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Outline of the work

m When introducing a new surface type in a CAD kernel
m Parametrization: Local aspects
m Topology: Global aspects
m Self-intersection: Global aspects

m Parametrization: Funnel

m Self-intersection: Trim curves and locus of 6 =0

m Topology: Local homeomorphism between solid and
envelope.

m Further, sweeping sharp solids.



A simple 2-D sweep

Figure: A simple 2-D sweep

A coin is translated along a parabolic trajectory in 2-D.
At each time instance t, there are two points-of-contact.



A non-decomposable 2-D sweep

Figure: A ‘non-decomposable’ 2-D sweep

A coin is translated along a higher-curvature parabolic trajectory.
What is the envelope in this case?



A non-decomposable 2-D sweep

Figure: A ‘non-decomposable’ 2-D sweep

A coin is translated along a higher-curvature parabolic trajectory.
What is the envelope in this case?

The parts connecting the green point to the endpoints of the
red-curve also need to be trimmed to construct the correct
envelope!



Envelope Definition

Brep: A solid M in R3 represented by its boundary

A trajectory in the group of rigid motions:
h:R — (SO(3),R3), h(t) = (A(t), b(t)) where
A(t) € SO(3),b(t) eR3 t € I

Action of h on M at time t:

M(t) = {A(t) - x+ b(t)|x € M}

Trajectory of a point x:

Yo 1 — R3S, A (t) = A(t) - x + b(t)



Envelope Definition

m Swept volume V := U M(t).

tel
Envelope & := 0V.

Correspondence R = {(y,x,t) € £ x M x I|ly = 7,(t)}.
RCE&ExOMxI.
OM induces the brep structure on & via R.

solid
envelope
t X



Envelope Definition

m Outward normal to OM at x: N(x).
m Velocity of ~x(t) : vL(t).
m Define g : OM x | — R as g(x, t) = (A(t) - N(x),v%(t)).
m For | = [tg, t1], 7x(t) € € only if:
(i) g(x,t) =0, or
(ii) t = to and g(x,t) <0, or
(iii) t = t; and g(x,t) > 0.



Envelope Definition

m Curve of contact at tp € /:
C(to) = {x(to)|x € OM, g(x, to) = 0}.
m Contact set C = U C(t).

tel

Solid Contact-set

curve of contact

_r' at t=0



Parametrizations: Faces

m Smooth/regular surface S underlying face F of OM; u, v:
parameters of S.

m Sweep map o : R? x | — R3
o(u,v,t) = A(t) - S(u,v) + b(t)

m For sweep interval | = [ty, t1], we define the following subsets
of the parameter space

L= {(u,v,t) € R? x {to} such that f(u, v, ty) < 0}
F ={(u,v,t) € R? x | such that f(u,v,t) =0}
R = {(u,v, t1) € R? x {t;} such that f(u, v, t;) > 0}

m C=0(F)



Parametrizations



Parametrizations

Crto)  3M(to)

Y Contact-set

Figure: The funnel and the contact-set.



Simple sweep

m Fortgel, Ry :={(y,x,t) € R|t =t}
m Projections7: R —/and Y: R — €& as
T(y,x,t) =t and Y(y,x,t) =y.
m Sweep (M, h, 1) is simple if for all t € 1°, C(t) = Y(Ry)
m No trimming needed: £ =o(LUF UTR).

C

) %




Self-intersections



Trim set: Not all sweeps are simple

m Trimset T :={xe C|3tel ,xec M°(t)}.
m p-trim set pT := o0 }(T)N F.
m Clearly, TNE = 0.

m Extend the correspondence R to C x M x [:
R:={(y,x,t) € C x M x lly = A(t) - x + b(t)}.
Rg CxoMxI




Trim curves

Trim curve OT: boundary of T.

m p-trim curve: OpT: boundary of pT.
n Forp:(u,y,t)e]:, let o(p) =y. L: F — 2K,
L(p) = T(,R)
m Define /: F - RU oo,
: , i
)=, jnf =€l L) £ {e)
= oo it L(p) = {t}

Define t—sep = inf_¢(p).
m Define t—sep ;2}_ (p)



Trim curves

m Elementary trim curve: There exists § > 0 such that for all
peC, Up)>9.

m Singular trim curve: inf {(p) = 0.
peC

Funnel Funnel
(a) Elementary p-trim curves  (b) Singular p-trim curves



Decomposability

m Given /, call a partition P of | into consecutive intervals
I, b, ..., Ik, to be of width ¢ if
max{length(l), length(h), ..., length(lc,)} = 9.

m (M, h, 1) is decomposable if there exists § > 0 such that for
all partitions P of | of width §, each sweep (M, h, I;) is simple
fori=1,---, kp.

m The sweep (M, h, 1) is decomposable iff t—sep > 0. Further, if
t—sep > 0 then all the p-trim curves are elementary.

(a) Decomposable sweep (b) Non-decomposable sweep



A geometric invariant on F

For p e F, {ou(p),ov(p),o¢(p)} are |.d.
Let o+(p) = n(p).ou(p) + m(p).ov(p), n and m continuous on
F.

Define 6 : F — R,

0(p) = n(p) - fulp) + m(p) - fv(p) — f:(pP)

If for all p € F, 6(p) > 0, then the sweep is decomposable. If
there exists p € F such that §(p) < 0, then the sweep is
non-decomposable.

6 invariant of the parametrization of OM.
Arises out of relation between two 2-frames on 7.

Is a non-singular function.



A geometric invariant on F

m 0 partitions the F into (i) F* := {p € F|0(p) > 0}, (ii)
F~:={p <€ Flo(p) < 0} and (iii) F°:= {p € F|O(p) = 0}.
m Define C* := o(F*), C~ := o(F~) and C? := o(FO).

Funnel y Contact-set

mC CT.
m CO: The set of points where dim(T¢) < 2.



Trimming non-decomposable sweeps

trim curve

Figure: Example of a non-decomposable sweep: an elliptical cylinder
being swept along y-axis while undergoing rotation about z-axis. The
curve @ = 0 is shown in red and trim curve is shown in blue. The portion
of the swept edges where 6 is negative is shown in green.



Trimming non-decomposable sweeps

m If c is a singular p-trim curve and pg € c is a limit-point of

(pn) C c such that lim ¢(p,) =0, then 6(py) = 0.
n—oo

m singular trim point: A limit point p of a singular p-trim
curve ¢ such that §(p) = 0.

m Every curve ¢ of OpT has a curve F? of F° which makes
contact with it.

m 70 is easy to compute since V6 is non-zero.

Funnel Funnel
(a) Decomposable sweep (b) Non-decomposable sweep



Locating FONOpT

m Let Q be a parametrization of a curve ]-',p of FO. Let
Q(s0) = po € F? and z := (n,m, —1) € null(J,) at po, i.e.,
no, + mo, = o¢. Define the function ¢ : F© — R as follows.

_dQ
o(s0) = (2 1o V11, )

m 0 is a measure of the oriented angle between the tangent at
po to F? and the kernel (line) of the Jacobian J, restricted to
the tangent space Tx(po).

m If po is a singular trim point, then o(pg) = 0.



Examples of non-decomposable sweeps

Figure: Example of a non-decomposable sweep: a cone being swept along
a parabola. The curve 6 = 0 is shown in red and trim curve is shown in
blue. The portion of the swept edges where 6 is negative is shown in
green.



Examples of non-decomposable sweeps

Figure: Example of a non-decomposable sweep: a cylinder being swept
along a cosine curve in xy-plane while undergoing rotation about x-axis.
The curve 8 = 0 is shown in red and trim curve is shown in blue. The
portion of the swept edges where 6 is negative is shown in green.



Examples of non-decomposable sweeps

Figure: Example of a non-decomposable sweep: a blended intersection of
a sphere and an ellipsoid being swept along a circular arc in xy-plane
while undergoing rotation about z-axis. The curve # = 0 is shown in red
and trim curve is shown in blue. The portion of the swept edges where 6
is negative is shown in green.



Nested trim curves

Funnel

Figure: A singular p-trim curve nested inside an elementary p-trim curve



Topology



Computing topological information

m Assume w.l.o.g. (M, h, 1) is simple.

m Let F be a face of OM and CF be its contact set.

m The correspondence R induces the natural map = : CF — F
7(y) = x such that (y,x, t) € R.

m 7 is a well defined map.

m For p € FF let o(p) = y. 7 is a local homeomorphism at y if

fe(p) # 0.

Proof. 7' is a local homeomorphism.

Figure: The above diagram commutes.



Orientability of the envelope

! T

(b) Contact set



When is 7 orientation preserving/reversing?

m For p € F let o(p) = y and suppose f;(p) # 0.
m 7 is orientation preserving/reversing at y if _9(p) g
fe(p)
positive/negative respectively.

n —% is a geometric invariant.

~

(a)

Figure: In the above example, 7(y) = x. The map 7 is orientation
preserving at y.



When is 7 orientation preserving/reversing?

m For p € F let o(p) = y and suppose f;(p) # 0.
m 7 is orientation preserving/reversing at y if _9(p) g
fe(p)
positive/negative respectively.

n —% is a geometric invariant.

Figure: In the above example, 7(y) = x. The map 7 is orientation
reversing at y.



Geometric meaning of —%

m Define the following subsets of a nbhd. M C F(tp) of a point
ye C(to)

f*={qe Ml|f(c7'(q)) > 0}
f={q € M|f(67(g)) =0} = C(to) "M
f~={qe M|f(c7'(q)) < 0}

I

F (to)

Figure: Positive and negative hemispheres at a point y € dM(tp).



Geometric meaning of —%

m Contributing curve at ty for t is defined as the set
{7x(to)|x € OM, g(x, t) = 0} and denoted by C(t).

| toC(to) = C(to)



Geometric meaning of —%

(@) oM (b) Contact set

Figure: The map 7 is orientation preserving (a) The curves ©C(t) are
plotted on OM(tp) at time instances t; < t, < t3. The vector J, - « is
plotted at few points. (b) The curves C(t) are plotted on C at time
instances t; < tr, < t3.



Geometric meaning of —%

11

F3
CF2 C
2 Vi
F1
13
(a)oM (b) Contact set

Figure: The map 7 is orientation reversing (a) The curves °C(t) are
plotted on OM(tp) at time instances t; < tp < t3. The vector J, - « is
plotted at few points. (b) The curves C(t) are plotted on C at time
instances t; < t, < t3.



Geometric meaning of —%

(a) oM
(b) Contact set

Figure: The map 7 is orientation preserving in a neighborhood of the
point CV! and reversing in a neighborhood of the point C"2. (a) The
curves ©C(t) are plotted on OM(tp) at time instances

t <ty < t3 < ty < ts. The vector J, -« is plotted at few points. (b) The
curves C(t) are plotted on C at time instances t; < t, < t3 < ts < t5.



Orienting edges of £

(@ F b) "

Figure: Orienting C¢. In this case fﬁ—F is negative at the point y.
t



Orienting edges of £

t_min

s_min S— sp S-Mmax

Figure: Edges in parameter space (s, t), generated by an edge e € OM.



Computing adjacencies

m If faces CF and CF’ are adjacent in C then the faces F and
F’ are adjacent in OM.

m If edges C® and C¢ are adjacent in C then e and ¢’ are
adjacent in M.

m If an edge C® bounds a face CF in C then the edge e bounds
the face F in OM.

m If a vertex C? bounds an edge C€ in C then the vertex z
bounds the edge e in OM.

m The unit outward normal varies continuously across adjacent
geometric entities in C.



Simple sweep examples

Figure: A simple bottle being swept along a screw motion with
compounded rotation. Correspondence between faces of 9M and those of
the envelope is shown by color coding.



Simple sweep examples




Simple sweep examples




Overall computational framework

Algorithm 1 Solid sweep
for all F in OM do
for all e in OF do
for all z in Je do
Compute vertices C# generated by z
end for
Compute edges C€ generated by e
Orient edges C¢
end for
Compute CF(tp) and CF(t1)
Compute loops bounding faces CF generated by F
Compute faces CF generated by F
Orient faces CF
end for
for all F;, F; adjacent in OM do

Compute adjacencies between faces in CFi and CFi
end for




How topology of C(t) varies

mt:F— R (uv,t)— tisa Morse function.

m Critical points of this function.

Vv Funnel

Figure: Number of connected components of C(t) is 1,2 and 1 for
t € (0,t1),(t1, t2) and (t2,1) respectively.



How topology of C(t) varies

(a) pcurves of contact (b) curves of contact

y
A

z X

(c) solid

Figure: Number of connected components of C(t) varies from 1 to 2 to 1
with time.



Sweeping sharp solids



Sweeping sharp solids

Figure: A Gl-discontinuous solid.



Cone of normals and Cone bundle

n
m For a point x € ﬂ F;, define the cone of normals at x as
i=1

Ny = {z a;j - Ni(x) ¢, where, N;(x) is the unit outward

normal to face F; at point x and «; € R, oj > 0 for

.,nand Zoz,-zl.

m For a subset X of OM, the cone bundle is defined as the
disjoint union of the cones of normals at each point in X and
denoted by Ny, i.e.,

Nx_|_|N_U{xN (x) € N}

xeX xeX



Cone of normals and Cone bundle

(0) Ny

Figure: A solid and its cone bundle.



Necessary condition

m For (x, N(x)) € Ngm and t € [, define the function
g :Noy xI —Ras

g(x, N(x), t) = (A(t) - N(x), v(t))

m For (y,x,t) € R and | = [to, t1], either
(i) t = to and there exists N(x) € N such that
g(x, N(x),t) <0or
(ii) t = t; and there exists N(x) € N such that
g(x,N(x),t) >0 or
(iii) There exists N(x) € Ny such that g(x, N(x), t) = 0.
X.

m Projection mpy : Ngm — OM as my(x, N(x)) =



Necessary condition

m Normals of contact at t;
C}(to) := {(x(t0), A(to) - N(x)) € Nom(to)|g(x, N(x), to) =
0}.

m Curve of contact at ty C(tp) := mnm(C(t0)).

C(to) Ci(to)

N (o)

F1

F3

(@) OM () (6) Ny (t0)



Parametrization

m For x in edge E = F1 N F,, parametrize N with o € [0,1] as
Ni(@) = a- Ny(x) + (1 — ) - Na(x)

m Let /” be the domain of curve e underlying edge E.

m Define function f on the parameter space I’ x Iy x | to R as
f(s, o, t) = g(e(s), Negs) (@), 1)

m Funnel 7 = {(s,a,t) € I' x Iy x I such that f(s,«,t) =0}

m Sweep map o€ : I’ x I} x | — R® is defined as
o°(s, a, t) = (Ve(s)(t), A(t) - Ne(s) (@)

m Projection 7o : I" X h x | = I x I, wet(s, a, t) = (s, t).

m Projected sweep map 6¢: /' x | — R3,
5¢(s,t) = A(t) - e(s) + b(t).



Parametrization

0.6
I'Iyx T RS
Tst M
I'<I R3
O”‘.e

Figure: The above diagram commutes.



Parametrization

m 75:(F) serves as a parametrization space for contact set C

t N
t_max
/,~ ~F(to)
d> .
/ t C
: : S |
t_min
g S ‘min
a »
@7 (b) 7 (F)

Figure: The funnel F and 7s(F).

m 0C = 6°(mt(F N O x Iy x 1))).



Sweeping sharp solids

A vertex will trace edges and an edge will trace faces

Figure: A pyramid swept along a curvilinear trajectory



Sweeping sharp solids

Figure: The 1-cage of the envelope obtained by sweeping a cube.



Thank You

CEREIES



