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Agenda for the week

Need for parsing

Two types of parsing. Constituency,
Dependency

Ambiguity In parsing

Classical Algorithms for parsing
Probabillistic parsing

Neural Parsing
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Chunking can be ambiguous

o« Example: The red rigid rolling round ball.
e Correctlabelsare:BIl111I

e But there can FRAGMENTATION
o In general “rolling” is a verb
o S0 this can potentially start a chunk with ‘B’



Entropy of a sentence

. Raw sentence has the highest entropy

. Entropy decreases as we go up the
NLP layers

. Raw sentence > Morphologically
processed > POS tagged > chunked
> parsed > Semantic role labeled
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Parsing the sentence, “The detective
listened with a wooden face”

(ROOT
(S
(NP (DT The) (NN detective))
(VP (VBD listened)
(PP (IN with)
(NP (DT a) (JJ wooden) (NN face))))
()

det(detective-2, The-1)
nsubj(listened-3, detective-2)
root(Root-0, listened-3)
prep(listened-3, with-4)
det(face-7, a-5)
amod(face-7, wooden-6)
pobj(with-4, face-7)
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Formal definition of sentiment/opinion:
parsing built in the definition

* Anopinion is a quintuple, (e;, a;;
— e, is the name of an entity,
— @a;Is an aspect of g,
— Sj Is the sentiment on aspect a; of entity e,
— h, is the opinion holder,
— and t, is the time when the opinion is expressed by h,

Sijki» N> £y ), where

* The sentiment sy, is
— positive, negative, or neutral, or

— expressed with different strength /intensity levels, e.g., 1-5 stars as used by
most review sits on the Web

 When an opinion is on the entity itself as a whole, the special
aspect GENERAL is used to denote it. Here, g; and a; together
represent the opinion target.
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Example

* “| loved the songs in the movie,
though only the cast was liked by
my brother”
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Example (cntd.)

* Entity: movie

* Aspects: songs, cast

* Opinion holder: I, brother

* Time: present (1), past (brother)

* Opinioner-sentiment-aspect: I-love-
song, brother-like-cast
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Two kinds of parse representations:
Constituency Vs. Dependency

S Main Verb

N

NP VP Arguments Adjuncts
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Dependency Parsing

* Dependency approach is suitable for
free word-order language

« Example : Hindi
— JH A AH B ol (Ram ne Shyam ko dekha)
— YMH &I JH A @I (Shyam ko Ram ne dekha)

* One step closer to Semantics
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Parsing Challenge: Structural
Ambiguity
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Constituency Parse Tree - 1

= O

NP VP

RN
N V NP
AN
sawbDet N PP
/N
a poy P NP
VRN
WithDetN

a telescope
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Constituency Parse Tree -2

a telescope



Structural ambiguity

« Sentences can be ambiguous
- Structural ambiguity
- A sentence can have multiple parse trees.
« Example
- | saw a boy with a telescope
- Two possible meanings
. | used the telescope to see the boy
. | saw the boy who had a telescope
- Two different constituent parse trees
« The correct meaning is determined by the
attachment point of the PP “with a telescope”
- determined by binding theory



Binding Theory: Key aspects

e Binding theory concerns with
- Syntactic restrictions on nominal references
- EQg: The relation between pronoun and its antecedent
o« Example
- "He read a book to himself.”.
« Himself = reflexive pronoun
« He =noun
o Three Key aspects
- Class of nominal (Pronoun, anaphora, non-pronouns
etc.)
- Domain of binding (Local or non-local binding)
- Structural condition on the syntactic relation between a
nominal and its binder.

http://www.sas.rochester.edu/lin/sites/asudeh/pdf/asudeh-dalrymple06-ell2.pdf [Last
accessed:15-sept-2020]



http://www.sas.rochester.edu/lin/sites/asudeh/pdf/asudeh-dalrymple06-ell2.pdf
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Parse Tree

« Within a sub-tree entities bind together more than they
do with entities outside the sub-tree

» Strength (E;, Ej) > Strength (E;, E)
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Dependency Parse Tree - 1

o)

\ mod

qm obj

teles
cope
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Dependency Parse Tree - 2

\ mod

agt / —

Oro®©

\ obj

teles
cope
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Verb centric view of Sentence

Stage
(Sentence)

Actors

Agent (Who)

Object (What)

Place (Where)

Time (When)

Instrument (by what)

Source (from where) _

Destination (to where) Action

(verb)

NogkrwbhE

Missing here are actors
that answer the
questions how and why
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: IORzlglm_rea_ols a book with his glasses in the
evening Iin his study.

<>

€

 The labels on the arcs are semantic roles
and the task is Semantic Role Labeling.




Two views of NLP

e Verb centric view
e Noun centric view
o« Example
- Information retrieval requires giving importance to
Noun
« What is the Captial of India?
- Question answering requires more attention to verb
o Relationships of the verb with the noun
- Agent (Who), Object (What), Place (Where), Time
(When), Instrument (by What), Source (from Where),
Destination (to Where)

- These are called semantic roles or case roles or
Karaka.



Case markers

Karak Function Case markers Preposition (English) Post-position (Hindi)

Karta (?:h_cﬁ) Subject Nominative ne (20

Karma @f[) Object Accusative To ko (@f)

Karan (h100) Instrument Instrumental By/With/Through se (@)

Sampradan (H8Igl) Receiver Dative To/For ke liye @ %‘Q)

Apadan (3{Ulal-) Separation Ablative From se (separate) ( 37T
gH o for)

Sambandh (H%) Possession Genitive Of ka, ke, ki (T, &, Elfl)

Adhikaran (H@WT) Location Locative In/On/At/Among me, par (f[ , W)

Sambodhan (ﬂﬁﬁ?ﬂ) Address someone Vocative He! (%!)

Reference: https://openpathshala.com/blog/learn-sanskrit/introduction-to-

karak-sanskrit-grammar [last accessed: 14-sept-2020]



https://openpathshala.com/blog/learn-sanskrit/introduction-to-karak-sanskrit-grammar

Isolating the adjuncts from the
arguments

. Example
- Ram reads a book with his glasses in the
evening in his study.
. Argument: Ram, book
. Adjuncts: glasses, evening, study
. The function words (determiners,

prepositions) links between objects and
arguments.

. Function words: They link the content
words (the meaning bearing words)



Selectional preference

. Desire and Deservingness (STHI&T 3R Tgan)
o Verbs has desire and nouns fulfils those desires

« Example

- Ram reads a book with his glasses in the
evening in his study.

. ‘evening’ can not have the place
relationship and ‘study’ can not have the
time relationship

. ‘study” gets selectional preference over
“evening” when it comes to place

relationship
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Grammar and Parsing Algorithms
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A simplified grammar

~ S5 NP VP
— NP >DTN|N
— VP 5>V ADV |V
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Example Sentence

People laugh
1 2 3

\ These are positions

_exicon:
Deop|e -N, V This indicate that both
Noun and Verb is
_augh -N, V possible for the word
“People”




parsing:pushpak

Top-Down Parsing

State Backup State

1. ((S)1) i

2. (NP VP)N :

3a. (DT N VP)1]  Position of ((N'VP) 1)
3b. ((N VP)1) input pointer -

4. ((VP)2) -

5a. (V ADV)2) ((V)2)

6. ((ADV)3) ((V)2)
5b. ((V)2) -

6. ((.)3) -

Termination Condition : All inputs over. No symbols remaining.
Note: Input symbols can be pushed back.

Action

Consume “People”

Consume “laugh’

Consume “laugh”
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Discussion for Top-Down Parsing

 This kind of searching is goal driven.

« Glves importance to textual precedence (rule
precedence).

* No regard for data, a priori (useless expansions
made).
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Bottom-

Up Parsing

Some conventions:

12ﬁ Represents positions

S NPz

End position unknown

Work on the LHS done, while
the work on RHS remaining
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Bottom-Up Parsing (pictorial
representation)

People Laugh

N, N3

Vi, Vs
NP3, -> Ny, ° NP3 -> Nys
VP, ->Vy,° VPy3 -> V3
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Problem with Top-Down Parsing

e Left Recursion

* Suppose you have A-> AB rule.

Then we will have the expansion as
follows:

* (A)K) -> ((AB)K) -> ((ABB)K) ........
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Combining top-down and bottom-
up strategies
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Top-Down Bottom-Up Chart
Parsing

« Combines advantages of top-down & bottom-up
parsing.

* Does not work in case of left recursion.
— e.g. — "“People laugh”

* People — noun, verb
* Laugh — noun, verb

— Grammar— S —> NP VP
NP - DT N|N
VP -V ADV |V
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Transitive Closure

People laugh
VI O oVl G o
\ \ \

S —>eNP VP NP —Ne VP > Ve
NP —eDT N S — NPeVP S—>NPVPe
NP —eN VP —>eV ADV success

VP —eV
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Arcs In Parsing

» Each arc represents a chart which
records

— Completed work (left of .)
— Expected work (right of .)
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Example
People laugh loudly
VAW o W A W 4
S »>e NP VP NP — Ne VP — Ve VP — V ADVe
NP —e DT N S —> NPeVP VP — VeADV S > NP VPe
NP —e N VP — oV ADV S > NP VPe

VP — oV
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An iImportant parsing algo
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lllustrating CYK [Cocke, Younger,

Kashmi] Algo
« S—>NPVP 1.0 « DT — the 1.0
NP —-> DT NN 0.5 * NN —- gunman 0.5
« NP — NNS 0.3 + NN > building 0.5
- NP>NPPP 0.2 « VBD — sprayed 1.0
- PP—>PNP 1.0 * NNS — bullets 1.0

- VP - VP PP 0.6
- VP >VBDNP 0.4
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o The 1 gunman 2 sprayed 3t

CYK: Start with (0,1)

ne 4 building 5 wit

N 6 bu

To
From

3

4

5

6

-

0

lets 7.
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CYK: Keep filling diagonals
o The 1 gunman 2 sprayed 3 the 4 building 5 with 6 bullets 7.

To 1 2 3 4 5 6 4
From
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CYK: Try getting higher level structures

o The 1 gunman 2 sprayed 3 the 4 building 5 with 6 bullets 7.

To 1 2 3 4 5 6 4
From

0 DT NP

1 - NN

oV e | e

. T

A cmmmmme mmmmmemm e -

o S
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CYK: Diagonal continues

o The 1 gunman 2 sprayed 3 the 4 building 5 with 6 bullets 7.

To 1 2 3 4 5 6 4
From
0 DT NP
------- NN
--------------- VBD
5N PUOU NN, [ —
A cmmmmme mmmmmemm e -
o R
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CYK (cont...)

o The 1 gunman 2 sprayed 3 the 4 building 5 with 6 bullets 7.

To 1 2 3 4 5 6 4
From
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CYK (cont...)
o The 1 gunman 2 sprayed 3 the 4 building 5 with & bullets 7.

To 1 2 3 4 S 6 7
From
0 DT NP e

_______ NN S

--------------- VBD
< S — DT
A cmmmmmm mmmmmmem e -
5 iomm mmmmmmmm e e e
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CYK (cont...)
o The 1 gunman 2 sprayed 3 the 4 building 5 with 6 bullets 7.
To 1 2 3 4 <) 6 7
From
0 DT NP  —oem e
R N1 —— -------
A e P VBD -------
T -
N R Bl Dasaas ol NN
5 | | e | e | | e
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CYK: starts filling the 5" column

o The 1 gunman 2 sprayed 3 the 4 building 5 with 6 bullets 7.

To 1 2 3 4 5 6 7
From

0 D) I ] = J S —

N B NN [ e | e

A e P (V/=] o Jpe—

I P Ll DT NP

N R Bl Dasaas ol NN

5 cmccccm mmmmm e e oo
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CYK (cont...)

o The 1 gunman 2 sprayed 3 the 4 building 5 with 6 bullets 7.

To 1 2 3 4 5 6 7
From

0 DT NP —eeer cmmeeee

R B I e

A e P (V/=] o Jpe— VP

I P Ll DT NP

4, | | e | oo [ e NN

5 emccmcm mmmmm e e oo
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CYK (cont...)

o The 1 gunman 2 sprayed 3 the 4 building 5 with 6 bullets 7.

To 1 2 3 4 5 6 7
From

0 DT NP coeer cmmeeee

R D I e e

2 | e | e (V/=] o Jpe— VP

I P L DT NP

4, | | o | oo | e NN

5 cmmmccm mmmmmm e e e
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CYK: S found, but NO termination!
o The 1 gunman 2 sprayed 3 the 4 building 5 with 6 bullets 7.

To 1 2 3 4 5 6 7
From

0 DT NP e e S

I R D I e e

A e (V/=] o Jpe— VP

I e Ll DT NP

4 e e s e NN

5 emmmmmm mmmmem e e oo
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CYK (cont...)

o The 1 gunman 2 sprayed 3 the 4 building 5 with 6 bullets 7.
To 1 2 3 4 ) 6 7
From
0 DT NP e e S
(I R NN | e | e | e
A VBD - VP
B | | | e DT NP
T NN
5 | | e | e | e | e P
Y [ (U N U U
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CYK (cont...)

o The 1 gunman 2 sprayed 3 the 4 building 5 with 6 bullets 7.

To 1 2 3 4 5 6 7
From

0 D) I ] = J S — R R

[ R R I e e e

A e (V/=] o Jpe— 1V~ J—

G e e L DT N[ =J——

4, e | oo | e | oo N[ ——

5  mememem emeee s e e P

£ T [N [ [ [ [
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CYK: Control moves to last column

o The 1 gunman 2 sprayed 3 the 4 building 5 with 6 bullets 7.

To 1 2 3 4 5 6 7
From

0 D) I ] = J S — R R

R D T e I el e

N e (V/=] o Jpe— 1V~ J—

G e e L DT N[ =J——

4, e | oo | e | oo N[ ——

N e B It P

I e B e e NP
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CYK (cont...)

o The 1 gunman 2 sprayed 3 the 4 building 5 with 6 bullets 7.

To 1 2 3 4 5 6 7
From

0 DT NP —eeer cmmeeee R R

R I B e e

A e P (V/=] o Jpe— 1V~ J—

I P Ll DT N[ =J——

4, | | e | oo [ e N[ ——

S e P PP
6 meememm mememeen emmemeee e cmemeeen e NP
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CYK (cont...)

o The 1 gunman 2 sprayed 3 the 4 building 5 with 6 bullets 7.

To 1 2 3 4 5 6 7
From

0 D) I ] = J R R

R P D T e I el e

A e (V/=] o Jpe— 1V~ J—

I P Ll DT N[ =J—— NP

N R Bl Dasaas ol [ R I I
N e It e P PP

I e B e NP
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CYK (cont...)

o The 1 gunman 2 sprayed 3 the 4 building 5 with 6 bullets 7.

To 1 2 3 4 5 6 7
From

0 D) I ] = J S — R R

R R I e e e

A e P (V/=] o Jpe— 1V~ J— VP

I P Ll DT N[ =J—— NP

N R Bl Dasaas ol [ R I I
5  mememem emeee s e e P PP

6 mmememm mememeen emmemeee e cmemeeen e NP
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CYK: filling the last column

o The 1 gunman 2 sprayed 3 the 4 building 5 with 6 bullets 7.

To 1 2 3 4 5 6 7
From

0 D) I ] = J S — R R

R R I e e [l s ===
A e P (V/=] o Jpe— 1V~ J— VP

I P Ll DT N[ =J—— NP

N R Bl Dasaas ol [ R I I
5  mememem emeee s e e P PP

6 mmememm mememeen emmemeee e cmemeeen e NP
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CYK: terminates with S in (0,7)
o The 1 gunman 2 sprayed 3 the 4 building 5 with 6 bullets 7.

To 1 2 3 4 5 6 7
From

0 D) I ] = J R R S

[ R I e e [l s ===
A e P (V/=] o Jpe— 1V~ J— VP

I P Ll DT N[ =J—— NP

N R Bl Dasaas ol [ R I I
5 e e e e e P PP

6 = mmmmem e e e s e NP
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CYK: Extracting the Parse Tree

* The parse tree is obtained by keeping
back pointers.

S (0-7)
NP (0-2) VP (2-7)
DT (0-1) NN (1-2) /\
l VBD (2-3) NP (3-7)
NP (3-5) PP (5-7)

The gunman /\ /\

DT (3-4) NN (4-5)| P 5-6)|[NP (6-7)
sprayed l l l \,

e | Toutding Lith |0 6D ‘

J bullets
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Probabilistic parsing
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Example of Sentence labeling:
Parsing

s1lslslvelveCome][yplnnedulylll]
]
cc and]

s [np [or the] [;; 11T] [y campus]]
vp [aux 18]

aap [1; @bUZZ]

pplin With]

nplapap [33 neW] [cc and] [ g returning]]
s Students]]]]]]

Bl
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Noisy Channel Modeling

Source

sentence

> Target
parse

T*=argmax [P(T|S)]

-
= argmax
T
= argmax
T

P(T).P(S|T)]

[P(T)], since given the parse the
sentence is completely
determined and P(S|T)=1
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| saw a boy with a telescope:
Tree -1

S
NP/ \VP
PN
N V. NP
AN
sawDet N PP
AR
a poy P NP
VAN
with Det N

a telescope
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Constituency Parse Tree -2

a telescope
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Formal Definition of PCFG

A PCFG consists of

= A setof terminals {w,}, k=1,.....,V
{w,} = { child, teddy, bear, played...}
A set of non-terminals {N'},i=1,...,n
{N}={NP, VP, DT...}
A designated start symbol N1

A set of rules {N! — (}}, where { is a sequence of
terminals & non-terminals
NP — DT NN

= A corresponding set of rule probabilities
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Rule Probabilities

» Rule probabillities are such that
vi 2PN —¢')=1

E.g., P(NP — DT NN) =0.2
P(NP — NN) =0.5
P(NP — NP PP) =0.3

« P(NP — DT NN) =0.2

» Means 20 % of the training data parses
use the rule NP — DT NN
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Probabilistic Context Free

+ S NPVP
NP — DT NN
+ NP — NNS

+ NP - NP PP
- PP >PNP

- VP - VP PP
- VP — VBD NP

Grammars

1.0 DT — the 1.0
0.5 NN — gunman 0.5

0.3 NN — building 0.5
0.2 VBD — sprayed 1.0

1.0 NNS — bullets 1.0

0.6

0.4
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Example Parse t,.

* The gunman sprayed the building with

bullets. Sw

/\

DTl.O
sprayed l
t

The gunman VBD,,

e building

NPy

NNoswith N NS,

bullets

P (t,) = 10*
0.5*1.0*0.5*0.6 *0.4* 1.0
*05%1.0%05%1.0*1.0*
0.3*1.0 =
0.00225
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Another Parse t,

* The gunman sprayed the building with

S
bullets. —___ P (t,)
= 1.0*05*1.0*0.5*0.4 *
NPos VPo4 1.0%0.2*05*1.0*0.5 *
/\ /\ 1.0*1.0*0.3*1.0

DT,, NNosvBD,, NP, , = 0.0015

Thegunman sprayed NP, PP,

A

DTl.O NNO.S I:)1.0 NPO.3

th  buildingwith NNSy,

© %ullet
S




parsing:pushpak

Probabillity of a sentence

* Notation : N NP
— W,_,, — Subsequence w,....w,
— N; dominates w,...w,—
or y|e|d(N,) = W,....W, Wi, W, the..sweet..teddy ..be

* Probability of a sentence = P(w,,,,)

P(Wlm) _ Z P(W1m1t) _, Wheretis a parse
t

tree of the
sentence
= Y POP(w, |t)
t If tis a parse tree
= > P@® - PWy,[t) =1 forthe sentence

tryield (t)=wy,, W, this will be 1 !!
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Assumptions of the PCFG model

 Place invariance :
P(NP — DT NN) is same in locations 1 and 2
 Context-free :

P(NP — DT NN | anything outside “The child”)
= P(NP — DT NN)

 Ancestor free : At 2,

P(NP — DT NN]Jits ancestor is VP
= P(NP —DT NN) 1
CNHE

VP

NP

e toy
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Probabillity of a parse tree

 Domination :We say N, dr‘“"‘i“'ites from k to I, symbolized as
| if W, is derived from N; Ny

« P (tree [sentence) = P (tree | Sy )
where S, means that the start symbol S dominates the word sequence W,

« P (t|s) approximately equals joint probability of constituent
non-terminals dominating the sentence fragments (next slide)
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Probability of a parse tree (cont.)

51,
/ \
NP, , |
NS / \
DT, , N,, T/3,3 /PP4I\
Wi, W, W, Psa NP5 |
St ‘
= 12 Dl Wy W,, W
N2,2’ W, 4,4 55 W,
VP31, V33, W35

PP, PaasWuy NP5, Ws | Si))

=P (NP;,,VP3[S;)*P(DTy;, Ny, [NPy,)*
P(Wy 1 | DTyq) * P (W, [ Ngp) * P (Vg5 PPy | VPg)) *
P(W33 | V33) *P(Pgys NPg | PPy ) * P(W,4Ps4)*
P (Ws | NPsg))

(Using Chain Rule, Context Freeness and Ancestor Freeness )



Why probability in Parsing



Why probabillity in parsing?

o« What is randomness in tree?

- At every position of the sentence there is a potential
ambiguity with respect to whatever phrase structure
can be built till and from that point

- This leads to ambiguity in the parse tree

- The root of a subtree covering a segment of the
sentence is said to dominate that segment

- The ambiguity in deciding domination leads to
randomness

o« Example:

In the earthquake old men@ndNNGMER were taken to safe
locations.



Domination

e A sentence is dominated by the symbol S through
domination of segments by phrases
o Examples

o

o

o

o

The capital of a country dominates the whole country.
The capital of a state dominates the whole state.

The district headquarter dominates the district.

IIT Bombay is dominated by the administration of [I'T
Bombay.

Administration dominates Heads of Depts

The department is dominated by head of the
department.



Dognination: Example

e Dominations

NP/ \VP
| _ \\

N V NP PF’\

| sa‘w De{l\l P/ NP

| | ‘ I/ N\
a poy With Det N

a telescope

| saw a boy with a telescope

Meaning: | used the telescope to see
the boy

o NP dominates “a telescope”

o VP dominates “saw a boy
with a telescope

o S dominates the whole
sentence

e Domination is composed of many
sub-domination.
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Interesting Probabillities

What is the probability of having a NP
at this position such that it will derive

“the building” ? - 3, (4,5)

Inside
Probabilities

The gunman sprayed the building, with bullets

1 2

14 8

Outside Probabilities

What is the probability of starting from N* and deriving
“The gunman sprayed”, a NP and “with bullets™ ? -

Atyp (4,9)




parsing:pushpak
Parse tree for the given sentence using probabilistic CYK parsing

o The ; gunman ,  sprayed ; the building .  with  bullets -

*Two parse trees are possible because the sentence has attachment
ambiguity .

« Total 16 multiplications are required to make both the parse trees
using probabilistic CYK.

*Number of multiplications is less in comparison to a probabilistic
parsing which prepares the two parse trees independently with 28
multiplication.
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The
1
0 Bor(0-1)
=1.0
1
2
3
4
)
6

gunman

2

B (0-2)
=0.25

Bun (1-2)
=0.5

Bven(2-3)
=1.0

Building
5

Bvp (2-5)
=0.1

BDT(3_4) BNP (3_5)

=1.0

=0.25

Bun (4-5)
=0.5

Br(5-6)
=1.0

Bullets
7

Bs(0-7)
=0.006

Bup(2-7)
=0.024

ﬁNP(3'7)
=0.015

Bep(5-7)
=0.3

Brnpmns(6-7)
=1.0
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Calculation of values for each non terminal occuring in the CYK
table

Bpr (0-1) =1.0  (From Grammar rules)

Ban (1-2) =0.5 (From Grammar rules)

Bnp (0-2) = P(the gunman | NPy, , G)
= P(NP->DT NN)* By (0-1) * By (1-2)
=05*1.0*0.5
=0.25

Byep(2-3) =1.0 (From Grammar rules)

Bpr(3-4) =1.0  (From Grammar rules)

Bun (4-5) =0.5 (From Grammar rules)

Byp (3-5) = P(the building | NP, 5 , G)
= P(NP->DT NN)* By (3-4) * By (4-5)
=0.5%1.0%0.5
=0.25
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Bvp (2-5) = P(VP->VBD NP)* Bygp (2-3) * By (3-5)
=04*1*0.25
=0.1

Bp(5-6) = 1.0 (From Grammar rules)

Brnemns(6-7) =1.0 (From Grammar rules)

Brp(5-7) = P(PP->P NP) * B5(5-6) * Bnpnns(6-7)
=10*1.0*0.3
=0.3

Bnp(3-7) = P(NP->NP PP)* B,5(3-5) * Bpp(5-7)
=0.2*0.25*0.3
=0.015

Byp(2-7) =(P(VP->VBD NP)* B\gp (2-3) * Byp (3-7) + P(VP->VP PP) * B,5 (2-5) * Bpp (5-7))
=04*1*0.015+0.6*0.1*0.3

=0.024
Bs(0-7) =P(S->NP VP) * Byp (0-2) * Byp (2-7)

=17*0.25*0.024
= 0.006
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A very difficult parsing situation!

Repeated Word handling



B&rsing:pushpak

Sentence on Buffaloes!

Buffaloe buffaloes Buffaloe
buffaloes buffaloe buffaloe
Buffaloe buffaloes
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S
NP VP
NNP VBZ

Buffalo buffaloes

Charniak

SBAR

S

N\

NP VP
NNP VBZ SBAR
Buffalo buffaloes S \
Buffalo buffaloes Buffalo buffaloes buffalo NP VP
buffalo Buffalo buffaloes | \
NN NNP NNP VBZ
buffalo buffalo
Buffalo buffaloes
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Collins
5
NPB \P
e
NNPNNS . e NPE
, ‘ wvBZ  MPEB /\
|
Buffalo /\ MMNS
buffaloes N
Il [
Buffalo \ buffaloes
buffaloes Buffalo
buffalo

buffalo
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Stanford

AP ”éf/f SBAR

Buffallo lalDES \
MP \

Buffallo buffalloes bu/laln bquaIc: Buffallo buffaloes

NMNP VBZ
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RASP

// |
MM MMZ2 MM MMZ MM

Buffalo buffaloes Buffalo buffaloes buffalo buffalo Buffalo buffaloes

NI NN NN2



parsing:pushpak

Correct parse

S
NP VP
NNS NPV NP

Buffalo NNS S buffalo

buffaloces NP VP
buffaloes
NNP NNS V

Buffalo buffaloes buffalo

NP

Buffalo

NNS
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Another sentence of same structure
S

NP VP
NNS NP V NP
Brown NNS S cow NP NNS
cows. NP VP white cows

NNPNNS V

Black cows cow
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Observation

e Collins and Charniak come close to
producing the correct parse.

 RASP tags all the words as nouns.
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Another phenomenon: Garden pathing

e.g. The old man the boat.

S

s
N Backtrack N

NP VP NP VP

Dﬁ/\I#’iIIIIIII!B 5?A\EP ‘Gﬁ\ﬁp
IR TR

JJ \
JJ NN The I man
.

old The boat

old man

Another example: The horse raced past the garden fell.



Project Suggestions



Principle

How do | choose a project?
—Beauty: e.g. Music
—Utility: e.g. Chatbot

—Both: e.g., chatbot that understands
and produces humour



Poetry

Translation, question answer



Well known poem

» Jack and Jill

« went up the hill

* to fetch a pail of water

» Jack fell down

* And broke his crown

* And Jill came tumbling after



Google Hindi

. O AR T

. UgTel & 3R Il 7Y

» UHI 1 Teh UI3d A &
. O A TR T

. 3R IYPT e ars fea

c ARNATCHT

U |

$STd gU AT ||



Bing Hindi
. S 3R Tt

. UgTsl WR Il T
-tﬂ:ﬁﬁ@bac clqaﬂ%m
. O A TR T

. 3R IYPT e ars fea

+ 3R 1A & &1 tumbling 31T ||




. Op 3R oI

With Rhythm

T

7]

¢

R AT

e OlH T

* ONIP

. 3R e

o & dieet HR T |
g1 TR

the T R

e Y

Gohall B3 UIY ||



Question Answering on Poetry

no went with Jack? Jill

no went with Jill? Jack

N0 got injured? Jack

ny did they go up the hill?- to fetch water
nat did they carry? a palil

Did they get water?- do not know

Did Jill slide down?- No

Did Jill too get injured?- likely

S =z =z=2




Tweets



Translation, Formalization,
Normalization

» ‘got 2 go” > got to go

* "hey what’s up” - Hello how are
you?

* "hey! what’s up” = are! Kyaa chal
rahaa?



Humour



Uses Text Ambiguity

“Officer: There is heavy firing
Minister: which sector?
Officer: IT”

‘I filed a lawsuit against the airport due
to my luggage being lost, but I lost the
case”

*haldi is healthy”



Social n/w related



Topics
Automatic population of LinkedIn profile from the
home page, e.d., publications

— Want a module that when run does the
automatic populating

Translating FB posts into multiple languages

Linking Instagram with FB

— Automatically captioning Instagram picture
with FB post

Aggregating search results from

multiple social n/w

— FB, LinkedIn, Instagram



Information Retrieval and
Information Extraction Related



Topics
e Summarization

« Combined summarization and
sentiment (multitask learning)

— Oh no!, forgot to send the letter!
— Information content: did not send the letter

— Pragmatic content: disappointment indicated
by “oh, no!”, that summarization will drop

* Tune search: retrieving song name,
lyrics, composer, movie hame etc.
from the tune (needs feature

naviracrtinn from tho cniinA\



ASR-NLU-TTS

Wholly or partically



Topics

» Spoken signal conversion to text



Explainability



Topics

* |Interpretability of word embeddings
— Which component represents what
—‘dog’, ‘cat’, ‘tiger’ vectors: which component(s)
represent ‘carnivorous’?
» Extracting rules from trained neural
nets

« Shadowing a neural net with decision
tree or support vector machine

— Decision tree uncovers rules, SVM uncovers
features



