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Vauquois Triangle



BiJanl, {20 1dt: pushpak

Kinds of MT Systems

(point of entry from source to the target text)

Deep understanding level Ontological interlingua
Interlingual level Sema ntico-linguistic interlingua
; ; SPA-structures (semantic
Logico-semantic level & predicate-argument)
Mixing levels 2 Multilevel description
Multilevel transfer

Syntactico-functional level Svntactic transfer (deep) F-structures (functional)
Syntagmatic level Syntactic sfer (surface) C-structures (constituent)

Morpho-syntactic lev Semi-direct transla tig Tagged text

Direct translation

Graphemic level Text




Pair of languages decides the level
of analysis: Syncretism in Bengall
languages

Syncretism: overloading in the functionality of
morphemes

Bengali has more syncretism than hindi

It Is more challenging to get morpheme
mapping

Example

- Balbe: will carry

- Will: Morpheme “be” in bengali



Full Ambiguity resolution Is not
always needed: for translation

« Example: Semantic role ambiguity
o Mujhe apko mithai khilani padegi
= Ambiguous sentence
« Semantic role ambiguity, who is the agent
and who the beneficiary
= Who is giving the sweets to whom
o For translation to
o English
= Ambiguity resolution is necessary
o Bengali/Marathi/Gujrati/Assamese
= Ambiguity resolution Is not necessary
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lllustration of transfer SVO->S0OV

S S

NP ///Xi\\ NP VP
V NP (transfer NP \
N SV0 = soV) N v
John eats N

bread bread



Fundamental processes in Machine
Translation

e Analysis
o Analysis of the source language to represent the
source language in more disambiguated form
= Morphological segmentation, POS tagging,
chunking, parsing, discourse resolution, pragmatics
etc.
e Transfer
o Representation transfer from one language to another
o Example: SOV to SVO conversion
o Generation
o Generate the final target sentence
o Final output is text, intermediate representations can
Include F-structures, C-structures, tagged text etc.
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Issues to handle

ISSUES

GGG@B

Noun or Verb
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Issues to handle

some money but was disappointed to find it closed.

Sentence: | went with my friend,to the bank to withdraw

N

John is the
name of a
PERSON

ISSUES

NER

a @a @
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Issues to handle

Sentence: | went with my friend, John, to th
some money but was disappointed to find it closed.

to withdraw

NER

@

WSD

a @

Financial bank
or River bank
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Issues to handle

Sentence: | went with my friend, John, to the 0 withdraw
some money but was disappointed to fing it Elosed.

N\

ISSUES

@ﬂ

NER “t” 2 “bank”.

@

WSD

—

&

Co-reference

-
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Issues to handle

Sentence: | went with my friend, John, to the bank to withdraw
some money hut was disappointed to find it closed.

ISSUES
NER
8 ‘ Pro drop
WSD (subject “I”)
= 4

Co-reference

b :
Subject Drop
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System Architecha%ae Semenee

_ Analyser

NER Stanford
: Dependency

Parser

Stanford Dependency Parser

XLE Parser

Marker Feature
Generation

WSD

Simplifier

Simp;le

Enco.

Simple
Enco.

Simple
Enco.

Simple
Enco.

Si-mple
Enco.

Attribute
Generation

Relation
Generation
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Target Sentence Generation from
Interlingua

Target Sentence

Generation
Lexical Transfer Morphological Syntax
Synthesis Planning
Wi
(Word/Phrase (Word form (Sequence)

Translation ) Generation)
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Generation Architecture

Deconversion = Transfer + Generation

/ Paradigms *_,/Priority Matrix /
i A s
e P o .
(" UNL-Hindi /" Relation
N D“W? /’) = , e k\\ Priorities /
/ -\ e ———— // s e o ‘\ =
f UNL Repalr ) ( UNL Relation- N\ Functmn Word
\_  Rules _ \_ Hindi Case Mapping /|| Insertion Rules /»-'
— —— o W
4 ¥ ¥ W - ¥ v
UNL UNL Lexeme Case Morphology Function Syntax
® Parsing (™| Repair [®| Selection Identification Generation word Planning
f Insertion
UNL Expression Hindi Senienc
Language Independert . Language Specific Offlme
- Prooess v’ Resource e Resource
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Statistical Machine Translation

Deep understanding level Ontological interlingua
Interlingnal level Semantico-linguistic interlingua
= SPA-sructures (semantic
Logico-semantic level & predicate-argn 6
Mixing levels N Multilevel description
Multilevel transfer
Syntactico-functional level Syntactic transfer (deep) F-structures (functional)
Y ic level Syntactic trapsfer (surface) C-structures (constituent)
Morpha- Iev Semi-direct translatiol Dl’s‘-ﬂ” iy Tagged text
iy try
"‘f(‘q
Graphenic level Direct translation i Text
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Czeck-English data

* [nesu]j ‘| carry”

* [ponese] “He will carry”
* [nese] “He carries”
 [nesou] “They carry”

* [yedu] ‘| drive”

* [plavou] “They swim”
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To translate ...

| will carry.

* They drive.

* He swims.

* They will drive.
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Hindi-English data

* [DhotA huM] "l carry”

* [DhoegA] “He will carry”
» [DhotA hAIj “He carries”
 [Dhote hAl] “They carry”
 [chalAtA huM] "l drive”

* [tErte hEM] “They swim”



B anl, {20 1dt: pushpak

Bangla-English data

* [bal] ‘| carry”

» [baibe] “He will carry”
» [bay] "He carries”

* [bay] “They carry”

* [chAIAI] ‘| drive”

* [SAMtrAy] “They swim’
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To translate ... (repeated)

| will carry.

* They drive.

* He swims.

* They will drive.
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Foundation

e Data driven approach

e Goalis to find out the English sentence e
given foreign language sentence f whose
p(elf) is maximum.

é = argmaxp(e|f) = argmax p(fle)p(e)

eece” eece”

e Translations are generated on the basis
of statistical model

e Parameters are estimated using bilingual
parallel corpora
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SMT: Language Model

e To detect good English sentences

e Probability of an English sentence w,w, ...... w, can be
written as

Pr(w,w,.....w,) = Pr(w;) * Pr(w,[w;) *... * Pr(w, [w; w,...w, ;)
e Here Pr(w,/w;w,...w, ) is the probability that word w,

follows word stringw, w,... w,_ ..
— N-gram model probability

e Trigram model probability calculation

count(wyw,ows)

W3 |wiw,) =
p(wz|wyw,) count(w,ws, )
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SMT: Translation Model

e P(fle): Probability of some f given hypothesis English translation
e

e How to assign the values to p(e|f) ?

p(fle) = count(f,e)

count(e)

< Sentence level
— Sentences are infinite, not possible to find pair(e,f) for all sentences

e Introduce a hidden variable a, that represents alignhments
between the individual words in the sentence pair

Pr(fle) = ) Pr(f.ale) <—— wordlevel
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Alignment

« Ifthe string, e=e,'/= e, e, ..., has | words, and the
string, f=f,m=f,f,...f., has m words,

« then the alignment, a, can be represented by a
series, a,™= a,a,...a,, , of m values, each between 0
and | such that if the word in position | of the f-string
IS connected to the word in position i of the e-string,
then
— a=1, and
— If itis not connected to any English word, then a=

O
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Example of alignment

English: Ram went to school
Hindi: raam paathashaalaa gayaa

Ram went to school

<Null> raam paathashaalaa gayaa
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Translation Model: Exact expression

Choose the length
of foreign language
string given e

M

Prif,ale) = Pr(m|e)

Pr (ay o] £/, m, e)Pr (flad, £/ m, )

"

Choose alignment
given e and m

|

Choose the identity
of foreign word
givene, m, a

e Five models for estimating parameters in the expression [2]

e Model-1, Model-2, Model-3, Model-4, Model-5




B&) anl, {20 1dt: pushpak
Proof of Translation Model: Exact

expression

Pr(f [e)=Y Pr(f,ale) ; marginalization

Pr(f,ale)=Y Pr(f,amle) ; marginalization
Pr(f,a,m|e)=>) Pr(m|e)Pr(f,a|m,e)
=Y Pr(m|e)Pr(f,a|m,e)

=Y Pr(m[e)] [Pr(f;.a;la’", f'" m,e)
m j=1

=Y Prm|e)[ [Pr(a; |a)*, £/, me)Pr(f, |a/, f,'", m,e)
m j=1
m is fixed for a particular f, hence

Pr(f,a,m|e)=Pr(m|e) [[Pr(a; |a/", ", me)Pr(f, [a/, £/, m,e)

j=1
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Alignment



How to build part alignment from
whole alignment

. Two Images are Iin alignment: images on
the two retina
. Need to find alignment of parts of it
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Fundamental and ubigquitous

» Spell checking
* Translation

* Transliteration
» Speech to text
* Text to speeh
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EM for word alignment from sentence

alignment: example

d

b

English

(1) three rabbits

b

C

(2) rabbits of Grenoble

d

French
(1) trois lapins
W X

(2) lapins de Grenoble
X y Z




Initial Probabillities:
each cell denotes t(a <=2 w), t(a €2 X) etc.

a b C d
W 1/4 1/4 1/4 1/4
X 1/4 1/4 1/4 1/4
y 1/4 1/4 1/4 1/4
Z 1/4 1/4 1/4 1/4
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Example of expected count

Clw €a: (a b) €=3(W X)]

t(w € —a)
= mmmmmmmmmmmmooees X #(ain ‘a b)) X #(w in ‘w X))
t(w € a)+t(w € >h)
1/4
= e X 1X1=1/2

1/4+1/4
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(c 99
counts
ab a b bcd b C d
> >
W X XY Z
W 1/2 1/2 W 0 0 0
X 1/2 1/2 X 1/3 1/3 1/3
y 0 0 y 1/3 1/3 1/3
Z 0 0 Z 1/3 1/3 1/3
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Revised probability: example

(a€E=2w)

rewsed

(1/2+1/2 +0+0 )(a by e 3w x) T(0+0+0+0 )y c gy e (xy 2)



Revised probabillities table

a b C d
1/2 1/2 0 0
1/4 5/12 1/6 1/6

0 1/3 1/3 1/3

0 1/3 1/3 1/3
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“revised counts”

ab a b bcd b C d

> >

W X XY Z

W 1/2 3/8 W 0 0 0
X 1/2 5/8 X 5/9 1/3 1/3
y 0 0 y 2/9 1/3 1/3
Z 0 0 Z 2/9 1/3 1/3




Re-Revised probabilities table

a b C d
W 1/2 1/2 0 0
X 3/16 85/144 1/9 1/9
y 0 1/3 1/3 1/3
Z 0 1/3 1/3 1/3

Continue until convergence; notice that (b,x) binding gets progressively stronger,
b=rabbits, x=lapins



&M anl, {20 1dt: pushpak

Derivation of EM based Alignment
EXxpressions

V. =vocalbulary of language L, (Say English)
V. =vocabulary of language L, (Say Hindi)

El what is in a name?
JH H FIr F?
, haam meM kya hai?
F hame in what is?
E2 That which we call rose, by any other name will smell as sweet.
IS 8 TeTd FEct &, IR Y [t ST & 3 Forg THTA HIST 8171
£2 Jise hum gulab kahte hai, aur bhi kisi naam se uski khushbu samaan mitha hogii

That which we rose say ,any  other name by its smell as sweet
That which we call rose, by any other name will smell as sweet.
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Vocabulary mapping

Vocabulary

what , is , in, a , name , that,
which, we , call ,rose, by,
any, other, will, smell, as,
sweet

naam, meM, kya, hai, jise,
ham, gulab, kahte, aur, bhi,
kisi, bhi, uski, khushbu,
saman, mitha, hogii
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Key Notations

English vocabulary : Vg

French vocabulary : Vx

No. of observations / sentence pairs : S

Data D which consists of S observations looks like,

811, 812, ...,8111@ fll,flz, ...,flml

621, 622, ey 8212® le, fzz, ...,fsz

No. words on English side in st" sentence : I
No. words on French side in st* sentence : m*s
indexg(e®,) =Index of English word es,in English vocabulary/dictionary
indexp(fs,) =Index of French word f* in French vocabulary/dictionary

(Thanks to Sachin Pawar for helping with the maths formulae processing)
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Hidden variables and parameters

Hidden Variables (2) :

Total no. of hidden variables = Y5_, I m® where each hidden variable is
as follows:

z5, = 1, if in s** sentence, p™ English word is mapped to ¢** French
word.

Zpq = 0, otherwise

Parameters (O) :

Total no. of parameters = | Vz| X |Vg|, where each parameter is as
follows:

P; ; = Probability that it" word in English vocabulary is mapped to jt* word
in French vocabulary
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Likelihoods

Data Likelihood L(D; O) :

L(D;0) = HHH indexg(ef ).indexg (fF) ) :

s5=1 p=1g=

Data Log-Likelihood LL(D; O) :

s ¥ m
LL(D: 'EU — S: S: S: E;q Eﬂg (Fiﬂdgxﬂ—{gf,},iﬂdex;r{fqﬂ:l)

g=1p=1g=1

Expected value of Data Log-Likelihood E(LL(D; O)) :

¥ m

E(LL(D;0)) = Z Z Z E(zpq) log (P indexg(ep ) indexp r;ﬂ%:l)

=1 p=1g=1
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Constraint and Lagrangian

VE|
Z Pi,j — 1 \v
j=1

vl vl
ZZZE%””H e (o) andoxz ) ~ D, (Z*”wl)

5=1p=1g-=1 i=1 j:l
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Differentiating wrt P;

ZZZ indexg(ef ).1 mde;u.:ﬁ{fq}j (EEEW]) A; =10

s=1p=1g=1 11

s IF m
1 1 1 1
Pi,j = 1_1 ZZ Z Eiﬂdexﬂ—{gﬁ},i Eiﬂdexp{ff},jEEEﬂq]

s=1p=1g=1

|FF h"'F'

2P Y bttt 50

slplql
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Final E and M steps

M-step

_ §=1 Z*f:l= 12?= 1 Eiﬂdexﬂ-{ef; },1’ Siﬂdﬂﬂl}-ﬁ {fg}jE{EEtE]
g Vel = 1 s 8
ijﬁl Z§=1 Z*f:l= 1 Zq=1 Emdgx,,-{g% ).i Eiﬂdﬂjﬂp {fg},jE (Ew )

P Vi, j

E-step
P index E{QISJ },iﬂdex B {-fqﬂ }

E{:ES ]— R
’ Zq;:l‘umdgxﬂ—{ef,},iﬂdﬂxﬁ qE.r}

1

,Vs,p,q
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Recurrent Neural Network

Acknowledgement:

1. http://Iwww.wildml.com/2015/09/recurrent-neural-
networks-tutorial-part-1-introduction-to-rnns/

By Denny Britz
2. Introduction to RNN by Jeffrey Hinton

http://www.cs.toronto.edu/~hinton/csc2535/lectures.ht
ml



http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://www.cs.toronto.edu/~hinton/csc2535/lectures.html
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Seqguence processing m/c

> v =
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E.g. POS Tagging

VBD NN

P NN
0
O Ot—l Ot 0t+]
xt

<

T 1, o
R e A
U i TU TU TU

X

w

t—1

A

Purchased  Videocon machine
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E.g. Sentiment Analysis

Decision on a piece of text
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1 P ke |
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24
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Positive
sentiment
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Back to RNN model

S s % U
1 !
‘T » —)—0L—>0-~>0%—

Uitold w w W
U U U U
X X 1 X X1



S7

Notation: input and state

X, IS the input at time step t. For example, could
be a one-hot vector corresponding to the second
word of a sentence.

S, Is the hidden state at time step t. It is the
“memory” of the network.

si= f(U.x+Ws,,) U and W matrices are learnt
f Is a function of the input and the previous state
Usually tanh or ReLU (approximated by softplus)
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Tanh, RelLU (rectifier linear unit)
and Softplus

tanh = ex_e_x gf
e're’

L ey,

f(x)=max(0,x) ~ ~ /
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Notation: output

* O, IS the output at step t

* For example, if we wanted to
predict the next word In a sentence
It would be a vector of probabilities
across our vocabulary

» o=softmax(V.s,)
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Operation of RNN

 RNN shares the same parameters
(U, V, W) across all steps

* Only the Input changes

* Sometimes the output at each time
step Is not needed: e.g., In
sentiment analysis

* Main point: the hidden states !



lllustration of operation



RNN Sequence Processing Example

Input Sequence: 100010

O:y=Xx
V=1
S =
1/(1+e%) W=1 I 0.73
U=1
X X=1



RNN Sequence Processing Example

Input Sequence: 100010

0./73

|

0.67

—
[
N



RNN Sequence Processing Example

Input Sequence: 100010

067

|

)
0.67

0.66

—
[
w



RNN Sequence Processing Example

Input Sequence: 100010

—
[
AN



RNN Sequence Processing Example

Input Sequence: 100010

0.65

|

—
[
ol



RNN Sequence Processing Example

Input Sequence: 100010

0,83

|

0.83

0.53 IENN)

—
[
(o)}

Final o/p seq: 0.73 0.67 0.66 0.65 0.83 0.69



XOR N/W acting on a bit-string: 2
bits at a time



XOR RNN unit

INPUT-1 INPUT-2



XOR RNN unit (all feedback wt= 1):

values adjacent to connections are o/p coming from
the source neurons

INPUT-1 INPUT-2 INPUT--> [0

0]



XOR RNN unit; (all feedback wt= 1);

values adjacent to connections are o/p
coming from the source neurons

INPUT-->



XOR RNN unit; (all feedback wt= 1);

values adjacent to connections are o/p coming from the
source neurons

INPUT--> [1 0]



XOR RNN unit; (all feedback wt= 1);

values adjacent to connections are o/p coming
from the source neurons

INPUT--> [1 1]



The equivalence between feedforward nets and recurrent

nets
W1
time=3 O O
W 2 W 4
W2
time=2 O O
Assume that there is a time W 2 W 4
delay of 1 in using each
connection.
The recurrent net is just a time=1 O O
layered net that keeps W 2 W 4

reusing the same weights.

im0 Q) O O



E858igrRoiTshpak

BPTT- BP through time- Backpropagation
with weight constraints

 Linear constraints
between the weights.

« Compute the gradients as
usual

« Then modify the
gradients so that they
satisfy the constraints.

« So if the weights started
off satisfying the
constraints, they will
continue to satisfy them.

Example

To constrain: W, =W,
we need: Aw =Aw,

oE oE
compute: — and —
OWy oW,
0E oE
use + for wy and w,
oWy oWy
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Convolutional Neural Network
(CNN)
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CNN= feedforward + recurrent!

« Whatever we learnt so far in FF-BP Is useful
to understand CNN

« S0 also is the case with RNN (and LSTM)
 Input divided into regions and fed forward

* Window slides over the input: input changes,
but ‘filter’ parameters remain same

e Thatis RNN
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Genesis: Neocognitron (Fukusima,

1980)

stage 1 stage 2
stage 3
recognized \
pattern m \ stage 4
« ,

feature



s ainnPodnding:pushpak

l_l

=]
=

o

=
=]

l_l

=]
=

O | O |0 ||+

= O[O | = [
= [ [
OlR|R|[FRL|O

O|lO|=|O|O

Image

Convolution

kernel

Convolved
Feature

= Matrix on the left represents an
black and white image.

= Each entry corresponds to one
pixel, O for black and 1 for white
(typically it's between 0 and 255
for grayscale images).

» The sliding window is called
a kernel, filter, or feature detector.

= Here we use a 3x3 filter, multiply
its values element-wise with the
original matrix, then sum them up.

» To get the full convolution we do
this for each element by sliding the
filter over the whole matrix.
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CNN architecture

« Several layers of convolution with tanh or ReLU
applied to the results

 In a traditional feedforward neural network we
connect each input neuron to each output neuron in
the next layer. That's also called a fully connected
layer, or affine layer.

* In CNNs we use convolutions over the input layer to
compute the output.

« This results in local connections, where each region
of the input is connected to a neuron in the output
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Learning in CNN

 Automatically learns the
values of its filters

* For example, in Image

Classification learn to

— detect edges from raw pixels in the first layer,

— then use the edges to detect simple shapes in the
second layer,

— and then use these shapes to deter higher-level
features, such as facial shapes in higher layers.

— The last layer is then a classifier that uses
these high-level features.
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What about NLP and CNN?

 Natural Match!

* NLP happens in
layers
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NLP: multilayered,

multidimensional i
“ 1 Semantics NLP
Trinity
Parsing ——
Part of Speech
_ —1— Tagging
A Discourse and Coreference
I g — Morph ——
ncrease . Analysis Marathi French
Complexity Semantics y | | | |
of HMM | | | |
=] i . .
rocessing , Hindi English
Parsing L
CRF anguage
MEMM
. Algorithm
= Chunking
POS tagging
Morphology
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NLP layers and CNN

* Morph layer -
* POS layer =

» Parse layer -

* Semantics layer
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stage 0

L1

stage 1

UC’]///
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Convolution Pooling Convolution Pooling Fully Fully Output Predictions
Connected Connected

dog (0.01)
cat (0.04)
boat (0.94)
bird (0.02)

http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/
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Pooling

e GIves Invariance In translation,
rotation and scaling

* I[mportant for image recognition

* Role iIn NLP?
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Input matrix for CNN: NLP

=“image” for NLP <-> word

vectors
=in the rows
1x1 1fo 1x1 0 0
, ol1l1]1]0 4]3] 4
*For a 10 word sentence using a 0| Sal o
100-dimensional Embedding 0,0, 1411 413
’ 0(0|1|1(0]| |, |,
. ol1(1]0]0
swe would have a 10x100 matrix Convolved
as our input Image Feature
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+ activation function

B BN

like

this

movie

very

much

HH 7

I
- —

T

TR
/

convolution Tk ———
\ poolin regularization
Y P 9 \ in this layer
\ 3 region sizes: (2,3,4) 2 feature v
Sentence matrix 2 filters for each region maps for 6 univariate 2 classes
7x5 size each vectors |:|
totally 6 filters region size concatenated
together to form a
single feature
vector

Credit: Denny Britz

CNN for NLP



B ainnodnding:pushpak

CNN Hyper parameters

* Narrow width vs. wide width
» Stride size

* Pooling layers

* Channels
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Abhijit Mishra, Kuntal Dey and Pushpak Bhattacharyya, Learning Cognitive Features
from Gaze Data for Sentiment and Sarcasm Classification Using Convolutional Neural
Network, ACL 2017, Vancouver, Canada, July 30-August 4, 2017.
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https://www.cse.iitb.ac.in/~pb/papers/acl17-cogfeatures.pdf
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Learning Cognitive Features from Gaze

Data for Sentiment and Sarcasm

Classification
* [n complex classification tasks like

sentiment analysis and sarcasm
detection, even the extraction and
choice of features should be
delegated to the learning system

* CNN |earns features from both gaze
and text and uses them to classify the
Input text
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Problem 1: Bit Reverse



Bit Reverse

e Problem definition:

- Reverse the bit if the current i/p and previous o/p are

e ANAAANA

segquence



Prepare Data

Let
Sequence length
: 10
Dimension of each element of I/p sequence (X): 1 bit
Dimension of each element of O/p sequence (O)
1 bit



Network Architecture

Number of I/P neurons 1
Number of O/P neurons :1
Sequence length : 10

L 2 .
—>
W
U
X @ X1




Implementation using Keras
1/8

1.Import necessary libraries

import numpy
# Numpy for mathematical ops
import keras

# Keras main library

from keras.models import Sequential # Model type

from keras.layers import SimpleRNN # Recurrent layer
dimInUnits = numInNeurons = 1

dimOutUnits = numOutNeurons = 1

numUnits = seqglLen = 10

numInstances = 4



Implementation using Keras
2/8

2. Design network

model = Sequential () # Instantiate
sequential network

# Add a single layer of RNN layer.

# input shape is required only for the first layer of the network.

# return sequences should be True, if we require o/p at each time step. It will be
False, if we require single o/p for the entire sequence.

model.add (SimpleRNN (numOutNeurons, input shape=(seqglLen, numInNeurons),
return sequences=True, activation='sigmoid'))

# If we need to add more layers we have to call model.add() again. Next time
input shape () 1s not required.



Implementation using Keras
3/8

3.Compile the network

model .compile (optimizer="sgd', loss='mse')

# Validate the network.

If any issues (dimension mismatch etc.) are found,
will be reported.

they

# Optimization algorithm is stochastic gradient descent
# Loss 1s mean squared error

# At this point network is ready for training



Implementation using Keras
4/8

4. Print the the network summary

model.summary () # Print summary of the network
Layer (type) Output Shape Param #
simple rnn 1 (SimpleRNN) (None, 10, 1) 3

Total params: 3.0
Trainable params: 3
Non-trainable params: 0.0

I/p to layer[O] weight
1

Layer[0] (t-1) to layer[0] (t)

weight 1

l/p bias weight



Implementation using Keras
5/8

5.Load training data

X = np.loadtxt (open('x.txt’,’'r’")) # load sequence i/p file
O = np.loadtxt (open(to.txt’,’'r’")) # load sequence o/p file

6. Reshape data w.r.t. the network

X = X.reshape (numInstances, numUnits, dimInUnits)

# Input file has ‘numInstances’, each instance has ‘'numUnits’ and each unit has
dimension ‘dimInUnits”’.

O = O.reshape (numInstances, numUnits, dimOutUnits)

# Output file has ‘numInstances’, each instance has ‘numUnits’ and each unit has
dimension ‘dimOutUnits’.



Implementation using Keras

7. Train the network
model.fit (X, O, epochs=5)

epochs

Epoch 1/5

-0Os -

- Os -

- Os -

- 0Os -

loss: 0.0987

loss: 0.0987

loss: 0.0986

loss: 0.0986

6/8

# Train the network for 5



Implementation using Keras
//8

8. Print final weights

print (model.layers([0].get weights()) # Print weights of first layer
[

array([[-0.4387919]], dtype=float32), # Input to layer[0]

array([[ 0.99820316]], dtype=float32), # layer[0] (t-1) to layer[0] (t)

array ([-0.00290805], dtype=float32) # Input bias



Implementation using Keras
8/8

9. Evaluate the network

a. Prepare the test data

test = np.random.randint (2, size=10)

10

a. Predict o/p
prediction = model.predict classes (test)

sequence

a. Print test and its prediction
print (‘Input seqg:’, test)
print (‘Output seqg:’, prediction)

Input seq: 1
0

1 001
Output seq: 1 0 01 11

00011
1 10

# Sequence of 1 & 0 of len

# predict o/p



Implementation using Keras

# Import libraries
import numpy
import keras
from keras.models import Sequential
from keras.layers import SimpleRNN

dimInUnits = numInNeurons = 1
dimOutUnits = numOutNeurons = 1
numUnits = seqlLen = 10
numInstances = 4

# Design network
model = Sequential ()

model.add (SimpleRNN (numOutNeurons, input shape=(seqlen, numInNeurons),

model.compile (optimizer="'sgd', loss='mse')
model . summary ()

# Prepare data

X = np.loadtxt (open(',’'r"))

O = np.loadtxt (open(',’'r"))
X = X.reshape (numInstances, numUnits, dimInUnits)
Y = Y.reshape (numInstances, numUnits, dimOutUnits)

# Training
model.fit (X, O, epochs=5)
print (model.layers[0].get weights())

# Evaluation
test = np.random.randint (2, size=10)
prediction = model.predict classes(test)
print (‘Input seq:’, test)
print (‘Output seq:’, prediction)

return_ sequences=True,

activation='sigmoid'))
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Backpropagation through time
(BPTT algorithm)

* The forward pass at each time
step.

* The backward pass computes the
error derivatives at each time step.

» After the backward pass we add
together the derivatives at all the
different times for each weight.



B ary addition using recurrent

network (Jeffrey Hinton’s lecture)
* Feed forward n/w

11001100
« But problem of variable t
length input
hidden units

L} L}

00100110 10100110
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The algorithm for binary addition

no carry

This is a finite state automaton. It decides what transition to make by looking at the next
column. It prints after making the transition. It moves from right to left over the two input
numbers.
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A recurrent net for binary addition

« Two input units and one output

unit.

« Given two input digits at each 00110100
time step. '

* The desired output at each time 01001101

step is the output for the column

that was provided as input two 10000001

time steps ago.

— It takes one time step to
update the hidden units
based on the two input digits. time
S

— It takes another time step for
the hidden units to cause the
output.
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The connectivity of the network

* The Input units have
feed forward
connections

 Allow them to vote
for the next hidden
activity pattern.

O
T

3 fully interconnected hidden units

T
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What the network learns

« Learns four distinct patterns of activity for the
3 hidden units.

- Patterns correspond to the nodes in the finite
state automaton

 Nodes in FSM are like activity vectors

* The automaton is restricted to be in exactly
one state at each time

* The hidden units are restricted to have exactly
one vector of activity at each time.
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The backward pass Is linear

* The backward pass, Is
completely linear. If you
double the error derivatives at
the final layer, all the error
derivatives will double.

* The forward pass determines
the slope of the linear function
used for backpropagating
through each neuron.




Recall: Backpropagation Rule

* General weight updating rule:
AWji =10Jo,

 Where

6; =(t; —0;)0;(1—0;) for outermost layer

- Z (ij5k)0j (1- 0; )0, for hidden layers

kenext layer

16 Aug, 2017 cs561:rnn:pushpak 114
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The problem of exploding or
vanishing gradients (1/2)

— If the weights are small, the gradients shrink
exponentially

— If the weights are big the gradients grow
exponentially.

* Typical feed-forward neural nets can cope with
these exponential effects because they only
have a few hidden layers.
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The problem of exploding or
vanishing gradients (2/2)

* In an RNN trained on long sequences (e.q.
sentence with 20 words) the gradients can
easily explode or vanish.

— We can avoid this by initializing the weights very
carefully.

« Even with good Initial weights, its very hard
to detect that the current target output
depends on an input from many time-steps
ago.

— S0 RNNs have difficulty dealing with long-range
dependencies.
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Vanishing/Exploding gradient:
solution

 LSTM

* Error becomes “trapped” in the
memory portion of the block

 This Is referred to as an "error
carousel”

» Continuously feeds error back to each
of the gates until they become trained
to cut off the value

e (Tt he evynandead)
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Attention: DL-POS

Acknowledgement: Anoop Kunchukuttan, [IT Bombay
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So far we are seen POS tagging as a sequence labelling task

For every element, predict the tag/label (using
function f)

e Length of output
seguence is same as
Input sequence

e Prediction of tag at time
t can use only the words
seen till time t
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We can also look at POS tagging as a sequence to sequence transformation
problem

Read the entire sequence and predict the output sequence (using

function F)
e Length of output

sequence need not be
read the book .
1 f—>{ _read |—{ the }—>{ book | e same a6 mout

l sequence
[ = ] e Prediction at any time
step t has access to the
l entire input
e A more general

_PRP_ framework than

sequence labelling
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Sequence to Sequence transformation is a more general framework than
sequence labelling

e Many other problems can be expressed as sequence to sequence
transformation
o e.g. machine translation, summarization, question answering, dialog
e Adds more capabilities which can be useful for problems like MT:
o many — many mappings: insertion/deletion to words, one-one
mappings
o non-monotone mappings: reordering of words

e For POS tagging, these capabilites are not required

How does a sequence to sequence model work? Let’s see two paradigms
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So

Encode - Decode Paradigm

(5)... continue till
end of sequence
tag is generated

Use two RNN networks: the encoder and
the decoder

(4) Decoder
generates one
element at a

(3) This is used
to initialize the
decoder state

(1) Encoder
processes one
sequences at a
time

ho

S1 S S3

—> —>
f f f (2) A representation
of the sentence is
generated
read the book

» Encoding
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This approach reduces the entire sentence representation to a
single vector

Two problems with this design choice:

e This is not sufficient to represent to capture all the syntactic and
semantic complexities of a sentence
o Solution: Use a richer representation for the sentences

e Problem of capturing long term dependencies: The decoder RNN will not
be able to able to make use of source sentence representation after a
few time steps

o Solution: Make source sentence information when making the next
prediction

o Even better, make RELEVANT source sentence information
available

These solutions motivate the next paradigm
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Encode - Attend - Decode Paradigm

Represent the source
Annotation sentence by the set of

vectors

output vectors from the
encoder

Each output vector at time t
IS a contextual
representation of the input

attime t

Let’s call these encoder
output vectors annotation
book vectors

s2

( N\
( N\

read

i

( N\
( N\
- J

the

|
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How should the decoder use the set of annotation vectors while predicting
the next character?

Key Insight:
(1)Not all annotation vectors are equally important for prediction of the next

element
(2)The annotation vector to use next depends on what has been generated so

far by the decoder

eg. To generate the 39 POS tag, the 3" annotation vector (hence 3 word) is
most important

One way to achieve this:
Take a weighted average of the annotation vectors, with more weight to
annotation vectors which need more focus or attention

This averaged context vector is an input to the decoder

n For generation of i!" output character:
S o C; : context vector
Ci = Z Ai;50; a; - annotation weight for the j"" annotation
j=1 vector

o;: j'" annotation vector
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Let’s see an example of how the attention
mechanism works
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(PRP | VB |
P O
— HT]—'




AN PoaTding: pushpak

(PrP [ VB

L
S
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(PrP [ VB

L
S
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(PrP [ VB

L
S
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But we do not know the attention weights?
How do we find them?

Let the training data help you decide!!

Idea: Pick the attention weights that maximize the POS
tagging accuracy

(more precisely, decrease training data loss)
Have an attention function that predicts the attention weights:
;= A(oj,hi;o)

A could be implemented as a feedforward network which is a component of the
overall network

Then training the attention network with the rest of the network ensures that the
attention weights are learnt to minimize the translation loss
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OK, but do the attention weights actually show focus on
certain parts?

Here is an example of how attention weights represent a soft alignment for
machine translation

agreement
on
European
Economic

Area
was
signed

The
the

in
August
1992
<end>

L
accord

sur

la

zone
économique
europeéenne
a

été

signé

en

ao(t

1992

<end>
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Let’s go back to the encoder. What type of encoder cell should we use there?

e Basic RNN: models sequence history by maintaining state information
o But, cannot model long range dependencies

e LSTM: can model history and is better at handling long range dependencies

The RNN units model only the sequence seen so far, cannot see the sequence
ahead

e Can use a hidirectional RNN/LSTM

e This is just 2 LSTM encoders run from opposite ends of the sequence and
resulting output vectors are composed

Both types of RNN units process the sequence sequentially, hence parallelism is
limited

Alternatively, we can use a CNN

e Can operate on a sequence in parallel

e However, cannot model entire sequence history

e Model only a short local context. This may be sufficient for some
applications or deep CNN layers can overcome the problem
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Other applications of Attention
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Teaching Machines to Read and Comprehend
Karl Moritz Hermann, Tomas KocCisky, Edward

Grefenstette, Lasse Espeholt, Will Kay, Mustafa

Suleyman, Phil Blunsom, arxiv, 2015

by ent423 ,ent261 correspondent updated 9:49 pmet ,thu
march 19,2015 (ent261) aent114 was killedina parachute
accidentinent45 ,ent85 ,nearent312 ,aent119 official told
ent261on wednesday .he was identified thursday as
special warfare operator 3rd c.of ent187 ,
ent265 . ent23 distinguished himself consistently
throughout his career .he was the epitome of the quiet
professionalinallfacets of his life ,and he leaves an

inspiring legacy of naturaltenacity and focused

by ent270 ,ent223 updated 9:35 amet ,monmarch2,2015

(en.n familial for fall at its fashion show in

ent231onsunday ,dedicating its collectionto ™~ mamma"

with nary a pair of " momjeans "insight .ent164 andent21,

who are behindthe ent196 brand,sent models down the
runway indecidedly feminine dresses and skirts adorned
with roses ,lace and even embroidered doodles by the
designers 'own nieces and nephews .many of the looks

featured saccharine needlework phrases like " ilove you,,

ent119 identifies deceased sailor as X ,who leaves behind

awife

X dedicated their fall fashion show to moms

Used RNN to read a
text, read a
(synthetically
generated) question,
and then produce an
answer.

By visualizing the
attention matrix we
can see where the
networks “looks” while
it tries to find the
answer to the
guestion


https://arxiv.org/find/cs/1/au:+Hermann_K/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Kocisky_T/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Grefenstette_E/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Espeholt_L/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Kay_W/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Suleyman_M/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Blunsom_P/0/1/0/all/0/1
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Show, Attend and Tell: Neural Image Caption Generation with
Visual Attention
Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville,
Ruslan Salakhutdinov, Richard Zemel, Yoshua Bengio

person(0.38)

Use a Convolutional Neural
Network to “encode” the
image, and a Recurrent
Neural Network with
attention mechanisms to
generate a description.

standing(0.28)

e

By visualizing the attention
weights, we interpret what
the model is looking at
while generating a word

surfboard(0.33)

with(0.30)

(b) A person is standing on a beach with a surfboard.


https://arxiv.org/find/cs/1/au:+Xu_K/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Ba_J/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Kiros_R/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Cho_K/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Courville_A/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Salakhutdinov_R/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Zemel_R/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Bengio_Y/0/1/0/all/0/1
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The counts In IBM Model 1

Works by maximizing P(f|e) over the entire corpus

For IBM Model 1, we get the following relationship:

tw’ |w°)

c(wf lwe; f,e)=
tw’ jwe)+Hl +t(w’ |[w)

.0

cw’ |w®; f ,e) is the fractional count of the alignment of w/
withw inf ande

t(w’ |w°) is the probability of w/ being the translation of w*
[ is the count of w”in f

[ 1s the count of win e
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A PAN Indian SMT Study

PAN Indian SMT
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Pan-Indian Language SMT

http://www.cfilt.iitb.ac.in/indic-translator

« SMT systems between 11 languages

— 7 Indo-Aryan: Hindi, Gujarati, Bengali, Oriya, Punjabi,
Marathi, Konkani

— 3 Dravidian languages: Malayalam, Tamil, Telugu
— English

e Corpus
— Indian Language Corpora Initiative (ILCI) Corpus
— Tourism and Health Domains
— 50,000 parallel sentences

« Evaluation with BLEU
— METEOR scores also show high correlation with BLEU
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SMT Systems Trained

* Phrase-based (PBSMT) baseline
system (S1)

 E-IL PBSMT with Source side
reordering rules (Ramanathan et al.,
2008) (S2)

 E-IL PBSMT with Source side
reordering rules (Patel et al., 2013) (S3)

* |[L-IL PBSMT with transliteration post-
editing (S4)
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Natural Partitioning of SMT systems

hi | ur | pa | bn | gu | mr [ KK | ta | te | ml | en
hi 61.28/68.2134.96]51.31]39.12|37.81|14.43|21.38|10.98
ur|6l.42 52.02(29.59(39.00127.57(28.29|11.95|16.61|8.65
pa|73.3156.00 29.89143.85|30.87|30.72|10.75|18.819.11
bn|(37.6932.0831.38 28.14122.09123.47/10.94|13.40|8.10
ogu (55.66144.1245.14/28.50 32.06(30.48/12.57(17.228.01
mr45.1132.6033.28123.73|32.42 27.81/10.74|12.89|7.65
kK|41.92|34.00|34.31|124.59|31.0727.52 10.36(14.80(7.89
ta |20.48|18.12|15.57|13.21{16.53|11.60|11.87 8.48 6.31 (11.79
te |28.88|25.07|25.56|16.57|20.96|14.94|17.27|8.68 6.68 (12.34
ml|(14.74/13.39(12.97/10.67/9.76 |8.39 |9.18 |5.90 |5.94 8.61

en |28.94122.96|22.33/15.33|15.44(12.11|13.66(6.43 [6.55 |4.65
Baseline PBSMT - % BLEU scores (S1)

« Clear partitioning of translation pairs by language family pairs, based on
translation accuracy.

— Shared characteristics within language families make translation simpler
— Divergences among language families make translation difficult



" The Challenge of Morphology

Morphological complexity vs Training Corpus size vs
BLEU BLEU

35

45 T T T T T T T T T T T T T T T -
— hi-bn
ohi -~ hi-ml
%’40_ 30 | === hi-en |]
§’ A ml-en
5 35 aur eha sl e 4—a mi-hi ||
g <+ < ml-te
é’ 30 qu . e e en-hi
B ° o 20} v-v en-ml|]
E o
v (v}
E » kK é
bn [] mr
v ° ° @ 15} I
g 20f | e
3 ech — o
o 10- e
o ft l c—mm T R
o o'® T O
é e - : <
® 10f ofd 1 st - < e v
om D . e B
38000 40000 50000 60000 70000 80000 90000 100000 110000 120000 00— 15 >0 5 30 35 20 a5 50
Vocabulary size (number of words) Number of sentences {in thousands)

Vocabulary size is a proxy for morphological complexity
*Note: For Tamil, a smaller corpus was used for computing vocab
size

« Translation accuracy decreases with increasing morphology

« Even if training corpus is increased, commensurate improvement in translation
accuracy is not seen for morphologically rich languages

« Handling morphology in SMT is critical
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Common Divergences, Shared Solutions

Svystem hi | ur | pa | bn | gu | mr | KK | ta | te | ml
Baseline PBSMT 28.94(22.96(22.33|15.33|15.44|112.11|13.66(6.43|6.55|4.65
Source Reordering (Generic) 31.41(24.85124.56|15.89|17.38|13.42/14.55(7.84(8.23|4.95
Source Reordering (Hindi-adapted)|33.54(26.67|26.23|17.86/19.06|14.15(15.56|7.96(3.37|5.30

Comparison of source reordering methods for E-IL SMT - % BLEU scores
(S1,S2,S3)

 All Indian languages have similar word order

« The same structural divergence between English and
Indian languages SOV<->SVO, etc.

« Common source side reordering rules improve E-IL
translation by 11.4% (generic) and 18.6% (Hindi-adapted)

« Common divergences can be handled in a common
framework in SMT systems ( This idea has been used
for knowledge based MT systems e.g. Anglabharati )
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Harnessing Shared
Characteristics

hi |ur ([ pa | bn | gu |mr | kKK | ta | te | ml
hi 61.28(64.85|35.49(52.98|39.12(37.81(14.52|21.68/11.07
ur|61.42 52.02|29.59|39.00{27.57|28.29(11.95|16.61|8.65
pa|74.14(56.00 30.05/44.39|31.46(30.99(10.77/18.96(9.12
bn|38.17(32.08|31.54 28.73(22.60(23.79(10.97\13.52|8.17
gu|57.2244.12|45.55|28.90 33.22(31.55|12.64{17.46|8.05
mr|45.11|32.60|30.9724.09|33.48 27.81(10.80{13.12(7.68
kK|[41.92|34.00(32.04(24.91|32.05(27.52 10.40/14.92(7.96
ta [20.54/18.12]15.57(13.25/16.57(11.64{11.94 8.57 (6.40
te |29.23(25.07|25.67(16.68|21.20/15.19|17.43/8.71 6.77
ml|14.81|13.39/12.98|10.73/9.84 |8.42 |9.25 |5.99 |6.02

PBSMT+ transliteration post-editing for E-IL SMT - % BLEU scores (S4)

« Out of Vocabulary words are transliterated in a post-editing step

- Done using a simple transliteration scheme which harnesses the common
phonetic organization of Indic scripts

« Accuracy Improvements of 0.5 BLEU points with this simple approach
« Harnessing common characteristics can improve SMT output
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Pubs: http://ww.cse.litb.ac.in/~pb

Resources and tools:
http://www.cfilt.iitb.ac.in



