov assumption [65]).

zij can be updated incrementally and cheaply whenever aj is executed in si in Step 3 of Algorithm

A1, and the resulting immediate reward is observed. The following simple modification of Step 2 of

Algorithm A2 trains C to map desired expected rewards (rather than plain rewards) to actions, based

on the observations so far.

2* Replay-based training on previous behaviors and commands compatible with observed

time horizons and expected costs in probabilistic Markov environments for Step 2 of Al-

gorithm A2: For all pairs {(k, j); 1 ≤ k ≤ j ≤ t}: train C through gradient descent to

emit action out′(k) at time k in response to inputs all(k), horizon(k), desire(k) (we ignore

extra(k) for simplicity), where horizon(k) encodes the remaining time j − k until time j,

and desire(k) encodes the estimate of the total expected costs and rewards
�j+1

τ=k+1
E(r(τ)),

where the E(r(τ)) are estimated in the obvious way through the z.. variables corresponding to

visited states / executed actions between time steps k and j.

If randomness is affecting not only the immediate reward for executing aj in si but also the result-

ing next state, then Dynamic Programming (DP) [4] can still estimate in similar fashion cumulative

expected rewards (to be used as command inputs encoded in desire()), given the training set so far.

This approach essentially adopts central aspects of traditional DP-based RL [24, 67, 76] without af-

fecting the method’s overall order of computational complexity (Sec. 3.1.5).

From an algorithmic point of view [62, 26, 27, 50], however, randomness simply reflects a sepa-

rate, unobservable oracle injecting extra bits of information into the observations. Instead of learning

to map expected rewards to actions as above, C’s problem of partial observability can also be ad-

dressed by adding to C’s input a unique representation of the current time step, such that it can learn

the concrete reward’s dependence on time, and is not misled by a few lucky past experiences.

It is most natural to consider the case of probabilistic environments as a special case of partially

observable environments discussed next in Sec. 6.

6 Partially Observable Environments

In case of a non-Markovian interface [46] between agent and environment, C’s current input does not

tell C all there is to know about the current state of its world. A recurrent neural network (RNN) [53]

or a similar general purpose computer may be required to translate the entire history of previous

observations and actions into a meaningful representation of the present world state. Without loss of

generality, we focus on C being an RNN such as LSTM [19, 12, 17, 53] which has become highly

commercial, e.g., [41, 79, 70, 34]. Algorithms A1 and A2 above have to be modified accordingly,

9
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resulting in Algorithms B1 and B2 (with local variables and input/output notation analoguous to A1

and A2, e.g., C[B1] or t[B2] or in(t)[B1]).

Algorithm B1: Generalizing through a copy of C (with occasional exploration)

1. Set t := 1. Initialize local variable C (or C[B1]) of the type used to store controllers.

2. Occasionally sync with Step 3 of Algorithm B2 to do: copy C[B1] := C[B2] (since C[B2]
is continually modified by Algorithm B2). Run C on trace(t − 1), such that C’s internal state

contains a memory of the history so far, where the inputs horizon(k), desire(k), extra(k),
1 ≤ k < t are retrospectively adjusted to match the observed reality up to time t. One simple

way of doing this is to let horizon(k) represent 0 time steps, extra(k) the null vector, and to

set desire(k) = r(k + 1), for all k (but many other consistent commands are possible, e.g.,

Sec. 4).

3. Execute one step: Encode in horizon(t) the goal-specific remaining time (see Algorithm A1).

Encode in desire(t) a possible future cumulative reward, and in extra(t) additional goals,

e.g., to receive more than this reward within the remaining time - see Sec. 4. C observes

the concatentation of all(t), horizon(t), desire(t), extra(t), and outputs out(t). Select action

out′(t) accordingly. In exploration mode (i.e., in a constant fraction of all time steps), modify

out′(t) randomly. Execute out′(t) in the environment, to get in(t+ 1) and r(t+ 1).

4. Occasionally sync with Step 1 of Algorithm B2 to transfer the latest acquired information about

t[B1], trace(t+ 1)[B1], to increase C[B2]’s training set through the latest observations.

5. If the current trial is over, exit. Set t := t+ 1. Go to 2.

Algorithm B2: Learning lots of time & cumulative reward-related commands

1. Occasionally sync with B1 (Step 4) to set t[B2] := t[B1], trace(t+1)[B2] := trace(t+1)[B1].

2. Replay-based training on previous behaviors and commands compatible with observed

time horizons and costs: For all pairs {(k, j); 1 ≤ k ≤ j ≤ t} do: If k > 1, run RNN

C on trace(k − 1) to create an internal representation of the history up to time k, where for

1 ≤ i < k, horizon(i) encodes 0 time steps, desire(i) = r(i + 1), and extra(i) may be a

vector of zeros (see Sec. 4, 3.1.4, 6.1.2 for alternatives). Train RNN C to emit action out′(k)
at time k in response to this previous history (if any) and all(k), where the special command

input horizon(k) encodes the remaining time j − k until time j, and desire(k) encodes the

total costs and rewards
�j+1

τ=k+1
r(τ) incurred through what happened between time steps k

and j, while extra(k) may encode additional commands compatible with the observed history,

e.g., Sec. 4, 6.1.2.

3. Occasionally sync with Step 2 of Algorithm B1 to copy C[B1] := C[B2]. Go to 1.

6.1 Properties and Variants of Algorithms B1 and B2

Comments of Sec. 3.1 apply in analaguous form, generalized to the RNN case. In particular, although

each replay for some pair of time steps (k, j) in Step 2 of Algorithm B2 takes into account the

entire history up to k and the subsequent future up to j, Step 2 can be implemented such that its

computational complexity is still only O(t2) per training epoch (compare Sec. 3.1.5).
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6.1.1 Retrospectively Pretending a Perfect Life So Far

Note that during generalization in Algorithm B1, RNN C always acts as if its life so far has been

perfect, as if it always has achieved what it was told, because its command inputs are retrospectively

adjusted to match the observed outcome, such that RNN C is fed with a consistent history of com-

mands and other inputs.

6.1.2 Arbitrarily Complex Commands for RNNs as General Computers

Recall Sec. 4. Since RNNs are general computers, we can train an RNN C on additional complex

commands compatible with the observed history, using extra(t) to help encoding commands such as:

“obtain more than this reward within so much time, while visiting a particular state (defined through

an extra goal input encoded in extra(t) [57, 45]) at least 3 times, but not more than 5 times.”

That is, like in POWERPLAY (2011) [52], we can train C to obey essentially arbitrary computable

task specifications that match previously observed traces of actions and inputs. Compare Sec. 4, 4.2.

(To deal with (possibly infinitely) many tasks, POWERPLAY can order tasks by the computational

effort required to add their solutions to the task repertoire.)

6.1.3 High-Dimensional Actions with Statistically Dependent Components

As mentioned in Sec. 3.1.1,

RL

is of particular interest for high-dimensional actions, because SL can

easily deal with those, while traditional RL does not.

Let us first consider the case of multiple trials, where out(k) ∈ R
o encodes a probability distri-

bution over high-dimensional actions, where the i-th action component out′i(k) is either 1 or 0, such

that there are at most 2o possible actions.

C can be trained by Algorithm B2 to emit out(k), given C’s input history. This is straightforward

under the assumption that the components of out′(.) are statistically independent of each other, given

C’s input history.

In general, however, they are not. For example, a C controlling a robot with 5 fingers should often

send similar, statistically redundant commands to each finger, e.g., when closing its hand.

To deal with this, Algorithms B1 and B2 can be modified in a straightforward way. Any complex

high-dimensional action at a given time step can be computed/selected incrementally, component by

component, where each component’s probability also depends on components already selected earlier.

More formally, in Algorithm B1 we can decompose each time step t into o discrete micro time

steps t̂(1), t̂(2), . . . , t̂(o) (see [43], Sec. on “more network ticks than environmental ticks”). At t̂(1)
we initialize real-valued variable out′0(t) = 0. During t̂(i), 1 ≤ i ≤ o, C computes outi(t), the

probability of out′i(t) being 1, given C’s internal state (based on its previously observed history)

and its current inputs all(t), horizon(t), desire(t), extra(t) and out′i−1(t) (observed through an

additional special action input unit of C). Then out′i(t) is sampled accordingly, and for i < o used as

C’s new special action input at the next micro time step t̂(i+ 1).
Training of C in Step 2 of Algorithm B2 has to be modified accordingly. There are obvious, similar

modifications of Algorithms B1 and B2 for Gaussian and other types of probability distributions.

6.1.4 Computational Power of RNNs: Generalization & Randomness vs. Determinism

This is an important subsection. First recall that Sec. 3.1.1 pointed out how an FNN-based C of

Algorithms A1/A2 in general will learn probabilistic policies even in deterministic environments,

since at a given time t, C can perceive only the recent all(t) but not the entire history trace(t),
reflecting an inherent Markov assumption [65, 46, 24, 67, 76].
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If there is only one single lifelong trial, however, this argument does not hold for the RNN-based

C of Algorithms B1/B2, because at each time step, an RNN could in principle uniquely represent the

entire history so far, for instance, by learning to simply count the time steps [11].

This is conceptually very attractive. We do not even have to make any probabilistic assumptions

any more. Instead,

RL

simply learns to map histories and commands directly to high-dimensional

deterministic actions out′(.) := out(.) ∈ R
o. (This tends to be hard for traditional RL.)

Even in seemingly probabilistic environments (Sec. 5), an RNN C could learn deterministic poli-

cies, taking into account the precise histories after which these policies worked in the past, assuming

that what seems random actually may have been computed by some deterministic (initially unknown)

algorithm, e.g., a pseudorandom number generator [81, 48, 49, 50, 51].

To illustrate the conceptual advantages of single life settings, let us consider a simple task where

an agent can pass an obstacle either to the left or to the right, using continuous actions in [0,1] defining

angles of movement, e.g., 0.0 means go left, 0.5 go straight (and hit the obstacle), 1.0 go right.

First consider an episodic setting and a sequence of trials where C is reset after each trial. Suppose

actions 0.0 and 1.0 have led to high reward 10.0 equally often, and no other actions such as 0.3 have

triggered high reward. Given reward input command 10.0, the agent’s RNN C will learn an expected

output of 0.5, which of course is useless as a real-valued action—instead one has to somehow interpret

this as an action probability based on certain assumptions about an underlying distribution (Sec. 3, 5,

6.1.3). Note, however, that the typical popular Gaussian assumptions would not make sense here.

On the other hand, in a single life with, say, 10 subsequent sub-trials, C can learn arbitrary history-

dependent algorithmic conditions of actions, e.g.: in trials 3, 6, 9, action 0.0 was followed by high

reward. In trials 4, 5, 7, action 1.0 was. Other actions 0.4, 0.3, 0.7, 0.7 in trials 1, 2, 8, 10 respectively,

yielded low reward. By sub-trial 11, in response to reward command 10.0, C should correctly produce

either action 0.0 or 1.0 but not their mean 0.5.

In additional sub-trials, C might even discover complex conditions such as: if the trial number

is divisible by 3, then choose action 0.0, else 1.0. In this sense, in single life settings, life is getting

conceptually simpler, not harder. Because the whole baggage associated with probabilistic thinking

and a priori assumptions about probability distributions and environmental resets (see Sec. 5) is

getting irrelevant and can be ignored.

On the other hand, C’s success in case of similar commands in similar situations at different time

steps will now all depend on its generalization capability. For example, from its historic data, it must

learn in step 2 of Algorithm B2 when precise time stamps are important and when to ignore them.

Sure, even in deterministic environments, C might find it useful to invent a variant of probability

theory to model its uncertainty, and to make seemingly “random” decisions with the help of a self-

invented deterministic internal pseudorandom generator. However, no probabilistic assumptions (such

as the above-mentioned overly restrictive Gaussian assumption) should be imposed onto C a priori.

To improve C’s generalization capability, well-known regularizers [53, Sec. 5.6.3] can be used

during training in Step 2 of Algorithm B2. See also Sec. 3.1.8.

RL

for RNNs or other general purpose computers without any probabilistic assumptions

(Sec. 3.1.1, 5, 6.1.3) may be both the simplest and most powerful

RL

variant.

6.1.5 RNNs With Memories of Initial Commands

There are variants of

RL

with an RNN-based C that accepts commands such as “get so much reward

per time in this trial” only in the beginning of each trial, or only at certain selected time steps, such that

desire(.) and horizon(.) do not have to be updated any longer at every time step, because the RNN

can learn to internally memorize previous commands. However, then C must also somehow be able

to observe at which time steps t to ignore desire(t) and horizon(t). This can be achieved through a

special marker input unit whose activation as part of extra(t) is 1.0 only if the present desire(t) and

12



horizon(t) commands should be obeyed (otherwise this activation is 0.0). Thus C can know during

the trial: The current goal is to match the last command (or command sequence) identified by this

marker input unit. This approach can be implemented through obvious modifications of Algorithms

B1 and B2.

6.1.6 Combinations with Supervised Pre-Training and Other Techniques

It is trivial to combine

RL

and SL, since both share the same basic framework. In particular, C can be

pre-trained by SL to imitate teacher-given trajectories. The corresponding traces can simply be added

to C’s training set of Step 2 of Algorithm B2.

Similarly, traditional RL methods or AI planning methods can be used to create additional behav-

ioral traces for training C.

For example, we may use the company NNAISENSE’s winner of the NIPS 2017 “learning to

run” competition to generate several behavioral traces of a successful, quickly running, simulated 3-

dimensional skeleton controlled through relatively high-dimensional actions, in order to pre-train and

initialize C. C may then use

RL

to further refine its behavior.

7 Compress Successful Behaviors Into a Compact Standard Pol-

icy Network Without Command Inputs

C has to learn a possibly complex mapping from desired rewards, time horizons, and normal sensory

inputs, to actions. Small changes in initial conditions or reward commands may require quite different

actions. A deep and complex network may be necessary to learn this. During exploitation, however,

we do not need this complex mapping any longer, we just need a working policy that maps sensory

inputs to actions. This policy may fit into a much smaller network.

Hence, to exploit successful behaviors learned through algorithms A1/A2 or B1/B2, we simply

compress them into a policy network called CC, like in the 1991 chunker-automatizer system [47],

where a student net (the “automatizer”) is continually re-trained not only on its previous skills (to

avoid forgetting), but also to imitate the behavior of a teacher net (the “chunker”), which itself keeps

learning new behaviors. The POWERPLAY framework [52, 64] also uses a similar approach, learning

one task after another, using environment-independent replay of behavioral traces (or functionally

equivalent but more efficient approaches) to avoid forgetting previous skills and to compress or speed

up previously found, sub-optimal solutions, e.g., [52, Sec. 3.1.2]. Similar for the “One Big Net” [55]

and a recent study of incremental skill learning with feedforward networks [5].

Using the notation of Sec. 2, the policy net CC is like C, but without special input units for the

command inputs horizon(.), desire(.), extra(.). We immediately consider the case where CC is an

RNN living in a partially observable environment (Sec. 6).

Algorithm Compress (replay-based training on previous successful behaviors):

1. For each previous trial that is considered successful: Using the notation of Sec. 2, For 1 ≤ k ≤
T do: Train RNN CC to emit action out′(k) at time k in response to the previously observed

part of the history trace(k − 1).

For example, in a given environment,

RL

can be used to solve an RL task requiring to achieve

maximal reward / minimal time under particular initial conditions (e.g., starting from a particular

initial state). Later, Algorithm Compress can collapse many different satisfactory solutions for many

different initial conditions into CC, which ignores reward and time commands.
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8 Imitate a Robot, to Make it Learn to Imitate You!

The concept of learning to use rewards and other goals as command inputs has broad applicability.

In particular, we can apply it in an elegant and straighforward way to train robots on learning by

demonstration tasks [80, 42, 2, 9, 60] considered notoriously difficult in traditional robotics. We’ll

conceptually simplify an approach [60] for teaching a robot to imitate humans.

For example, suppose that an RNN C should learn to control a complex humanoid robot with eye-

like cameras perceiving a visual input stream. We want to teach it complex tasks, such as assembling

a smartphone, solely by visual demonstration, without touching the robot - a bit like we’d teach a kid.

First the robot must learn what it means to imitate a human. Its joints and hands may be quite

different from yours. But you can simply let the robot execute already known or even accidental

behavior. Then simply imitate it with your own body! The robot tapes a video of your imitation

through its cameras. The video is used as a sequential command input for the RNN controller C (e.g.,

through parts of extra(), desire(), horizon()), and C is trained by SL to respond with its known,

already executed behavior. That is, C can learn by SL to imitate you, because you imitated C.

Once C has learned to imitate or obey several video commands like this, let it generalize: do

something it has never done before, and use the resulting video as a command input.

In case of unsatisfactory imitation behavior by C, imitate it again, to obtain additional training

data. And so on, until performance is sufficiently good. The algorithmic framework Imitate-Imitator

formalizes this procedure.

Algorithmic Framework: Imitate-Imitator

1. Initialization: Set temporary integer variable i := 0.

2. Demonstration: Visually show to the robot what you want it to do, while it videotapes your

behavior, yielding a video V .

3. Exploitation / Exploration: Set i := i + 1. Let RNN C sequentially observe V and then

produce a trace Hi of a series of interactions with the environment (if in exploration mode,

produce occasional random actions). If the robot is deemed a satisfactory imitator of your

behavior, exit.

4. Imitate Robot: Imitate Hi with your own body, while the robot records a video V i of your

imitation.

5. Train Robot: For all k, 1 ≤ k ≤ i train RNN C through gradient descent [53, Sec. 5.5] to

sequentially observe V k (plus the already known total vector-valued cost Rk of Hk) and then

produce Hk, where the pair (V k, Rk) is interpreted as a sequential command to perform Hk

under cost Rk. Go to Step 3 (or to Step 2 if you want to demonstrate anew).

It is obvious how to implement variants of this procedure through straightforward modifications

of Algorithms B1 and B2 along the lines of Sec. 4, e.g., using a gradient-based sequence-to-sequence

mapping approach based on LSTM, e.g., [17, 66, 79].

Of course, the Imitate-Imitator approach is not limited to videos. All kinds of sequential, possibly

multi-modal sensory data could be used to describe desired behavior to an RNN C, including spoken

commands, or gestures. For example, observe a robot, then describe its behaviors in your own lan-

guage, through speech or text. Then let it learn to map your descriptions to its own corresponding

behaviors. Then describe a new desired behavior to be performed by the robot, and let it generalize

from what it has learned so far.
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Once the robot has learned to execute command (V k, Rk) through behavior Hk, standard

RL

without a teacher can be used to further refine Hk, by commanding the robot to produce similar

behavior under different cost R̂k (of the same dimensionality as Rk). If necessary, the robot is trained

to obey the commands through an additional series of trials. For example, a robot that already knows

how to assemble some object may now learn by itself to assemble it faster or with less energy.

The central idea of the present Sec. 8 on what we’d like to call show-and-tell robotics or watch-

and-learn robotics or see-and-do robotics may actually explain why biological evolution has evolved

parents who imitate the babbling of their babies: the latter can thus quickly learn to translate input

sequences caused by the behavior of their parents into action sequences corresponding to their own

equivalent behavior. Essentially they are learning their parent’s language to describe behaviors, then

generalize and translate previously unknown behaviors of their parents into equivalent own behaviors.

9 Relation of Upside Down RL to Previous Work

Using SL for certain aspects of RL dates back to the 1980s and 90s [72, 32, 23, 75, 74, 40, 33]. In

particular, like

RL

, our early end-to-end-differentiable recurrent RL machines (1990) also observe

vector-valued reward signals as sensory inputs [43, 44, 46]. What is the concrete difference between

those and

RL

? The earlier systems [43, 44, 46] also use gradient-based SL in RNNs to learn mappings

from costs/rewards and other inputs to actions. But unlike

RL

they do not have desired rewards as

command inputs, and typically the training depends on an RNN-based predictive world model M

(which predicts rewards, among other things) to compute gradients for the RNN controller C.

RL

,

however, does not depend at all on good reward predictions (compare [54, Sec. 5]), only on the

generalization ability of the learned mapping from previously observed rewards and other inputs to

action probabilities.

What is the difference to our early multi-goal RL systems (1990) which also had extra input

vectors used to encode possible goals [57]? Again, it is essentially the one mentioned in the previous

paragraph:

RL

does not require additional predictions of reward.

What is the difference to our early end-to-end-differentiable hierarchical RL (HRL) systems

(1990) which also had extra task-defining inputs in form of start/goal combinations, learning to invent

sequences of subgoals [45]? Unlike

RL

, such HRL also needs a predictor of costs/rewards (called an

evaluator), given start/goal combinations, to derive useful subgoals through gradient descent.

What is the difference to hindsight experience replay (HER, 2017) [1] extending experience re-

play (ER, 1991) [28]? HER replays paths to randomly encountered potential goal locations, but still

depends on traditional RL. HER’s controller neither sees extra real-valued horizon and cost inputs

nor general computable predicates thereof, and thus does not learn to generalize from known costs

in the training set to desirable costs in the generalization phase. (HER also does not use an RNN to

deal with partial observability through encoding the entire history). Similar considerations hold for

hindsight policy gradients [36].

What is the difference to RUDDER [3] which also uses gradient-based SL in RNNs to perform

contribution analysis, mapping rewards to state-action pairs? Unlike

RL

, RUDDER does not use

desired rewards as command input for an SL model.

To summarise, as discussed above, mapping rewards [43, 44, 46] and goals [57] (plus other inputs)

to actions is not new. But traditional RL methods [24, 67, 76] do not have command inputs in form of

desired rewards, and most of them need some additional method for learning to select actions based

on predictions of future rewards. For example, a more recent system [8] also predicts future measure-

ments (possibly rewards), given actions, and selects actions leading to best predicted measurements,

given goals. A characteristic property of

RL

, however, is its very simple shortcut: it learns directly

from (possibly accidental) experience the mapping from rewards to actions.
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RL

is also very different from traditional black box optimization (BBO) [37, 59, 20, 10] such as

neuroevolution [30, 61, 15, 13] which can be used to solve complex RL problems in partially ob-

servable environments [16] through iterative discovery of better and better parameters of an adaptive

controller, yielding more and more reward per trial.

RL

does not even try to modify any weights

with the objective of increasing reward. Instead it just tries to understand from previous experience

through standard gradient-based learning how to translate (desired) rewards etc into corresponding

actions. Unlike BBO,

RL

is also applicable when there is only one single lifelong trial; the new ob-

servations of any given time step can immediately be used to improve the learner’s overall behavior.

What is the difference between

RL

and POWERPLAY (2011) [52, 64]? Like

RL

, POWERPLAY

does receive extra command inputs in form of arbitrary (user-defined or self-invented) computable

task specifications, possibly involving start states, goal states, and costs including time. It even orders

(at least the self-invented) tasks automatically by the computational difficulty of adding their solu-

tions to the skill repertoire. But it does not necessarily systematically consider all previous training

sequences between all possible pairs of previous time steps encountered so far by accident. See also

Sec. 4.2.

Of course, we could limit POWERPLAY’s choice of new problems to problems of the form: choose

a unique new command for C reflecting a computable predicate that is true for some already observed

action sequence (Sec. 4.2), and add the corresponding skill to C’s repertoire, without destroying

previous knowledge. Such an association of a new command with a corresponding skill or policy will

cost time and other resources; POWERPLAY will, as always, prefer new skills that are easy to add.

(Recall that one can train C only on finitely many commands, which should be chosen wisely.)

Note also that at least the strict versions of POWERPLAY insist that adding a new skill does not

decrease performance on (replays of) previous tasks, while

RL

’s occasional sychronization of Algo-

rithms A1/A2 and B1/B2 does not immediately guarantee this, due to limited time between synchro-

nizations, and basic limitations of gradient descent. Nevertheless, in the long run, Algorithms A2/B2

of

RL

will keep up with the stream of incoming new observations from Algorithms A1/B1, and thus

won’t forget previous skills of C due to constant retraining, much like POWERPLAY.

10 Experiments

A separate paper [63] describes the concrete implementations used in our first experiments with a

pilot version of

RL

, and presents remarkable experimental results.

11 Conclusion

Traditional RL predicts rewards, and uses a myriad of methods for translating those predictions into

good actions.

RL

shortcuts this process, creating a direct mapping from rewards, time horizons and

other inputs to actions. Without depending on reward predictions, and without explicitly maximizing

expected rewards,

RL

simply learns by gradient descent to map task specifications or commands

(such as: get lots of reward within little time) to action probabilities. Its success depends on the

generalization abilities of deep / recurrent neural nets. Its potential drawbacks are essentially those of

traditional gradient-based learning: local minima, underfitting, overfitting, etc. [6, 53]. Nevertheless,

experiments in a separate paper [63] show that even our initial pilot version of

RL

can outperform

traditional RL methods on certain challenging problems.

A related Imitate-Imitator approach is to imitate a robot, then let it learn to map its observations

of the imitated behavior to its own behavior, then let it generalize, by demonstrating something new,

to be imitated by the robot.
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