
CS626: Speech, NLP and the

Web

Start of Neural Network

Pushpak Bhattacharyya

Computer Science and Engineering
Department

IIT Bombay

Week of 12th October, 2020

Task vs. Technique Matrix
Task (row) vs.

Technique (col) Matrix

Rules

Based/Kn

owledge-

Based

Classical ML Deep Learning

Perceptron Logistic

Regression

SVM Graphical Models

(HMM, MEMM,

CRF)

Dense FF with

BP and softmax

RNN-

LSTM

CNN

Morphology

POS

Chunking

Parsing

NER, MWE

Coref

WSD

Machine Translation

Semantic Role

Labeling

Sentiment

Question Answering

Agenda for the week

• Introduction to Neural Network

as a framework for “deep

learning”

• Perceptron and Feedforward

N/W

• Recurrent N/W

• NLP and Neural Net

Stages of development

• Perceptron

• Feedforward Neural N/W

• (in parallel with FFNN) Recurrent Neural Nets

• Multilayer recurrent n/w: Self Organization,

Neocognitron

• (recent) LSTM, Bi-LSTM, GRU

• (recent) FFNN with softmax

• After RNN) Transformers
– Main difference with RNN, data need not be in

sequential order!

https://huggingface.co/transformers/

(1/6)
• The library currently contains PyTorch and Tensorflow

implementations, pre-trained model weights, usage scripts

and conversion utilities for the following models:

• BERT (from Google) released with the paper BERT: Pre-

training of Deep Bidirectional Transformers for Language

Understanding by Jacob Devlin, Ming-Wei Chang, Kenton

Lee, and Kristina Toutanova.

• GPT (from OpenAI), Improving Language Understanding by

Generative Pre-Training by Radford et al.

• GPT-2 (from OpenAI), Language Models are Unsupervised

Multitask Learners by Radford et al.

• Transformer-XL (from Google/CMU), released with the

paper Transformer-XL: Attentive Language Models Beyond a

Fixed-Length Context by Zihang Dai et al.

https://huggingface.co/transformers/
https://github.com/google-research/bert
https://arxiv.org/abs/1810.04805
https://github.com/openai/finetune-transformer-lm
https://blog.openai.com/language-unsupervised
https://blog.openai.com/better-language-models
https://blog.openai.com/better-language-models
https://github.com/kimiyoung/transformer-xl
https://arxiv.org/abs/1901.02860

Huggingface cntd. (2/6)
• XLNet (from Google/CMU), XLNet: Generalized

Autoregressive Pretraining for Language

Understanding by Zhilin Yang et al.

• XLM (from Facebook), Cross-lingual Language Model

Pretraining by Guillaume Lample and Alexis Conneau.

• RoBERTa (from Facebook), Robustly Optimized BERT

Pretraining Approach by Yinhan Liu et al.

• DistilBERT (from HuggingFace), DistilBERT, a distilled

version of BERT: smaller, faster, cheaper and lighter by

Victor Sanh et al. The same method has been applied to

compress GPT2 into DistilGPT2.

• CTRL (from Salesforce), CTRL: A Conditional

Transformer Language Model for Controllable

Generation by Keskar et al.

https://github.com/zihangdai/xlnet
https://arxiv.org/abs/1906.08237
https://github.com/facebookresearch/XLM
https://arxiv.org/abs/1901.07291
https://github.com/pytorch/fairseq/tree/master/examples/roberta
https://arxiv.org/abs/1907.11692
https://huggingface.co/transformers/model_doc/distilbert.html
https://arxiv.org/abs/1910.01108
https://github.com/huggingface/transformers/tree/master/examples/distillation
https://github.com/pytorch/fairseq/tree/master/examples/ctrl
https://www.github.com/salesforce/ctrl

Huggingface (3/6)
• CamemBERT (from FAIR, Inria, Sorbonne

Université), CamemBERT: a Tasty French Language

Model by Louis Martin et al.

• ALBERT (from Google Research), ALBERT: A Lite BERT for

Self-supervised Learning of Language Representations by

Zhenzhong Lan et al.

• T5 (from Google), Exploring the Limits of Transfer Learning

with a Unified Text-to-Text Transformer by Raffel et al.

• XLM-RoBERTa (from Facebook AI), Unsupervised Cross-

lingual Representation Learning at Scale by Conneau et al.

https://huggingface.co/transformers/model_doc/camembert.html
https://arxiv.org/abs/1911.03894
https://github.com/google-research/ALBERT
https://arxiv.org/abs/1909.11942
https://github.com/google-research/text-to-text-transfer-transformer
https://arxiv.org/abs/1910.10683
https://github.com/pytorch/fairseq/tree/master/examples/xlmr
https://arxiv.org/abs/1911.02116

Huggingface (4/6)
• MMBT (from Facebook), Supervised Multimodal

Bitransformers for Classifying Images and Text by Kiela et al.

• FlauBERT (from CNRS), FlauBERT: Unsupervised Language

Model Pre-training for French by Le et al.

• BART (from Facebook), BART: Denoising Sequence-to-

Sequence Pre-training for Natural Language Generation,

Translation, and Comprehension by Lewis et al.

• ELECTRA (from Google Research/Stanford University),

ELECTRA: Pre-training text encoders as discriminators

rather than generators by Clark et al.

• DialoGPT (from Microsoft Research), DialoGPT: Large-Scale

Generative Pre-training for Conversational Response

Generation by Zhang et al.

https://github.com/facebookresearch/mmbt/
https://arxiv.org/pdf/1909.02950.pdf
https://github.com/getalp/Flaubert
https://arxiv.org/abs/1912.05372
https://github.com/pytorch/fairseq/tree/master/examples/bart
https://arxiv.org/pdf/1910.13461.pdf
https://github.com/google-research/electra
https://arxiv.org/abs/2003.10555
https://github.com/microsoft/DialoGPT
https://arxiv.org/abs/1911.00536

Huggingface (5/6)
• Reformer (from Google Research), Reformer: The Efficient

Transformer by Kitaev et al.

• MarianMT (developed by the Microsoft Translator Team)

machine translation models trained

using OPUS pretrained_models data by Jörg Tiedemann.

• Longformer (from AllenAI), Longformer: The Long-Document

Transformer by Beltagy et al.

• DPR (from Facebook), Dense Passage Retrieval for Open-

Domain Question Answering by Karpukhin et al.

• Pegasus (from Google), PEGASUS: Pre-training with

Extracted Gap-sentences for Abstractive Summarization by

Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J.

Liu.

https://github.com/google/trax/tree/master/trax/models/reformer
https://arxiv.org/abs/2001.04451
https://marian-nmt.github.io/
http://opus.nlpl.eu/
https://github.com/allenai/longformer
https://arxiv.org/abs/2004.05150
https://github.com/facebookresearch/DPR
https://arxiv.org/abs/2004.04906
https://github.com/google-research/pegasus
https://arxiv.org/abs/1912.08777

Huggingface (6/6)
• MBart (from Facebook) released with the paper Multilingual

Denoising Pre-training for Neural Machine Translation by Liu

et al.

• LXMERT (from UNC Chapel Hill), LXMERT: Learning Cross-

Modality Encoder Representations from Transformers for

Open-Domain Question Answering by Tan and Mohit Bansal.

• Funnel Transformer (from CMU/Google Brain), Funnel-

Transformer: Filtering out Sequential Redundancy for

Efficient Language Processing by Dai et al.

• Bert For Sequence Generation (from Google), Leveraging

Pre-trained Checkpoints for Sequence Generation

Tasks Rothe et al.

• LayoutLM (from Microsoft Research Asia), LayoutLM: Pre-

training of Text and Layout for Document Image

Understanding by Xu et al.

https://github.com/pytorch/fairseq/tree/master/examples/mbart
https://arxiv.org/abs/2001.08210
https://github.com/airsplay/lxmert
https://arxiv.org/abs/1908.07490
https://github.com/laiguokun/Funnel-Transformer
https://arxiv.org/abs/2006.03236
https://tfhub.dev/s?module-type=text-generation&subtype=module,placeholder
https://arxiv.org/abs/1907.12461
https://github.com/microsoft/unilm/tree/master/layoutlm
https://arxiv.org/abs/1912.13318

Using Transformers: tasks

• Sequence Classification

• Extractive Question Answering

• Language Modeling

• Named Entity Recognition

• Summarization

• Translation

https://huggingface.co/transformers/task_summary.html#sequence-classification
https://huggingface.co/transformers/task_summary.html#extractive-question-answering
https://huggingface.co/transformers/task_summary.html#language-modeling
https://huggingface.co/transformers/task_summary.html#named-entity-recognition
https://huggingface.co/transformers/task_summary.html#summarization
https://huggingface.co/transformers/task_summary.html#translation

Using Transformers: Models

• Autoregressive models

• Autoencoding models

• Sequence-to-sequence models

• Multimodal models

• Retrieval-based models

https://huggingface.co/transformers/model_summary.html#autoregressive-models
https://huggingface.co/transformers/model_summary.html#autoencoding-models
https://huggingface.co/transformers/model_summary.html#sequence-to-sequence-models
https://huggingface.co/transformers/model_summary.html#multimodal-models
https://huggingface.co/transformers/model_summary.html#retrieval-based-models

Difference between “Discriminative”

and “Generative” Models

• Historical reason

• Binary classification problem

• Want to decide if a patient has cancer based

on different “features” from the reports

• ArgmaxD(P(D|S))

• D takes values ‘Y’ and ‘N’

• Decide ‘Y’ if P(D=Y|S) > P(=N|S), else ‘N’

Discriminative Model

• Compute P(D|S) directly

• “Features” from reports, S= {F1, F2,

F3, …,FK} (like, fever, weight loss, hair

loss, haemoglobin level etc.)

• P(D=Y|<fever, weight loss, hair loss,

haemoglobin level,…>)

• We are discriminating, i.e.,

differentiating wrt the features input

Generative Model
• Compute P(D) and P(S|D) and take product

• For P(D) we will need the proportion of

cancer patients in the population (obtained

via sampling)

• For the likelihood, we will make use of naïve

Bayes assumption and require values of

P(Fi|D), e.g., what is the probability of a

cancer patient having fever

• Hence the “discrimination” is not direct!!

AI Perspective (post-web)

Planning

Computer

Vision

NLP

Expert

Systems

Robotics

Search,

Reasoning,

Learning
IR

Symbolic AI

• Connectionist AI is contrasted with

Symbolic AI

• Symbolic AI - Physical Symbol

System Hypothesis

• Every intelligent system can be

constructed by storing and

processing symbols and nothing

more is necessary.

• Symbolic AI has a bearing on models

of computation such as

• Turing Machine

Turing Machine & Von Neumann

Machine

Challenges to Symbolic AI

• Motivation for challenging Symbolic AI

• A large number of computations and

information process tasks that living

beings are comfortable with, are not

performed well by computers!

• The Differences
• Brain computation in living beings TM computation in computers

• Pattern Recognition Numerical Processing

• Learning oriented Programming oriented

• Distributed & parallel processing Centralized & serial

processing

• Content addressable Location addressable

• The human brain

• Seat of consciousness and cognition

• Perhaps the most complex information
processing machine in nature

Neuron - “classical”

• Dendrites
– Receiving stations of neurons

– Don't generate action potentials

• Cell body
– Site at which information

received is integrated

• Axon
– Generate and relay action

potential

– Terminal

• Relays information to

next neuron in the pathway
http://www.educarer.com/images/brain-nerve-axon.jpg

Perceptron

The Perceptron Model

A perceptron is a computing element with input

lines having associated weights and the cell

having a threshold value. The perceptron model is

motivated by the biological neuron.

Output = y

wn
Wn-1

w1

Xn-1

x1

Threshold = θ

θ

1
y

Step function / Threshold function

y = 1 for Σwixi >=θ

=0 otherwise

Σwixi

Features of Perceptron

• Input output behavior is discontinuous and the

derivative does not exist at Σwixi = θ

• Σwixi - θ is the net input denoted as net

• Referred to as a linear threshold element -

linearity because of x appearing with power 1

• y= f(net): Relation between y and net is non-

linear

Computation of Boolean

functions

AND of 2 inputs

X1 x2 y
0 0 0

0 1 0

1 0 0

1 1 1

The parameter values (weights & thresholds) need to be found.

y

w1 w2

x1 x2

θ

Computing parameter values

w1 * 0 + w2 * 0 <= θ θ >= 0; since y=0

w1 * 0 + w2 * 1 <= θ w2 <= θ; since y=0

w1 * 1 + w2 * 0 <= θ w1 <= θ; since y=0

w1 * 1 + w2 *1 > θ w1 + w2 > θ; since y=1

w1 = w2 = = 0.5

satisfy these inequalities and find parameters to be

used for computing AND function.

Other Boolean functions

• OR can be computed using values of w1 = w2 = 1

and = 0.5

• XOR function gives rise to the following

inequalities:

w1 * 0 + w2 * 0 <= θ θ >= 0

w1 * 0 + w2 * 1 > θ w2 > θ

w1 * 1 + w2 * 0 > θ w1 > θ

w1 * 1 + w2 *1 <= θ w1 + w2 <= θ

No set of parameter values satisfy these inequalities.

Threshold functions

n # Boolean functions (2^2^n) #Threshold Functions (2n2)

1 4 4

2 16 14

3 256 128

4 64K 1008

• Functions computable by perceptrons - threshold

functions

• #TF becomes negligibly small for larger values of

#BF.

• For n=2, all functions except XOR and XNOR are

computable.

AND of 2 inputs

X1 x2 y
0 0 0

0 1 0

1 0 0

1 1 1

The parameter values (weights & thresholds) need to be found.

y

w1 w2

x1 x2

θ

Constraints on w1, w2 and θ

w1 * 0 + w2 * 0 <= θ θ >= 0; since y=0

w1 * 0 + w2 * 1 <= θ w2 <= θ; since y=0

w1 * 1 + w2 * 0 <= θ w1 <= θ; since y=0

w1 * 1 + w2 *1 > θ w1 + w2 > θ; since y=1

w1 = w2 = = 0.5

These inequalities are satisfied by ONE particular region

Perceptron training

Perceptron Training Algorithm

(PTA)

Preprocessing:

1. The computation law is modified to

y = 1 if ∑wixi > θ

y = o if ∑wixi < θ



. . .

θ, ≤

w1 w2 wn

x1 x2 x3 xn

. . .

θ, <

w1 w2 w3
wn

x1 x2 x3 xn

w3

PTA – preprocessing cont…

2. Absorb θ as a weight



3. Negate all the zero-class examples

. . .

θ

w1 w2 w3 wn

x2 x3 xn
x1

w0=θ

x0= -1

. . .

θ

w1 w2 w
3

wn

x2 x3 xn
x1

Example to demonstrate preprocessing

• OR perceptron

1-class <1,1> , <1,0> , <0,1>

0-class <0,0>

Augmented x vectors:-

1-class <-1,1,1> , <-1,1,0> , <-1,0,1>

0-class <-1,0,0>

Negate 0-class:- <1,0,0>

Example to demonstrate preprocessing

cont..

Now the vectors are

x0 x1 x2

X1 -1 0 1

X2 -1 1 0

X3 -1 1 1

X4 1 0 0

Perceptron Training Algorithm

1. Start with a random value of w

ex: <0,0,0…>

2. Test for wxi > 0

If the test succeeds for i=1,2,…n

then return w

3. Modify w, wnext = wprev + xfail

PTA on NAND

NAND: Y

X2 X1 Y

0 0 1

0 1 1 W2 W1

1 0 1

1 1 0 X2 X1

Converted To

W2 W1 W0= Θ

X2 X1 X0=-1

Θ

Θ

Preprocessing

NAND Augmented: NAND-0 class Negated

X2 X1 X0 Y X2 X1 X0

0 0 -1 1 V0: 0 0 -1

0 1 -1 1 V1: 0 1 -1

1 0 -1 1 V2: 1 0 -1

1 1 -1 0 V3: -1 -1 1

Vectors for which

W=<W2 W1 W0> has to

be found such that

W. Vi > 0

PTA Algo steps

Algorithm:

1. Initialize and Keep adding the failed vectors

until W. Vi > 0 is true.

Step 0: W = <0, 0, 0>

W1 = <0, 0, 0> + <0, 0, -1> {V0 Fails}

= <0, 0, -1>

W2 = <0, 0, -1> + <-1, -1, 1> {V3 Fails}

= <-1, -1, 0>

W3 = <-1, -1, 0> + <0, 0, -1> {V0 Fails}

= <-1, -1, -1>

W4 = <-1, -1, -1> + <0, 1, -1> {V1 Fails}

= <-1, 0, -2>

Trying convergence

W5 = <-1, 0, -2> + <-1, -1, 1> {V3 Fails}

= <-2, -1, -1>

W6 = <-2, -1, -1> + <0, 1, -1> {V1 Fails}

= <-2, 0, -2>

W7 = <-2, 0, -2> + <1, 0, -1> {V0 Fails}

= <-1, 0, -3>

W8 = <-1, 0, -3> + <-1, -1, 1> {V3 Fails}

= <-2, -1, -2>

W9 = <-2, -1, -2> + <1, 0, -1> {V2 Fails}

= <-1, -1, -3>

Trying convergence

W10 = <-1, -1, -3> + <-1, -1, 1> {V3 Fails}

= <-2, -2, -2>

W11 = <-2, -2, -2> + <0, 1, -1> {V1 Fails}

= <-2, -1, -3>

W12 = <-2, -1, -3> + <-1, -1, 1> {V3 Fails}

= <-3, -2, -2>

W13 = <-3, -2, -2> + <0, 1, -1> {V1 Fails}

= <-3, -1, -3>

W14 = <-3, -1, -3> + <0, 1, -1> {V2 Fails}

= <-2, -1, -4>

W15 = <-2, -1, -4> + <-1, -1, 1> {V3 Fails}

= <-3, -2, -3>

W16 = <-3, -2, -3> + <1, 0, -1> {V2 Fails}

= <-2, -2, -4>

W17 = <-2, -2, -4> + <-1, -1, 1> {V3 Fails}

= <-3, -3, -3>

W18 = <-3, -3, -3> + <0, 1, -1> {V1 Fails}

= <-3, -2, -4>

W2 = -3, W1 = -2, W0 = Θ = -4

Succeeds for all vectors

PTA convergence

Statement of Convergence of

PTA

• Statement:

Whatever be the initial choice of weights and

whatever be the vector chosen for testing, PTA

converges if the vectors are from a linearly

separable function.

Proof of Convergence of PTA

• Suppose wn is the weight vector at the

nth step of the algorithm.

• At the beginning, the weight vector is

w0

• Go from wi to wi+1 when a vector Xj

fails the test wiXj > 0 and update wi as
wi+1 = wi + Xj

• Since Xjs form a linearly separable

function,

 w* s.t. w*X > 0 j

Proof of Convergence of PTA
(cntd.)

• Consider the expression
G(wn) = wn . w*

| wn|

where wn = weight at nth iteration

• G(wn) = |wn| . |w*| . cos 
|wn|

where  = angle between wn and w*

• G(wn) = |w*| . cos 

• G(wn) ≤ |w*| (as -1 ≤ cos  ≤ 1)

Behavior of Numerator of G

wn . w* = (wn-1 + Xn-1
fail) . w*

wn-1 . w* + Xn-1
fail . w*

 (wn-2 + Xn-2
fail) . w* + Xn-1

fail . w* …..

w0 . w* + (X0
fail + X1

fail +.... + Xn-1
fail).

w*

w*.Xi
fail is always positive: note

carefully

• Suppose |Xj| ≥  , where  is the
minimum magnitude.

• Num of G ≥ |w0 . w*| + n  . |w*|

Behavior of Denominator of G

• |wn| =  wn . wn

  (wn-1 + Xn-1
fail)

2

  (wn-1)
2 + 2. wn-1. X

n-1
fail + (Xn-1

fail)
2

≤  (wn-1)
2 + (Xn-1

fail)
2 (as wn-1. X

n-

1
fail ≤ 0)

≤  (w0)
2 + (X0

fail)
2 + (X1

fail)
2 +…. + (Xn-

1
fail)

2

• |Xj| ≤  (max magnitude)

• So, Denom ≤  (w0)
2 + n2

Some Observations

• Numerator of G grows as n

• Denominator of G grows as  n

=> Numerator grows faster than

denominator

• If PTA does not terminate, G(wn)

values will become unbounded.

Some Observations contd.

• But, as |G(wn)| ≤ |w*| which is finite,

this is impossible!

• Hence, PTA has to converge.

• Proof is due to Marvin Minsky.

A Problem that can be solved using the

proof of PTA

Problem: If a weight repeats while

training the perceptron, then the

function is not linearly separable.

Proof

Let us prove first wn .w* is an increasing

function.

From the proof of convergence of PTA,

we can write

wn .w*= (wn-1 + Xn-1
fail) .w*

= wn-1 .w* + w*. Xn-1
fail

Since w* is optimal weight vector

therefore:

w*. Xn-1
fail > 0

Proof cntd.
Because in every iteration we are adding +ve
number w*. Xn-1

fail

Therefore:

wn .w* > wn-1 .w* (1)

Hence wn .w* is an increasing function.

According to the claim made by theorem, if weight
repeat then the weight wi at a given iteration i, will be
equal to the weight wi+k at a given iteration (i+k)
where k is a +ve number

wi= wi+k

Proof cntd.

Therefore:

wi .w* =wi+k .w* (2)

(2) contradicts the (1)

Hence no w* exists

So function is not linearly separable.

Feedforward Network and

Backpropagation

Example - XOR

w2=1w1=1
θ = 0.5

x1x2 x1x2

-1

x1 x2

-1
1.5

1.5

1 1

Can we use PTA for training FFN?

1, 0, 0 0

-1, 0, 1 1

-1, 1, 0 1

1, -1, -1 0

0, 0 0

0, 1 1

1, 0 1

1, 1 0

-1, 0, 0 0

-1, 0, 1 1

-1, 1, 0 1

-1, 1, 1 0

No, else the individual neurons are solving XOR, which is impossible.

Also, for the hidden layer neurons we do nothave the i/o behaviour.

x1
x2 -1

θ1

θ2

θ3

Gradient Descent Technique

• Let E be the error at the output layer

• ti = target output; oi = observed output

• i is the index going over n neurons in the

outermost layer

• j is the index going over the p patterns (1 to p)

• Ex: XOR:– p=4 and n=1


 


p

j

n

i

jii otE
1 1

2)(
2

1

Weights in a FF NN

• wmn is the weight of the

connection from the nth neuron

to the mth neuron

• E vs surface is a complex

surface in the space defined by

the weights wij

• gives the direction in which

a movement of the operating

point in the wmn co-ordinate

space will result in maximum

decrease in error

W

m

n

wmn

mnw

E






mn

mn
w

E
w






Step function v/s Sigmoid function

O

x1xn … x2

)(

)(

netf

xwfO ii





net

O

netO





is w.r.t. of derivative partial So

Non-differentiable Differentiable

High watermark

Low watermark

Backpropagation algorithm

• Fully connected feed forward network

• Pure FF network (no jumping of
connections over layers)

Hidden layers

Input layer

(n i/p neurons)

Output layer

(m o/p neurons)
j

i

wji

….

….

….

….

Gradient Descent Equations

i

ji

j

ji

j

th

j

ji

j

jji

ji

ji

jo
w

net
jw

j
net

E

net
w

net

net

E

w

E

w

E
w






































)layer j at theinput (

)10 rate, learning(

Backpropagation – for outermost

layer

ijjjjji

jjjj

m

p

pp

th

j

j

j

jj

ooootw

oootj

otE

net
net

o

o

E

net

E
j

)1()(

))1()((Hence,

)(
2

1

)layer j at theinput (

1

2





























Observations from ∆wji

ijjjjji ooootw)1()( 

 assignment meCredit/Bla 0 4.

behaviour Saturation
and/or 0 3.

and/or 1 2.

and/or 1.

if, 0















i

j

j

jj

ji

O

O

O

tO

w

Backpropagation for hidden layers

Hidden layers

Input layer

(n i/p neurons)

Output layer

(m o/p neurons)

j

i

….

….

….

….

k

k is propagated backwards to find value of j

Backpropagation – for hidden

layers

)1()(

)1()(Hence,

)1()(

)1(

layernext

layernext

layernext

jj

k

kkj

jj

k

kjkj

jj

k j

k

k

jj

j

j

j

jj

iji

oow

oow

oo
o

net

net

E

oo
o

E

net

o

o

E

net

E
j

jow
























































This recursion can

give rise to vanishing

and exploding

Gradient problem

General Backpropagation Rule

ijj

k

kkj ooow)1()(
layernext

 




)1()(jjjjj ooot 

iji jow 
• General weight updating rule:

• Where

for outermost layer

for hidden layers

How does it work?

• Input propagation forward and error

propagation backward (e.g. XOR)

w2=1w1=1
θ = 0.5

x1x2 x1x2

-1

x1 x2

-1
1.5

1.5

1 1

x2 x1

h2 h1

33 cxmy 

11 cxmy 22 cxmy 

1221111)(cxwxwmh 

1221111)(cxwxwmh 

32211

32615)(

kxkxk

chwhwOut





Can Linear Neurons Work?

Note: The whole structure shown in earlier slide is reducible

to a single neuron with given behavior

Claim: A neuron with linear I-O behavior can’t compute X-

OR.

Proof: Considering all possible cases:

[assuming 0.1 and 0.9 as the lower and upper thresholds]

For (0,0), Zero class:

For (0,1), One class:

32211 kxkxkOut 

1.0.

1.0)0.0.(21









mc

cwwm

9.0..

9.0)0.1.(

1

12





cmwm

cwwm





For (1,0), One class:

For (1,1), Zero class:

These equations are inconsistent. Hence X-OR can’t be computed.

Observations:

1. A linear neuron can’t compute X-OR.

2. A multilayer FFN with linear neurons is collapsible to a

single linear neuron, hence no a additional power due

to hidden layer.

3. Non-linearity is essential for power.

9.0.. 1  cmwm 

9.0.. 1  cmwm 

