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Task vs. Technique Matrix
Task (row) vs. 

Technique (col) Matrix

Rules 

Based/Kn

owledge-

Based

Classical ML Deep Learning

Perceptron Logistic 

Regression

SVM Graphical Models 

(HMM, MEMM, 

CRF)

Dense FF with 

BP and softmax

RNN-

LSTM

CNN

Morphology

POS

Chunking

Parsing

NER, MWE

Coref

WSD

Machine Translation

Semantic Role 

Labeling

Sentiment

Question Answering



Agenda for the week 

• Introduction to Neural Network 

as a framework for “deep 

learning”

• Perceptron and Feedforward 

N/W

• Recurrent N/W

• NLP and Neural Net



Stages of development

• Perceptron

• Feedforward Neural N/W

• (in parallel with FFNN) Recurrent Neural Nets

• Multilayer recurrent n/w: Self Organization, 

Neocognitron

• (recent) LSTM, Bi-LSTM, GRU

• (recent) FFNN with softmax

• After RNN) Transformers
– Main difference with RNN, data need not be in 

sequential order!



https://huggingface.co/transformers/

(1/6)
• The library currently contains PyTorch and Tensorflow

implementations, pre-trained model weights, usage scripts 

and conversion utilities for the following models:

• BERT (from Google) released with the paper BERT: Pre-

training of Deep Bidirectional Transformers for Language 

Understanding by Jacob Devlin, Ming-Wei Chang, Kenton 

Lee, and Kristina Toutanova.

• GPT (from OpenAI), Improving Language Understanding by 

Generative Pre-Training by Radford et al.

• GPT-2 (from OpenAI), Language Models are Unsupervised 

Multitask Learners by Radford et al.

• Transformer-XL (from Google/CMU), released with the 

paper Transformer-XL: Attentive Language Models Beyond a 

Fixed-Length Context by Zihang Dai et al.

https://huggingface.co/transformers/
https://github.com/google-research/bert
https://arxiv.org/abs/1810.04805
https://github.com/openai/finetune-transformer-lm
https://blog.openai.com/language-unsupervised
https://blog.openai.com/better-language-models
https://blog.openai.com/better-language-models
https://github.com/kimiyoung/transformer-xl
https://arxiv.org/abs/1901.02860


Huggingface cntd. (2/6)
• XLNet (from Google/CMU), XLNet: Generalized 

Autoregressive Pretraining for Language 

Understanding by Zhilin Yang et al.

• XLM (from Facebook), Cross-lingual Language Model 

Pretraining by Guillaume Lample and Alexis Conneau.

• RoBERTa (from Facebook), Robustly Optimized BERT 

Pretraining Approach by Yinhan Liu et al.

• DistilBERT (from HuggingFace), DistilBERT, a distilled 

version of BERT: smaller, faster, cheaper and lighter by 

Victor Sanh et al. The same method has been applied to 

compress GPT2 into DistilGPT2.

• CTRL (from Salesforce), CTRL: A Conditional 

Transformer Language Model for Controllable 

Generation by Keskar et al.

https://github.com/zihangdai/xlnet
https://arxiv.org/abs/1906.08237
https://github.com/facebookresearch/XLM
https://arxiv.org/abs/1901.07291
https://github.com/pytorch/fairseq/tree/master/examples/roberta
https://arxiv.org/abs/1907.11692
https://huggingface.co/transformers/model_doc/distilbert.html
https://arxiv.org/abs/1910.01108
https://github.com/huggingface/transformers/tree/master/examples/distillation
https://github.com/pytorch/fairseq/tree/master/examples/ctrl
https://www.github.com/salesforce/ctrl


Huggingface (3/6)
• CamemBERT (from FAIR, Inria, Sorbonne 

Université), CamemBERT: a Tasty French Language 

Model by Louis Martin et al.

• ALBERT (from Google Research), ALBERT: A Lite BERT for 

Self-supervised Learning of Language Representations by 

Zhenzhong Lan et al.

• T5 (from Google), Exploring the Limits of Transfer Learning 

with a Unified Text-to-Text Transformer by Raffel et al.

• XLM-RoBERTa (from Facebook AI), Unsupervised Cross-

lingual Representation Learning at Scale by Conneau et al.

https://huggingface.co/transformers/model_doc/camembert.html
https://arxiv.org/abs/1911.03894
https://github.com/google-research/ALBERT
https://arxiv.org/abs/1909.11942
https://github.com/google-research/text-to-text-transfer-transformer
https://arxiv.org/abs/1910.10683
https://github.com/pytorch/fairseq/tree/master/examples/xlmr
https://arxiv.org/abs/1911.02116


Huggingface (4/6)
• MMBT (from Facebook), Supervised Multimodal 

Bitransformers for Classifying Images and Text by Kiela et al.

• FlauBERT (from CNRS), FlauBERT: Unsupervised Language 

Model Pre-training for French by Le et al.

• BART (from Facebook), BART: Denoising Sequence-to-

Sequence Pre-training for Natural Language Generation, 

Translation, and Comprehension by Lewis et al.

• ELECTRA (from Google Research/Stanford University), 

ELECTRA: Pre-training text encoders as discriminators 

rather than generators by Clark et al.

• DialoGPT (from Microsoft Research), DialoGPT: Large-Scale 

Generative Pre-training for Conversational Response 

Generation by Zhang et al.

https://github.com/facebookresearch/mmbt/
https://arxiv.org/pdf/1909.02950.pdf
https://github.com/getalp/Flaubert
https://arxiv.org/abs/1912.05372
https://github.com/pytorch/fairseq/tree/master/examples/bart
https://arxiv.org/pdf/1910.13461.pdf
https://github.com/google-research/electra
https://arxiv.org/abs/2003.10555
https://github.com/microsoft/DialoGPT
https://arxiv.org/abs/1911.00536


Huggingface (5/6)
• Reformer (from Google Research), Reformer: The Efficient 

Transformer by Kitaev et al.

• MarianMT (developed by the Microsoft Translator Team) 

machine translation models trained 

using OPUS pretrained_models data by Jörg Tiedemann.

• Longformer (from AllenAI), Longformer: The Long-Document 

Transformer by Beltagy et al.

• DPR (from Facebook), Dense Passage Retrieval for Open-

Domain Question Answering by Karpukhin et al.

• Pegasus (from Google), PEGASUS: Pre-training with 

Extracted Gap-sentences for Abstractive Summarization by 

Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. 

Liu.

https://github.com/google/trax/tree/master/trax/models/reformer
https://arxiv.org/abs/2001.04451
https://marian-nmt.github.io/
http://opus.nlpl.eu/
https://github.com/allenai/longformer
https://arxiv.org/abs/2004.05150
https://github.com/facebookresearch/DPR
https://arxiv.org/abs/2004.04906
https://github.com/google-research/pegasus
https://arxiv.org/abs/1912.08777


Huggingface (6/6)
• MBart (from Facebook) released with the paper Multilingual 

Denoising Pre-training for Neural Machine Translation by Liu 

et al.

• LXMERT (from UNC Chapel Hill), LXMERT: Learning Cross-

Modality Encoder Representations from Transformers for 

Open-Domain Question Answering by Tan and Mohit Bansal.

• Funnel Transformer (from CMU/Google Brain), Funnel-

Transformer: Filtering out Sequential Redundancy for 

Efficient Language Processing by Dai et al.

• Bert For Sequence Generation (from Google), Leveraging 

Pre-trained Checkpoints for Sequence Generation 

Tasks Rothe et al.

• LayoutLM (from Microsoft Research Asia), LayoutLM: Pre-

training of Text and Layout for Document Image 

Understanding by Xu et al.

https://github.com/pytorch/fairseq/tree/master/examples/mbart
https://arxiv.org/abs/2001.08210
https://github.com/airsplay/lxmert
https://arxiv.org/abs/1908.07490
https://github.com/laiguokun/Funnel-Transformer
https://arxiv.org/abs/2006.03236
https://tfhub.dev/s?module-type=text-generation&subtype=module,placeholder
https://arxiv.org/abs/1907.12461
https://github.com/microsoft/unilm/tree/master/layoutlm
https://arxiv.org/abs/1912.13318


Using Transformers: tasks 

• Sequence Classification

• Extractive Question Answering

• Language Modeling

• Named Entity Recognition

• Summarization

• Translation

https://huggingface.co/transformers/task_summary.html#sequence-classification
https://huggingface.co/transformers/task_summary.html#extractive-question-answering
https://huggingface.co/transformers/task_summary.html#language-modeling
https://huggingface.co/transformers/task_summary.html#named-entity-recognition
https://huggingface.co/transformers/task_summary.html#summarization
https://huggingface.co/transformers/task_summary.html#translation


Using Transformers: Models

• Autoregressive models

• Autoencoding models

• Sequence-to-sequence models

• Multimodal models

• Retrieval-based models

https://huggingface.co/transformers/model_summary.html#autoregressive-models
https://huggingface.co/transformers/model_summary.html#autoencoding-models
https://huggingface.co/transformers/model_summary.html#sequence-to-sequence-models
https://huggingface.co/transformers/model_summary.html#multimodal-models
https://huggingface.co/transformers/model_summary.html#retrieval-based-models


Difference between “Discriminative” 

and “Generative” Models

• Historical reason

• Binary classification problem

• Want to decide if a patient has cancer based 

on different “features” from the reports

• ArgmaxD(P(D|S))

• D takes values ‘Y’ and ‘N’

• Decide ‘Y’ if P(D=Y|S) > P(=N|S), else ‘N’ 



Discriminative Model

• Compute P(D|S) directly

• “Features” from reports, S= {F1, F2, 

F3, …,FK} (like, fever, weight loss, hair 

loss, haemoglobin level etc.)

• P(D=Y|<fever, weight loss, hair loss, 

haemoglobin level,…>)

• We are discriminating, i.e., 

differentiating wrt the features input



Generative Model
• Compute P(D) and P(S|D) and take product

• For P(D) we will need the proportion of 

cancer patients in the population (obtained 

via sampling)

• For the likelihood, we will make use of naïve 

Bayes assumption and require values of 

P(Fi|D), e.g., what is the probability of a 

cancer patient having fever

• Hence the “discrimination” is not direct!!



AI Perspective (post-web)

Planning

Computer

Vision

NLP

Expert

Systems

Robotics

Search, 

Reasoning,

Learning
IR



Symbolic AI

• Connectionist AI is contrasted with 

Symbolic AI

• Symbolic AI - Physical Symbol 

System Hypothesis

• Every intelligent system can be 

constructed by storing and 

processing symbols and nothing 

more is necessary.

• Symbolic AI has a bearing on models 

of computation such as

• Turing Machine



Turing Machine & Von Neumann 

Machine



Challenges to Symbolic AI

• Motivation for challenging Symbolic AI

• A large number of computations and 

information process tasks that living 

beings are comfortable with, are not 

performed well by computers!

• The Differences
• Brain computation in living beings TM computation in computers

• Pattern Recognition Numerical Processing

• Learning oriented Programming oriented

• Distributed & parallel processing Centralized & serial 

processing

• Content addressable Location addressable



• The human brain

• Seat of consciousness and cognition

• Perhaps the most complex information 
processing  machine in nature





Neuron - “classical”

• Dendrites
– Receiving stations of neurons

– Don't generate action potentials

• Cell body
– Site at which information 

received is integrated

• Axon
– Generate and relay action 

potential

– Terminal

• Relays information to 

next neuron in the pathway
http://www.educarer.com/images/brain-nerve-axon.jpg



Perceptron



The Perceptron Model

A perceptron is a computing element with input 

lines having associated weights and the cell 

having a threshold value. The perceptron model is 

motivated by the biological neuron.

Output = y

wn
Wn-1

w1

Xn-1

x1

Threshold = θ



θ

1
y

Step function / Threshold function

y = 1 for  Σwixi >=θ

=0 otherwise

Σwixi



Features of Perceptron

• Input output behavior is discontinuous and the 

derivative does not exist at Σwixi = θ

• Σwixi - θ is the net input denoted as net

• Referred to as a linear threshold element -

linearity because of x appearing with power 1

• y= f(net): Relation between y and net is non-

linear



Computation of Boolean 

functions

AND of 2 inputs

X1 x2 y
0 0 0

0 1 0

1 0 0

1 1 1

The parameter values (weights & thresholds) need to be found.

y

w1 w2

x1 x2

θ



Computing parameter values

w1 * 0 + w2 * 0  <= θ θ >=  0; since y=0

w1 * 0 + w2  * 1  <= θ w2  <= θ; since y=0

w1 * 1 + w2 * 0  <= θ w1  <= θ; since y=0

w1 * 1 + w2  *1 > θ w1 + w2 > θ; since y=1

w1 = w2 =  = 0.5

satisfy these inequalities and find parameters to be 

used for computing AND function.



Other Boolean functions

• OR can be computed using values of w1 = w2 = 1 

and  = 0.5

• XOR function gives rise to the following 

inequalities:

w1 * 0 + w2 * 0  <= θ θ >=  0

w1 * 0 + w2  * 1  > θ w2  > θ

w1 * 1 + w2 * 0  > θ w1  > θ

w1 * 1 + w2  *1 <= θ w1 + w2 <= θ

No set of parameter values satisfy these inequalities.



Threshold functions

n # Boolean functions (2^2^n) #Threshold Functions (2n2)

1 4 4

2 16 14

3 256 128

4 64K 1008

• Functions computable by perceptrons - threshold 

functions

• #TF becomes negligibly small for larger values of 

#BF.

• For n=2, all functions except XOR and XNOR are 

computable.



AND of 2 inputs

X1 x2 y
0 0 0

0 1 0

1 0 0

1 1 1

The parameter values (weights & thresholds) need to be found.

y

w1 w2

x1 x2

θ



Constraints on w1, w2 and θ

w1 * 0 + w2 * 0  <= θ θ >=  0; since y=0

w1 * 0 + w2  * 1  <= θ w2  <= θ; since y=0

w1 * 1 + w2 * 0  <= θ w1  <= θ; since y=0

w1 * 1 + w2  *1 > θ w1 + w2 > θ; since y=1

w1 = w2 =  = 0.5

These inequalities are satisfied by ONE particular region



Perceptron training



Perceptron Training Algorithm 

(PTA)

Preprocessing:

1. The computation law is modified to

y = 1  if  ∑wixi > θ

y = o  if  ∑wixi < θ



.   .   . 

θ, ≤

w1 w2 wn

x1 x2 x3 xn

.   .   . 

θ, <

w1 w2 w3
wn

x1 x2 x3 xn

w3



PTA – preprocessing cont…

2. Absorb θ as a weight



3. Negate all the zero-class examples

.   .   . 

θ

w1 w2 w3 wn

x2 x3 xn
x1

w0=θ

x0= -1

.   .   . 

θ

w1 w2 w
3

wn

x2 x3 xn
x1



Example to demonstrate preprocessing

• OR perceptron

1-class <1,1> , <1,0> , <0,1>

0-class <0,0>

Augmented x vectors:-

1-class <-1,1,1> , <-1,1,0> , <-1,0,1>

0-class <-1,0,0>

Negate 0-class:- <1,0,0>



Example to demonstrate preprocessing 

cont..

Now the vectors are

x0 x1 x2

X1 -1   0   1

X2 -1   1   0

X3 -1   1   1

X4 1   0   0



Perceptron Training Algorithm

1. Start with a random value of w

ex: <0,0,0…>

2. Test for wxi > 0

If the test succeeds for i=1,2,…n

then return w

3. Modify w, wnext = wprev + xfail



PTA on NAND

NAND: Y

X2    X1    Y

0     0      1                      

0     1     1 W2          W1 

1     0      1               

1     1      0              X2                X1 

Converted To   

W2     W1 W0= Θ

X2     X1        X0=-1

Θ

Θ



Preprocessing

NAND Augmented:         NAND-0 class Negated

X2    X1    X0    Y                  X2     X1     X0 

0     0     -1     1           V0:      0       0     -1

0     1     -1 1 V1:     0       1     -1 

1     0     -1     1           V2:      1       0     -1 

1     1     -1     0           V3:   -1       -1     1 

Vectors for which 

W=<W2 W1 W0> has to 

be found such that 

W. Vi > 0



PTA Algo steps

Algorithm:

1.  Initialize and Keep adding the failed vectors

until  W. Vi > 0 is true.

Step 0:  W    =  <0, 0, 0>

W1 =  <0, 0, 0> + <0, 0, -1>     {V0 Fails}

=  <0, 0, -1>

W2 =  <0, 0, -1> + <-1, -1, 1>  {V3 Fails}

=  <-1, -1, 0> 

W3 =  <-1, -1, 0> + <0, 0, -1>    {V0 Fails}

=  <-1, -1, -1>

W4 =  <-1, -1, -1> + <0, 1, -1>  {V1 Fails}

=  <-1, 0, -2>



Trying convergence

W5 =  <-1, 0, -2> + <-1, -1, 1>     {V3 Fails}

=  <-2, -1, -1>

W6 =  <-2, -1, -1> + <0, 1, -1>       {V1 Fails}

=  <-2, 0, -2> 

W7 =  <-2, 0, -2> + <1, 0, -1>       {V0 Fails}

=  <-1, 0, -3>

W8 =  <-1, 0, -3> + <-1, -1, 1>     {V3 Fails}

=  <-2, -1, -2>

W9 =  <-2, -1, -2> + <1, 0, -1>      {V2 Fails}

=  <-1, -1, -3>



Trying convergence

W10 =  <-1, -1, -3> + <-1, -1, 1>     {V3 Fails}

=  <-2, -2, -2>

W11 =  <-2, -2, -2> + <0, 1, -1>       {V1 Fails}

=  <-2, -1, -3> 

W12 =  <-2, -1, -3> + <-1, -1, 1>    {V3 Fails}

=  <-3, -2, -2>

W13 =  <-3, -2, -2> + <0, 1, -1>       {V1 Fails}

=  <-3, -1, -3>

W14 =  <-3, -1, -3> + <0, 1, -1>      {V2 Fails}

=  <-2, -1, -4>



W15  =  <-2, -1, -4> + <-1, -1, 1>     {V3 Fails}

=  <-3, -2, -3>

W16  =  <-3, -2, -3> + <1, 0, -1>       {V2 Fails}

=  <-2, -2, -4> 

W17  =  <-2, -2, -4> + <-1, -1, 1>    {V3 Fails}

=  <-3, -3, -3>

W18  =  <-3, -3, -3> + <0, 1, -1>       {V1 Fails}

=  <-3, -2, -4>

W2 =  -3,   W1 = -2,   W0 = Θ = -4

Succeeds for all vectors



PTA convergence



Statement of Convergence of 

PTA

• Statement:

Whatever be the initial choice of weights and 

whatever be the vector chosen for testing, PTA 

converges if the vectors are from a linearly 

separable function.



Proof of Convergence of PTA

• Suppose wn is the weight vector at the 

nth step of the algorithm. 

• At the beginning, the weight vector is 

w0

• Go from wi to wi+1 when a vector Xj

fails the test wiXj > 0 and update wi as 
wi+1 = wi + Xj

• Since Xjs form a linearly separable 

function, 

 w* s.t. w*X > 0 j



Proof of Convergence of PTA 
(cntd.)

• Consider the expression
G(wn) =  wn . w*

| wn|

where wn = weight at nth iteration

• G(wn)  = |wn| . |w*| . cos 
|wn|

where  = angle between wn and w*

• G(wn)  = |w*| . cos 

• G(wn) ≤ |w*|  ( as -1 ≤ cos  ≤ 1)



Behavior of Numerator of G

wn . w*  =  (wn-1 + Xn-1
fail ) . w*

wn-1 . w* + Xn-1
fail . w* 

 (wn-2 + Xn-2
fail ) . w* + Xn-1

fail . w* …..

w0 . w* + ( X0
fail + X1

fail +.... + Xn-1
fail ). 

w* 

w*.Xi
fail is always positive: note 

carefully

• Suppose |Xj| ≥  , where  is the 
minimum magnitude. 

• Num of G ≥ |w0 . w*| + n  . |w*| 



Behavior of Denominator of G

• |wn| =  wn . wn

  (wn-1 + Xn-1
fail )

2

  (wn-1)
2 + 2. wn-1. X

n-1
fail + (Xn-1

fail )
2

≤  (wn-1)
2 + (Xn-1

fail )
2  (as wn-1. X

n-

1
fail ≤ 0 )

≤  (w0)
2 + (X0

fail )
2 + (X1

fail )
2 +…. + (Xn-

1
fail )

2 

• |Xj| ≤  (max magnitude)

• So, Denom ≤  (w0)
2 + n2



Some Observations 

• Numerator of G grows as n

• Denominator of G grows as  n

=> Numerator grows faster than 

denominator

• If PTA does not terminate, G(wn) 

values will become unbounded.



Some Observations contd. 

• But, as |G(wn)| ≤ |w*|  which is finite, 

this is impossible!

• Hence, PTA has to converge. 

• Proof is due to Marvin Minsky.



A Problem that can be solved using the 

proof of PTA

Problem: If a weight repeats while

training the perceptron, then the

function is not linearly separable.



Proof

Let us prove first  wn .w* is an increasing  

function.

From the proof of convergence of PTA, 

we can write

wn .w*= (wn-1 + Xn-1
fail ) .w*

= wn-1 .w* + w*. Xn-1
fail 

Since w* is optimal weight vector 

therefore:

w*. Xn-1
fail > 0



Proof cntd.
Because in every iteration we are adding +ve
number  w*. Xn-1

fail

Therefore:

wn .w* > wn-1 .w* (1)

Hence wn .w* is  an increasing  function.

According to the claim made by theorem, if weight 
repeat then the weight wi at a given iteration i, will be 
equal to the weight wi+k at a given iteration (i+k)
where k is a +ve number

wi= wi+k



Proof cntd.

Therefore:

wi .w* =wi+k .w*        (2)

(2) contradicts the (1)

Hence no w* exists

So function is not linearly separable.



Feedforward Network and 

Backpropagation



Example - XOR 

w2=1w1=1
θ = 0.5

x1x2 x1x2

-1

x1 x2

-1
1.5

1.5

1 1



Can we use PTA for training FFN?

1, 0, 0 0

-1, 0, 1 1

-1, 1, 0 1

1, -1, -1 0

0, 0 0

0, 1 1

1, 0 1

1, 1 0

-1, 0, 0 0

-1, 0, 1 1

-1, 1, 0 1

-1, 1, 1 0

No, else the individual neurons are solving XOR, which is impossible.

Also, for the hidden layer neurons we do nothave the i/o behaviour.

x1
x2 -1

θ1

θ2

θ3



Gradient Descent Technique

• Let E be the error at the output layer

• ti = target output; oi = observed output

• i is the index going over n neurons in the 

outermost layer

• j is the index going over the p patterns (1 to p)

• Ex: XOR:– p=4 and n=1


 


p

j

n

i

jii otE
1 1

2)(
2

1



Weights in a FF NN

• wmn is the weight of the 

connection from the nth neuron 

to the mth neuron

• E vs surface is a complex 

surface in the space defined by 

the weights wij

• gives the direction in which 

a movement of the operating 

point in the wmn co-ordinate 

space will result in maximum 

decrease in error

W

m

n

wmn

mnw

E






mn

mn
w

E
w








Step function v/s Sigmoid function

O

x1xn …  x2

)(

)(

netf

xwfO ii





net

O

netO





is   w.r.t. of derivative partial So

Non-differentiable Differentiable

High watermark

Low watermark



Backpropagation algorithm

• Fully connected feed forward network

• Pure FF network (no jumping of 
connections over layers)

Hidden layers

Input layer            

(n i/p neurons)

Output layer    

(m o/p neurons)
j

i

wji

….

….

….

….



Gradient Descent Equations
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Backpropagation – for outermost 

layer
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Backpropagation for hidden layers

Hidden layers

Input layer            

(n i/p neurons)

Output layer    

(m o/p neurons)

j

i

….

….

….

….

k

k is propagated backwards to find value of j



Backpropagation – for hidden 

layers
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This recursion can

give rise to vanishing

and exploding

Gradient problem



General Backpropagation Rule
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• General weight updating rule:

• Where 

for outermost layer

for hidden layers



How does it work?

• Input propagation forward and error 

propagation backward (e.g. XOR)

w2=1w1=1
θ = 0.5

x1x2 x1x2

-1

x1 x2

-1
1.5

1.5

1 1
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Can Linear Neurons Work?



Note: The whole structure shown in earlier slide is reducible 

to a single neuron with given behavior

Claim: A neuron with linear I-O behavior can’t compute X-

OR.

Proof: Considering all possible cases:

[assuming 0.1 and 0.9 as the lower and upper thresholds]

For (0,0), Zero class:

For (0,1), One class:
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For (1,0), One class:

For (1,1), Zero class:

These equations are inconsistent. Hence X-OR can’t be computed.

Observations:

1. A linear neuron can’t compute X-OR.

2. A multilayer FFN with linear neurons is collapsible to a 

single linear neuron, hence no a additional power due 

to hidden layer.

3. Non-linearity is essential for power.
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