CS626: Speech, NLP and the Web

Start of Neural Network Pushpak Bhattacharyya
Computer Science and Engineering Department IIT Bombay
Week of $12^{\text {th }}$ October, 2020

Task vs. Technique Matrix

Task (row) vs. Technique (col) Matrix	Rules Based/Kn owledgeBased	Classical ML				Deep Learning		
		Perceptron	Logistic Regression	SVM	Graphical Models (HMM, MEMM, CRF)	Dense FF with BP and softmax	$\begin{aligned} & \text { RNN- } \\ & \text { LSTM } \end{aligned}$	CNN
Morphology								
POS								
Chunking								
Parsing								
NER, MWE								
Coref								
WSD								
Machine Translation								
Semantic Role Labeling								
Sentiment								
Question Answering								

Agenda for the week

- Introduction to Neural Network as a framework for "deep learning"
- Perceptron and Feedforward N/W
- Recurrent N/W
- NLP and Neural Net

Stages of development

- Perceptron
- Feedforward Neural N/W
- (in parallel with FFNN) Recurrent Neural Nets
- Multilayer recurrent n/w: Self Organization, Neocognitron
- (recent) LSTM, Bi-LSTM, GRU
- (recent) FFNN with softmax
- After RNN) Transformers
- Main difference with RNN, data need not be in sequential order!

https://huggingface.co/transformers/

- The library currently contains Py Torch and Tensorflow implementations, pre-trained model weights, usage scripts and conversion utilities for the following models:
- BERT (from Google) released with the paper BERT: Pretraining of Deep Bidirectional Transformers for Language Understanding by Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
- GPT (from OpenAI), Improving Language Understanding by Generative Pre-Training by Radford et al.
- GPT-2 (from OpenAI), Language Models are Unsupervised Multitask Learners by Radford et al.
- Transformer-XL (from Google/CMU), released with the paper Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context by Zihang Dai et al.

Huggingface cntd. (2/6)

- XLNet (from Google/CMU), XLNet: Generalized Autoregressive Pretraining for Language Understanding by Zhilin Yang et al.
- XLM (from Facebook), Cross-lingual Language Model Pretraining by Guillaume Lample and Alexis Conneau.
- RoBERTa (from Facebook), Robustly Optimized BERT Pretraining Approach by Yinhan Liu et al.
- DistilBERT (from HuggingFace), DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter by Victor Sanh et al. The same method has been applied to compress GPT2 into DistilGPT2.
- CTRL (from Salesforce), CTRL: A Conditional Transformer Language Model for Controllable Generation by Keskar et al.

Huggingface (3/6)

- CamemBERT (from FAIR, Inria, Sorbonne Université), CamemBERT: a Tasty French Language Model by Louis Martin et al.
- ALBERT (from Google Research), ALBERT: A Lite BERT for Self-supervised Learning of Language Representations by Zhenzhong Lan et al.
- T5 (from Google), Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer by Raffel et al.
- XLM-RoBERTa (from Facebook AI), Unsupervised Crosslingual Representation Learning at Scale by Conneau et al.

Huggingface (4/6)

- MMBT (from Facebook), Supervised Multimodal

Bitransformers for Classifying Images and Text by Kiela et al.

- FlauBERT (from CNRS), FlauBERT: Unsupervised Language Model Pre-training for French by Le et al.
- BART (from Facebook), BART: Denoising Sequence-toSequence Pre-training for Natural Language Generation, Translation, and Comprehension by Lewis et al.
- ELECTRA (from Google Research/Stanford University), ELECTRA: Pre-training text encoders as discriminators rather than generators by Clark et al.
- DialoGPT (from Microsoft Research), DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation by Zhang et al.

Huggingface (5/6)

- Reformer (from Google Research), Reformer: The Efficient Transformer by Kitaev et al.
- MarianMT (developed by the Microsoft Translator Team) machine translation models trained using OPUS pretrained_models data by Jörg Tiedemann.
- Longformer (from AllenAI), Longformer: The Long-Document Transformer by Beltagy et al.
- DPR (from Facebook), Dense Passage Retrieval for OpenDomain Question Answering by Karpukhin et al.
- Pegasus (from Google), PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.

Huggingface (6/6)

- MBart (from Facebook) released with the paper Multilingual Denoising Pre-training for Neural Machine Translation by Liu et al.
- LXMERT (from UNC Chapel Hill), LXMERT: Learning CrossModality Encoder Representations from Transformers for Open-Domain Question Answering by Tan and Mohit Bansal.
- Funnel Transformer (from CMU/Google Brain), FunnelTransformer: Filtering out Sequential Redundancy for Efficient Language Processing by Dai et al.
- Bert For Sequence Generation (from Google), Leveraging Pre-trained Checkpoints for Sequence Generation Tasks Rothe et al.
- LayoutLM (from Microsoft Research Asia), LayoutLM: Pretraining of Text and Layout for Document Image Understanding by Xu et al.

Using Transformers: tasks

- Sequence Classification
- Extractive Question Answering
- Language Modeling
- Named Entity Recognition
- Summarization
- Translation

Using Transformers: Models

- Autoregressive models
- Autoencoding models
- Sequence-to-sequence models
- Multimodal models
- Retrieval-based models

Difference between "Discriminative"

 and "Generative" Models- Historical reason
- Binary classification problem
- Want to decide if a patient has cancer based on different "features" from the reports
- $\operatorname{Argmax}_{D}(P(D / S))$
- D takes values ' Y ' and ' N '
- Decide ' Y ' if $P(D=Y / S)>P(=N / S)$, else ' N '

Discriminative Model

- Compute $P(D / S)$ directly
- "Features" from reports, $S=\left\{F_{1}, F_{2}\right.$, $\left.F_{3,}, \ldots, F_{k}\right\}$ (like, fever, weight loss, hair loss, haemoglobin level etc.)
- $\mathrm{P}(\mathrm{D}=\mathrm{Y} \mid<$ fever, weight loss, hair loss, haemoglobin level,...>)
- We are discriminating, i.e., differentiating wrt the features input

Generative Model

- Compute $P(D)$ and $P(S / D)$ and take product
- For $P(D)$ we will need the proportion of cancer patients in the population (obtained via sampling)
- For the likelihood, we will make use of naïve Bayes assumption and require values of $P\left(F_{i} \mid D\right)$, e.g., what is the probability of a cancer patient having fever
- Hence the "discrimination" is not direct!!

Al Perspective (post-web)

- Connectionist Al is contrasted with Symbolic AI
- Symbolic AI - Physical Symbol System Hypothesis
- Every intelligent system can be constructed by storing and processing symbols and nothing more is necessary.
- Symbolic AI has a bearing on models of computation such as

Turing Machine \& Von Neumann

Turing machine

VonNeumann Machine

Challenges to Symbolic AI

- Motivation for challenging Symbolic AI
- A large number of computations and information process tasks that living beings are comfortable with, are not performed well by computers!
- The Differences
- Brain computation in living beings
- Pattern Recognition
- Learning oriented
- Distributed \& parallel processing processing
- Content addressable

TM computation in computers
Numerical Processing
Programming oriented
Centralized \& serial

Location addressable

- The human brain

- Seat of consciousness and cognition
- Perhaps the most complex information processing machine in nature

Higher brain (responsible for higher needs)

Higher brain

Neuron - "classical"

- Dendrites
- Receiving stations of neurons
- Don't generate action potentials
- Cell body
- Site at which information received is integrated
- Axon
- Generate and relay action potential
- Terminal
- Relays information to next neuron in the pathway

http://www.educarer.com/images/brain-nerve-axon.jpg

Perceptron

The Perceptron Model

A perceptron is a computing element with input lines having associated weights and the cell having a threshold value. The perceptron model is motivated by the biological neuron.

Step function / Threshold function y

$$
\begin{aligned}
& =1 \text { for } \sum \text { wixi } \quad>=\theta \\
& =0 \text { otherwise }
\end{aligned}
$$

Features of Perceptron

- Input output behavior is discontinuous and the derivative does not exist at $\Sigma w i x i=\theta$
- $\Sigma w i x i-\theta$ is the net input denoted as net
- Referred to as a linear threshold element linearity because of x appearing with power 1
- $y=f($ net $)$: Relation between y and net is nonlinear

Computation of Boolean functions

AND of 2 inputs

X1	$\mathbf{x 2}$	\mathbf{y}
0	0	0
0	1	0
1	0	0
1	1	1

The parameter values (weights \& thresholds) need to be found.

Computing parameter values

$$
\begin{gathered}
w 1^{*} 0+w 2^{*} 0<=\theta \rightarrow \theta>=0 ; \text { since } y=0 \\
w 1^{*} 0+w 2{ }^{*} 1<=\theta \rightarrow w 2<=\theta ; \text { since } y=0 \\
w 1^{*} 1+w 2^{*} 0<=\theta \rightarrow w 1<=\theta ; \text { since } y=0 \\
w 1^{*} 1+w 2 * 1>\theta \rightarrow w 1+w 2>\theta ; \text { since } y=1 \\
w 1=w 2==0.5
\end{gathered}
$$

satisfy these inequalities and find parameters to be used for computing AND function.

Other Boolean functions

- OR can be computed using values of $\mathrm{w} 1=\mathrm{w} 2=1$ and $=0.5$
- XOR function gives rise to the following inequalities:

$$
\begin{aligned}
& w 1^{*} 0+w 2^{*} 0<=\theta \rightarrow \theta>=0 \\
& w 1^{*} 0+w 2{ }^{*} 1>\theta \rightarrow \mathrm{w} 2>\theta \\
& w 1^{*} 1+w 2^{*} 0>\theta \rightarrow \mathrm{w} 1>\theta \\
& \mathrm{w} 1^{*} 1+\mathrm{w}^{*}{ }^{*} 1<=\theta \rightarrow \mathrm{w} 1+\mathrm{w} 2<=\theta
\end{aligned}
$$

No set of parameter values satisfy these inequalities.

Threshold functions

n \# Boolean functions ($\mathbf{2}^{\wedge} \mathbf{2}^{\wedge} \mathrm{n}$) \#Threshold Functions ($\mathbf{2}^{\mathrm{n} 2}$)

1

2
3
4

2

4
14
128
1008

- Functions computable by perceptrons - threshold functions
- \#TF becomes negligibly small for larger values of \#BF.
- For $\mathrm{n}=2$, all functions except XOR and XNOR are computable.

AND of 2 inputs

$\mathbf{X 1}$	$\mathbf{x 2}$	\mathbf{y}
0	0	0
0	1	0
1	0	0
1	1	1

The parameter values (weights \& thresholds) need to be found.

Constraints on w1, w2 and θ

$$
\begin{aligned}
& w 1^{*} 0+w 2^{*} 0<=\theta \rightarrow \theta>=0 ; \text { since } y=0 \\
& w 1^{*} 0+w 2 * 1<=\theta \rightarrow w 2<=\theta ; \text { since } y=0 \\
& w 1^{*} 1+w 2^{*} 0<=\theta \rightarrow w 1<=\theta ; \text { since } y=0 \\
& w 1^{*} 1+w 2 * 1>\theta \rightarrow w 1+w 2>\theta ; \text { since } y=1 \\
& w 1=w 2==0.5
\end{aligned}
$$

These inequalities are satisfied by ONE particular region

Perceptron training

Perceptron Training Algorithm (PTA)

Preprocessing:

1. The computation law is modified to

$$
\begin{aligned}
& y=1 \text { if } \sum w_{i} x_{i}>\theta \\
& y=0 \text { if } \sum w_{i} x_{i}<\theta
\end{aligned}
$$

PTA - preprocessing cont...

2. Absorb θ as a weight

3. Negate all the zero-class examples

Example to demonstrate preprocessing

- OR perceptron

1-class <1,1>, <1,0>, <0,1>
0-class <0,0>
Augmented x vectors:-
1-class <-1,1,1>, <-1,1,0> , <-1,0,1>
0 -class <-1,0,0>
Negate 0-class:- <1,0,0>

Example to demonstrate preprocessing cont..

Now the vectors are

$$
\begin{array}{cccc}
& X_{0} & X_{1} & X_{2} \\
X_{1} & -1 & 0 & 1 \\
X_{2} & -1 & 1 & 0 \\
X_{3} & -1 & 1 & 1 \\
X_{4} & 1 & 0 & 0
\end{array}
$$

Perceptron Training Algorithm

1. Start with a random value of w ex: <0,0,0...>
2. Test for $w x_{i}>0$ If the test succeeds for $i=1,2, \ldots n$ then return w
3. Modify w, $\mathrm{w}_{\text {next }}=\mathrm{w}_{\text {prev }}+\mathrm{x}_{\text {fail }}$

PTA on NAND

W2 $\quad \mathrm{W} 1 \quad \mathrm{WVO}=\Theta$
$\mathrm{X} 2 \quad \mathrm{X} 1 \quad \mathrm{X} 0=-1$

Preprocessing

NAND Augmented: NAND-0 class Negated

X 2	X 1	X 0	Y		X 2	X 1	X 0
0	0	-1	1	$\mathrm{~V} 0:$	0	0	-1
0	1	-1	1	$\mathrm{~V} 1:$	0	1	-1
1	0	-1	1	$\mathrm{~V} 2:$	1	0	-1
1	1	-1	0	$\mathrm{~V}:$	-1	-1	1

Vectors for which W=<W2 W1 W0> has to be found such that W. Vi>0

PTA Algo steps

Algorithm:

1. Initialize and Keep adding the failed vectors until $\mathrm{W} . \mathrm{Vi}>0$ is true.

$$
\text { Step 0: } \begin{array}{rlr}
\mathrm{W} & =<0,0,0\rangle \\
\mathrm{W}_{1} & =<0,0,0\rangle+<0,0,-1> & \text { \{Vo Fails }\} \\
& =<0,0,-1> \\
\mathrm{W}_{2}= & <0,0,-1>+<-1,-1,1> & \left\{\mathrm{V}_{3} \text { Fails }\right\} \\
& =<-1,-1,0\rangle \\
\mathrm{W}_{3}= & <-1,-1,0\rangle+<0,0,-1> & \left\{\mathrm{V}_{0} \text { Fails }\right\} \\
& =<-1,-1,-1> \\
\mathrm{W}_{4}= & <-1,-1,-1>+<0,1,-1> & \left\{\mathrm{V}_{1} \text { Fails }\right\} \\
& =<-1,0,-2>
\end{array}
$$

Trying convergence

$$
\begin{aligned}
\mathrm{W}_{5} & =<-1,0,-2>+<-1,-1,1> & & \left\{\mathrm{V}_{3} \text { Fails }\right\} \\
& =<-2,-1,-1> & & \\
\mathrm{W}_{6}= & <-2,-1,-1>+<0,1,-1> & & \left\{\mathrm{V}_{1} \text { Fails }\right\} \\
& =<-2,0,-2> & & \\
\mathrm{W}_{7}= & <-2,0,-2>+<1,0,-1> & & \left\{\mathrm{V}_{0} \text { Fails }\right\} \\
& =<-1,0,-3> & & \\
\mathrm{W} 8= & <-1,0,-3>+<-1,-1,1> & & \left\{\mathrm{V}_{3} \text { Fails }\right\} \\
& =<-2,-1,-2> & & \\
\mathrm{W} 9 & =<-2,-1,-2>+<1,0,-1> & & \left\{\mathrm{V}_{2} \text { Fails }\right\} \\
& =<-1,-1,-3> & &
\end{aligned}
$$

Trying convergence

$$
\begin{array}{rlrl}
\mathrm{W}_{10} & = & <-1,-1,-3>+<-1,-1,1> & \\
& \left\{\mathrm{V}_{3} \text { Fails }\right\} \\
& =<-2,-2,-2> & & \\
\mathrm{W}_{11} & =<-2,-2,-2>+<0,1,-1> & & \left\{\mathrm{V}_{1} \text { Fails }\right\} \\
& =<-2,-1,-3> & & \\
\mathrm{W}_{12} & =\langle-2,-1,-3>+<-1,-1,1> & & \left\{\mathrm{V}_{3} \text { Fails }\right\} \\
& =<-3,-2,-2> & & \\
\mathrm{W}_{13} & =<-3,-2,-2>+<0,1,-1> & & \left\{\mathrm{V}_{1} \text { Fails }\right\} \\
& =<-3,-1,-3> & & \\
\mathrm{W}_{14} & =<-3,-1,-3>+<0,1,-1> & & \left\{\mathrm{V}_{2} \text { Fails }\right\} \\
& =<-2,-1,-4> & &
\end{array}
$$

$$
\begin{aligned}
& \mathrm{W} 15=<-2,-1,-4>+<-1,-1,1>\quad\{\mathrm{V} 3 \text { Fails }\} \\
& =<-3,-2,-3> \\
& \mathrm{W} 16=<-3,-2,-3>+<1,0,-1>\quad\{\mathrm{V} 2 \text { Fails }\} \\
& =<-2,-2,-4> \\
& \mathrm{W} 17=<-2,-2,-4>+<-1,-1,1>\quad\{\mathrm{V} 3 \text { Fails }\} \\
& =<-3,-3,-3> \\
& \mathrm{W} 18=<-3,-3,-3>+<0,1,-1>\quad\{\mathrm{V} 1 \text { Fails }\} \\
& =<-3,-2,-4>
\end{aligned}
$$

$W 2=-3, \quad W 1=-2, \quad W 0=\Theta_{\nwarrow}=-4$

Succeeds for all vectors

PTA convergence

Statement of Convergence of PTA

- Statement:

Whatever be the initial choice of weights and whatever be the vector chosen for testing, PTA converges if the vectors are from a linearly separable function.

Proof of Convergence of PTA

- Suppose w_{n} is the weight vector at the $\mathrm{n}^{\text {th }}$ step of the algorithm.
- At the beginning, the weight vector is W_{0}
- Go from w_{i} to w_{i+1} when a vector X_{j} fails the test $w_{i} X_{j}>0$ and update w_{i} as

$$
w_{i+1}=w_{i}+x_{j}
$$

- Since Xjs form a linearly separable function,

Proof of Convergence of PTA

 (cntd.)- Consider the expression

$$
G\left(w_{n}\right)=\frac{w_{n} \cdot w^{*}}{\left|w_{n}\right|}
$$

where $\mathrm{w}_{\mathrm{n}}=$ weight at nth iteration

- $G\left(w_{n}\right)=\frac{\left|w_{n}\right| \cdot\left|w^{*}\right| \cdot \cos \theta}{\left|w_{n}\right|}$
where $\theta=$ angle between w_{n} and w^{*}
- $G\left(w_{n}\right)=\left|w^{*}\right| \cdot \cos \theta$
- $G\left(w_{n}\right) \leq\left|w^{*}\right|($ as $-1 \leq \cos \theta \leq 1)$

Behavior of Numerator of G

$$
\begin{aligned}
& W_{n} \cdot w^{*}=\left(W_{n-1}+X^{n-1} \text { fail }\right) \cdot W^{*} \\
= & w_{n-1} \cdot w^{*}+X^{n-1} \text { fail } \cdot w^{*} \\
= & \left(W_{n-2}+X^{n-2}{ }_{\text {fail }}\right) \cdot W^{*}+X^{n-1} \text { fail } \cdot W^{*} \ldots . . \\
= & W_{0} \cdot W^{*}+\left(X_{\text {fail }}^{0}+X_{\text {fail }}^{1}+\ldots+X^{n-1} \text { fail }\right) . \\
& w^{*}
\end{aligned}
$$

$w^{*} . X_{\text {fail }}^{i}$ is always positive: note carefully

- Suppose $\left|X_{j}\right| \geq \delta$, where δ is the minimum magnitude.

Behavior of Denominator of G

- $\left|w_{n}\right|=\sqrt{ } w_{n} \cdot w_{n}$
$=\sqrt{ }\left(w_{n-1}+X^{n-1} \text { fail }\right)^{2}$
$=\sqrt{ }\left(w_{n-1}\right)^{2}+2 . w_{n-1} . X^{n-1}$ fail $+\left(X^{n-1} \text { fail }\right)^{2}$
$\leq \sqrt{ }\left(w_{n-1}\right)^{2}+\left(X^{n-1} \text { fail }\right)^{2} \quad\left(\right.$ as $w_{n-1} . X^{n-}$ $\left.1_{\text {fail }} \leq 0\right)$
$\leq \sqrt{ }\left(w_{0}\right)^{2}+\left(X_{\text {fail }}^{0}\right)^{2}+\left(X_{\text {fail }}^{1}\right)^{2}+\ldots .+\left(X^{n-}\right.$ ${ }^{1}$ fail $)^{2}$
- $\left|X_{j}\right| \leq \rho$ (max magnitude) Co Romombilution

Some Observations

- Numerator of G grows as n
- Denominator of G grows as $\sqrt{ } n$ => Numerator grows faster than denominator
- If PTA does not terminate, $\mathrm{G}\left(\mathrm{w}_{\mathrm{n}}\right)$ values will become unbounded.

Some Observations contd.

- But, as $\left|G\left(w_{n}\right)\right| \leq\left|w^{*}\right|$ which is finite, this is impossible!
- Hence, PTA has to converge.
- Proof is due to Marvin Minsky.

A Problem that can be solved using the proof of PTA
Problem: If a weight repeats while training the perceptron, then the function is not linearly separable.

Proof

Let us prove first $w_{n} . w^{*}$ is an increasing function.
From the proof of convergence of PTA, we can write

$$
\begin{aligned}
w_{n} \cdot W^{*} & =\left(w_{n-1}+X^{n-1}{ }_{\text {fail }}\right) \cdot W^{*} \\
& =w_{n-1} \cdot W^{*}+W^{*} \cdot X^{n-1} \text { fail }
\end{aligned}
$$

Since w^{*} is optimal weight vector therefore:

$$
W^{*} . X^{n-1}{ }_{\text {fail }}>0
$$

Proof cntd.

Because in every iteration we are adding +ve number w^{*}. X^{n-1} fail

Therefore:

$$
\begin{equation*}
w_{n} \cdot w^{*}>w_{n-1} \cdot w^{*} \tag{1}
\end{equation*}
$$

Hence $w_{n} . w^{*}$ is an increasing function.
According to the claim made by theorem, if weight repeat then the weight w_{i} at a given iteration i, will be equal to the weight w_{i+k} at a given iteration (i+k) where k is a +ve number

$$
w_{i=} w_{i+k}
$$

Proof cntd.

Therefore:

$$
\begin{equation*}
\mathrm{W}_{\mathrm{i}} \cdot \mathrm{w}^{*}=\mathrm{W}_{\mathrm{i}+\mathrm{k}} \cdot \mathrm{w}^{*} \tag{2}
\end{equation*}
$$

(2) contradicts the (1)

Hence no w* exists

So function is not linearly separable.

Feedforward Network and Backpropagation

Example - XOR

Can we use PTA for training FFN?

0,0	0
0,1	1
1,0	1
1,1	0

$-1,0,0$	0
$-1,0,1$	1
$-1,1,0$	1
$-1,1,1$	0

$1,0,0$	0
$-1,0,1$	1
$-1,1,0$	1
$1,-1,-1$	0

No, else the individual neurons are solving XOR, which is impossible. Also, for the hidden layer neurons we do nothave the i/o behaviour.

Gradient Descent Technique

- Let E be the error at the output layer

$$
E=\frac{1}{2} \sum_{j=1}^{p} \sum_{i=1}^{n}\left(t_{i}-o_{i}\right)_{j}^{2}
$$

- $t_{i}=$ target output; $\mathrm{o}_{\mathrm{i}}=$ observed output
- i is the index going over n neurons in the outermost layer
- j is the index going over the p patterns (1 to p)
- Ex: XOR:- $\mathrm{p}=4$ and $\mathrm{n}=1$

Weights in a FF NN

- w_{mn} is the weight of the connection from the $\mathrm{n}^{\text {th }}$ neuron to the $\mathrm{m}^{\text {th }}$ neuron
- E vs \bar{W} surface is a complex surface in the space defined by the weights w_{ij}
- $-\frac{\delta E}{\delta w_{m n}}$ gives the direction in which a movement of the operating point in the w_{mn} co-ordinate space will result in maximum decrease in error

Step function v/s Sigmoid function

$$
\begin{aligned}
O & =f\left(\sum w_{i} x_{i}\right) \\
& =f(n e t)
\end{aligned}
$$

So partialderivative of O w.r.t.net is $\frac{\delta O}{\delta n e t}$

Backpropagation algorithm

Output layer (m o/p neurons)

Hidden layers

Input layer
(n i/p neurons)

- Fully connected feed forward network
- Pure FF network (no jumping of connections over layers)

Gradient Descent Equations

$$
\begin{aligned}
\Delta w_{j i} & =-\eta \frac{\delta E}{\delta w_{j i}}(\eta=\text { learning rate, } 0 \leq \eta \leq 1) \\
\frac{\delta E}{\delta w_{j i}} & =\frac{\delta E}{\delta n e t_{j}} \times \frac{\delta n e t_{j}}{\delta w_{j i}}\left(n e t_{j}=\text { input at the } j^{t h} \text { layer }\right) \\
\frac{\delta E}{\delta n e t_{j}} & =-\delta j
\end{aligned}
$$

$$
\Delta w_{j i}=\eta \delta j \frac{\delta n e t_{j}}{\delta w_{j i}}=\eta \delta j o_{i}
$$

Backpropagation - for outermost layer

$\delta j=-\frac{\delta E}{\delta n e t_{j}}=-\frac{\delta E}{\delta o_{j}} \times \frac{\delta o_{j}}{\delta \text { net }_{j}}\left(\right.$ net $_{j}=$ input at the $\mathrm{j}^{\text {th }}$ layer $)$
$E=\frac{1}{2} \sum_{p=1}^{m}\left(t_{p}-o_{p}\right)^{2}$
Hence, $\delta j=-\left(-\left(t_{j}-o_{j}\right) o_{j}\left(1-o_{j}\right)\right)$
$\Delta w_{j i}=\eta\left(t_{j}-o_{j}\right) o_{j}\left(1-o_{j}\right) o_{i}$

Observations from $\Delta w_{j i}$

$\Delta w_{j i}=\eta\left(t_{j}-o_{j}\right) o_{j}\left(1-o_{j}\right) o_{i}$
$\Delta w_{j i} \rightarrow 0 \quad$ if,

1. $O_{j} \rightarrow t_{j} \quad$ and/or
2. $O_{j} \rightarrow 1 \quad$ and/or
3. $O_{j} \rightarrow 0 \quad$ and/or
4. $O_{i} \rightarrow 0$
\}Saturation behaviour
\}Credit/Bla me assignment

Backpropagation for hidden layers

Output layer (m o/p neurons)
Hidden layers
Input layer
(n i/p neurons)

δ_{k} is propagated backwards to find value of δ_{j}

Backpropagation - for hidden layers

$$
\begin{aligned}
& \Delta w_{j i}=\eta \delta j o_{i} \\
& \delta j=-\frac{\delta E}{\delta n e t_{j}}=-\frac{\delta E}{\delta o_{j}} \times \frac{\delta o_{j}}{\delta n e t_{j}} \\
& =-\frac{\delta E}{\delta o_{j}} \times o_{j}\left(1-o_{j}\right)
\end{aligned}
$$

$\begin{aligned} & \text { This recursion can } \\ & \text { give rise to vanishing } \\ & \text { and exploding }\end{aligned}=-\sum_{k \in \text { next layer }}\left(\frac{\delta E}{\delta n e t_{k}} \times \frac{\delta n e t_{k}}{\delta o_{j}}\right) \times o_{j}\left(1-o_{j}\right), ~$ Gradient problem Hence, $\delta_{j}=-\sum_{k \in \text { next layer }}\left(-\delta_{k} \times w_{k j}\right) \times o_{j}\left(1-o_{j}\right)$
$=\sum_{k \in \text { next layer }}\left(w_{k j} \delta_{k}\right) o_{j}\left(1-o_{j}\right)$

General Backpropagation Rule

- General weight updating rule:

$$
\Delta w_{j i}=\eta \delta j o_{i}
$$

- Where

$$
\begin{aligned}
\delta_{j} & =\left(t_{j}-o_{j}\right) o_{j}\left(1-o_{j}\right) \quad \text { for outermost layer } \\
& =\sum_{k \in \text { next layer }}\left(w_{k j} \delta_{k}\right) o_{j}\left(1-o_{j}\right) o_{i} \text { for hidden layers }
\end{aligned}
$$

How does it work?

- Input propagation forward and error propagation backward (e.g. XOR)

Can Linear Neurons Work?

$$
\begin{aligned}
& h_{1}=m_{1}\left(w_{1} x_{1}+w_{2} x_{2}\right)+c_{1} \\
& h_{1}=m_{1}\left(w_{1} x_{1}+w_{2} x_{2}\right)+c_{1}
\end{aligned}
$$

$$
O u t=\left(w_{s} h_{1}+w_{6} h_{2}\right)+c_{3}
$$

$$
=k_{1} x_{1}+k_{2} x_{2}+k_{3}
$$

Note: The whole structure shown in earlier slide is reducible to a single neuron with given behavior

$$
O u t=k_{1} x_{1}+k_{2} x_{2}+k_{3}
$$

Claim: A neuron with linear I-O behavior can't compute XOR.
Proof: Considering all possible cases:
[assuming 0.1 and 0.9 as the lower and upper thresholds]

For (0,0), Zero class:

$$
\begin{array}{r}
m\left(w_{1} .0+w_{2} .0-\theta\right)+c<0.1 \\
\Rightarrow c-m . \theta<0.1
\end{array}
$$

$$
\begin{array}{r}
m\left(w_{2} .1+w_{1} .0-\theta\right)+c>0.9 \\
\quad \Rightarrow m . w_{1}-m . \theta+c>0.9
\end{array}
$$

For $(1,0)$, One class: $m \cdot w_{1}-m \cdot \theta+c>0.9$

For (1,1), Zero class: $m \cdot w_{1}-m \cdot \theta+c>0.9$

These equations are inconsistent. Hence X-OR can't be computed.

Observations:

1. A linear neuron can't compute X-OR.
2. A multilayer FFN with linear neurons is collapsible to a single linear neuron, hence no a additional power due to hidden layer.
3. Non-linearity is essential for power.
