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Abstract

These notes accompany a workshop series of lectures on Deep RL, hosted in the CSE depart-
ment, IIT Bombay. Even though most of the papers come from the last decade, they are still
not the absolute cutting edge of work today. Instead, the goal of this workshop is to enable stu-
dents to connect the theory of RL to the practice of Deep RL (including understanding of code
implementations), so that they can follow the latest literature in this fast-growing area.

1 Connection to tabular RL

Consider a Markov Decision Process (MDP) with a state space S, action space A, and a transition
probability distribution P : S × A → S. For every transition (st, at) → st+1, there is an associated
reward rt. Then the goal of Reinforcement Learning (RL) is to maximise the expected return,

Gt = Eπ

[
rt + γ rt+1 + . . .+ γT−t−1(rT +Rτ )

]
, (1)

where γ ∈ [0, 1] is a discount factor and π is a policy mapping S → A. The final term Rτ is called the
terminal reward, and is applicable in the case of episodic MDPs.

The standard approach for defining π is to first compute an approximationQ(s, a) for (1) conditional
on the current state st = s and action at = a, following which the optimal policy is simply given by,

π∗ = max
a

Q(s, a). (2)

In tabular RL, the functionQ is implemented by a look-up table containing states as rows and actions as
columns, so that any particular Q(s, a) is simply the entry at index (s, a) in the table. All convergence
results in RL (including for Q-learning) are based on this approach, assuming infinite number of visits
to every pair (s, a) in the problem [WD92].

As the reader will recall, various special types of problems can be derived from the general form of
(1) and (2). If there is no concept of the state of the system and the return only depends on actions,
we have the standard bandit problem. When the return does depend on the state but there are no
transition dynamics, we have the contextual bandit problem. The most general case is the sequential
decision-making problem, where Q depends on states and actions, and the actions have a causal effect
on the next states. We will mostly be interested in the last (most general) version of the problem.

The obvious practical difficulties of using tabular look-up for Q are,

1. The size of the table in memory as state and action spaces grow,

2. Inability to handle continuous states or actions, and

3. The intractability of visiting each (s, a) pair an infinite number of times.

To handle these challenges, the usual solution is to use a function approximation for Q(s, a). This
approach is valid whenever the behaviour of Q is sufficiently smooth (informally speaking). Many
versions of function approximation are available in literature, from linear models to specialised models
based on the problem type. The concept itself has been used for a long time under the name of
approximate dynamic programming [Pow07]. In recent times, the expressivity of neural networks has
made this approach very popular, and the use of ANNs for function approximation in RL is called
Deep RL. Until we come to Section 7, we will focus exclusively on model-free RL.

1



2 Simple implementations of value-based methods in Deep RL

Before we get into the implementation discussion, we need to revise the simplification of the approxima-
tion problem for (1) as given by the Bellman equation [Bel54]. First derived for dynamic programming,
the simplification is due simply to the observation that there is a recursive relationship between Gt

and future returns. Specifically, note that,

Gt = E[rt] + γ Gt+1.

This gives us a clue for simplifying the estimation of Q(st, at) in a similar way. If we wait to observe
the reward rt for the current time step, we can immediately update the estimate using the relationship,

Q(st, at) ≈ rt + γQat+1∼π(st+1, at+1). (3)

Note that (3) does not contain expectations over rt and st+1 because we are observing these values
after one time step. The equation is called one-step Q-learning [Ros14] and is covered in any RL theory
course. We will not be covering this material, or its extensions to TD methods, in this manuscript.

For our purposes, it is sufficient to note that if we choose π in (3) as per (2), then the “Deep Q
Network” [MKS+15] update relationship becomes,

Q(st, at) ≈ rt + γmax
at+1

Q(st+1, at+1). (4)

When using Deep RL, the function Q is implemented by a neural network on both sides of (4). The
simplest architectural option is to use a concatenation of s and a as inputs, and have a scalar regression
output from the network corresponding to Q(s, a). In the experience collection phase, we initialise the
environment to some initial state s0 and implement some policy π on the left-hand side to choose the
action at, and wait for one time step to observe rt and st+1. We then store the tuple (st, at, st+1, rt)
into a memory buffer. After a sufficient number of tuples have been collected (sometimes over multiple
episodes of the MDP), we create the training data set for the neural network in the following way.

We first choose a subset of tuples from the memory buffer to generate the mini-batch for our
training pass. For each of these tuples, we generate predictions Q(st, at) which are the equivalent of
predictions ŷ in the supervised setting. Using the corresponding rt and st+1 in each of the tuples,
we form the targets [rt +Q(st+1, at+1)]. These are the equivalent of the labels y in the supervised
setting. Then we define a loss function over the error between predictions and targets (for example
the mean squared error) and perform an optimisation step for the neural network parameters. The
whole procedure is repeated as many times as required.

A common improvement for computational efficiency in this procedure is based on the input-output
structure of the neural network. As it stands in (4), the maximisation over at+1 requires the scalar
output Q(st+1, at+1) to be generated |A| number of times for each training sample. To avoid this,
practical implementations of DQN use only the state s as input to the neural network, and have |A|
outputs corresponding to each possible action. In the forward pass, the maximisation step becomes
just the argmin over all outputs of the network. During training, the regression error for all actions
apart from the implemented one is given as 0. The regression error for the implemented action is the
error between the predicted and target values as described earlier.

The procedure described in this section is the default go-to option for starting with Deep RL, and
is extremely powerful. However for complex problems, it faces the following challenges:

1. Bootstrapping: Since Q appears on both sides of the equation and is produced by the same
network, it is difficult to ensure good convergence of the approximation.

2. Stabilisation: Closely related to bootstrapping is the frequent instability of the Q estimate,
especially in the case of noisy rewards rt. This can cause the estimates to grow unbounded as
training progresses.

3. In the implementation with |A| outputs from the network, a typically fully-connected archi-
tecture can only discriminate between the actions in the final layer of the network. All latent
representations until the penultimate layer are common to all actions.

4. It is not easy to decide how to pick tuples from the memory, and to estimate the validity of
samples derived from previous versions of π (several steps earlier in training).

All these challenges are addressed in subsequent sections.
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3 Stabilisation of value-based Deep RL

From this section onwards, the manuscript will only link the logical ideas tersely, and refer to the
relevant papers for additional details. The cited papers should be referred to for a complete under-
standing of the discussion. The description in Section 2 points to one basic challenge in RL as opposed
to supervised learning: the fact that training data points (the memory buffer) are collected in a corre-
lated manner by interacting with the MDP or environment. As a result, we do not have the luxury of
drawing i.i.d. minibatches for training. The use of a memory buffer allows us to partially de-correlate
the samples by drawing them in random order from multiple episodes; however this is not a complete
fix. A number of approaches have been developed to solve this issue, and some of them are described
below. Note that the literature on RL frequently refers to the memory buffer as experience replay.

One of the earliest fixes for managing the draws from memory was the idea of prioritized experience
replay (PER) [SQAS15]. The intuition behind PER is to preferentially draw those samples that have
higher expected learning potential, and in this case the potential is measured by the TD-error in
prediction1. The TD-error is a proxy for the level of unexpectedness in the transition, either in the
next state or in the generated step reward. If the priority of a sample is defined to be pαi , the sample
is drawn with a probability,

P (i) =
pαi∑
k p

α
k

.

In the original PER, the priority is simply equal to the TD-error, but with a small difference: instead
of the target values (see Section 2) being drawn from the same network as the action values, we use a
separate target network (which is a slower-update copy of the online network).

Apart from the issue of finding the right samples from the memory buffer, a fundamental issue with
RL is generating useful samples in the first place. Unlike with supervised learning, we do not have
an externally provided data set. The training data are generated by the algorithm itself, and in hard
tasks we may never find samples which actually complete the task in its entirety. Hindsight experience
replay (HER) [AWR+17] is one approach to fixing this issue. In essence, it defines whatever state the
agent reaches at the end of an episode as a ‘task’, and asks the agent to at least learn to get there
consistently if asked. In addition to the state s given as input, we must also include the goal state
g in each forward run. The agent gets an auxiliary reward for reaching g, in addition to the actual
environment reward.

Finally, a number of such improvements over two years were combined together to form an algorithm
called Rainbow [HMVH+18]. The paper does not propose any new modifications to RL; it engineers
several previous methods into a single coherent algorithm. It implements PER, dueling networks (which
separately compute state value and action advantage), multi-step learning (in contrast to single-step
Q-learning), distributional RL (which predicts a distribution of values rather than a single expected
one), and noisy nets (where exploration is injected into the value predictions directly) into a single
algorithm. Rainbow was a landmark paper because it was the first to handsomely beat median human
performance on all 57 Atari games.

4 The exploration-exploitation dilemma

While sampling methods as described in Section 3 help with the stability of learning and approaches
such as hindsight replay help with collecting good samples, there is a need to examine the exploration-
exploitation tradeoff more systematically. The particular difficulty that arises is in the case of long
sequential tasks, where typical ϵ− greedy strategies fail to find any useful trajectories with random
action sampling. This leads to uneven exploration of the state space and a lack of diversity in the
memory buffer, especially in tasks that begin from the same initial state (e.g. chess). The challenge is
even tougher when the rewards are sparse, for example a terminal reward of 1 for completing the task
and 0 for everything else.

There are a very large number of papers on improving exploration efficiency, and we cannot cover
everything here. If the reader is interested, the following keywords are good starting points for a search:
directed exploration, frontier states, curiosity, novelty, option critics. The common threads among
these approaches take one or both of two paths: (i) reward shaping to provide ‘intrinsic motivation’

1Unlike the implementation of DQN where predictions of Q are made after samples are drawn, these TD-errors must
be stored at the time of experience collection.
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for exploring fresh parts of the state space, and (ii) following predefined sequences of actions rather
than drawing actions randomly in each time step.

Among the first set of papers, one of the easiest (and earliest) methods is Model-Based Interval
Estimation with Exploratory Bonus (MBIE-EB) [SL08]. Although this is a mouthful to remember,
the concept itself is very simple. The authors propose to solve an augmented version of the Bellman
equation that increases the reward for new (unseen) states. Adapted to our notation, it can be written
as,

Q∗(st, ·) = max
at

[
E[rt(st, at)] + γmax

at+1

Q(st+1, at+1) + βN(st, at)
−1/2

]
. (5)

Only the last term is added to the regular Bellman update (combined with the greedy policy), with β
being a user-defined weighting parameter and N being the number of times a given state-action pair
has been observed. This additional reward (effectively an increase to the step reward) encourages the
agent to find new frontiers of the state space. Several generalisations of this concept to continuous
state-action spaces exist, such as [BSO+16].

One of the drawbacks of only emphasising new state exploration is the fact that one may discount
previous visited promising states just because they have been seen before. A pair of papers called Never
Give Up [BSV+20] and Agent 57 [BPK+20] address this problem by defining two forms of novelty:
episodic (visited within the same episode) and lifelong (visited during the training lifetime). Never
Give Up reshapes the step reward using the relation,

rt = ret + βrit, (6)

where the first term is the original environment reward and the second term is an additional intrinsic
reward. The authors also propose a Universal Value Function Approximator (UVFA) which is effec-
tively a network that predicts Q(st, at, β) for any given value of β, thus simultaneously learning a
range of exploration policies. We will connect the UVFA to the concept of General Value Functions in
the next paragraph. Meanwhile, Agent 57 performs a set of minor tweaks to Never Give Up, resulting
in an agent that beats the human benchmark (not the median performance like Rainbow) on all 57
Atari games. The key improvement is really the separation of prediction of ret and rit in (6), giving
more stable estimates of rt (since the policy need not be parameterised by β any more).

Among the second set of literature, exploration efficiency is improved by following a predefined
sequence of actions. The concept of temporally extended actions was introduced by [SPS99], who
called these primitives as options. Examples of options are a predefined set of actions corresponding
to picking up an object, travelling to a distant city before engaging in low-level street search, etc.
The idea is to retain the learning regime at the higher level of primitives, while the lower-level actions
are already known to the agent. Among the early extensions of this concept was the option-critic
architecture [BHP17] (an extension of the actor-critic architecture, which we will cover in Section 5).
However at this stage, the low-level action primitives must be defined by hand.

EZ-Greedy [DOB20] provided a simple workaround to this issue, by holding a randomly chosen
action for a certain number of times (known as the persistence Z). This is usually too simplistic for
complex environments. A more sophisticated alternative is to use General Value Functions (GVFs)
[SMD+11], which employ Q-learning to predict not the reward but some other useful properties of the
environment. We adapted GVFs to provide actions that maximise a particular GVF for a persistence
value of time steps, effectively exploring based on a chosen rather than the primary Q-network during
the initial stages of training [KSN+22]. Later on, we were able to show the usefulness of this concept
for the practical problem of inventory management [KSK23].

The outstanding challenge that is still open at this point, is the handling of very large (or con-
tinuous) action spaces. These problems are not easily handled by value-based methods, because the
number of action outputs is necessarily finite and fixed. We can use policy gradients as a solution to
this problem, which we will now cover.

5 Policy gradient and actor-critic methods

Up to this point, we have focused exclusively on algorithms that approximate Q(s, a) explicitly. The
optimal policy π∗ is defined subsequently, according to (2). Since this is intractable as the action
space grows in size (or becomes continuous), we turn to policy gradient based algorithms. These
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algorithms have the same optimisation objective (that of maximising Gt), but they parameterise the
policy directly as π(a|s; θ). The concept was first introduced as REINFORCE [Wil92], but was not
easily scalable until the arrival of deep learning. The idea is to update policy parameters θ (the neural
network weights) in the positive direction of ∇θ log π(at|st; θ)Gt. See the policy gradients chapter of
[SB18], but the intuition is given by the following expansion of the gradient:

∇θ log π(at|st; θ)Gt =
∇θπ(at|st; θ)
π(at|st; θ)

Gt

The probability of an action at is increased if the gradient has the same sign as the return, and is
further normalised by the prior probability of the action. Practical implementations of the vanilla
version of REINFORCE have a high variance in cases where the Gt for different actions are difficult
to distinguish from each other. The standard fix for this issue is to subtract a baseline, resulting in an
update in the direction of ∇θ log π(at|st; θ) (Gt − bt(st)). Furthermore, the baseline value bt is usually
given by the state-value function V π(st), resulting in the famous advantage actor critic algorithm
(A2C) [MBM+16]. The advantage in this case is the excess value of a particular action at compared
to the average value V (st) of the state. Hence,

A(at, st) = Q(at, st)− V (st).

The practical implementation of this method will thus involve two neural networks: one to parameterise
the policy (let us call this θπ) and another to parameterise the value function. The Deep Deterministic
Policy Gradient (DDPG) [LHP+15] algorithm provides a variant where the value function is the action-
value function (not the state-value function), which we shall denote by θQ. Based on first principles,
the direction of update of θπ should be given by the gradient of Gt, which is approximated by Q(s, a).
Hence we have,

∇θπJ ≈ E
[
∇θπQ(s, a|θQ)|s=st,a=π(st|θπ)

]
.

In cases where the action is deterministic (hence “deterministic policy”), we can apply the chain rule
to get a simultaneous gradient for the critic and the actor:

∇θπJ ≈ E

∇aQ(s, a|θQ)|s=st,a=π(st)︸ ︷︷ ︸
critic

∇θππ(s|θπ)|s=st︸ ︷︷ ︸
actor

 . (7)

In cases where the actions are continuous, we obviously cannot apply an ϵ−greedy policy which depends
on categorical actions. The usual approach is to introduce a Gaussian noise N to the actions π(st|θπ).

While A2C and DDPG offer a scalable way to implement RL for continuous actions, they do not
completely overcome the stability challenges faced by policy gradients. For this, we need to limit the
rate at which the actor policy can deviate from its current value. Such methods are covered in the
next section.

6 Trust region based methods

The drawback of the actor-critic methods described in Section 5 is that while they work in expectation,
they do not provide any guarantees on the improvement of the policy. Addressing this issue was the
primary goal of Trust Region Policy Optimization (TRPO) [SLA+15]. A corollary of this guarantee
would be the fact that hyperparameter tuning would no longer be necessary2.

Let us examine where the concept of a trust region comes from. Our usual definition of the return
(optimization objective) is,

J(π) = E

[ ∞∑
t=0

γtr(st, at)

]
2As we shall see, the algorithm with guarantees is impractical to implement, and so we return by default to something

similar to the usual A2C approach.
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Then the improvement in objective function due to π̃ over π is given by,

J(π̃)− J(π) = Eπ̃

[ ∞∑
t=0

γtr(st, at)

]
− Eπ

[ ∞∑
t=0

γtr(st, at)

]

= Eπ̃

[ ∞∑
t=0

γtr(st, at)

]
− Es0 [Vπ(s0)]

= Eπ̃

[ ∞∑
t=0

γtr(st, at)− Vπ(s0)

]
since independent

= Eπ̃

[ ∞∑
t=0

γt (r(st, at) + γ Vπ(st+1)− Vπ(st))

]
telescoping series

= Eπ̃

[ ∞∑
t=0

γtAπ(st, at)

]
=

∑
s

ρπ̃(s)
∑
a

π̃(a|s)Aπ(s, a), (8)

where ρπ̃(s) is the frequency of observation of state s under the policy π̃. We have done away with
the summation over time by collecting all the observations of state s into ρ.

Intuition: At first glance, it appears surprising that the difference in the two returns should
be a function of the advantage of Q over V . But recall that when the value function V is correctly
learnt over the final policy π, the advantage reduces to 0 (since the expected value is the value obtained
through the optimal action). As a result, the RHS of (8) over the policy π is 0. Whatever improvement
is obtained by π̃ is a result of the residual advantage of π̃ over the value function of π.

Returning to the discussion of TRPO, the observation based on (8) is that the RHS is intractable
because we cannot estimate a-priori the visitation frequency ρπ̃(s) for a policy we have not computed
yet. Therefore we approximate ρπ̃(s) by the known frequency ρπ(s) (which is why TRPO is an on-policy
method). For this approximation to hold good, we need π̃ ≈ π, and hence we impose a KL-divergence
constraint on the policy update. Cutting out the complex notation, the TRPO formulation for policy
update is,

max
θ

E
[

πθ(a|s)
πθold(a|s)

Qθold(s, a)

]
subject to E [DKL(πθold ||πθ)] ≤ δ. (9)

In the form given above, TRPO requires the computation of Hessians (second order optimisation). This
is tricky for large dimensional problems, which is nearly always the case with Deep RL. Proximal Policy
Optimisation (PPO) [SWD+17] provides an approximate first-order alternative to the more restrictive
TRPO. Instead of the constrained optimisation problem (9), we want to solve the unconstrained version
obtained by including the constraint into the objective (as a penalty). However, evaluating the KL
divergence is computationally hard, so PPO has the following simplification.

PPO proposes to clip the maximum deviation from the old policy, and assumes that this is roughly
like constraining the KL divergence. It also replaces the Q value by the advantage A, which has the
same optimum since we only subtract a constant term. Tje clipped objective is then given by,

LCLIP (θ) = E
[
min

(
πθ

πθold

At, clip(
πθ

πθold

, 1− ϵ, 1 + ϵ)At

)]
(10)

Implementations of PPO usually add a value function loss and an entropy regulariser to the clip loss.
On the other hand, a subsequent method called the Soft Actor Critic [HZAL18] incorporates entropy
into the policy training itself. The simple concept underlying SAC is that instead of adding noise to
the action post-facto (as we do with DDPG) or the entropy in the loss term, we should incorporate
randomness in the reward itself. The goal is to append an entropy term to the step reward, resulting
in the following optimisation objective:

J(π) =

T∑
0

Est,at
[rt(st, at) + αH(π(·|st))] . (11)
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After some fairly involved derivations, they end up with an algorithm that looks very similar to the
usual PPO approach. Instead of two networks (actor and critic), they implement three neural networks
(value, action-value, and policy). However the losses for the two value networks are effectively the
typical MSE values, and the policy network is updated by a modified policy gradient. The results in
the SAC paper are impressive, but the method somehow did not become as popular as PPO.

7 Model-based methods and Neural MCTS

Every method that we have studied up to this point assumes no prior knowledge of the environment’s
behaviour. This is a powerful assumption, but in some cases it is possible to partially or completely
relax it. The sorts of environments where this is possible are,

• Games with deterministic rules but stochastic opponent behaviour, such as chess or go, where it
is possible to roll out the game to one or more steps in the future [SHM+16, SSS+17],

• Systems where dynamics can be modelled – at least to some extent – using physical principles3,
such as robotics [PN17], and

• Environments where enough data points have been collected to build an approximate and em-
pirical model of the behaviour [MGFL20, HLBN19].

Since model-based RL (abbr. to MBRL from now on) is very close to Model Predictive Control (MPC)
[ML99], let us begin the discussion from that point. The typical control problem in dynamical systems
aims to minimise the following objective function,

J = min
ui

∞∑
i=1

[
wx(ri − xi)

2 + wu u
2
i

]
(12)

subject to xi+1 = f(xi, ui) and ui ∈ U .

Here xi is the state of the system at discrete time points4, and ui are the control inputs or actions.
The w’s are user-specified weights, and ri define the ideal or reference trajectory. In the case of
MPC, f is assumed to be specified in the problem. The mathematical challenge is in solving the
sequential optimisation problem exactly, and so MPC typically solves the problem for n steps to
get (u1, u2, . . . , un). We implement only u1 from this computation, then re-solve the problem as the
window rolls forward. Under the usual assumptions about smooth dynamics and sufficient actuator
power, this approach has been established to be extremely competitive. The rolling horizon allows
MPC to handle stochastic problems as well as ones with approximate models.

How does this translate to the Deep RL context? For the time being, assume that we have a fairly
good idea of the one-step transition probability distribution P (st+1|st, at). Given the current state
st, we can sample at ∼ π(·|st). In model-free RL, the sampled action is applied to the environment.
Instead, in MBRL we roll out the next state st+1 using P . We may choose to do this once or multiple
times if P is highly stochastic. At this point we can compute V (st+1) over all the next steps generated
by P , and compute the average to give a more ‘correct’ estimate of Q(st, at). If we sample multiple
values of at from the policy, we can choose the optimal action by maximising over the rolled out values
rather than instantaneous ones. Furthermore, we can choose to repeat the action sampling and next
state estimation for multiple time steps before computing the value estimates. As we describe below,
there are myriad variations of this basic concept.

Let us first consider the basic question of where P (the transition model) comes from. Besides the
trivial route of specifying it externally, the following methods are available in literature:

• Episodic memory [FTF+19]: In deterministic environments, the agent can retrieve previous
experiences which coincide with the current state and proposed action.

• Bayesian estimation [DFA13]: One can model prior and posterior probabilities over the next
state using newly generated experiences. This is sample efficient but computationally costly.

3RL comes very close to Model Predictive Control in this scenario
4If the actual dynamics are continuous, it is assumed that ui is held constant for one time step. This is an accurate

assumptions for most digital controllers.
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• Function approximation: This is how the vast majority of MBRL operates, by building a model
of the environment through supervised learning of (st, at, st+1) tuples.

• Simulation: Where computationally tractable, one may generate next states through simulation
of low-level dynamics.

We cannot hope to cover all of MBRL in these notes, so we will focus on a handful of popular studies.
One of the earliest papers to use neural networks for model dynamics was by Nagabandi et al [NKFL18].
In their learning regime, they first run episodes with random exploration to generate enough data for
model estimation. Then they train a neural network f̂θ in a supervised fashion to predict the next
state, given the current state and action. Instead of applying RL based improvement to the policy,
the basic approach uses f̂θ to estimate the effect of multiple candidate actions, and choose the action
whose trajectory has the highest reward. The authors improve on this baseline by computing actions
using DAGGER [RB10], where the actions are computing using MPC (and in this case, the model for

MPC is f̂θ). Finally, they also show results by using the trained policy as the initial policy for TRPO,
following which the regime is model-free RL. The advantage of this multi-step training regime is that
the slow improvement of TRPO is accelerated by having a very good initial guess.

In Dreamer [HLBN19], the authors go one step further by actually training the RL policy assuming
the learnt model is the ground truth. The idea is to (i) collect some experiences using the current
policy, (ii) train the dynamics model in a supervised manner, (iii) perform an RL training run using
the updated model, and then go back to (i) and repeat. This is an effective approach when the learnt
model has low multi-step error, but it is difficult to use in more stochastic environments.

The first studies to really solve a complex environment using MBRL were AlphaGo [SHM+16]
(and its close successor AlphaGo Zero [SSS+17]). These are important papers not so much for their
theoretical contributions as for their engineering effort. They are also the papers that made the terms
self-play and neural MCTS highly popular in the RL community. In short, the four stages of AlphaGo
are as follows,

1. Train a supervised learning based policy pσ from a vast store of human games, to predict next
opponent moves (with about 57% accuracy).

2. Since pσ is a deep network and expensive to use for rollouts, train a smaller policy pπ for rapid
sampling (with about 24% accuracy).

3. This is the first RL step. Initialise the RL policy pρ using pσ, and use self-play to improve it.

4. Simultaneously train a win probability value function vθ in all three phases.

AlphaGo Zero follows a roughly similar regime, but it does not start with human games (hence ‘Zero’).
Both agents have several engineering tweaks for speed and accuracy of rollouts, which we will cover
during the lecture. At this point, we have completed all the basic concepts required for working in
Deep RL, at least at the single-agent level. In the next two sections, we will cover an eclectic set of
more recent work.

8 Approaching RL as a sequence prediction problem

Everyone working in the area of ML/AI is familiar with the revolution introduced by transformer
architectures in sequence prediction problems. It has not taken long for the RL community to realise
that the sequential decision-making task is also a sequence prediction problem, but with a difference.

Interestingly, what we may consider to be the first significant paper in this area came before the
transformer became popular. Upside-down RL [Sch19] proposed that instead of thinking of rewards
as a quantity to be regressed, we could use rewards as inputs. The idea is to provide the algorithm
with a reward in the form of an instruction (or a reference in control terminology), and let it predict
an action that achieves the specified reward. This makes it a supervised learning problem.

Two related groups from Berkeley connected this concept with the power of a transformer, si-
multaneously proposing the decision transformer [CLR+21] and trajectory transformer [JLL21]. The
intuition behind both architectures is similar, while the engineering solution is different. Here we
briefly describe the decision transformer (DT). If one thinks of the RL trajectory as a sequence
(st, at, rt, st+1, at+1, . . .), then it should be possible to model using transformers. The basic DT is

8



an offline learning algorithm, which means it processes a previously collected data set. To stabilise
learning, it uses the return-to-go (

∑T
t rt) rather than the step reward rt. It also assumes that separate

encoders for the state, action, and reward spaces have been trained for mapping all three quantities
to the same latent space. Once the DT is trained, it can be used online by seeding with a required
return (similar to UDRL) and observing the current state to infer the next action. More recent online
versions of the DT have also been proposed in literature.

Two applications of transformers in the RL context stand out for their achievement as well as their
potential. The first is a Nature paper [FBH+22] on discovering faster matrix multiplication algorithms
using RL. The reason this work is distinct is because rather than handling an online problem, the
study actually tackles a static optimisation problem and uses RL as a search algorithm. The authors
begin with the known result that any matrix product can be written as a 3D tensor, and decomposed
into a summation of rank-1 operations (which themselves are tensor outer products). Given a matrix
product, we can think of the rank-1 operations as actions, and the number of terms required to form
the matrix as the penalty (shorter is better). This makes it an RL problem. Using a transformer to
predict the sequence of actions, the authors use a combination of supervised and reinforcement learning
regimes to discover faster multiplication rules (fewer rank-1 terms) than the known state-of-the-art
results for several (n×m) problems.

Since the introductions of LLMs and other foundational models with in-context learning, researchers
in RL have considered extending the transformer architecture even further. Instead of just predicting
(s, a, r) tuples within an episode, we can actually consider the entire training history (over all episodes)
as one large sequence. In this case, training an RL agent can itself be done in-context (without
updating the weights of the generative model). Algorithm distillation [LWO+22] is one such approach.
The authors train the model itself on RL training histories for a diverse set of tasks. This results in
model parameters that ‘understand’ how RL works in general. Note that the model must be a causal
transformer, i.e. should not be conditioned on future tokens (unlike in the case of translation tasks).
When introduced to a new task, the model can generate data that mimics RL training, including the
tradeoff between exploration and exploitation. However, the specifics of the approach and its potential
should be taken with a bit of caution. These are very early days for foundational RL models.

9 List of things we could not cover

At this point, we have covered most of the Deep RL basics required to read and understand literature
as of the end of 2023. We have not had a chance to even introduce very large portions of cutting-edge
work that builds on these fundamentals. In the following list, we will only mention some of the areas
that we could not touch. The studies that are cited should be thought of as possible starting points,
and are not meant to be exhaustive.

• Multi-Agent RL (MARL): This is probably the most important body of RL literature that
we have not covered. MARL [ZYB21] addresses very important practical problems, including
cooperative (team of agents such as drone swarms), non-cooperative (multiple individuals, such
as vehicles in a city), and adversarial (competing agents, such as auctions) settings. Algorithms
in this setting are fundamentally similar to the ones we have covered so far, but include concepts
from game theory and distributed optimisation.

• Offline RL: A common challenge in RL settings is the development of a reasonably accurate
simulation or environment for training the agent. Frequently, all we have to work with is a pre-
viously captured historical data set using some unknown behavioural policy. Offline RL [ASN20]
is a set of algorithms specifically designed to learn without interaction with the environment. It
should not be confused with off-policy RL, which is online (has live interactions) but also uses
out-of-date data points for training.

• Safe RL: Finally, a word about explainability, performance guarantees, and guardrails. Safe RL
[GF15] is a class of algorithms with parallels to robust control, where the objective is to bal-
ance performance improvement with failure-averse behaviours. These algorithms are especially
important when training is to be done on a real system, and not on a simulation.

9



References

[ASN20] Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An optimistic perspective
on offline reinforcement learning. In International Conference on Machine Learning,
pages 104–114. PMLR, 2020.

[AWR+17] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter
Welinder, Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba.
Hindsight experience replay. Advances in neural information processing systems, 30,
2017.

[Bel54] Richard Bellman. The theory of dynamic programming. Bulletin of the American Math-
ematical Society, 60(6):503–515, 1954.

[BHP17] Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In
Proceedings of the AAAI conference on artificial intelligence, volume 31/1, 2017.
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