Sweep Surfaces for CAGD

Jinesh Machchhar

Advisors: Prof. Milind Sohoni and Prof. Bharat Adsul

September 12, 2013
Outline of the work

- When introducing a new surface type in a CAD kernel
 - Parametrization: Local aspects
 - Topology: Global aspects
 - Self-intersection: Global aspects
- Parametrization: Funnel
- Self-intersection: Trim curves and locus of $\theta = 0$
- Topology: Local homeomorphism between solid and envelope.
- Further, sweeping sharp solids.
A coin is translated along a parabolic trajectory in 2-D. At each time instance t, there are two points-of-contact.
A non-decomposable 2-D sweep

A coin is translated along a higher-curvature parabolic trajectory. What is the envelope in this case?

Figure: A ‘non-decomposable’ 2-D sweep
A non-decomposable 2-D sweep

A coin is translated along a higher-curvature parabolic trajectory. What is the envelope in this case? The parts connecting the green point to the endpoints of the red-curve also need to be trimmed to construct the correct envelope!
- Brep: A solid M in \mathbb{R}^3 represented by its boundary
- A trajectory in the group of rigid motions:
 \[h : \mathbb{R} \rightarrow (SO(3), \mathbb{R}^3), \ h(t) = (A(t), b(t)) \] where
 \[A(t) \in SO(3), \ b(t) \in \mathbb{R}^3, \ t \in I \]
- Action of h on M at time t:
 \[M(t) = \{ A(t) \cdot x + b(t) | x \in M \} \]
- Trajectory of a point x:
 \[\gamma_x : I \rightarrow \mathbb{R}^3, \ \gamma_x(t) = A(t) \cdot x + b(t) \]
Envelope Definition

- **Swept volume** $\mathcal{V} := \bigcup_{t \in I} M(t)$.
- **Envelope** $\mathcal{E} := \partial \mathcal{V}$.
- **Correspondence** $R = \{ (y, x, t) \in \mathcal{E} \times M \times I | y = \gamma_x(t) \}$.
- $R \subset \mathcal{E} \times \partial M \times I$.
- ∂M induces the brep structure on \mathcal{E} via R.
Outward normal to ∂M at x: $N(x)$.

Velocity of $\gamma_x(t)$: $\gamma_x'(t)$.

Define $g : \partial M \times I \rightarrow \mathbb{R}$ as $g(x, t) = \langle A(t) \cdot N(x), \gamma_x'(t) \rangle$.

For $I = [t_0, t_1]$, $\gamma_x(t) \in \mathcal{E}$ only if:

(i) $g(x, t) = 0$, or
(ii) $t = t_0$ and $g(x, t) \leq 0$, or
(iii) $t = t_1$ and $g(x, t) \geq 0$.
- **Curve of contact** at $t_0 \in I$:
 \[C(t_0) = \{ \gamma_x(t_0) | x \in \partial M, g(x, t_0) = 0 \} \].
- **Contact set** $C = \bigcup_{t \in I} C(t)$.

![Diagram showing curve of contact at t=0 and contact-set](image.png)
Parametrizations: Faces

- Smooth/regular surface S underlying face F of ∂M; u, v: parameters of S.
- Sweep map $\sigma : \mathbb{R}^2 \times I \rightarrow \mathbb{R}^3$
 \[\sigma(u, v, t) = A(t) \cdot S(u, v) + b(t) \]
- For sweep interval $I = [t_0, t_1]$, we define the following subsets of the parameter space
 \[\mathcal{L} = \{(u, v, t_0) \in \mathbb{R}^2 \times \{t_0\} \text{ such that } f(u, v, t_0) \leq 0\} \]
 \[\mathcal{F} = \{(u, v, t) \in \mathbb{R}^2 \times I \text{ such that } f(u, v, t) = 0\} \]
 \[\mathcal{R} = \{(u, v, t_1) \in \mathbb{R}^2 \times \{t_1\} \text{ such that } f(u, v, t_1) \geq 0\} \]
- $C = \sigma(\mathcal{F})$
Parametrizations
\[C = \sigma(\mathcal{F}) \]

Figure: The funnel and the contact-set.
For $t_0 \in I$, $R_{t_0} := \{(y, x, t) \in R | t = t_0\}$.

- Projections $\tau : R \rightarrow I$ and $Y : R \rightarrow E$ as $\tau(y, x, t) = t$ and $Y(y, x, t) = y$.

- Sweep (M, h, I) is simple if for all $t \in I^o$, $C(t) = Y(R_t)$.

- No trimming needed: $E = \sigma(\mathcal{L} \cup \mathcal{F} \cup \mathcal{R})$.
Self-intersections
Trim set: Not all sweeps are simple

- **Trim set** $T := \{x \in C | \exists t \in I, x \in M^o(t)\}$.
- **p-trim set** $pT := \sigma^{-1}(T) \cap \mathcal{F}$.
- Clearly, $T \cap \mathcal{E} = \emptyset$.
- Extend the correspondence R to $C \times M \times I$:
 $\tilde{R} := \{(y, x, t) \in C \times M \times I | y = A(t) \cdot x + b(t)\}$.
- $\tilde{R} \not\subset C \times \partial M \times I$
- **Trim curve** ∂T: boundary of \overline{T}.
- **p-trim curve**: ∂pT: boundary of \overline{pT}.
- For $p = (u, v, t) \in \mathcal{F}$, let $\sigma(p) = y$. $L : \mathcal{F} \rightarrow 2^{\mathbb{R}}$, $L(p) := \tau(y\tilde{R})$
- Define $\ell : \mathcal{F} \rightarrow \mathbb{R} \cup \infty$,
 \[
 \ell(p) = \inf_{t' \in L(p) \setminus \{t\}} \| t - t' \| \quad \text{if } L(p) \neq \{t\} \\
 = \infty \quad \text{if } L(p) = \{t\}
 \]
- Define $t_{-\text{sep}} = \inf_{p \in \mathcal{F}} \ell(p)$.
- **Elementary trim curve**: There exists $\delta > 0$ such that for all $p \in C$, $\ell(p) > \delta$.

- **Singular trim curve**: $\inf_{p \in C} \ell(p) = 0$.
Decomposability

- Given I, call a partition \mathcal{P} of I into consecutive intervals $I_1, I_2, \ldots, I_{k_{\mathcal{P}}}$ to be of width δ if $\max\{\text{length}(I_1), \text{length}(I_2), \ldots, \text{length}(I_{k_{\mathcal{P}}})\} = \delta$.

- (M, h, I) is **decomposable** if there exists $\delta > 0$ such that for all partitions \mathcal{P} of I of width δ, each sweep (M, h, I_i) is simple for $i = 1, \ldots, k_{\mathcal{P}}$.

- The sweep (M, h, I) is decomposable iff $t-\text{sep} > 0$. Further, if $t-\text{sep} > 0$ then all the p-trim curves are elementary.

(a) Decomposable sweep
(b) Non-decomposable sweep
For $p \in \mathcal{F}$, $\{\sigma_u(p), \sigma_v(p), \sigma_t(p)\}$ are l.d.

Let $\sigma_t(p) = n(p).\sigma_u(p) + m(p).\sigma_v(p)$, n and m continuous on \mathcal{F}.

Define $\theta : \mathcal{F} \to \mathbb{R}$,

$$\theta(p) = n(p) \cdot f_u(p) + m(p) \cdot f_v(p) - f_t(p)$$

If for all $p \in \mathcal{F}$, $\theta(p) > 0$, then the sweep is decomposable. If there exists $p \in \mathcal{F}$ such that $\theta(p) < 0$, then the sweep is non-decomposable.

θ invariant of the parametrization of ∂M.

Arises out of relation between two 2-frames on \mathcal{T}_C.

Is a non-singular function.
A geometric invariant on \mathcal{F}

- θ partitions the \mathcal{F} into (i) $\mathcal{F}^+ := \{ p \in \mathcal{F} | \theta(p) > 0 \}$, (ii) $\mathcal{F}^- := \{ p \in \mathcal{F} | \theta(p) < 0 \}$ and (iii) $\mathcal{F}^0 := \{ p \in \mathcal{F} | \theta(p) = 0 \}$.
- Define $C^+ := \sigma(\mathcal{F}^+)$, $C^- := \sigma(\mathcal{F}^-)$ and $C^0 := \sigma(\mathcal{F}^0)$.

- $C^- \subset T$.
- C^0: The set of points where $\text{dim}(T_C) < 2$.
Trimming non-decomposable sweeps

Figure: Example of a non-decomposable sweep: an elliptical cylinder being swept along y-axis while undergoing rotation about z-axis. The curve $\theta = 0$ is shown in red and trim curve is shown in blue. The portion of the swept edges where θ is negative is shown in green.
• If \(c \) is a singular p-trim curve and \(p_0 \in c \) is a limit-point of \((p_n) \subset c \) such that \(\lim_{n \to \infty} \ell(p_n) = 0 \), then \(\theta(p_0) = 0 \).

• **singular trim point**: A limit point \(p \) of a singular p-trim curve \(c \) such that \(\theta(p) = 0 \).

• Every curve \(c \) of \(\partial pT \) has a curve \(F^0_c \) of \(F^0 \) which makes contact with it.

• \(F^0 \) is easy to compute since \(\nabla \theta \) is non-zero.
Let Ω be a parametrization of a curve F^0_i of F^0. Let $\Omega(s_0) = p_0 \in F^0_i$ and $\bar{z} := (n, m, -1) \in \text{null}(J_\sigma)$ at p_0, i.e., $n\sigma_u + m\sigma_v = \sigma_t$. Define the function $\varrho : F^0 \to \mathbb{R}$ as follows.

$$\varrho(s_0) = \left\langle \bar{z} \times \frac{d\Omega}{ds}|_{s_0}, \nabla f|_{p_0} \right\rangle$$

ϱ is a measure of the oriented angle between the tangent at p_0 to F^0_i and the kernel (line) of the Jacobian J_σ restricted to the tangent space $T_{\bar{F}}(p_0)$.

If p_0 is a singular trim point, then $\varrho(p_0) = 0$.
Examples of non-decomposable sweeps

Figure: Example of a non-decomposable sweep: a cone being swept along a parabola. The curve $\theta = 0$ is shown in red and trim curve is shown in blue. The portion of the swept edges where θ is negative is shown in green.
Examples of non-decomposable sweeps

Figure: Example of a non-decomposable sweep: a cylinder being swept along a cosine curve in xy-plane while undergoing rotation about x-axis. The curve $\theta = 0$ is shown in red and trim curve is shown in blue. The portion of the swept edges where θ is negative is shown in green.
Examples of non-decomposable sweeps

Figure: Example of a non-decomposable sweep: a blended intersection of a sphere and an ellipsoid being swept along a circular arc in xy-plane while undergoing rotation about z-axis. The curve $\theta = 0$ is shown in red and trim curve is shown in blue. The portion of the swept edges where θ is negative is shown in green.
Nested trim curves

Figure: A singular p-trim curve nested inside an elementary p-trim curve
Topology
Assume w.l.o.g. \((M, h, I)\) is simple.

Let \(F\) be a face of \(\partial M\) and \(C^F\) be its contact set.

The correspondence \(R\) induces the natural map \(\pi : C^F \rightarrow F\)

\[\pi(y) = x \text{ such that } (y, x, t) \in R. \]

\(\pi\) is a well defined map.

For \(p \in F^F\), let \(\sigma(p) = y. \) \(\pi\) is a local homeomorphism at \(y\) if \(f_t(p) \neq 0.\)

Proof. \(\pi'\) is a local homeomorphism.

![Diagram](image)

Figure: The above diagram commutes.
Orientability of the envelope

(a) ∂M

(b) Contact set
When is π orientation preserving/reversing?

- For $p \in \mathcal{F}$ let $\sigma(p) = y$ and suppose $f_t(p) \neq 0$.
- π is orientation preserving/reversing at y if $-\frac{\theta(p)}{f_t(p)}$ is positive/negative respectively.
- $-\frac{\theta}{f_t}$ is a geometric invariant.

Figure: In the above example, $\pi(y) = x$. The map π is orientation preserving at y.
When is π orientation preserving/reversing?

- For $p \in \mathcal{F}$ let $\sigma(p) = y$ and suppose $f_t(p) \neq 0$.
- π is orientation preserving/reversing at y if $-\frac{\theta(p)}{f_t(p)}$ is positive/negative respectively.
- $-\frac{\theta}{f_t}$ is a geometric invariant.

Figure: In the above example, $\pi(y) = x$. The map π is orientation reversing at y.
Define the following subsets of a nbhd. \(M \subset F(t_0) \) of a point \(y \in C(t_0) \)

\[
\begin{align*}
 f^+ &= \{ q \in M | f(\sigma^{-1}(q)) > 0 \} \\
 f^0 &= \{ q \in M | f(\sigma^{-1}(q)) = 0 \} = C(t_0) \cap M \\
 f^- &= \{ q \in M | f(\sigma^{-1}(q)) < 0 \}
\end{align*}
\]

Figure: Positive and negative hemispheres at a point \(y \in \partial M(t_0) \).
Geometric meaning of $-\frac{\theta}{f}$.

- **Contributing curve** at t_0 for t is defined as the set $\{\gamma_x(t_0)|x \in \partial M, g(x, t) = 0\}$ and denoted by $t_0C(t)$.
- $t_0C(t_0) = C(t_0)$
Geometric meaning of $-\frac{\theta}{f_t}$

Figure: The map π is orientation preserving (a) The curves $t_0C(t)$ are plotted on $\partial M(t_0)$ at time instances $t_1 < t_2 < t_3$. The vector $J_\sigma \cdot \alpha$ is plotted at few points. (b) The curves $C(t)$ are plotted on C at time instances $t_1 < t_2 < t_3$.
Geometric meaning of $-\frac{\theta}{f_t}$

Figure: The map π is orientation reversing (a) The curves $t_0C(t)$ are plotted on $\partial M(t_0)$ at time instances $t_1 < t_2 < t_3$. The vector $J_\sigma \cdot \alpha$ is plotted at few points. (b) The curves $C(t)$ are plotted on C at time instances $t_1 < t_2 < t_3$.
Geometric meaning of $-\theta/f_t$

Figure: The map π is orientation preserving in a neighborhood of the point C^{v_1} and reversing in a neighborhood of the point C^{v_2}. (a) The curves $t_0C(t)$ are plotted on $\partial M(t_0)$ at time instances $t_1 < t_2 < t_3 < t_4 < t_5$. The vector $J_\sigma \cdot \alpha$ is plotted at few points. (b) The curves $C(t)$ are plotted on C at time instances $t_1 < t_2 < t_3 < t_4 < t_5$.
Orienting edges of \mathcal{E}

Figure: Orienting C^e. In this case $-\frac{\theta^F}{f_t^F}$ is negative at the point y.
Orienting edges of \mathcal{E}

Figure: Edges in parameter space (s, t), generated by an edge $e \in \partial M$.
Computing adjacencies

- If faces C^F and $C^{F'}$ are adjacent in C then the faces F and F' are adjacent in ∂M.
- If edges C^e and $C^{e'}$ are adjacent in C then e and e' are adjacent in ∂M.
- If an edge C^e bounds a face C^F in C then the edge e bounds the face F in ∂M.
- If a vertex C^z bounds an edge C^e in C then the vertex z bounds the edge e in ∂M.
- The unit outward normal varies continuously across adjacent geometric entities in C.
Figure: A simple bottle being swept along a screw motion with compounded rotation. Correspondence between faces of ∂M and those of the envelope is shown by color coding.
Simple sweep examples
Simple sweep examples
Overall computational framework

Algorithm 1 Solid sweep

```plaintext
for all $F$ in $\partial M$ do
    for all $e$ in $\partial F$ do
        for all $z$ in $\partial e$ do
            Compute vertices $C^z$ generated by $z$
        end for
        Compute edges $C^e$ generated by $e$
        Orient edges $C^e$
    end for
    Compute $C^F(t_0)$ and $C^F(t_1)$
    Compute loops bounding faces $C^F$ generated by $F$
    Compute faces $C^F$ generated by $F$
    Orient faces $C^F$
end for
for all $F_i, F_j$ adjacent in $\partial M$ do
    Compute adjacencies between faces in $C^{F_i}$ and $C^{F_j}$
end for
```
How topology of $C(t)$ varies

- $t : \mathcal{F} \rightarrow \mathbb{R}, (u, v, t) \mapsto t$ is a Morse function.
- Critical points of this function.

Figure: Number of connected components of $C(t)$ is 1, 2 and 1 for $t \in (0, t_1), (t_1, t_2)$ and $(t_2, 1)$ respectively.
How topology of $C(t)$ varies

Figure: Number of connected components of $C(t)$ varies from 1 to 2 to 1 with time.
Sweeping \textit{sharp} solids
Sweeping \textbf{sharp} solids

Figure: A G1-discontinuous solid.
Cone of normals and Cone bundle

For a point \(x \in \bigcap_{i=1}^{n} F_i \), define the **cone of normals** at \(x \) as

\[
\mathcal{N}_x = \left\{ \sum_{i=1}^{n} \alpha_i \cdot N_i(x) \right\},
\]

where, \(N_i(x) \) is the unit outward normal to face \(F_i \) at point \(x \) and \(\alpha_i \in \mathbb{R}, \alpha_i \geq 0 \) for \(i = 1, \ldots, n \) and \(\sum_{i=1}^{n} \alpha_i = 1 \).

For a subset \(X \) of \(\partial M \), the **cone bundle** is defined as the disjoint union of the cones of normals at each point in \(X \) and denoted by \(\mathcal{N}_X \), i.e.,

\[
\mathcal{N}_X = \bigsqcup_{x \in X} \mathcal{N}_x = \bigcup_{x \in X} \{(x, N(x)) | N(x) \in \mathcal{N}_x\}.
\]
Figure: A solid and its cone bundle.
For \((x, N(x)) \in \mathbf{N}_{\partial M}\) and \(t \in I\), define the function \(g : \mathbf{N}_{\partial M} \times I \rightarrow \mathbb{R}\) as
\[
g(x, N(x), t) = \langle A(t) \cdot N(x), v_x(t) \rangle
\]
For \((y, x, t) \in R\) and \(I = [t_0, t_1]\), either
(i) \(t = t_0\) and there exists \(N(x) \in \mathcal{N}_x\) such that \(g(x, N(x), t) \leq 0\) or
(ii) \(t = t_1\) and there exists \(N(x) \in \mathcal{N}_x\) such that \(g(x, N(x), t) \geq 0\) or
(iii) There exists \(N(x) \in \mathcal{N}_x\) such that \(g(x, N(x), t) = 0\).

Projection \(\pi_M : \mathbf{N}_{\partial M} \rightarrow \partial M\) as \(\pi_M(x, N(x)) = x\).
Necessary condition

- **Normals of contact at** \(t_0 \)
 \[C(t_0) := \{ (\gamma_x(t_0), A(t_0) \cdot N(x)) \in N_{\partial M}(t_0) | g(x, N(x), t_0) = 0 \}. \]

- **Curve of contact at** \(t_0 \)
 \[C(t_0) := \pi_M(C(t_0)). \]

![Diagram](image.png)
For x in edge $E = F_1 \cap F_2$, parametrize N_x with $\alpha \in [0, 1]$ as
\[N_x(\alpha) = \alpha \cdot N_1(x) + (1 - \alpha) \cdot N_2(x) \]

Let I' be the domain of curve e underlying edge E.

Define function f on the parameter space $I' \times I_1 \times I$ to \mathbb{R} as
\[f(s, \alpha, t) = g(e(s), N_e(s)(\alpha), t). \]

Funnel $\mathcal{F} = \{(s, \alpha, t) \in I' \times I_1 \times I \text{ such that } f(s, \alpha, t) = 0\}$

Sweep map $\sigma^e : I' \times I_1 \times I \rightarrow \mathbb{R}^6$ is defined as
\[\sigma^e(s, \alpha, t) = (\gamma_{e(s)}(t), A(t) \cdot N_{e(s)}(\alpha)) \]

Projection $\pi_{st} : I' \times I_1 \times I \rightarrow I' \times I$, $\pi_{st}(s, \alpha, t) = (s, t)$.

Projected sweep map $\hat{\sigma}^e : I' \times I \rightarrow \mathbb{R}^3$, $\hat{\sigma}^e(s, t) = A(t) \cdot e(s) + b(t)$.
Figure: The above diagram commutes.
- $\pi_{st}(\mathcal{F})$ serves as a parametrization space for contact set C

![Diagram](image)

(a) \mathcal{F}

(b) $\pi_{st}(\mathcal{F})$

Figure: The funnel \mathcal{F} and $\pi_{st}(\mathcal{F})$.

- $\partial C = \hat{\sigma}^e(\pi_{st}(\mathcal{F} \cap \partial(l' \times l_1 \times l)))$.
A vertex will trace edges and an edge will trace faces.

Figure: A pyramid swept along a curvilinear trajectory.
Figure: The 1-cage of the envelope obtained by sweeping a cube.
Thank You