CS626: Speech, NLP and the Web

Start of Neural Network Pushpak Bhattacharyya Computer Science and Engineering Department IIT Bombay Week of 12th October, 2020

Task vs. Technique Matrix

Task (row) vs. Technique (col) Matrix	Rules Based/Kn owledge-	Classical ML	Deep Learning					
	Based							
		Perceptron	Logistic Regression	SVM	Graphical Models (HMM, MEMM, CRF)	Dense FF with BP and softmax	RNN- LSTM	CNN
Morphology								
POS								
Chunking								
Parsing								
NER, MWE								
Coref								
WSD								
Machine Translation								
Semantic Role Labeling								
Sentiment								
Question Answering								

Agenda for the week

- Introduction to Neural Network as a framework for "deep learning"
- Perceptron and Feedforward N/W
- Recurrent N/W
- NLP and Neural Net

Stages of development

- Perceptron
- Feedforward Neural N/W
- (in parallel with FFNN) Recurrent Neural Nets
- Multilayer recurrent n/w: Self Organization, Neocognitron
- (recent) LSTM, Bi-LSTM, GRU
- (recent) FFNN with softmax
- After RNN) Transformers
 - Main difference with RNN, data need not be in sequential order!

https://huggingface.co/transformers/

- (1/6)
 The library currently contains PyTorch and Tensorflow implementations, pre-trained model weights, usage scripts and conversion utilities for the following models:
- <u>BERT</u> (from Google) released with the paper <u>BERT</u>: Pretraining of Deep Bidirectional Transformers for Language <u>Understanding</u> by Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
- <u>GPT</u> (from OpenAI), <u>Improving Language Understanding by</u> <u>Generative Pre-Training</u> by Radford et al.
- <u>GPT-2</u> (from OpenAI), <u>Language Models are Unsupervised</u> <u>Multitask Learners</u> by Radford et al.
- <u>Transformer-XL</u> (from Google/CMU), released with the paper <u>Transformer-XL</u>: <u>Attentive Language Models Beyond a</u> <u>Fixed-Length Context</u> by Zihang Dai et al.

Huggingface cntd. (2/6)

- <u>XLNet</u> (from Google/CMU), <u>XLNet: Generalized</u> <u>Autoregressive Pretraining for Language</u> <u>Understanding</u> by Zhilin Yang et al.
- <u>XLM</u> (from Facebook), <u>Cross-lingual Language Model</u> <u>Pretraining</u> by Guillaume Lample and Alexis Conneau.
- <u>RoBERTa</u> (from Facebook), <u>Robustly Optimized BERT</u> <u>Pretraining Approach</u> by Yinhan Liu et al.
- <u>DistilBERT</u> (from HuggingFace), <u>DistilBERT</u>, a distilled version of BERT: smaller, faster, cheaper and lighter by Victor Sanh et al. The same method has been applied to compress GPT2 into <u>DistilGPT2</u>.
- <u>CTRL</u> (from Salesforce), <u>CTRL</u>: A Conditional <u>Transformer Language Model for Controllable</u> <u>Generation</u> by Keskar et al.

Huggingface (3/6)

- <u>CamemBERT</u> (from FAIR, Inria, Sorbonne Université), <u>CamemBERT: a Tasty French Language</u> <u>Model</u> by Louis Martin et al.
- <u>ALBERT</u> (from Google Research), <u>ALBERT: A Lite BERT for</u> <u>Self-supervised Learning of Language Representations</u> by <u>Zhenzhong Lan et al.</u>
- <u>T5</u> (from Google), <u>Exploring the Limits of Transfer Learning</u> with a Unified Text-to-Text Transformer by Raffel et al.
- <u>XLM-RoBERTa</u> (from Facebook AI), <u>Unsupervised Cross-</u> <u>lingual Representation Learning at Scale</u> by Conneau et al.

Huggingface (4/6)

- <u>MMBT</u> (from Facebook), <u>Supervised Multimodal</u> <u>Bitransformers for Classifying Images and Text</u> by Kiela et al.
- <u>FlauBERT</u> (from CNRS), <u>FlauBERT</u>: <u>Unsupervised Language</u> <u>Model Pre-training for French</u> by Le et al.
- <u>BART</u> (from Facebook), <u>BART: Denoising Sequence-to-</u> <u>Sequence Pre-training for Natural Language Generation,</u> <u>Translation, and Comprehension</u> by Lewis et al.
- <u>ELECTRA</u> (from Google Research/Stanford University), <u>ELECTRA</u>: Pre-training text encoders as discriminators rather than generators by Clark et al.
- <u>DialoGPT</u> (from Microsoft Research), <u>DialoGPT: Large-Scale</u> <u>Generative Pre-training for Conversational Response</u> <u>Generation</u> by Zhang et al.

Huggingface (5/6)

- <u>Reformer</u> (from Google Research), <u>Reformer: The Efficient</u> <u>Transformer</u> by Kitaev et al.
- <u>MarianMT</u> (developed by the Microsoft Translator Team) machine translation models trained using <u>OPUS</u> pretrained_models data by Jörg Tiedemann.
- Longformer (from AllenAI), Longformer: The Long-Document Transformer by Beltagy et al.
- <u>DPR</u> (from Facebook), <u>Dense Passage Retrieval for Open-</u> <u>Domain Question Answering</u> by Karpukhin et al.
- <u>Pegasus</u> (from Google), <u>PEGASUS: Pre-training with</u> <u>Extracted Gap-sentences for Abstractive Summarization</u> by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.

Huggingface (6/6)

- <u>MBart</u> (from Facebook) released with the paper <u>Multilingual</u> <u>Denoising Pre-training for Neural Machine Translation</u> by Liu et al.
- <u>LXMERT</u> (from UNC Chapel Hill), <u>LXMERT: Learning Cross-</u> <u>Modality Encoder Representations from Transformers for</u> <u>Open-Domain Question Answering</u> by Tan and Mohit Bansal.
- <u>Funnel Transformer</u> (from CMU/Google Brain), <u>Funnel-</u> <u>Transformer: Filtering out Sequential Redundancy for</u> <u>Efficient Language Processing</u> by Dai et al.
- <u>Bert For Sequence Generation</u> (from Google), <u>Leveraging</u> <u>Pre-trained Checkpoints for Sequence Generation</u> <u>Tasks</u> Rothe et al.
- <u>LayoutLM</u> (from Microsoft Research Asia), <u>LayoutLM: Pre-</u> training of Text and Layout for Document Image Understanding by Xu et al.

Using Transformers: tasks

- Sequence Classification
- Extractive Question Answering
- Language Modeling
- Named Entity Recognition
- Summarization
- Translation

Using Transformers: Models

- <u>Autoregressive models</u>
- Autoencoding models
- <u>Sequence-to-sequence models</u>
- <u>Multimodal models</u>
- <u>Retrieval-based models</u>

Difference between "Discriminative" and "Generative" Models

- Historical reason
- Binary classification problem
- Want to decide if a patient has cancer based on different "features" from the reports
- $Argmax_D(P(D|S))$
- D takes values 'Y' and 'N'
- Decide 'Y' if P(D=Y|S) > P(=N|S), else 'N'

Discriminative Model

- Compute *P*(*D*/*S*) directly
- "Features" from reports, $S = \{F_1, F_2, F_3, ..., F_K\}$ (like, fever, weight loss, hair loss, haemoglobin level etc.)
- P(D=Y|<fever, weight loss, hair loss, haemoglobin level,...>)
- We are discriminating, i.e., differentiating wrt the features input

Generative Model

- Compute P(D) and P(S|D) and take product
- For P(D) we will need the proportion of cancer patients in the population (obtained via sampling)
- For the likelihood, we will make use of naïve Bayes assumption and require values of *P*(*F_i*|*D*), e.g., what is the probability of a cancer patient having fever
- Hence the "discrimination" is not direct!!

AI Perspective (post-web)

Symbolic Al

- Connectionist AI is contrasted with Symbolic AI
- Symbolic AI Physical Symbol System Hypothesis
- Every intelligent system can be constructed by storing and processing symbols and nothing more is necessary.

• Symbolic AI has a bearing on models of computation such as

Turing Machine & Von Neumann

VonNeumann Machine

Challenges to Symbolic AI

- Motivation for challenging Symbolic AI
- A large number of computations and information process tasks that living beings are comfortable with, are not performed well by computers!
- The Differences
- Brain computation in living beings
- Pattern Recognition
- Learning oriented
- Distributed & parallel processing
 processing
- Content addressable

TM computation in computers Numerical Processing Programming oriented Centralized & serial

Location addressable

The human brain

- Seat of consciousness and cognition
- Perhaps the most complex information processing machine in nature

Neuron - "classical"

Dendrites

- Receiving stations of neurons
- Don't generate action potentials
- Cell body
 - Site at which information received is integrated
- Axon
 - Generate and relay action potential
 - Terminal
 - Relays information to next neuron in the pathway

http://www.educarer.com/images/brain-nerve-axon.jpg

Perceptron

The Perceptron Model

A perceptron is a computing element with input lines having associated weights and the cell having a threshold value. The perceptron model is motivated by the biological neuron.

y = 1 for Σwixi >=θ =0 otherwise

Features of Perceptron

- Input output behavior is discontinuous and the derivative does not exist at Σ wixi = θ
- Σ wixi θ is the net input denoted as net
- Referred to as a linear threshold element linearity because of x appearing with power 1

 y= f(net): Relation between y and net is nonlinear

Computation of Boolean functions

AND of 2 inputsX1x2y000010100111

The parameter values (weights & thresholds) need to be found.

Computing parameter values

w1 * 0 + w2 * 0 <= $\theta \rightarrow \theta$ >= 0; since y=0

w1 * 0 + w2 * 1 <= $\theta \rightarrow w2$ <= θ ; since y=0

w1 * 1 + w2 * 0 <= $\theta \rightarrow$ w1 <= θ ; since y=0

w1 * 1 + w2 *1 > $\theta \rightarrow$ w1 + w2 > θ ; since y=1 w1 = w2 = = 0.5

satisfy these inequalities and find parameters to be used for computing AND function.

Other Boolean functions

- OR can be computed using values of w1 = w2 = 1 and = 0.5
- XOR function gives rise to the following inequalities:
 - w1 * 0 + w2 * 0 <= $\theta \rightarrow \theta >= 0$

w1 * 0 + w2 * 1 > $\theta \rightarrow w2 > \theta$

w1 * 1 + w2 * 0 > $\theta \rightarrow$ w1 > θ

w1 * 1 + w2 *1 <= $\theta \rightarrow$ w1 + w2 <= θ

No set of parameter values satisfy these inequalities.

Threshold functions

n # Boolean functions (2^2^n) #Threshold Functions (2ⁿ²)

1	4	4
2	16	14
3	256	128
4	64K	1008

- Functions computable by perceptrons threshold functions
- #TF becomes negligibly small for larger values of #BF.
- For n=2, all functions except XOR and XNOR are computable.

AND of 2 inputs

X1	x2	У
0	0	0
0	1	0
1	0	0
1	1	1

The parameter values (weights & thresholds) need to be found.

Constraints on w1, w2 and θ

w1 * 0 + w2 * 0 <= $\theta \rightarrow \theta >= 0$; since y=0 w1 * 0 + w2 * 1 <= $\theta \rightarrow w2 <= \theta$; since y=0 w1 * 1 + w2 * 0 <= $\theta \rightarrow w1 <= \theta$; since y=0 w1 * 1 + w2 * 1 > $\theta \rightarrow w1 + w2 > \theta$; since y=1 w1 = w2 = = 0.5

These inequalities are satisfied by ONE particular region

Perceptron training

Perceptron Training Algorithm (PTA)

Preprocessing:

1. The computation law is modified to

 $y = 1 \text{ if } \sum w_i x_i > \theta$ $y = 0 \text{ if } \sum w_i x_i < \theta$

PTA – preprocessing cont...

2. Absorb θ as a weight

3. Negate all the zero-class examples

Example to demonstrate preprocessing

- OR perceptron
- 1-class <1,1>, <1,0>, <0,1> 0-class <0,0>
- Augmented x vectors:-1-class <-1,1,1> , <-1,1,0> , <-1,0,1> 0-class <-1,0,0>

Negate 0-class:- <1,0,0>

Example to demonstrate preprocessing cont..

Now the vectors are

Perceptron Training Algorithm

- 1. Start with a random value of w ex: <0,0,0...>
- 2. Test for wx_i > 0 If the test succeeds for i=1,2,...n then return w
- 3. Modify w, $w_{next} = w_{prev} + x_{fail}$

PTA on NAND

Preprocessing

NAND Augmented: NAND-0 class Negated

X1 X0 Y X1 X2 X2 **X0** -1 1 V0: 0 0 -1 0 0 1 1 -1 1 V1: 0 -1 $\mathbf{0}$ 1 1 1 0 -1 V2: 0 -1 -1 1 1 0 V3: -1 -1 1

> Vectors for which W=<W2 W1 W0> has to be found such that W. Vi > 0

PTA Algo steps

Algorithm:

 Initialize and Keep adding the failed vectors until W. Vi > 0 is true.

Trying convergence

 $W_5 = \langle -1, 0, -2 \rangle + \langle -1, -1, 1 \rangle \quad \{V_3 \text{ Fails}\}$ $= \langle -2, -1, -1 \rangle$

- W6 = <-2, -1, -1> + <0, 1, -1> {V1 Fails} = <-2, 0, -2>
- W7 = <-2, 0, -2> + <1, 0, -1> {Vo Fails} = <-1, 0, -3>
- W8 = <-1, 0, -3> + <-1, -1, 1> {V3 Fails} = <-2, -1, -2>
 - W9 = <-2, -1, -2> + <1, 0, -1> {V₂ Fails} = <-1, -1, -3>

Trying convergence

$$W2 = -3$$
, $W1 = -2$, $W0 = \Theta = -4$

Succeeds for all vectors

PTA convergence

Statement of Convergence of PTA

• Statement:

Whatever be the initial choice of weights and whatever be the vector chosen for testing, PTA converges if the vectors are from a linearly separable function.

Proof of Convergence of PTA

- Suppose w_n is the weight vector at the nth step of the algorithm.
- At the beginning, the weight vector is
 w₀
- Go from w_i to w_{i+1} when a vector X_j fails the test $w_i X_j > 0$ and update w_i as $w_{i+1} = w_i + X_j$
- Since Xjs form a linearly separable function,

Proof of Convergence of PTA (cntd.)

Consider the expression

$$G(w_n) = \underline{w_n \cdot w^*} |w_n|$$

where w_n = weight at nth iteration

• $G(w_n) = |w_n| \cdot |w^*| \cdot \cos \theta$ $|w_n|$

where θ = angle between w_n and w^{*}

- $G(w_n) = |w^*| \cdot \cos \theta$
- $G(w_n) \le |w^*|$ (as $-1 \le \cos \theta \le 1$)

Behavior of Numerator of G

$$\begin{split} & w_{n} \cdot w^{*} = (w_{n-1} + X^{n-1}_{fail}) \cdot w^{*} \\ &= w_{n-1} \cdot w^{*} + X^{n-1}_{fail} \cdot w^{*} \\ &= (w_{n-2} + X^{n-2}_{fail}) \cdot w^{*} + X^{n-1}_{fail} \cdot w^{*} \dots \\ &= w_{0} \cdot w^{*} + (X^{0}_{fail} + X^{1}_{fail} + \dots + X^{n-1}_{fail}). \\ & w^{*} \end{split}$$

w*.Xⁱ_{fail} is always positive: note carefully

• Suppose $|X_j| \ge \delta$, where δ is the minimum magnitude.

• Num of C > |w| $|w|^*| \perp n S |w|^*|$

Behavior of Denominator of G

•
$$|W_n| = \sqrt{W_n \cdot W_n}$$

= $\sqrt{(W_{n-1} + X^{n-1}_{fail})^2}$
= $\sqrt{(W_{n-1})^2 + 2 \cdot W_{n-1} \cdot X^{n-1}_{fail} + (X^{n-1}_{fail})^2}$
 $\leq \sqrt{(W_{n-1})^2 + (X^{n-1}_{fail})^2}$ (as $W_{n-1} \cdot X^{n-1}_{fail} \leq 0$)
 $\leq \sqrt{(W_0)^2 + (X^0_{fail})^2 + (X^1_{fail})^2 + \dots + (X^{n-1}_{fail})^2}$

- $|X_j| \le \rho$ (max magnitude)
- \sim So Donom $< \sqrt{(1)} \sqrt{2}$ \sim $\sqrt{2}$

Some Observations

- Numerator of G grows as n
- Denominator of G grows as \sqrt{n}
 - => Numerator grows faster than denominator
- If PTA does not terminate, G(w_n) values will become unbounded.

Some Observations contd.

- But, as |G(w_n)| ≤ |w^{*}| which is finite, this is impossible!
- Hence, PTA has to converge.
- Proof is due to Marvin Minsky.

A Problem that can be solved using the proof of PTA

Problem: If a weight repeats while training the perceptron, then the function is not linearly separable.

Proof

Let us prove first $w_n . w^*$ is an increasing function.

From the proof of convergence of PTA, we can write

$$W_{n} \cdot W^{*} = (W_{n-1} + X^{n-1}_{fail}) \cdot W^{*}$$
$$= W_{n-1} \cdot W^{*} + W^{*} \cdot X^{n-1}_{fail}$$

Since *w** is optimal weight vector therefore:

$$W^*. X^{n-1}_{fail} > 0$$

Proof cntd.

Because in every iteration we are adding +ve number w^* . X^{n-1}_{fail}

Therefore:

$$W_n . W^* > W_{n-1} . W^*$$
 (1)

Hence $w_n . w^*$ is an increasing function. According to the claim made by theorem, if weight repeat then the weight w_i at a given iteration *i*, will be equal to the weight w_{i+k} at a given iteration (*i*+*k*) where k is a +ve number

 $W_{i=} W_{i+k}$

Proof cntd.

Therefore: $w_i . w^* = w_{i+k} . w^*$ (2)

(2) contradicts the (1)

Hence no w* exists

So function is not linearly separable.

Feedforward Network and Backpropagation

Example - XOR

Can we use PTA for training FFN?

No, else the individual neurons are solving XOR, which is impossible. Also, for the hidden layer neurons we do nothave the i/o behaviour.

Gradient Descent Technique

• Let E be the error at the output layer

$$E = \frac{1}{2} \sum_{j=1}^{p} \sum_{i=1}^{n} (t_i - o_i)_j^2$$

- t_i = target output; o_i = observed output
- i is the index going over n neurons in the outermost layer
- j is the index going over the p patterns (1 to p)
- Ex: XOR:- p=4 and n=1

Weights in a FF NN

- w_{mn} is the weight of the connection from the nth neuron to the mth neuron
- E vs w surface is a complex surface in the space defined by the weights w_{ii}

• $-\frac{\delta E}{\delta w_{mn}}$ gives the direction in which a movement of the operating point in the w_{mn} co-ordinate space will result in maximum decrease in error

 $\Delta w_{mn} \propto -\frac{\partial E}{\delta w}$

Step function v/s Sigmoid function

 $O = f(\sum w_i x_i)$ = f(net)

So partial derivative of O w.r.t.*net* is $\frac{\delta O}{\delta n}$

Backpropagation algorithm

- Fully connected feed forward network
- Pure FF network (no jumping of connections over layers)

Gradient Descent Equations

$$\Delta w_{ji} = -\eta \frac{\delta E}{\delta w_{ji}} (\eta = \text{learning rate}, 0 \le \eta \le 1)$$

$$\frac{\delta E}{\delta w_{ji}} = \frac{\delta E}{\delta n e t_j} \times \frac{\delta n e t_j}{\delta w_{ji}} (n e t_j = \text{input at the } j^{th} \text{ layer})$$

$$\frac{\delta E}{\delta n e t_j} = -\delta j$$

$$\Delta w_{ji} = \eta \delta j \frac{\delta n e t_j}{\delta w_{ji}} = \eta \delta j o_i$$

Backpropagation – for outermost layer

$$\delta j = -\frac{\delta E}{\delta net_j} = -\frac{\delta E}{\delta o_j} \times \frac{\delta o_j}{\delta net_j} (net_j = \text{input at the } j^{th} \text{ layer})$$

$$E = \frac{1}{2} \sum_{p=1}^{m} (t_p - o_p)^2$$

Hence, $\delta j = -(-(t_j - o_j)o_j(1 - o_j))$

$$\Delta w_{ji} = \eta (t_j - o_j) o_j (1 - o_j) o_i$$

Observations from ΔW_{jj}

$$\Delta w_{ji} = \eta (t_j - o_j) o_j (1 - o_j) o_i$$

- $\Delta w_{ji} \rightarrow 0$ if,
- $1.O_j \rightarrow t_j$ and/or
- $2.O_j \rightarrow 1$ and/or
- $3.O_j \rightarrow 0$ and/or
- $4. O_i \rightarrow 0$

Saturation behaviour

Credit/Blame assignment

Backpropagation for hidden layers

 δ_k is propagated backwards to find value of δ_i

Backpropagation – for hidden layers

General Backpropagation Rule

- General weight updating rule: $\Delta w_{ji} = \eta \delta j o_i$
- Where

$$\delta_j = (t_j - o_j)o_j(1 - o_j)$$
 for outermost layer

 $= \sum_{k \in \text{next layer}} (w_{kj} \delta_k) o_j (1 - o_j) o_i \text{ for hidden layers}$

How does it work?

 Input propagation forward and error propagation backward (e.g. XOR)

Can Linear Neurons Work?

 $h_{1} = m_{1}(w_{1}x_{1} + w_{2}x_{2}) + c_{1}$ $h_{1} = m_{1}(w_{1}x_{1} + w_{2}x_{2}) + c_{1}$ $Out = (w_{5}h_{1} + w_{6}h_{2}) + c_{3}$ $= k_{1}x_{1} + k_{2}x_{2} + k_{3}$

Note: The whole structure shown in earlier slide is reducible to a single neuron with given behavior

 $Out = k_1 x_1 + k_2 x_2 + k_3$

Claim: A neuron with linear I-O behavior can't compute X-OR.

Proof: Considering all possible cases:

[assuming 0.1 and 0.9 as the lower and upper thresholds] $m(w_1.0+w_2.0-\theta)+c<0.1$ For (0,0), Zero class: $\Rightarrow c-m.\theta<0.1$

 $m(w_2.1+w_1.0-\theta)+c>0.9$ $\Rightarrow m.w_1-m.\theta+c>0.9$

For (0,1), One class:

For (1,0), One class: $m.W_1 - m.\theta + c > 0.9$

For (1,1), Zero class: $m.W_1 - m.\theta + c > 0.9$

These equations are inconsistent. Hence X-OR can't be computed.

Observations:

- 1. A linear neuron can't compute X-OR.
- 2. A multilayer FFN with linear neurons is collapsible to a single linear neuron, hence **no a additional power due to hidden layer.**
- 3. Non-linearity is essential for power.