CS626: Speech, NLP and the
Web

Pushpak Bhattacharyya

Computer Science and Engineering
Department

IIT Bombay
Week of 12t October, 2020

Task vs. Technique Matrix

Task (row) vs.
Technique (col) Matrix

Rules
Based/Kn
owledge-
Based

Classical ML

Deep Learning

Perceptron

Logistic
Regression

SVM

Graphical Models
(HMM, MEMM,
CRF)

Dense FF with
BP and softmax

RNN-
LSTM

CNN

Morphology

POS

Chunking

Parsing

NER, MWE

Coref

WSD

Machine Translation

Semantic Role
Labeling

Sentiment

Question Answering

Agenda for the week

e Introduction to Neural Network
as a framework for “deep
learning”

* Perceptron and Feedforward
N/W

* Recurrent N/W
* NLP and Neural Net

Stages of development

* Perceptron
* Feedforward Neural N/W
 (in parallel with FFNN) Recurrent Neural Nets

* Multilayer recurrent n/w: Self Organization,
Neocognitron

* (recent) LSTM, BI-LSTM, GRU
* (recent) FFNN with softmax
« After RNN) Transformers

— Main difference with RNN, data need not be In
sequential order!

https://huggingface.co/transformers/

1/6

The library currently contai§1s PyTorch and Tensorflow
Implementations, pre-trained model weights, usage scripts
and conversion utilities for the following models:

BERT (from Google) released with the paper BERT: Pre-
training of Deep Bidirectional Transformers for Lanquage
Understanding by Jacob Devlin, Ming-Wei Chang, Kenton
Lee, and Kristina Toutanova.

GPT (from OpenAl), Improving Language Understanding by
Generative Pre-Training by Radford et al.

GPT-2 (from OpenAl), Language Models are Unsupervised
Multitask Learners by Radford et al.

Transformer-XL (from Google/CMU), released with the
paper Transformer-XL: Attentive Lanquage Models Beyond a
Fixed-Length Context by Zihang Dai et al.

https://huggingface.co/transformers/
https://github.com/google-research/bert
https://arxiv.org/abs/1810.04805
https://github.com/openai/finetune-transformer-lm
https://blog.openai.com/language-unsupervised
https://blog.openai.com/better-language-models
https://blog.openai.com/better-language-models
https://github.com/kimiyoung/transformer-xl
https://arxiv.org/abs/1901.02860

Huggingface cntd. (2/6)

XLNet (from Google/CMU), XLNet: Generalized
Autoregressive Pretraining for Language
Understanding by Zhilin Yang et al.

XLM (from Facebook), Cross-lingual Language Model
Pretraining by Guillaume Lample and Alexis Conneau.

RoBERTa (from Facebook), Robustly Optimized BERT
Pretraining Approach by Yinhan Liu et al.

DistiiBERT (from HuggingFace), DistilBERT, a distilled
version of BERT: smaller, faster, cheaper and lighter by
Victor Sanh et al. The same method has been applied to
compress GPT2 into DistilGPT2.

CTRL (from Salesforce), CTRL: A Conditional
Transformer Language Model for Controllable
Generation by Keskar et al.

https://github.com/zihangdai/xlnet
https://arxiv.org/abs/1906.08237
https://github.com/facebookresearch/XLM
https://arxiv.org/abs/1901.07291
https://github.com/pytorch/fairseq/tree/master/examples/roberta
https://arxiv.org/abs/1907.11692
https://huggingface.co/transformers/model_doc/distilbert.html
https://arxiv.org/abs/1910.01108
https://github.com/huggingface/transformers/tree/master/examples/distillation
https://github.com/pytorch/fairseq/tree/master/examples/ctrl
https://www.github.com/salesforce/ctrl

Huggingface (3/6)

CamemBERT (from FAIR, Inria, Sorbonne
Universite), CamemBERT: a Tasty French Language
Model by Louis Martin et al.

ALBERT (from Google Research), ALBERT: A Lite BERT for
Self-supervised Learning of Language Representations by
Zhenzhong Lan et al.

T5 (from Google), Exploring the Limits of Transfer Learning
with a Unified Text-to-Text Transformer by Raffel et al.

XLM-RoBERTa (from Facebook Al), Unsupervised Cross-
lingual Representation Learning at Scale by Conneau et al.

https://huggingface.co/transformers/model_doc/camembert.html
https://arxiv.org/abs/1911.03894
https://github.com/google-research/ALBERT
https://arxiv.org/abs/1909.11942
https://github.com/google-research/text-to-text-transfer-transformer
https://arxiv.org/abs/1910.10683
https://github.com/pytorch/fairseq/tree/master/examples/xlmr
https://arxiv.org/abs/1911.02116

Huggingface (4/6)
MMBT (from Facebook), Supervised Multimodal
Bitransformers for Classifying Images and Text by Kiela et al.

FlauBERT (from CNRS), FlauBERT: Unsupervised Language
Model Pre-training for French by Le et al.

BART (from Facebook), BART: Denoising Sequence-to-
Sequence Pre-training for Natural Language Generation,
Translation, and Comprehension by Lewis et al.

ELECTRA (from Google Research/Stanford University),
ELECTRA: Pre-training text encoders as discriminators
rather than generators by Clark et al.

DialoGPT (from Microsoft Research), DialoGPT: Large-Scale
Generative Pre-training for Conversational Response
Generation by Zhang et al.

https://github.com/facebookresearch/mmbt/
https://arxiv.org/pdf/1909.02950.pdf
https://github.com/getalp/Flaubert
https://arxiv.org/abs/1912.05372
https://github.com/pytorch/fairseq/tree/master/examples/bart
https://arxiv.org/pdf/1910.13461.pdf
https://github.com/google-research/electra
https://arxiv.org/abs/2003.10555
https://github.com/microsoft/DialoGPT
https://arxiv.org/abs/1911.00536

Huggingface (5/6)
Reformer (from Google Research), Reformer: The Efficient
Transformer by Kitaev et al.

MarianMT (developed by the Microsoft Translator Team)
machine translation models trained
using OPUS pretrained_models data by Jorg Tiedemann.

Longformer (from AllenAl), Longformer: The Long-Document
Transformer by Beltagy et al.

DPR (from Facebook), Dense Passage Retrieval for Open-
Domain Question Answering by Karpukhin et al.

Pegasus (from Google), PEGASUS: Pre-training with
Extracted Gap-sentences for Abstractive Summarization by
Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J.
Liu.

https://github.com/google/trax/tree/master/trax/models/reformer
https://arxiv.org/abs/2001.04451
https://marian-nmt.github.io/
http://opus.nlpl.eu/
https://github.com/allenai/longformer
https://arxiv.org/abs/2004.05150
https://github.com/facebookresearch/DPR
https://arxiv.org/abs/2004.04906
https://github.com/google-research/pegasus
https://arxiv.org/abs/1912.08777

Huggingface (6/6)
MBart (from Facebook) released with the paper Multilingual

Denoising Pre-training for Neural Machine Translation by Liu
et al.

LXMERT (from UNC Chapel Hill), LXMERT: Learning Cross-
Modality Encoder Representations from Transformers for
Open-Domain Question Answering by Tan and Mohit Bansal.

Funnel Transformer (from CMU/Google Brain), Funnel-
Transformer: Filtering out Sequential Redundancy for
Efficient Language Processing by Dai et al.

Bert For Sequence Generation (from Google), Leveraging
Pre-trained Checkpoints for Sequence Generation
Tasks Rothe et al.

LayoutLM (from Microsoft Research Asia), LayoutLM: Pre-
training of Text and Layout for Document Image
Understanding by Xu et al.

https://github.com/pytorch/fairseq/tree/master/examples/mbart
https://arxiv.org/abs/2001.08210
https://github.com/airsplay/lxmert
https://arxiv.org/abs/1908.07490
https://github.com/laiguokun/Funnel-Transformer
https://arxiv.org/abs/2006.03236
https://tfhub.dev/s?module-type=text-generation&subtype=module,placeholder
https://arxiv.org/abs/1907.12461
https://github.com/microsoft/unilm/tree/master/layoutlm
https://arxiv.org/abs/1912.13318

Using Transformers: tasks

» Seqguence Classification

» Extractive Question Answering
* Language Modeling

 Named Entity Recognition
 Summarization

* Translation

https://huggingface.co/transformers/task_summary.html#sequence-classification
https://huggingface.co/transformers/task_summary.html#extractive-question-answering
https://huggingface.co/transformers/task_summary.html#language-modeling
https://huggingface.co/transformers/task_summary.html#named-entity-recognition
https://huggingface.co/transformers/task_summary.html#summarization
https://huggingface.co/transformers/task_summary.html#translation

Using Transformers: Models

» Autoregressive models

* Autoencoding models

» Sequence-to-seguence models
* Multimodal models

» Retrieval-based models

https://huggingface.co/transformers/model_summary.html#autoregressive-models
https://huggingface.co/transformers/model_summary.html#autoencoding-models
https://huggingface.co/transformers/model_summary.html#sequence-to-sequence-models
https://huggingface.co/transformers/model_summary.html#multimodal-models
https://huggingface.co/transformers/model_summary.html#retrieval-based-models

Difference between “Discriminative”
and “Generative” Models

Historical reason
Binary classification problem

Want to decide If a patient has cancer based
on different “features” from the reports

Argmaxy(P(D|S))
D takes values ‘Y’ and ‘N’
Decide Y’ if P(D=Y|S) > P(=N|S), else ‘N’

Discriminative Model
« Compute P(D|S) directly

» "Features” from reports, S={F,, F,,
Fs, ..., F} (like, fever, weight loss, hair
loss, haemoglobin level etc.)

» P(D=Y|<fever, weight loss, hair loss,
haemoglobin level,...>)

* We are discriminating, I.e.,
differentiating wrt the features input

Generative Model
Compute P(D) and P(S|D) and take product

For P(D) we will need the proportion of
cancer patients in the population (obtained
via sampling)

For the likelihood, we will make use of naive
Bayes assumption and require values of
P(F|D), e.g., what is the probabillity of a
cancer patient having fever

Hence the “discrimination” is not direct!!

Al Perspective (post-web)

NLP

Search,
Reasoning, IR
Learning

Planging

Computer
Vision

Symbolic Al

Connectionist Al Is contrasted with
Symbolic Al

Symbolic Al - Physical Symbol
System Hypothesis

Every intelligent system can be

constructed by storing and
processing symbols and nothing
more IS necessary.

Symbolic Al has a bearing on models
of computation such as

Turing Machine & Von Neumann

Qﬁ Processor(Finite State Machine

Read Write Head

q\bcd

™~
Input/Output Memory (Tape)

Turing machine

CPU | Memory

VonNeumann Machine

Challenges to Symbolic Al
* Motivation for challenging Symbolic Al

* Alarge number of computations and
Information process tasks that living
beings are comfortable with, are not
performed well by computers!

 The Differences

Brain computation in living beings ~ TM computation in computers

Pattern Recognition Numerical Processing
Learning oriented Programming oriented
Distributed & parallel processing Centralized & serial
processing

Content addressable Location addressable

* The human brain

» Seat of consciousness and cognition

* Perhaps the most complex information
processing machine in nature

Higher brain (responsible for higher needs)

3- Layers:

Cerebrum

Cerebellum

Cerebrum
(crucial for survival)

Higher brain

Neuron - “classical’

)

* Dendrites \ /{
— Receiving stations of neurons S8 Mﬁmsmh
— Don't generate action potentials o'} ”“‘

¢ Ce” bOdy Cell Bod)

— Site at which information
received is integrated

lmpulsc
AXO n Synaptic Clr (
— Generate and relay action (W T

potential |
— Terminal Amoflnsctz FD/’;((K)\

* Relays information to www.educarer.org
next neuron in the pathway

Synapse

//

http:/ /www.educarer.com/images/brain-nerve-axon.jpg

Perceptron

The Perceptron Model

A perceptron is a computing element with input
lines having associated weights and the cell
having a threshold value. The perceptron model is
motivated by the biological neuron.

Output =y

Threshold = 6

Step function / Threshold function
y =1 for Zwixi >=0
=0 otherwise

Features of Perceptron

 Input output behavior is discontinuous and the
derivative does not exist at Zwixi =0

« ZWiXi - B Is the net input denoted as net

 Referred to as a linear threshold element -
linearity because of x appearing with power 1

- y=f(net): Relation between y and net is non-
linear

Computation of Boolean

functions
AND of 2 inputs
X1 X2 y
0 0 0
0 1 0
1 0 0
1 1 1
The parameter values (weights & thresholds) need to be found.
y
0
Wy Nz
X1

Computing parameter values

wl*0+w2*0 <=0=>0>= 0; since y=0
wl*0+w2 *1 <=0=>w2 <=0; since y=0
wl*1+w2*0 <=0=> wl <=80; since y=0

wl*l+w2 *1>0=>wl+w2>80; sincey=1
wl=w2= =0.5

satisfy these inequalities and find parameters to be
used for computing AND function.

Other Boolean functions

 OR can be computed using values of wl=w2=1
and =0.5

« XOR function gives rise to the following
Inequalities:
wl*0+w2*0 <=6=206>=0
wl*0+w2 *1 >0=>w2 >0
wl*1+w2*0 >6=> wl >6
wl*1l+w2 *1<=0=>wl+w2<=60

No set of parameter values satisfy these inequalities.

Threshold functions

N # Boolean functions (2*2”n) #Threshold Functions (2"?)
1 4 4

2 16 14

3 256 128

4 64K 1008

 Functions computable by perceptrons - threshold
functions

« #TF becomes negligibly small for larger values of
#BF.

 For n=2, all functions except XOR and XNOR are
computable.

AND of 2 inputs

X1 X2 y
0 0 o)
o) 1 o)
1 0 o)
1 1 1

The parameter values (weights & thresholds) need to be found.

Constraints on wl, w2 and ©

wl*0+w2*0 <=0 =>0>= 0; since y=0
wl*0+w2 *1 <=0 => w2 <=0; since y=0
wl*1+w2*0 <=0=> wl <=0; since y=0

wl*1+w2 *1>0=>wl+w2>0;since y=1
wl=w2= =05

These inequalities are satisfied by ONE particular region

Perceptron training

Perceptron Training Algorithm
(PTA)
Preprocessing:
1. The computation law is modified to
y=11Iif Dwx. >0
y=0 if YwXx <0

PTA — preprocessing cont...

2. Absorb 6 as a weight

3. Negate all the zero-class examples

Example to demonstrate preprocessing

* OR perceptron
1-class <1,1>,<1,0>,<0,1>
O-class <0,0>

Augmented X vectors:-
1-class <1,11>,<-1,1,0>,<-1,0,1>

O-class <-1,0,0>

Negate O-class:- <1,0,0>

Example to demonstrate preprocessing
cont..

Now the vectors are
Xy X1 X5
-1 0 1
-1 1 0
-1 1 1
. 1 0O

X X X X
w DN

Perceptron Training Algorithm

1. Start with a random value of w
ex: <0,0,0...>
2. Test forwx; >0
If the test succeeds for i=1,2,...n
then return w
3. Modify W, Wey; = Wyrey Xgai

PTA on NAND

NAND: Y
X2 X1 Y
0 0 1 Q
0 1 1 W2
1 0 1
1 1 0 X2 X1

Converted To

w2 Wi ;;;2 ©

X2 X1 X0=-1

NAND Augmented:

X2 X1 X0 Y

o 0 -1 1 VO:
0 1 -1 1 V1:
1 0 -1 1 V2:
1 1 -1 0 V3:

Preprocessing

NAND-O class Negated

X2 X1 XO

0 0 -1

0 1 -1

1 0 -1
-1 -1 1

Vectors for which
W=<W2 W1 WO0> has to
be found such that
W.Vi>0

PTA Algo steps

Algorithm:
1. Initialize and Keep adding the failed vectors
until W. Vi > 0 is true.

Step0: W = <0,0, 0>
W1 = <0,0,0>+<0,0, -1> {Vo Fails}

= <0, 0, -1>

W2 = <0, 0, -1> +<-1, -1, 1> {V3 Falls}
= <1, -1, 0>

W3 = <-1,-1,0>+<0,0, -1> {Vo Falils}
= <-1, -1, -1>

Wi = <-1,-1,-1> + <0, 1, -1> {V1 Fails}

= <-1,0,-2>

Trying convergence

W5 = <-1,0,-2>+<-1,-1,1> {V3 Falls}
= <-2,-1,-1>
Wes = <-2,-1,-1>+<0,1, -1> {V1 Falls}
= <-2,0,-2>
W7z = <-2,0,-2>+<1,0,-1> {Vo Falls}
= <-1,0,-3>
Ws = <-1,0,-3>+<-1,-1, 1> {V3 Fails}
= <-2,-1,-2>
Wo = <-2,-1,-2>+<1,0,-1> {V2 Fails}
= <-1,-1,-3>

Trying convergence

W1 = <-1,-1,-3>+<-1,-1, 1>
= <-2,-2,-2>

W11 = <-2,-2,-2>+<0, 1, -1>
= <-2,-1,-3>

Wi2 = <-2,-1,-3>+<-1, -1, 1>
= <-3,-2,-2>

W13 = <-3,-2,-2>+<0, 1, -1>
= <-3,-1,-3>

W1 = <-3,-1,-3>+<0, 1, -1>
= <2, -1, -4>

{V3 Fails}

{V1 Fails}
{V3 Fails}

{V1 Fails}

V2 Fails}

W15 = <-2,-1, 4> +<-1,-1,1> {V3 Fails}
<-3,-2,-3>

-3,-2,-3>+<1,0, -1> {V2 Fails}
-2, -2, -4>

-2,-2,-4>+<-1,-1, 1> {V3 Falils}
-3, -3, -3>

<-3,-3,-3>+<0, 1, -1> {V1 Fails}
<-3, -2, -4>

W16

= 3
© ~
Ny o oy n

W2= -3, Wi1i=-2, WO=0=-4

Succeeds for all vectors

PTA convergence

Statement of Convergence of
PTA

e Statement:

Whatever be the initial choice of weights and
whatever be the vector chosen for testing, PTA

converges if the vectors are from a [inearly
separable function.

Proof of Convergence of PTA

» Suppose w, Is the weight vector at the
nth step of the algorithm.

» At the beginning, the weight vector Is
Wo
* Go from w; to w,; when a vector X;
falls the test w;X; > 0 and update w; as
Wirg = W + X
* Since XJs form a linearly separable
function,

Proof of Convergence of PTA
(cntd.)

» Consider the expression
G(w,) = w, . w*
| Wil
where w, = weight at nth iteration
e G(w,) =[w|.|w*l.cosH
Wil
where 6 = angle between w, and w*
* G(w,) =|w*|.cos6
* G(w,) = |w*| (as-1=<cosH=1)

Behavior of Numerator of G

— -1

w, . w* = (w,,+ X"
_ -1
=Wpq o W+ XMy W
= (Wpp + XM o) - W* + X 1fall W* L
=W . W*+ (X0 + Xl +oo + XM).

W*

w*. X', is always positive: note
carefully

* Suppose |Xj| =2 6, where 6 Is the

minimum magnltude
a Nliirmmm Af S has wixl L nm S harkl

il) - WF

Behavior of Denominator of G

o W |=Vw, .w

=V (Wpq + XM)?

=V (Wpq)? + 2. Wy g XM+ (XM)2

= \/ (Wn-1)2 T (Xn_lfail)2 (aS Wn-l. X
a1 <0)

<V (Wg)2 + (X0)2+ (Xl)2+ + (XM
Hail)

* |Xi| = p (Max magnitude)

Py C‘f\ nt\mt\m g~ 4/ llnl \? [If'\‘9

Some Observations

 Numerator of G grows as n
» Denominator of G grows as V n

=> Numerator grows faster than
denominator

* |f PTA does not terminate, G(w,)
values will become unbounded.

Some Observations contd.

» But, as |G(w,)| < [w*| which is finite,
this is Impossible!

* Hence, PTA has to converge.
* Proof is due to Marvin Minsky.

A Problem that can be solved using the
proof of PTA

Problem: If a weight repeats while
training the perceptron, then the
function Is not linearly separable.

Proof

Let us prove first w_.w* IS an increasing
function.

From the proof of convergence of PTA,
we can write

W, W= (W, g + XM) W
=W, .W*+w* X1
Since w* Is optimal weight vector
therefore:

W*. Xn-l

fall

>0

fall

Proof cntd.

Because in every iteration we are adding +ve
number w*. X1 .

Therefore:
w,.w*>w_, .w* (1)

Hence w,.w* IS an increasing function.

According to the claim made by theorem, Iif weight
repeat then the weight w, at a given iteration I, will be
equal to the weight w,, at a given iteration (i+k)
where k is a +ve number

Wi= Wit

Proof cntd.
Therefore:
W, \W* =W, \W* (2)
(2) contradicts the (1)

Hence no w* exists

So function is not linearly separable.

Feedforward Network and
Backpropagation

Example - XOR

0=05
w;=1 w,=1

XX, +1 —1 XX

1 1 -1

X1 X5

Can we use PTA for training FFN?

-1,0,0 |0 1,0,0 0
0,0 |0

‘1, O, 1 1 -11 01 l 1

‘l, 1, O 1 -11 11 O 1
1,0 |1

‘l, 1, 1 O 11 _11 _1 O
1,1 |0

No, else the individual neurons are solving XOR, which is impossible.
Also, for the hidden layer neurons we do nothave the i/o behaviour.

Gradient Descent Technique

Let E be the error at the output layer

P n

E=2Y > -0);

j=1 i=1

t. = target output; o, = observed output

| IS the index going over n neurons in the
outermost layer

] Is the Index going over the p patterns (1 to p)
Ex: XOR:— p=4 and n=1

Weights in a FF NN

* W, IS the weight of the m
connection from the nt" neuron Whn
to the mth neuron
(n

« Evs w surface is a complex
surface in the space defined by
the weights w;

s dives the direction in which SE
a movement of the operating AWy o€ — SN
point in the w,, co-ordinate "
space will result In maximum

decrease In error

Step function v/s Sigmoid function

O=f(2wx)
= f (net)

So partialderivative of O w.r.t.netis

D
onet

High watermark
Low watermark

> >

Non-differentiable Differentiable

Backpropagation algorithm

. — Output layer
Q Q QJ Q (m o/p neurons)
O Q, O —
/ Hidden layers
O O O
() O () —— Inputlayer

(n i/p neurons)

* Fully connected feed forward network

* Pure FF network (no jumping of
connections over layers)

Gradient Descent Equations

AW;; = —ngNE (n = learning rate,0 <7 <1)
Ji

B CE &et

6W, met éW

) (net, =input at the j" layer)

jI

Backpropagation — for outermost
layer

ok éE 00.
o] = — — ‘ net; =input at the " layer
J onet. 50 5net (P J ver)

1 & ,
==) (t. -0
5 2.(60,)
Hence, 8] = —(—(t; —0;)0,(1-0,))
Aw;; =n(t; —0;)0;(1-0,)0;

Observations from Aw;;

AW;; = 77(tj —oj)oj (1—01.)0i
Aw;; >0 If,
1.0j —> 1 and/or

2.0j —1 and/or
3.0j —> 0 and/or

4.0, -0 | Credit/Blame assignment

> Saturation behaviour

Backpropagation for hidden layers

k . — Output layer
8@/0 Q (m o/p neurons)
j

Q Qi g > Hidden layers
() () = () —— Inputlayer

(n i/p neurons)

& Is propagated backwards to find value of &

Backpropagation — for hidden

layers
AWji =100,
oE 5E 0,
o= =
5netj 50 5net
ok
=——x0.(1-0,)
é‘oj J J
This recursion can OE dnet,
L L. = — X x0.(1—0.
give rise to vanishing ken(;ayer (5net 50) J(J)

and exploding j
Gradient problem Hence, §; = - Z (-6, xW,;)x0;(1-0,)

\ kenext layer
= Z(ij5k)0j (1-0;)

kenext layer

General Backpropagation Rule

* General weight updating rule:
AWji =10J0,

 Where

6; =(t; —0,)0,(1—0;) for outermost layer

- Z(ij5k)0j (1—0;)o; for hidden layers

kenext layer

How does it work?

* [nput propagation forward and error

propagation packward (e.g. XOR)
0=0.5
w,=1 w,=1

XXy ——1 —1 XX,

1 1 -1

X1 Xo

Can Linear Neurons Work?
y:m3X+C3

y:m2X+C2 y:m1X+C1

N, = ml(W1X1 + W Xz) +C:

N, = ml(W1X1 + W Xz) +C:

OUt — (W5h1+ Wahz) +Cs
=k1X1‘|‘k2X2‘|‘ ks

Note: The whole structure shown in earlier slide is reducible
to a single neuron with given behavior

OUt — k1X1+ kzXz—l‘ k3

Claim: A neuron with linear I-O behavior can’t compute X-
OR.

Proof. Considering all possible cases:

[assuming 0.1 and 0.9 as the lower and upper thresholds]

m(w:..0+w..0—-8)+c<0.1

For (0,0), Zero class: —Cc-m&<0.1

m(w..1+w:..0—8)+c>0.9
For (0’1)’ One class: = mw.—m.¢+c>0.9

For (1,0), One class: mw.—m.@+c>0.9

For (1,1), Zero class: mw,—m.@+c¢>0.9

These equations are inconsistent. Hence X-OR can’t be computed.

Observations:
1. Alinear neuron can’'t compute X-OR.

2. A multilayer FFN with linear neurons is collapsible to a

single linear neuron, hence no a additional power due
to hidden layer.

3. Non-linearity is essential for power.

