An Approximation Algorithm for the Cutting-Sticks
Problem

Jagadish M*

Indian Institute of Technology Bombay
Powai
Mumbai 400076

Abstract

The cuttings-sticks problem is the following. We are given a bundle of sticks
all having integer lengths. The total sum of their lengths is n(n+1)/2. Can
we break the sticks so that the resulting sticks have lengths 1,2,...,n? The
problem is known to be NP-hard. We consider an optimization version of
the problem which involves cutting the sticks and placing them into boxes.
The problem has a trivial polynomial time algorithm with an approximation
ratio of 2. We present a greedy algorithm that achieves an approximation
ratio of /2.

Keywords: Approximation algorithms, Cutting Sticks

1. Introduction

Cutting-sticks problem. We are given k sticks all having integer
lengths. Their lengths are li,...,[; and the total sum of their lengths is
n(n+ 1)/2. Can we break the sticks to get sticks of lengths 1,2,...,n?

Notation. Let [r] denote the set {1,2,...,r}.

We propose an optimization version of the cutting-sticks problem and
give an approximation algorithm for it. We first state the decision version
of the problem slightly differently to resemble the optimization version.

Decision version. We are given k positive integers l1,...,l; as input.
Their total sum is n(n 4+ 1)/2. Can we partition the set [n] into k subsets
Bi,..., By such that the sum of numbers in B; equals [; for all 1 <14 < k?

'Email: jagadish@cse.iitb.ac.in

Preprint submitted to Information Processing Letters January 12, 2015

It is easy to see that the alternate formulation does not change the
problem. For any positive instance, the i¢th stick can be broken down into
sizes contained in the set B;.

Optimization version. Given positive integers [y, ..., as input, find
the smallest ¢ for which we can partition the set [t] into k subsets By, ..., By
such that the sum of numbers in B; is at least [; for all 1 <7 < k. Output ¢
and the corresponding partition in polynomial time.

Related work. The cutting-sticks problem is NP-hard since the 3-
partition problem reduces to it Ito (2010). For the special case when all
the lengths are equal, there exists a polynomial time algorithm to solve the
problem exactly Straight and Schillo (1979). We give a /2-approximation
factor algorithm for the optimization version of the problem. Suppose we
are given an instance of the problem that has ¢ = OPT as the output.
Our algorithm outputs a number that is at most v20PT and gives the
corresponding partitioning of the set HﬁOPTH.

1.1. Physical Interpretation

For ease of exposition, we give a physical interpretation of the optimiza-
tion problem. Roughly, we can see the problem as breaking a set of sticks
in order to fit them into a set of boxes.

Definition. The box b; is of size i. Box b; can contain a stick of length j
if j <. Equivalently, a stick of length j can fit into a box whose size is at
least j. We refer to boxes by, ..., b as ‘[t] boxes’.

The set of sticks is said to fit into [t] bozes, if the sticks can be broken
into shorter sticks (pieces) such that:

1. Each piece fits into some box b;.
2. One box contains at most one piece. (Some boxes could remain empty.)

In light of the above definitions, the optimization problem we want to
solve can be stated as follows. We are given k sticks s; ..., s; having lengths
l1,...,1l, respectively. What is the smallest number ¢ for which we can we
fit the sticks into [t] boxes?

For example, if the stick lengths are 6, 5 and 4, then smallest ¢ for which
we can fit the sticks into [t] boxes is 5 (See Fig. 1).

If we can solve the above problem exactly, we can solve the decision ver-
sion of the cutting-sticks problem too. Since the latter problem is NP-hard,
we will look for an approximation algorithm. We give a polynomial time
algorithm with approximation factor v/2 for the above problem. In other
words, suppose OPT is the smallest ¢ for which we can fit the given sticks

I (T — — — — —

b4 b?
) (S — — — —)
bs
83@ || || I D
bs b1

Figure 1: An optimal way to fit sticks of lengths 6, 5 and 4 into [5] boxes.
The first stick is broken into two pieces of lengths 4 and 2. The second
stick is a piece by itself. The third stick is broken into pieces of lengths 3
and 1. The corresponding solution to the original optimization problem is
By = {4,2},By = {5} and B3 = {3,1}. If the sticks were of lengths 6, 5
and 3, an optimal solution would still use [5] boxes and could have the same
partition (box b3 would be left empty).

into [t] boxes. Our algorithm outputs a number that is at most v20PT
and gives a way to fit the sticks into [v/20 PT boxes.

2. Greedy Algorithm

Assumption. We make a simplifying assumption that we know the
value of OPT prior to the start of the algorithm. This assumption can be
removed by binary searching for the minimum value for which the algorithm
returns a solution. We defer the details to Section 4.5.

Informally, our algorithm works as follows. At each step, we pick the
longest stick and either cut from one end of stick and place the piece into the
largest empty box or place the stick itself into the box. The exact algorithm
is given below. The parameter o denotes the approximation factor of the
algorithm whose value will be fixed to v/2 with hindsight.

Initially, we have [«OPT] empty boxes and the sticks labelled
S1y-+-5S5k-

1. Pick the largest empty box available (say b;). Note that box b; has
size i. Pick the stick with the longest remaining length (say s;).
Let len(s;) denote the current length of s;.

(a) If len(sj) < 14, then fit the remaining portion of the stick s;
into b;.

(b) Otherwise, cut the stick s; from one end to get a piece of
length i and place this piece into the box b;. The stick s;
now has length equal to len(s;) — i.
In either case, box b; becomes non-empty after this step.
2. Repeat Step 1 until no empty box is available or until all the sticks
are fit into boxes.

Fig. 2 shows the run of the algorithm on the input Iy = 6,10 = 5,l3 =4
with OPT = 5. The example shows a bad case when the algorithm fails
when run with a = 1. The algorithm considers boxes in decreasing order of
their sizes. In the first step, box b5 is picked and a portion equal to length
5 is cut from the stick s;. The remaining portion of the stick s; has length
1. In the second step, the box by is picked and a piece of size 4 is cut from
s9 and placed in by. In the next step b3 is picked and so on. The greedy
algorithm fails to fit all the sticks if it starts with o = 1. In the next section,
we prove that if o > /2, then the algorithm succeeds for any input.

snCE—w—w —w & 1)

bs by
e ===
by b1
836 || |)]

bs

Figure 2: An execution of the greedy algorithm with [5] boxes. Although
the sticks fit into [5] boxes optimally, the greedy algorithm fails to do so: a
portion of the stick s3 is not fit into any box. It can be easily checked that if
the greedy algorithm started with [6] boxes, then it would succeed in fitting
all the sticks.

3. A lower bound on OPT

We are given an input with the guarantee that all the sticks will fit into
[OPT] boxes. To prove an approximation ratio, we first need a lower bound
on the value of OPT. We express lower bounds on OPT in terms of two
quantities of the input: number of sticks and the total length of the sticks.

Claim 3.1. The number of sticks is at most OPT.

Proof. Every stick requires at least one box and there are only O PT boxes. [
Notation. Let (r) denote the quantity r(r + 1)/2.
Claim 3.2. The total length of all the sticks is at most (OPT).

Proof. All the sticks fit into [OPT] blocks. The total size of boxes is
(OPT). O

4. Analysis

We prove that the above algorithm has an approximation ratio of v/2.
We first discuss a weaker result that brings out a few aspects of our actual
analysis.

Definitions. A partially filled box is one which contains a piece of stick
that is strictly smaller than its size (the box’s size). Box b; is a partially-filled
box if it contains a piece of length strictly smaller than i. A completely filled
box is one that contains a piece exactly equal to its size. For example, in
Fig. 2 by is a partially-filled box, while the rest of them are completely-filled
boxes. In Fig. 1, all the boxes are completely filled. We refer to completely-
filled boxes as c-boxes and partially filled boxes as p-boxes. A box which
has no stick after the termination of the algorithm is called an empty box.

4.1. 2-approzimation factor

Claim 4.1. The greedy algorithm succeeds in fitting all the sticks if it starts
with 20 PT] blocks.

Proof. Assume, for contradiction’s sake, that the algorithm has terminated
without fitting all the sticks. The greedy algorithm, when run, induces a
labelling on the boxes (Fig. 3). Each box is either a c-box or a p-box. Since
the algorithm has not fitted all the sticks, it has run out of boxes. This
means each box of the [20PT] boxes must be either completely filled or
partially filled. Since there are 20 PT boxes, either the number of c-boxes
or p-boxes is at least equal to OPT. Each c-box contains a piece equal to its
size. so we cannot have more than OPT c-blocks, since the sum of any set
of OPT numbers from [20PT] is at least (OPT) (refutes Claim 3.2). There
cannot be more than OPT p-blocks since that would mean there are more
than OPT sticks (refutes Claim 3.1). O

P baopT

c baopT-1

p bo
c b1

Figure 3: The greedy algorithm, when run on an input, induces a labelling
on the boxes. Each box is either a c-box or a p-box

4.2. \/2-approzimation factor

We make an observation that lets us improve the approximation bound
substantially. Recall that our algorithm picks the boxes in decreasing order
of their size. We try to fit the stick with the longest remaining length into
the current box.

Key Fact. Suppose b, is a partially filled box and b, is a completely
filled box, with & > y. Since a stick of length y was fitted into b, at least
a stick of length y must have been available to box b, since it was picked
before b,. Therefore, b, must contain a stick of length at least y units.

Here is an intuitive reason why this fact is helpful. In the proof of
Claim 4.1, we did not take into account the stick lengths contained in the
partially-filled boxes. The above observation helps us to incorporate the
stick lengths in all the boxes into the analysis. We introduce a quantity
called cover that will be useful in bounding the total length of sticks.

4.2.1. Definitions

Labelling. An assignment of each box in [m] to either ‘p’ or ‘¢’ is called
a labelling. Boxes with label p are called p-boxes and those with label ¢ are
called c-boxes (with slight abuse of terminology).

Cover. Each box in [m] is associated with a natural number called cover.
Given a labelling of [m], the cover of a c-box is equal to its size and the cover
of a p-box is equal to the size of the largest c-box less than its size.

Total cover. The total cover of a labelling is the sum of all the covers
of the boxes. Note that total cover is a property of the labelling. The total
cover of a labelling X is denoted by ¢.(X).

For example, a labelling for [8] boxes 8 ———
is shown in Fig. 4. The cover of each P .

box is in dark shade. The c-box by has P

cover of 4, since by is the largest c-box P

less than b7. Likewise, boxes b3 and c s

by have covers of 1 each since b; is a »

c-box. The total cover of the labelling »

is 27 (8 x 1+4x4+41x3). It is easy to cl

see that the cover of each box and sub-
sequently the total cover is uniquely
determined by the labelling.

Figure 4: A labelling and cor-
responding covers (in blue).

4.3. Relating the total cover to the greedy algorithm

Suppose there exists a bad instance on which the greedy algorithm fails
when run with [«OPT] boxes, for some a > v/2. Let £ be the labelling of the
boxes that results from running the algorithm on this instance. This means
L is a labelling defined on [«OPT] boxes in which partially filled boxes at
the end of the algorithm are labelled ‘p’ and completely filled boxes are
labelled ‘c’.

The following lemma relates the total stick lengths contained in the boxes
to the value of ¢.(L).

Lemma 4.2. The value of the total stick lengths contained in the boxes at
the end of the algorithm is at least t.(L).

Proof. We show that the value of the stick length contained in each box is
at least the cover of that box. Let us consider a box b;. There are only two
cases:

e If b; is a c-box, then the stick length contained in it is equal to i. This
is the value of the cover of box b;.

e If b; is a p-box, then the stick length contained in it is at least as large
as the value of the cover of box b; (follows from the key fact and our
definition of cover).

g

Notation. For a labelling X, let n,(X’) denote the number of p-boxes in
the labelling X.

The labelling induced by the algorithm must satisfy the following two
conditions:

Condition 1. n,(£) < OPT. The number of p-boxes should be at most
the number of sticks in the input. Since the number of sticks at most OPT
(Claim 3.1), the number of p-boxes should be at most OPT.

Condition 2. t.(£) < (OPT). The value of the total length of the sticks
contained in the boxes is at least as much as the total cover of £ (Lemma 4.2).
We know that the former quantity is at most (OPT) (Claim 3.2). Hence,
the total cover of £ should be smaller than (OPT).

In the next section, we prove that if & > /2, then any labelling £ will
violate one of the two conditions. This means that no bad instance exists
for the greedy algorithm if it starts with [\/iOPT} boxes. This implies that
the approximation ratio of the algorithm is v/2.

Claim 4.3. The greedy algorithm has approzimation ratio of /2.

Proof. Assume, for a contradiction, that there exists a bad instance on which
the greedy algorithm fails when run with o > v/2. The induced labelling £
must satisfy the following constraints:

t.(£) < (OPT) (Condition 2)

In Section 4.4, we prove the following result (Lemma 4.7).
te(L) > ((a — 1)OPT) + (oo — 1)OPT?

Hence,

((a = 1)OPT) + (a — 1)OPT? < (OPT)
Ignoring lower order terms:

(a —1)20PT?

2

2
+ (e —1)OPT? < O];T

o < V2 (contradiction)
O

4.4. The minimum value of the total cover of L

In this section, we lower bound the value of the total cover of the labelling
L. We do so by defining another intermediate labelling £” whose total cover
is easy to calculate and whose total cover is not more than t.(L).

An exchange argument. Let b; be the smallest p-box and b; be the
smallest c-box in £. Suppose j > i. Let £’ be the labelling obtained from £
by swapping the labels of b; and b;. In the example shown in Fig. 5, 7 = 2
and j = 4.

Lemma 4.4. t.(£) > t.(L').

Proof. Let us see how the swapping of labels affects the cover of each box
in £’ compared to the corresponding box in L.

e The cover of boxes larger than b; can decrease or remain the same.

e The cover of b; decreases by j —i (box b; as a covering box had cover
of j before, after the relabelling it has cover of 7).

e The cover of boxes bj_; through b; increase by 1 (every box had a
cover of i — 1 before relabelling and ¢ after). This results in a total
increase of j — 1.

e The cover of boxes smaller than b; remain the same.

Hence the total cover of £’ is less than or equal to that of L. U

Let £” be another labelling which has same number of p-boxes (and
consequently c-boxes) as L. In the labelling £” all the p-boxes appear before
the c-boxes (Fig. 5). In other words, if b, is a p-box and b, is a c¢-box then
it implies that u > v.

Lemma 4.5. t.(£) > t.(L").

Proof. If the labelling £” # L, then L£” can be obtained by repeatedly
swapping the smallest p box and the smallest ¢ box in £. By the same
argument as given in Lemma 4.4 the total cover can only decrease after
each swap. O

Lemma 4.6. t.(L") > ((a — 1)OPT) + (a — 1)OPT?.

Proof. We know that n,(L") = n,(£) and n,(L) < OPT. Hence L£” has
at most OPT p-boxes and at least (o« — 1)OPT c-boxes. Let us bound the
total node cover of L”. Every box b; where i € {1,...,(a« — 1)OPT} is a
c-box so the sum of covers of those boxes is ((a — 1)OPT'). Every box b;
with i > (e — 1)OPT is either a c-box with cover ¢ or an p-box with cover
at least (o — 1)OPT. So every box b; with i > (v — 1)OPT has cover of at
least (v —1)OPT. There are OPT boxes in the set {b—_1)0pT) - - -, ba0PT}
and their covers add up to at least (o — 1)OPT?. Therefore, t.(£") >
(oo — 1)OPT) + (o — 1)OPT2. 0

‘NS paasssssss ¢

» — — » —
» — r— » —
P — » - » —
¢ E— » - » —
» » - c —
T C c - c
cm cm <l
L Ll E/l

Figure 5: An example of a swapping operation. The labellings £ and L£”
each have smaller total cover than that of labelling L.

Lemma 4.7.
to(L) > ((a = 1)OPT) + (o — 1)OPT?
Proof. Follows from lemmas 4.5 and 4.6. 0

4.5. Removing the assumption about knowing OPT

We made the simplifying assumption that we know the value of OPT.
This can be removed as follows: We run the greedy algorithm with [x] boxes
for every value of x € 1,2,3,... until the algorithm succeeds in fitting the
sticks. This way we can find the smallest value of x for which the algorithm
succeeds with [z] boxes. Since the algorithm succeeds with [v/20 PT] boxes,
x is guaranteed to be at most v20PT. It is easy to see that the algorithm
runs in time polynomial in OPT.

4.6. Lower bound

Claim 4.8. The greedy algorithm cannot give better than 1.16 approxima-
tion.

Proof. A bad instance for the greedy algorithm is the union of three sets of
sticks: S1 U Sy U S3, where

S1 = {k/6 sticks of length k}
So={k,k—1,...,2k/3+ 1}
Sy ={k/3—-1,k/3—2,...,1}

First, we prove that OPT = k by showing that S; U So U S3 can fit into [k]
boxes. Set S; can fit into boxes of sizes {2k/3,...,k/3}: Pick two boxes of

10

size k/2 4+ i and k/2 — i for 1 < i < k/6 for each stick in S;. Each stick in
S1 will be cut into two equal pieces.

The set Sz U S3 can be covered by boxes of sizes from the set [k] \
{2k/3,...,k/3}. Hence, OPT = k for this input.

It is easy to verify that the greedy algorithm fails if fewer than [7/6k — 2]
boxes are taken. The problem arises due to sticks in S3. Each box that
the greedy algorithm picks for a stick in Sy for the first time is only slightly
smaller than the stick. For example, box of size k — 2 is picked when fitting
a stick of k, box of size k — 3 is picked for a fitting a stick of size k — 1 and
so on. This forces the algorithm to use two boxes to fit sticks in Ss. If fewer
than [7/6k — 2] boxes are taken, some piece of stick in Sy is left out. O

Acknowledgement. I thank Prof. Abhiram Ranade for pointing me to a
reference on cutting-sticks problem.

References

Ito, T., 2010. Cutting-sticks puzzle. Theoretical Computer Science Stack
Exchange, http://cstheory.stackexchange.com/q/713 (version: 2010-08-
30).

Straight, H. J., Schillo, P., 1979. On the problem of partitioning {1,2,...,n}
into subsets having equal sums. Proceedings of the American Mathemat-
ical Society 74 (2), 229-231.

11

	1 Introduction
	1.1 Physical Interpretation

	2 Greedy Algorithm
	3 A lower bound on OPT
	4 Analysis
	4.1 2-approximation factor
	4.2 2-approximation factor
	4.2.1 Definitions

	4.3 Relating the total cover to the greedy algorithm
	4.4 The minimum value of the total cover of L
	4.5 Removing the assumption about knowing OPT
	4.6 Lower bound

