
Offline Reinforcement Learning as One Big
Sequence Modeling Problem

Michael Janner Qiyang Li Sergey Levine
University of California at Berkeley

{janner, qcli}@berkeley.edu svlevine@eecs.berkeley.edu

Abstract

Reinforcement learning (RL) is typically concerned with estimating stationary
policies or single-step models, leveraging the Markov property to factorize prob-
lems in time. However, we can also view RL as a generic sequence modeling
problem, with the goal being to produce a sequence of actions that leads to a
sequence of high rewards. Viewed in this way, it is tempting to consider whether
high-capacity sequence prediction models that work well in other domains, such
as natural-language processing, can also provide effective solutions to the RL
problem. To this end, we explore how RL can be tackled with the tools of sequence
modeling, using a Transformer architecture to model distributions over trajectories
and repurposing beam search as a planning algorithm. Framing RL as sequence
modeling problem simplifies a range of design decisions, allowing us to dispense
with many of the components common in offline RL algorithms. We demonstrate
the flexibility of this approach across long-horizon dynamics prediction, imitation
learning, goal-conditioned RL, and offline RL. Further, we show that this approach
can be combined with existing model-free algorithms to yield a state-of-the-art
planner in sparse-reward, long-horizon tasks.

1 Introduction

The standard treatment of reinforcement learning relies on decomposing a long-horizon problem into
smaller, more local subproblems. In model-free algorithms, this takes the form of the principle of
optimality (Bellman, 1957), a recursion that leads naturally to the class of dynamic programming
methods like Q-learning. In model-based algorithms, this decomposition takes the form of single-step
predictive models, which reduce the problem of predicting high-dimensional, policy-dependent state
trajectories to that of estimating a comparatively simpler, policy-agnostic transition distribution.

However, we can also view reinforcement learning as analogous to a sequence generation problem,
with the goal being to produce a sequence of actions that, when enacted in an environment, will
yield a sequence of high rewards. In this paper, we consider the logical extreme of this analogy:
does the toolbox of contemporary sequence modeling itself provide a viable reinforcement learning
algorithm? We investigate this question by treating trajectories as unstructured sequences of states,
actions, and rewards. We model the distribution of these trajectories using a Transformer architecture
(Vaswani et al., 2017), the current tool of choice for capturing long-horizon dependencies. In place
of the trajectory optimizers common in model-based control, we use beam search (Reddy, 1977), a
heuristic decoding scheme ubiquitous in natural language processing, as a planning algorithm.

Posing reinforcement learning, and more broadly data-driven control, as a sequence modeling problem
handles many of the considerations that typically require distinct solutions: actor-critic algorithms
require separate actors and critics, model-based algorithms require predictive dynamics models, and
offline RL methods often require estimation of the behavior policy (Fujimoto et al., 2019). These
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Trajectory Transformer

Figure 1 (Architecture) The Trajectory Transformer trains on sequences of (autoregressively dis-
cretized) states, actions, and rewards. Planning with the Trajectory Transformer mirrors the sampling
procedure used to generate sequences from a language model.

components estimate different densities or distributions, such as that over actions in the case of actors
and behavior policies, or that over states in the case of dynamics models. Even value functions can be
viewed as performing inference in a graphical model with auxiliary optimality variables, amounting
to estimation of the distribution over future rewards (Levine, 2018). All of these problems can be
unified under a single sequence model, which treats states, actions, and rewards as simply a stream of
data. The advantage of this perspective is that high-capacity sequence model architectures can be
brought to bear on the problem, resulting in a more streamlined approach that could benefit from the
same scalability underlying large-scale unsupervised learning results (Brown et al., 2020).

We refer to our model as a Trajectory Transformer (Figure 1) and evaluate it in the offline regime
so as to be able to make use of large amounts of prior interaction data. The Trajectory Transformer
is a substantially more reliable long-horizon predictor than conventional dynamics models, even in
Markovian environments for which the standard model parameterization is in principle sufficient.
When decoded with a modified beam search procedure that biases trajectory samples according to
their cumulative reward, the Trajectory Transformer attains results on offline RL benchmarks that
are competitive with the best prior methods designed specifically for that setting. Additionally, we
describe how variations of the same decoding procedure yield a model-based imitation learning
method, a goal-reaching method, and, when combined with dynamic programming, a state-of-the-art
planner for sparse-reward, long-horizon tasks. Our results suggest that the algorithms and architectural
motifs that have been widely applicable in unsupervised learning carry similar benefits in RL.

2 Related Work

Recent advances in sequence modeling with deep networks have led to rapid improvement in
the effectiveness of such models, from LSTMs and sequence-to-sequence models (Hochreiter &
Schmidhuber, 1997; Sutskever et al., 2014) to Transformer architectures with self-attention (Vaswani
et al., 2017). In light of this, it is tempting to consider how such sequence models can lead to
improved performance in RL, which is also concerned with sequential processes (Sutton, 1988).
Indeed, a number of prior works have studied applying sequence models of various types to represent
components in standard RL algorithms, such as policies, value functions, and models (Bakker, 2002;
Heess et al., 2015a; Chiappa et al., 2017; Parisotto et al., 2020; Parisotto & Salakhutdinov, 2021;
Kumar et al., 2020b). While such works demonstrate the importance of such models for representing
memory (Oh et al., 2016), they still rely on standard RL algorithmic advances to improve performance.
The goal in our work is different: we aim to replace as much of the RL pipeline as possible with
sequence modeling, so as to produce a simpler method whose effectiveness is determined by the
representational capacity of the sequence model rather than algorithmic sophistication.

Estimation of probability distributions and densities arises in many places in learning-based control.
This is most obvious in model-based RL, where it is used to train predictive models that can
then be used for planning or policy learning (Sutton, 1990; Silver et al., 2008; Fairbank, 2008;
Deisenroth & Rasmussen, 2011; Lampe & Riedmiller, 2014; Heess et al., 2015b; Janner et al., 2020;
Amos et al., 2021). However, it also figures heavily in offline RL, where it is used to estimate
conditional distributions over actions that serve to constrain the learned policy to avoid out-of-
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distribution behavior that is not supported under the dataset (Fujimoto et al., 2019; Kumar et al.,
2019a; Ghasemipour et al., 2021); imitation learning, where it is used to fit an expert’s actions to
obtain a policy (Ross & Bagnell, 2010; Ross et al., 2011); and other areas such as hierarchical
RL (Peng et al., 2017; Co-Reyes et al., 2018; Jiang et al., 2019). In our method, we train a single
high-capacity sequence model to represent the joint distribution over sequences of states, actions, and
rewards. This serves as both a predictive model and a behavior policy (for imitation) or behavior
constraint (for offline RL).

Our approach to RL is most closely related to prior model-based methods that plan with a learned
model (Chua et al., 2018; Wang & Ba, 2020). However, while these prior methods typically require
additional machinery to work well, such as ensembles in the online setting (Kurutach et al., 2018;
Buckman et al., 2018; Malik et al., 2019) or conservatism mechanisms in the offline setting (Yu
et al., 2020; Kidambi et al., 2020; Argenson & Dulac-Arnold, 2021), our method does not require
explicit handling of these components. Modeling the states and actions jointly already provides a bias
toward generating in-distribution actions, which avoids the need for explicit pessimism (Fujimoto
et al., 2019; Kumar et al., 2019a; Ghasemipour et al., 2021; Nair et al., 2020; Jin et al., 2021; Yin
et al., 2021; Dadashi et al., 2021). Our method also differs from most prior model-based algorithms
in the dynamics model architecture used, with fully-connected networks parameterizing diagonal-
covariance Gaussian distributions being a common choice (Chua et al., 2018), though recent work
has highlighted the effectiveness of autoregressive state prediction (Zhang et al., 2021) like that used
by the Trajectory Transformer. In the context of recently proposed offline RL algorithms, our method
can be interpreted as a combination of model-based RL and policy constraints (Kumar et al., 2019a;
Wu et al., 2019), though our approach does not require introducing such constraints explicitly. In
the context of model-free RL, our method also resembles recently proposed work on goal relabeling
(Andrychowicz et al., 2017; Rauber et al., 2019; Ghosh et al., 2021; Paster et al., 2021) and reward
conditioning (Schmidhuber, 2019; Srivastava et al., 2019; Kumar et al., 2019b) to reinterpret all past
experience as useful demonstrations with proper contextualization.

Concurrently with our work, Chen et al. (2021) also proposed an RL approach centered around
sequence prediction, focusing on reward conditioning as opposed to the beam-search-based planning
used by the Trajectory Transformer. Their work further supports the possibility that a high-capacity se-
quence model can be applied to reinforcement learning problems without the need for the components
usually associated with RL algorithms.

3 Reinforcement Learning and Control as Sequence Modeling

In this section, we describe the training procedure for our sequence model and discuss how it can
be used for control. We refer to the model as a Trajectory Transformer for brevity, but emphasize
that at the implementation level, both our model and search strategy are nearly identical to those
common in natural language processing. As a result, modeling considerations are concerned less
with architecture design and more with how to represent trajectory data – potentially consisting of
continuous states and actions – for processing by a discrete-token architecture (Radford et al., 2018).

3.1 Trajectory Transformer

At the core of our approach is the treatment of trajectory data as an unstructured sequence for
modeling by a Transformer architecture. A trajectory τ consists of T states, actions, and scalar
rewards:

τ =
�
s1,a1, r1, s2,a2, r2, . . . , sT ,aT , rT

�
.

In the event of continuous states and actions, we discretize each dimension independently. Assuming
N -dimensional states and M -dimensional actions, this turns τ into sequence of length T (N+M+1):

τ =
�
. . . , s1t , s

2
t , . . . , s

N
t , a1t , a

2
t , . . . , a

M
t , rt, . . .

�
t = 1, . . . , T.

Subscripts on all tokens denote timestep and superscripts on states and actions denote dimension (i.e.,
sit is the ith dimension of the state at time t). While this choice may seem inefficient, it allows us to
model the distribution over trajectories with more expressivity without simplifying assumptions such
as Gaussian transitions.
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Algorithm 1 Beam search

1: Require Input sequence x, vocabulary V , sequence length T , beam width B
2: Initialize Y0 = { ( ) }
3: for t = 1, . . . , T do
4: Ct ← {yt−1 ◦ y | yt−1 ∈ Yt−1 and y ∈ V} // candidate single-token extensions
5: Yt ← argmax

Y ⊆Ct, |Y |=B

logPθ(Y | x) // B most likely sequences from candidates

6: end for
7: Return argmax

y∈YT

logPθ(y | x)

We investigate two simple discretization approaches:

1. Uniform: All tokens for a given dimension correspond to a fixed width of the original
continuous space. Assuming a per-dimension vocabulary size of V , the tokens for state
dimension i cover uniformly-spaced intervals of width (max si −min si)/V .

2. Quantile: All tokens for a given dimension account for an equal amount of probability mass
under the empirical data distribution; each token accounts for 1 out of every V data points
in the training set.

Uniform discretization has the advantage that it retains information about Euclidean distance in
the original continuous space, which may be more reflective of the structure of a problem than the
training data distribution. However, outliers in the data may have outsize effects on the discretization
size, leaving many tokens corresponding to zero training points. The quantile discretization scheme
ensures that all tokens are represented in the data. We compare the two empirically in Section 4.2.

Our model is a Transformer decoder mirroring the GPT architecture (Radford et al., 2018). We use a
smaller architecture than those typically used in large-scale language modeling, consisting of four
layers and four self-attention heads. (A full architectural description is provided in Appendix A.)
Training is performed with the standard teacher-forcing procedure (Williams & Zipser, 1989) used
to train sequence models. Denoting the parameters of the Trajectory Transformer as θ and induced
conditional probabilities as Pθ, the objective maximized during training is:

L(τ) =
T�

t=1

� N�

i=1

logPθ

�
sit | s<i

t , τ<t

�
+

M�

j=1

logPθ

�
ajt | a<j

t , st, τ<t

�
+ logPθ

�
rt | at, st, τ<t

��
,

in which we use τ<t to denote a trajectory from timesteps 0 through t− 1, s<i
t to denote dimensions

0 through i− 1 of the state at timestep t, and similarly for a<j
t . We use the Adam optimizer (Kingma

& Ba, 2015) with a learning rate of 2.5× 10−4 to train parameters θ.

3.2 Planning with Beam Search

We now describe how sequence generation with the Trajectory Transformer can be repurposed for
control, focusing on three settings: imitation learning, goal-conditioned reinforcement learning, and
offline reinforcement learning. These settings are listed in increasing amount of required modification
on top of the sequence model decoding approach routinely used in natural language processing.

The core algorithm providing the foundation of our planning techniques, beam search, is described
in Algorithm 1 for generic sequences. Following the presentation in Meister et al. (2020), we have
overloaded logPθ(· | x) to define the likelihood of a set of sequences in addition to that of a single
sequence: logPθ(Y | x) = �

y∈Y logPθ(y | x). We use ( ) to denote the empty sequence and ◦ to
represent concatenation.

Imitation learning. When the goal is to reproduce the distribution of trajectories in the training
data, we can optimize directly for the probability of a trajectory τ . This situation matches the goal of
sequence modeling exactly and as such we may use Algorithm 1 without modification by setting the
conditioning input x to the current state st (and optionally previous history τ<t).

The result of this procedure is a tokenized trajectory τ , beginning from a current state st, that has
high probability under the data distribution. If the first action at in the sequence is enacted and beam
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search is repeated, we have a receding horizon-controller. This approach resembles a long-horizon
model-based variant of behavior cloning, in which entire trajectories are optimized to match those
of a reference behavior instead of only immediate state-conditioned actions. If we set the predicted
sequence length to be the action dimension, our approach corresponds exactly to the simplest form of
behavior cloning with an autoregressive policy.

Goal-conditioned reinforcement learning. Transformer architectures feature a “causal” attention
mask to ensure that predictions only depend on previous tokens in a sequence. In the context of
natural language, this design corresponds to generating sentences in the linear order in which they are
spoken as opposed to an ordering reflecting their hierarchical syntactic structure (see, however, Gu
et al. 2019 for a discussion of non-left-to-right sentence generation with autoregressive models). In
the context of trajectory prediction, this choice instead reflects physical causality, disallowing future
events to affect the past. However, the conditional probabilities of the past given the future are still
well-defined, allowing us to condition samples not only on the preceding states, actions, and rewards
that have already been observed, but also any future context that we wish to occur. If the future
context is a state at the end of a trajectory, we decode trajectories with probabilities of the form:

Pθ(s
i
t | s<i

t , τ<t, sT )

We can use this directly as a goal-reaching method by conditioning on a desired final state sT . If we
always condition sequences on a final goal state, we may leave the lower-diagonal attention mask
intact and simply permute the input trajectory to {sT , s1, s2, . . . , sT−1}. By prepending the goal
state to the beginning of a sequence, we ensure that all other predictions may attend to it without
modifying the standard attention implementation. This procedure for conditioning resembles prior
methods that use supervised learning to train goal-conditioned policies (Ghosh et al., 2021) and is
also related to relabeling techniques in model-free RL (Andrychowicz et al., 2017). In our framework,
it is identical to the standard subroutine in sequence modeling: inferring the most likely sequence
given available evidence.

Offline reinforcement learning. The beam search method described in Algorithm 1 optimizes
sequences for their probability under the data distribution. By replacing the log-probabilities of
transitions with the predicted reward signal, we can use the same Trajectory Transformer and
search strategy for reward-maximizing behavior. Appealing to the control as inference graphical
model (Levine, 2018), we are in effect replacing a transition’s log-probability in beam search with its
log-probability of optimality.

Using beam-search as a reward-maximizing procedure has the risk of leading to myopic behavior.
To address this issue, we augment each transition in the training trajectories with reward-to-go:
Rt =

�T
t�=t γ

t�−trt� and include it as an additional quantity, discretized identically to the others, to
be predicted after immediate rewards rt. During planning, we then have access to value estimates
from our model to add to cumulative rewards. While acting greedily with respect to such Monte
Carlo value estimates is known to suffer from poor sample complexity and convergence to suboptimal
behavior when online data collection is not allowed, we only use this reward-to-go estimate as a
heuristic to guide beam search, and hence our method does not require the estimated values to be as
accurate as in methods that rely solely on the value estimates to select actions.

In offline RL, reward-to-go estimates are functions of the behavior policy that collected the training
data and do not, in general, correspond to the values achieved by the Trajectory Transformer-derived
policy. Of course, it is much simpler to learn the value function of the behavior policy than that of the
optimal policy, since we can simply use Monte Carlo estimates without relying on Bellman updates.
A value function for an improved policy would provide a better search heuristic, though requires
invoking the tools of dynamic programming. In Section 4.2 we show that the simple reward-to-go
estimates are sufficient for planning with the Trajectory Transformer in many environments, but that
improved value functions are useful in the most challenging settings, such as sparse-reward tasks.

Because the Trajectory Transformer predicts reward and reward-to-go only every N + M + 1
tokens, we sample all intermediate tokens according to model log-probabilities, as in the imitation
learning and goal-reaching settings. More specifically, we sample full transitions (st,at, rt, Rt) using
likelihood-maximizing beam search, treat these transitions as our vocabulary, and filter sequences of
transitions by those with the highest cumulative reward plus reward-to-go estimate.
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Figure 2 (Prediction visualization) A qualitative comparison of length-100 trajectories generated by
the Trajectory Transformer and a feedforward Gaussian dynamics model from PETS, a state-of-the-art
planning algorithm Chua et al. (2018). Both models were trained on trajectories collected by a single
policy, for which a true trajectory is shown for reference. Compounding errors in the single-step
model lead to physically implausible predictions, whereas the Transformer-generated trajectory is
visually indistinguishable from those produced by the policy acting in the actual environment. The
paths of the feet and head are traced through space for depiction of the movement between rendered
frames.

We have taken a sequence-modeling route to what could be described as a fairly simple-looking model-
based planning algorithm, in that we sample candidate action sequences, evaluate their effects using
a predictive model, and select the reward-maximizing trajectory. This conclusion is in part due to the
close relation between sequence modeling and trajectory optimization. There is one dissimilarity,
however, that is worth highlighting: by modeling actions jointly with states and sampling them using
the same procedure, we can prevent the model from being queried on out-of-distribution actions. The
alternative, of treating action sequences as unconstrained optimization variables that do not depend
on state (Nagabandi et al., 2018), can more readily lead to model exploitation, as the problem of
maximizing reward under a learned model closely resembles that of finding adversarial examples for
a classifier (Goodfellow et al., 2014).

4 Experiments

Our experimental evaluation focuses on (1) the accuracy of the Trajectory Transformer as a long-
horizon predictor compared to standard dynamics model parameterizations and (2) the utility of
sequence modeling tools – namely beam search – as a control algorithm in the context of offline
reinforcement learning, imitation learning, and goal-reaching.

4.1 Model Analysis

We begin by evaluating the Trajectory Transformer as a long-horizon policy-conditioned predictive
model. The usual strategy for predicting trajectories given a policy is to rollout with a single-step
model, with actions supplied by the policy. Our protocol differs from the standard approach not only
in that the model is not Markovian, but also in that it does not require access to a policy to make
predictions – the outputs of the policy are modeled alongside the states encountered by that policy.
Here, we focus only on the quality of the model’s predictions; we use actions predicted by the model
for an imitation learning method in the next subsection.

Trajectory predictions. Figure 2 depicts a visualization of predicted 100-timestep trajectories
from our model after having trained on a dataset collected by a trained humanoid policy. Though
model-based methods have been applied to the humanoid task, prior works tend to keep the horizon
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Figure 3 (Compounding model errors) We compare the accuracy of the Trajectory Transformer
(with uniform discretization) to that of the probabilistic feedforward model ensemble (Chua et al.,
2018) over the course of a planning horizon in the humanoid environment, corresponding to the
trajectories visualized in Figure 2. The Trajectory Transformer has substantially better error com-
pounding with respect to prediction horizon than the feedforward model. The discrete oracle is the
maximum log likelihood attainable given the discretization size; see Appendix B for a discussion.

intentionally short to prevent the accumulation of model errors (Janner et al., 2019; Amos et al.,
2021). The reference model is the probabilistic ensemble implementation of PETS (Chua et al.,
2018); we tuned the number of models within the ensemble, the number of layers, and layer sizes,
but were unable to produce a model that predicted accurate sequences for more than a few dozen
steps. In contrast, we see that the Trajectory Transformer’s long-horizon predictions are substantially
more accurate, remaining visually indistinguishable from the ground-truth trajectories even after 100
predicted steps. To our knowledge, no prior model-based RL algorithm has demonstrated predicted
rollouts of such accuracy and length on tasks of comparable dimensionality.

Error accumulation. A quantitative account of the same finding is provided in Figure 3, in which
we evaluate the model’s accumulated error versus prediction horizon. Standard predictive models
tend to have excellent single-step errors but poor long-horizon accuracy, so instead of evaluating a
test-set single-step likelihood, we sample 1000 trajectories from a fixed starting point to estimate
the per-timestep state marginal predicted by each model. We then report the likelihood of the states
visited by the reference policy on a held-out set of trajectories under these predicted marginals. To
evaluate the likelihood under our discretized model, we treat each bin as a uniform distribution over
its specified range; by construction, the model assigns zero probability outside of this range.

To better isolate the source of the Transformer’s improved accuracy over standard single-step models,
we also evaluate a Markovian variant of our same architecture. This ablation has a truncated context
window that prevents it from attending to more than one timestep in the past. This model performs
similarly to the trajectory Transformer on fully-observed environments, suggesting that architecture
differences and increased expressivity from the autoregressive state discretization play a large role
in the trajectory Transformer’s long-horizon accuracy. We construct a partially-observed version of
the same humanoid environment, in which each dimension of every state is masked out with 50%
probability (Figure 3 right), and find that, as expected, the long-horizon conditioning plays a larger
role in the model’s accuracy in this setting.

Attention patterns. We visualize the attention maps during model predictions in Figure 4. We
find two primary attention patterns. The first is a discovered Markovian strategy, in which a state
prediction attends overwhelmingly to the previous transition. The second is qualitatively striated,
with the model attending to specific dimensions in multiple prior states for each state prediction.
Simultaneously, the action predictions attend to prior actions more than they do prior states. The
action dependencies contrast with the usual formulation of behavior cloning, in which actions are a
function of only past states, but is reminiscent of the action filtering technique used in some planning
algorithm to produce smoother action sequences (Nagabandi et al., 2019).
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Figure 4 (Attention patterns) We observe two distinct types of attention masks during trajectory
prediction. In the first, both states and actions are dependent primarily on the immediately preceding
transition, corresponding to a model that has learned the Markov property. The second strategy has a
striated appearance, with state dimensions depending most strongly on the same dimension of multiple
previous timesteps. Surprisingly, actions depend more on past actions than they do on past states,
reminiscent of the action smoothing used in some trajectory optimization algorithms (Nagabandi
et al., 2019). The above masks are produced by a first- and third-layer attention head during sequence
prediction on the hopper benchmark; reward dimensions are omitted for this visualization.1

4.2 Reinforcement Learning and Control

Offline reinforcement learning. We evaluate the Trajectory Transformer on a number of envi-
ronments from the D4RL offline benchmark suite (Fu et al., 2020), including the locomotion and
AntMaze domains. This evaluation is the most difficult of our control settings, as reward-maximizing
behavior is the most qualitatively dissimilar from the types of behavior that are normally associated
with unsupervised modeling – namely, imitative behavior. Results for the locomotion environ-
ments are shown in Table 1. We compare against five other methods spanning other approaches to
data-driven control: (1) behavior-regularized actor-critic (BRAC; Wu et al. 2019) and conservative
Q-learning (CQL; Kumar et al. 2020a) represent the current state-of-the-art in model-free offline
RL; model-based offline planning (MBOP; Argenson & Dulac-Arnold 2021) is the best-performing
prior offline trajectory optimization technique; decision transformer (DT; Chen et al. (2021)) is
a concurrently-developed sequence-modeling approach that uses return-conditioning instead of
planning; and behavior-cloning (BC) provides the performance of a pure imitative method.

The Trajectory Transformer performs on par with or better than all prior methods (Table 1). The
two discretization variants of the Trajectory Transformer, uniform and quantile, perform similarly
on all environments except for HalfCheetah-Medium-Expert, where the large range of the velocities
prevents the uniform discretization scheme from recovering the precise actuation required for enacting
the expert policy. As a result, the quantile discretization approach achieves a return of more than
twice that of the uniform discretization.

Combining with Q-functions. Though Monte Carlo value estimates are sufficient for many stan-
dard offline RL benchmarks, in sparse-reward and long-horizon settings they become too uninforma-
tive to guide the beam-search-based planning procedure. In these problems, the value estimate from
the Transformer can be replaced with a Q-function trained via dynamic programming. We explore
this combination by using the Q-function from the implicit Q-learning algorithm (IQL; Kostrikov
et al. 2021) on the AntMaze navigation tasks (Fu et al., 2020), for which there is only a sparse reward
upon reaching the goal state. These tasks evaluate temporal compositionality because they require
stitching together multiple zero-reward trajectories in the dataset to reach a designated goal.

AntMaze results are provided in Table 2. Q-guided Trajectory Transformer planning outperforms
all prior methods on all maze sizes and dataset compositions. In particular, it outperforms the IQL
method from which we obtain the Q-function, underscoring that planning with a Q-function as a

1More attention visualizations can be found at trajectory-transformer.github.io/attention
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Dataset Environment BC MBOP BRAC CQL DT TT (uniform) TT (quantile)

Med-Expert HalfCheetah 59.9 105.9 41.9 91.6 86.8 40.8 ±2.3 95.0 ±0.2

Med-Expert Hopper 79.6 55.1 0.9 105.4 107.6 106.0 ±0.28 110.0 ±2.7

Med-Expert Walker2d 36.6 70.2 81.6 108.8 108.1 91.0 ±2.8 101.9 ±6.8

Medium HalfCheetah 43.1 44.6 46.3 44.0 42.6 44.0 ±0.31 46.9 ±0.4

Medium Hopper 63.9 48.8 31.3 58.5 67.6 67.4 ±2.9 61.1 ±3.6

Medium Walker2d 77.3 41.0 81.1 72.5 74.0 81.3 ±2.1 79.0 ±2.8

Med-Replay HalfCheetah 4.3 42.3 47.7 45.5 36.6 44.1 ±0.9 41.9 ±2.5

Med-Replay Hopper 27.6 12.4 0.6 95.0 82.7 99.4 ±3.2 91.5 ±3.6

Med-Replay Walker2d 36.9 9.7 0.9 77.2 66.6 79.4 ±3.3 82.6 ±6.9

Average 47.7 47.8 36.9 77.6 74.7 72.6 78.9

Table 1 (Offline reinforcement learning) The Trajectory Transformer (TT) performs on par with
or better than the best prior offline reinforcement learning algorithms on D4RL locomotion (v2)
tasks. Results for TT variants correspond to the mean and standard error over 15 random seeds (5
independently trained Transformers and 3 trajectories per Transformer). We detail the sources of the
performance for other methods in Appendix C.

BC MBOP BRAC CQL Decision
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Figure 5 (Offline averages) A plot showing the average per-algorithm performance in Table 1, with
bars colored according to a crude algorithm categorization. In this plot, “Trajectory Transformer”
refers to the quantile discreization variant.

search heuristic can be less susceptible to errors in the Q-function than policy extraction. However,
because the Q-guided planning procedure still benefits from the temporal compositionality of both
dynamic programming and planning, it outperforms return-conditioning approaches, such as the
Decision Transformer, that suffer due to the lack of complete demonstrations in the AntMaze datasets.

Imitation and goal-reaching. We additionally plan with the Trajectory Transformer using standard
likelihood-maximizing beam search, as opposed to the return-maximizing version used for offline RL.
We find that after training the model on datasets collected by expert policies (Fu et al., 2020), using
beam search as a receding-horizon controller achieves an average normalized return of 104% and
109% in the Hopper and Walker2d environments, respectively, using the same evaluation protocol of
15 runs described as in the offline RL results. While this result is perhaps unsurprising, as behavior
cloning with standard feedforward architectures is already able to reproduce the behavior of the expert
policies, it demonstrates that a decoding algorithm used for language modeling can be effectively
repurposed for control.

Finally, we evaluate the goal-reaching variant of beam-search, which conditions on a future desired
state alongside previously encountered states. We use a continuous variant of the classic four rooms
environment as a testbed (Sutton et al., 1999). Our training data consists of trajectories collected by a
pretrained goal-reaching agent, with start and goal states sampled uniformly at random across the
state space. Figure 6 depicts routes taken by the the planner. Anti-causal conditioning on a future
state allows for beam search to be used as a goal-reaching method. No reward shaping, or rewards of
any sort, are required; the planning method relies entirely on goal relabeling. An extension of this
experiment to procedurally-generated maps is described in Appendix F.
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Dataset Environment BC CQL IQL DT TT (+Q)

Umaze AntMaze 54.6 74.0 87.5 59.2 100.0 ±0.0

Medium-Play AntMaze 0.0 61.2 71.2 0.0 93.3 ±6.4

Medium-Diverse AntMaze 0.0 53.7 70.0 0.0 100.0 ±0.0

Large-Play AntMaze 0.0 15.8 39.6 0.0 66.7 ±12.2

Large-Diverse AntMaze 0.0 14.9 47.5 0.0 60.0 ±12.7

Average 10.9 44.9 63.2 11.8 84.0

Table 2 (Combining with Q-functions) Performance on the sparse-reward AntMaze (v0) navigation
task. Using a Q-function as a search heuristic with the Trajectory Transformer (TT (+Q)) outperforms
policy extraction from the Q-function (IQL) and return-conditioning approaches like the Decision
Transformer (DT). We report means and standard error over 15 random seeds for TT (+Q); baseline
results are taken from Kostrikov et al. (2021).

Figure 6 (Goal-reaching) Trajectories collected by TTO with anti-causal goal-state conditioning in
a continuous variant of the four rooms environment. Trajectories are visualized as curves passing
through all encountered states, with color becoming more saturated as time progresses. Note that
these curves depict real trajectories collected by the controller and not sampled sequences. The
starting state is depicted by and the goal state by . Best viewed in color.

5 Discussion and Limitations

We have presented a sequence modeling view on reinforcement learning that enables us to derive a
single algorithm for a diverse range of problem settings, unifying many of the standard components
of reinforcement learning algorithms (such as policies, models, and value functions) under a single
sequence model. The algorithm involves training a sequence model jointly on states, actions, and
rewards and sampling from it using a minimally modified beam search. Despite drawing from the
tools of large-scale language modeling instead of those normally associated with control, we find that
this approach is effective in imitation learning, goal-reaching, and offline reinforcement learning.

However, prediction with Transformers is currently slower and more resource-intensive than predic-
tion with the types of single-step models often used in model-based control, requiring up to multiple
seconds for action selection when the context window grows too large. This precludes real-time
control with standard Transformers for most dynamical systems. While the beam-search-based
planner is conceptually an instance of model-predictive control, and as such could be applicable
wherever model-based RL is, in practice the slow planning also makes online RL experiments un-
wieldy. (Computationally-efficient Transformer architectures (Tay et al., 2021) could potentially cut
runtimes down substantially.) Further, we have chosen to discretize continuous data to fit a standard
architecture instead of modifying the architecture to handle continuous inputs. While we found this
design to be much more effective than conventional continuous dynamics models, it does in principle
impose an upper bound on prediction precision.

This paper is an investigation of a minimal type of algorithm that can be applied to RL problems.
While one of the interesting implications of our results is that RL problems can be reframed as
supervised learning tasks with an appropriate choice of model, the most practical instantiation of
this idea may come from combinations with dynamic programming techniques, as suggested by the
effectiveness of the Trajectory Transformer with Q-guided planning.
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Code References

We used the following open-source libraries for this work: NumPy (Harris et al., 2020), PyTorch
(Paszke et al., 2019), and minGPT (Karpathy, 2020).

Acknowledgements

We thank Ethan Perez and Max Kleiman-Weiner for helpful discussions and Ben Eysenbach for
feedback on an early draft. M.J. thanks Karthik Narasimhan for early inspiration about parallels
between language modeling and model-based reinforcement learning. This work was partially
supported by computational resource donations from Microsoft. M.J. is supported by fellowships
from the National Science Foundation and the Open Philanthropy Project.

References
Amos, B., Stanton, S., Yarats, D., and Wilson, A. G. On the model-based stochastic value gradient for

continuous reinforcement learning. In Conference on Learning for Dynamics and Control, 2021.

Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong, R., Welinder, P., McGrew, B., Tobin,
J., Abbeel, P., and Zaremba, W. Hindsight experience replay. In Advances in Neural Information
Processing Systems. 2017.

Argenson, A. and Dulac-Arnold, G. Model-based offline planning. In International Conference on
Learning Representations, 2021.

Bakker, B. Reinforcement learning with long short-term memory. In Neural Information Processing
Systems, 2002.

Bellman, R. Dynamic Programming. Dover Publications, 1957.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam,
P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R.,
Ramesh, A., Ziegler, D., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray,
S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., and Amodei, D.
Language models are few-shot learners. In Advances in Neural Information Processing Systems,
2020.

Buckman, J., Hafner, D., Tucker, G., Brevdo, E., and Lee, H. Sample-efficient reinforcement learning
with stochastic ensemble value expansion. In Advances in Neural Information Processing Systems,
2018.

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A., Laskin, M., Abbeel, P., Srinivas, A., and
Mordatch, I. Decision Transformer: Reinforcement learning via sequence modeling. arXiv preprint
arXiv:2106.01345, 2021.

Chiappa, S., Racaniere, S., Wierstra, D., and Mohamed, S. Recurrent environment simulators. In
International Conference on Learning Representations, 2017.

Chua, K., Calandra, R., McAllister, R., and Levine, S. Deep reinforcement learning in a handful of
trials using probabilistic dynamics models. In Advances in Neural Information Processing Systems.
2018.

Co-Reyes, J., Liu, Y., Gupta, A., Eysenbach, B., Abbeel, P., and Levine, S. Self-consistent trajectory
autoencoder: Hierarchical reinforcement learning with trajectory embeddings. In International
Conference on Machine Learning, 2018.

Dadashi, R., Rezaeifar, S., Vieillard, N., Hussenot, L., Pietquin, O., and Geist, M. Offline reinforce-
ment learning with pseudometric learning. In International Conference on Machine Learning,
2021.

Deisenroth, M. and Rasmussen, C. E. PILCO: A model-based and data-efficient approach to policy
search. In International Conference on Machine Learning, 2011.

11



Fairbank, M. Reinforcement learning by value gradients. arXiv preprint arXiv:0803.3539, 2008.

Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine, S. D4RL: Datasets for deep data-driven
reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Fujimoto, S., Meger, D., and Precup, D. Off-policy deep reinforcement learning without exploration.
In International Conference on Machine Learning, 2019.

Ghasemipour, S. K. S., Schuurmans, D., and Gu, S. S. EMaQ: Expected-max Q-learning operator for
simple yet effective offline and online RL. 2021.

Ghosh, D., Gupta, A., Reddy, A., Fu, J., Devin, C. M., Eysenbach, B., and Levine, S. Learning to reach
goals via iterated supervised learning. In International Conference on Learning Representations,
2021.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explaining and harnessing adversarial examples. arXiv
preprint arXiv:1412.6572, 2014.

Gu, J., Liu, Q., and Cho, K. Insertion-based Decoding with Automatically Inferred Generation Order.
Transactions of the Association for Computational Linguistics, 2019.

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser,
E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M.,
Haldane, A., del Río, J. F., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy,
T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant, T. E. Array programming with NumPy.
Nature, 585(7825):357–362, 2020.

Heess, N., Hunt, J. J., Lillicrap, T., and Silver, D. Memory-based control with recurrent neural
networks. In Neural Information Processing Systems Deep Reinforcement Learning Workshop,
2015a.

Heess, N., Wayne, G., Silver, D., Lillicrap, T., Tassa, Y., and Erez, T. Learning continuous control
policies by stochastic value gradients. In Advances in Neural Information Processing Systems,
2015b.

Hochreiter, S. and Schmidhuber, J. Long short-term memory. Neural computation, 9(8):1735–1780,
1997.

Janner, M., Fu, J., Zhang, M., and Levine, S. When to trust your model: Model-based policy
optimization. In Advances in Neural Information Processing Systems, 2019.

Janner, M., Mordatch, I., and Levine, S. γ-models: Generative temporal difference learning for
infinite-horizon prediction. In Advances in Neural Information Processing Systems, 2020.

Jiang, Y., Gu, S., Murphy, K., and Finn, C. Language as an abstraction for hierarchical deep
reinforcement learning. In Advances in Neural Information Processing Systems, 2019.

Jin, Y., Yang, Z., and Wang, Z. Is pessimism provably efficient for offline RL? In International
Conference on Machine Learning, 2021.

Karpathy, A. minGPT: A minimal pytorch re-implementation of the openai gpt training, 2020. URL
https://github.com/karpathy/minGPT.

Kidambi, R., Rajeswaran, A., Netrapalli, P., and Joachims, T. MOReL: Model-based offline rein-
forcement learning. In Advances in Neural Information Processing Systems, 2020.

Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. In International Conference
on Learning Representations, 2015.

Kostrikov, I., Nair, A., and Levine, S. Offline reinforcement learning with implicit q-learning. arXiv
preprint arXiv:2110.06169, 2021.

Kumar, A., Fu, J., Tucker, G., and Levine, S. Stabilizing off-policy Q-learning via bootstrapping
error reduction. In Advances in Neural Information Processing Systems, 2019a.

12



Kumar, A., Peng, X. B., and Levine, S. Reward-conditioned policies. arXiv preprint
arXiv:1912.13465, 2019b.

Kumar, A., Zhou, A., Tucker, G., and Levine, S. Conservative Q-learning for offline reinforcement
learning. In Advances in Neural Information Processing Systems, 2020a.

Kumar, S., Parker, J., and Naderian, P. Adaptive transformers in RL. arXiv preprint arXiv:2004.03761,
2020b.

Kurutach, T., Clavera, I., Duan, Y., Tamar, A., and Abbeel, P. Model-ensemble trust-region policy
optimization. In International Conference on Learning Representations, 2018.

Lampe, T. and Riedmiller, M. Approximate model-assisted neural fitted Q-iteration. In International
Joint Conference on Neural Networks, 2014.

Levine, S. Reinforcement learning and control as probabilistic inference: Tutorial and review. arXiv
preprint arXiv:1805.00909, 2018.

Malik, A., Kuleshov, V., Song, J., Nemer, D., Seymour, H., and Ermon, S. Calibrated model-based
deep reinforcement learning. In International Conference on Machine Learning, 2019.

Meister, C., Cotterell, R., and Vieira, T. If beam search is the answer, what was the question? In
Empirical Methods in Natural Language Processing, 2020.

Nagabandi, A., Kahn, G., S. Fearing, R., and Levine, S. Neural network dynamics for model-based
deep reinforcement learning with model-free fine-tuning. In International Conference on Robotics
and Automation, 2018.

Nagabandi, A., Konoglie, K., Levine, S., and Kumar, V. Deep Dynamics Models for Learning
Dexterous Manipulation. In Conference on Robot Learning, 2019.

Nair, A., Dalal, M., Gupta, A., and Levine, S. Accelerating online reinforcement learning with offline
datasets. arXiv preprint arXiv:2006.09359, 2020.

Oh, J., Chockalingam, V., Lee, H., et al. Control of memory, active perception, and action in
Minecraft. In International Conference on Machine Learning, 2016.

Parisotto, E. and Salakhutdinov, R. Efficient transformers in reinforcement learning using actor-
learner distillation. In International Conference on Learning Representations, 2021.

Parisotto, E., Song, F., Rae, J., Pascanu, R., Gulcehre, C., Jayakumar, S., Jaderberg, M., Kauf-
man, R. L., Clark, A., Noury, S., et al. Stabilizing transformers for reinforcement learning. In
International Conference on Machine Learning, 2020.

Paster, K., McIlraith, S. A., and Ba, J. Planning from pixels using inverse dynamics models. In
International Conference on Learning Representations, 2021.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,
N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy,
S., Steiner, B., Fang, L., Bai, J., and Chintala, S. Pytorch: An imperative style, high-performance
deep learning library. In Advances in Neural Information Processing Systems. 2019.

Peng, X. B., Berseth, G., Yin, K., and Van De Panne, M. DeepLoco: Dynamic locomotion skills
using hierarchical deep reinforcement learning. ACM Transactions on Graphics, 2017.

Radford, A., Narasimhan, K., Salimans, T., and Sutskever, I. Improving language understanding by
generative pre-training. 2018.

Rauber, P., Ummadisingu, A., Mutz, F., and Schmidhuber, J. Hindsight policy gradients. In
International Conference on Learning Representations, 2019.

Reddy, R. Speech understanding systems: Summary of results of the five-year research effort at
Carnegie Mellon University, 1977.

13



Ross, S. and Bagnell, D. Efficient reductions for imitation learning. In International Conference on
Artificial Intelligence and Statistics, 2010.

Ross, S., Gordon, G., and Bagnell, D. A reduction of imitation learning and structured prediction
to no-regret online learning. In International Conference on Artificial Intelligence and Statistics,
2011.

Schmidhuber, J. Reinforcement learning upside down: Don’t predict rewards–just map them to
actions. arXiv preprint arXiv:1912.02875, 2019.

Silver, D., Sutton, R. S., and Müller, M. Sample-based learning and search with permanent and
transient memories. In International Conference on Machine Learning, 2008.
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Appendix A Model and Training Specification

Architecture and optimization details. In all environments, we use a Transformer architecture
with four layers and four self-attention heads. The total input vocabulary of the model is V × (N +
M +2) to account for states, actions, rewards, and rewards-to-go, but the output linear layer produces
logits only over a vocabulary of size V ; output tokens can be interpreted unambiguously because their
offset is uniquely determined by that of the previous input. The dimension of each token embedding
is 128. Dropout is applied at the end of each block with probability 0.1.

We follow the learning rate scheduling of (Radford et al., 2018), increasing linearly from 0 to
2.5× 10−4 over the course of 2000 updates. We use a batch size of 256.

Hardware. Model training took place on NVIDIA Tesla V100 GPUs (NCv3 instances on Microsoft
Azure) for 80 epochs, taking approximately 6-12 hours (varying with dataset size) per model on one
GPU.

Appendix B Discrete Oracle

The discrete oracle in Figure 3 is the maximum log-likelihood attainable by a model under the
uniform discretization granularity. For a single state dimension i, this maximum is achieved by a
model that places all probability mass on the correct token, corresponding to a uniform distribution
over an interval of size

ri − �i
V

.

The total log-likelihood over the entire state is then given by:

N�

i=1

log
V

ri − �i
.

Appendix C Baseline performance sources

Offline reinforcement learning The performance of MOPO is taken from Table 1 in Yu et al.
(2020). The performance of MBOP is taken from Table 1 in Argenson & Dulac-Arnold (2021). The
performance of BC is taken from Table 1 in Kumar et al. (2020a). The performance of CQL is taken
from Table 1 in Kostrikov et al. (2021).

Appendix D Datasets

The D4RL dataset (Fu et al., 2020) used in our experiments is under the Creative Commons Attribution
4.0 License (CC BY). The license information can be found at

https://github.com/rail-berkeley/d4rl/blob/master/README.md

under the “Licenses” section.
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Appendix E Beam Search Hyperparameters

Beam width maximum number of hypotheses retained during beam search 256
Planning horizon number of transitions predicted by the model during 15
Vocabulary size number of bins used for autoregressive discretization 100
Context size number of input (st,at, rt, Rt) transitions 5
kobs top-k tokens from which observations are sampled 1
kact top-k tokens from which actions 20

Beam width and context size are standard hyperparameters for decoding Transformer language
models. Planning horizon is a standard trajectory optimization hyperparameter. The hyperparameters
kobs and kact indicate that actions are sampled from the most likely 20% of action tokens and next
observations are decoded greedily conditioned on previous observations and actions.

In many environments, the beam width and horizon may be reduced to speed up planning without
affecting performance. Examples of these configurations are provided in the reference implementation:
github.com/jannerm/trajectory-transformer.
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Figure 7 (Goal-Reaching in MiniGrid) Example paths of the Trajectory Transformer planner in
the MiniGrid-MultiRoom-N4-S5. Lock symbols indicate doors.

Appendix F Goal-Reaching on Procedurally-Generated Maps

The method evaluated here and the experimental setup is identical to that described in Section 3.2
(Goal-conditioned reinforcement learning), with one distinction: because the map changes each
episode, the Transformer model has an additional context embedding that is a function of the current
observation image. This embedding is the output of a small convolutional neural network and is
added to the token embeddings analogously to the treatment of position embeddings. The agent
position and goal state are not included in the map; these are provided as input tokens as described in
Section 3.2.

The action space of this environment is discrete. There are seven actions, but only four are required
to complete the tasks: turning left, turning right, moving forward, and opening a door. The training
data is a mixture of trajectories from a pre-trained goal-reaching policy and a uniform random policy.

94% of testing goals are reached by the model on held-out maps. Example paths are shown in
Figure 7.
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