
CS626: Speech, NLP and the

Web

RNN, Seq2seq, Data Driven Machine
Translation (SMT and NMT)

Pushpak Bhattacharyya

Computer Science and Engineering
Department

IIT Bombay

Week of 16th November, 2020

Vauquois Triangle

6 Jan, 2014isi: ml for mt:pushpak2

Kinds of MT Systems
(point of entry from source to the target text)

6 Jan, 2014isi: ml for mt:pushpak3

Pair of languages decides the level

of analysis: Syncretism in Bengali

languages
● Syncretism: overloading in the functionality of

morphemes

● Bengali has more syncretism than hindi

● It is more challenging to get morpheme

mapping

● Example

○ Baibe: will carry

○ will: Morpheme “be” in bengali

Full Ambiguity resolution is not

always needed: for translation

● Example: Semantic role ambiguity

○ Mujhe apko mithai khilani padegi

■ Ambiguous sentence

■ Semantic role ambiguity, who is the agent

and who the beneficiary

■ Who is giving the sweets to whom

● For translation to

○ English

■ Ambiguity resolution is necessary

○ Bengali/Marathi/Gujrati/Assamese

■ Ambiguity resolution is not necessary

Illustration of transfer SVOSOV

S

NP VP

VN NP

NJohn eats

bread

S

NP VP

VN

John eats

NP

N

bread

(transfer

svo sov)

6 Jan, 2014isi: ml for mt:pushpak6

Fundamental processes in Machine

Translation
● Analysis

○ Analysis of the source language to represent the

source language in more disambiguated form

■ Morphological segmentation, POS tagging,

chunking, parsing, discourse resolution, pragmatics

etc.

● Transfer

○ Representation transfer from one language to another

○ Example: SOV to SVO conversion

● Generation

○ Generate the final target sentence

○ Final output is text, intermediate representations can

include F-structures, C-structures, tagged text etc.

Issues to handle

Sentence: I went with my friend, John, to the bank to withdraw

some money but was disappointed to find it closed.

ISSUES Part Of Speech
Noun or Verb

6 Jan, 2014isi: ml for mt:pushpak8

Issues to handle

Sentence: I went with my friend, John, to the bank to withdraw

some money but was disappointed to find it closed.

ISSUES Part Of Speech

NER

John is the

name of a

PERSON

6 Jan, 2014isi: ml for mt:pushpak9

Issues to handle

Sentence: I went with my friend, John, to the bank to withdraw

some money but was disappointed to find it closed.

ISSUES Part Of Speech

NER

WSD Financial bank

or River bank

6 Jan, 2014isi: ml for mt:pushpak10

Issues to handle

Sentence: I went with my friend, John, to the bank to withdraw

some money but was disappointed to find it closed.

ISSUES Part Of Speech

NER

WSD

Co-reference

“it”  “bank” .

6 Jan, 2014isi: ml for mt:pushpak11

Issues to handle

Sentence: I went with my friend, John, to the bank to withdraw

some money but was disappointed to find it closed.

ISSUES Part Of Speech

NER

WSD

Co-reference

Subject Drop

Pro drop

(subject “I”)

6 Jan, 2014isi: ml for mt:pushpak12

System Architecture

Stanford

Dependency

Parser

XLE Parser

Feature

Generation

Attribute

Generation

Relation

Generation

Simple Sentence

Analyser

NER

Stanford Dependency Parser

WSD

Clause

Marker

Merger

Simple

Enco.

Simple

Enco.

Simple

Enco.

Simple

Enco.

Simple

Enco.

Simplifier

6 Jan, 2014isi: ml for mt:pushpak13

Target Sentence Generation from

interlingua

Lexical Transfer

Target Sentence

Generation

Syntax

Planning

Morphological

Synthesis

(Word/Phrase

Translation)
(Word form

Generation)
(Sequence)

6 Jan, 2014isi: ml for mt:pushpak14

Generation Architecture

Deconversion = Transfer + Generation

6 Jan, 2014isi: ml for mt:pushpak15

Statistical Machine Translation

6 Jan, 2014isi: ml for mt:pushpak16

Czeck-English data

• [nesu] “I carry”

• [ponese] “He will carry”

• [nese] “He carries”

• [nesou] “They carry”

• [yedu] “I drive”

• [plavou] “They swim”

6 Jan, 2014isi: ml for mt:pushpak17

To translate …

• I will carry.

• They drive.

• He swims.

• They will drive.

6 Jan, 2014isi: ml for mt:pushpak18

Hindi-English data

• [DhotA huM] “I carry”

• [DhoegA] “He will carry”

• [DhotA hAi] “He carries”

• [Dhote hAi] “They carry”

• [chalAtA huM] “I drive”

• [tErte hEM] “They swim”

6 Jan, 2014isi: ml for mt:pushpak19

Bangla-English data

• [bai] “I carry”

• [baibe] “He will carry”

• [bay] “He carries”

• [bay] “They carry”

• [chAlAi] “I drive”

• [sAMtrAy] “They swim”

6 Jan, 2014isi: ml for mt:pushpak20

To translate … (repeated)

• I will carry.

• They drive.

• He swims.

• They will drive.

6 Jan, 2014isi: ml for mt:pushpak21

Foundation

• Data driven approach
• Goal is to find out the English sentence e

given foreign language sentence f whose
p(e|f) is maximum.

• Translations are generated on the basis
of statistical model

• Parameters are estimated using bilingual
parallel corpora

6 Jan, 2014isi: ml for mt:pushpak22

SMT: Language Model

• To detect good English sentences

• Probability of an English sentence w1w2 …… wn can be
written as

Pr(w1w2 …… wn) = Pr(w1) * Pr(w2|w1) *. . . * Pr(wn|w1 w2 . . . wn-1)

• Here Pr(wn|w1 w2 . . . wn-1) is the probability that word wn

follows word string w1 w2 . . . wn-1.
– N-gram model probability

• Trigram model probability calculation

6 Jan, 2014isi: ml for mt:pushpak23

SMT: Translation Model

• P(f|e): Probability of some f given hypothesis English translation
e

• How to assign the values to p(e|f) ?

– Sentences are infinite, not possible to find pair(e,f) for all sentences

• Introduce a hidden variable a, that represents alignments
between the individual words in the sentence pair

Sentence level

Word level

6 Jan, 2014isi: ml for mt:pushpak24

Alignment

• If the string, e= e1
l= e1 e2 …el, has l words, and the

string, f= f1
m=f1f2...fm, has m words,

• then the alignment, a, can be represented by a

series, a1
m= a1a2...am , of m values, each between 0

and l such that if the word in position j of the f-string

is connected to the word in position i of the e-string,

then

– aj= i, and

– if it is not connected to any English word, then aj=

O

6 Jan, 2014isi: ml for mt:pushpak25

Example of alignment

English: Ram went to school

Hindi: raam paathashaalaa gayaa

Ram went to school

<Null> raam paathashaalaa gayaa

6 Jan, 2014isi: ml for mt:pushpak26

Translation Model: Exact expression

• Five models for estimating parameters in the expression [2]

• Model-1, Model-2, Model-3, Model-4, Model-5

Choose alignment
given e and m

Choose the identity
of foreign word
given e, m, a

Choose the length
of foreign language
string given e

6 Jan, 2014isi: ml for mt:pushpak27


a

eafef)|,Pr()|Pr(


m

emafeaf)|,,Pr()|,Pr(


m

emafememaf),|,Pr()|Pr()|,,Pr(


m

emafem),|,Pr()|Pr(

 



m

m

j

jj

jj emfaafem
1

1

1

1

1),,,|,Pr()|Pr(





m

j

jj

j

jj

j

m

emfafemfaaem
1

1

11

1

1

1

1),,,|Pr(),,,|Pr()|Pr(

)|,,Pr(emaf)|Pr(em 



m

j

jj

j

jj

j emfafemfaa
1

1

11

1

1

1

1),,,|Pr(),,,|Pr(

Proof of Translation Model: Exact

expression

m is fixed for a particular f, hence

; marginalization

; marginalization

6 Jan, 2014isi: ml for mt:pushpak28

Alignment

6 Jan, 2014isi: ml for mt:pushpak29

How to build part alignment from

whole alignment

● Two images are in alignment: images on

the two retina

● Need to find alignment of parts of it

Fundamental and ubiquitous

• Spell checking

• Translation

• Transliteration

• Speech to text

• Text to speeh

6 Jan, 2014isi: ml for mt:pushpak31

EM for word alignment from sentence

alignment: example

English

(1) three rabbits

a b

(2) rabbits of Grenoble

b c d

French

(1) trois lapins

w x

(2) lapins de Grenoble

x y z

6 Jan, 2014isi: ml for mt:pushpak32

Initial Probabilities:

each cell denotes t(a w), t(a x) etc.

a b c d

w 1/4 1/4 1/4 1/4

x 1/4 1/4 1/4 1/4

y 1/4 1/4 1/4 1/4

z 1/4 1/4 1/4 1/4

Example of expected count

C[wa; (a b)(w x)]

t(wa)

= ------------------------- X #(a in ‘a b’) X #(w in ‘w x’)

t(wa)+t(wb)

1/4

= ----------------- X 1 X 1= 1/2

1/4+1/4

6 Jan, 2014isi: ml for mt:pushpak34

“counts”

b c d



x y z

a b c d

w 0 0 0 0

x 0 1/3 1/3 1/3

y 0 1/3 1/3 1/3

z 0 1/3 1/3 1/3

a b



w x

a b c d

w 1/2 1/2 0 0

x 1/2 1/2 0 0

y 0 0 0 0

z 0 0 0 0

6 Jan, 2014isi: ml for mt:pushpak35

Revised probability: example

trevised(a w)

1/2

= ---

(1/2+1/2 +0+0)(a b)(w x) +(0+0+0+0)(b c d) (x y z)

6 Jan, 2014isi: ml for mt:pushpak36

Revised probabilities table

a b c d

w 1/2 1/2 0 0

x 1/4 5/12 1/6 1/6

y 0 1/3 1/3 1/3

z 0 1/3 1/3 1/3

“revised counts”

b c d



x y z

a b c d

w 0 0 0 0

x 0 5/9 1/3 1/3

y 0 2/9 1/3 1/3

z 0 2/9 1/3 1/3

a b



w x

a b c d

w 1/2 3/8 0 0

x 1/2 5/8 0 0

y 0 0 0 0

z 0 0 0 0

6 Jan, 2014isi: ml for mt:pushpak38

Re-Revised probabilities table

a b c d

w 1/2 1/2 0 0

x 3/16 85/144 1/9 1/9

y 0 1/3 1/3 1/3

z 0 1/3 1/3 1/3

Continue until convergence; notice that (b,x) binding gets progressively stronger;

b=rabbits, x=lapins

Derivation of EM based Alignment

Expressions

Hindi)(Say language ofy vocabular

English)(Say language ofry vocalbula

2

1

LV

LV

F

E





what is in a name ?

नाम में क्या है ?

naam meM kya hai ?

name in what is ?

That which we call rose, by any other name will smell as sweet.

जिसे हम गुलाब कहते हैं, और भी ककसी नाम से उसकी कुशबू समान मीठा होगी
Jise hum gulab kahte hai, aur bhi kisi naam se uski khushbu samaan mitha hogii

That which we rose say , any other name by its smell as sweet

That which we call rose, by any other name will smell as sweet.

E1

F1

E2

F2

6 Jan, 2014isi: ml for mt:pushpak40

Vocabulary mapping

Vocabulary

VE VF

what , is , in, a , name , that,

which, we , call ,rose, by,

any, other, will, smell, as,

sweet

naam, meM, kya, hai, jise,

ham, gulab, kahte, aur, bhi,

kisi, bhi, uski, khushbu,

saman, mitha, hogii

6 Jan, 2014isi: ml for mt:pushpak41

Key Notations

English vocabulary : 𝑉𝐸
French vocabulary : 𝑉𝐹
No. of observations / sentence pairs : 𝑆
Data 𝐷 which consists of 𝑆 observations looks like,

𝑒11, 𝑒
1
2, … , 𝑒1𝑙1֞𝑓11, 𝑓

1
2, … , 𝑓1𝑚1

𝑒21, 𝑒
2
2, … , 𝑒2𝑙2֞𝑓21, 𝑓

2
2, … , 𝑓2𝑚2

.....

𝑒𝑠1, 𝑒
𝑠
2, … , 𝑒𝑠𝑙𝑠֞𝑓𝑠1, 𝑓

𝑠
2, … , 𝑓𝑠𝑚𝑠

.....

𝑒𝑆1, 𝑒
𝑆
2, … , 𝑒𝑆𝑙𝑆֞𝑓𝑆1, 𝑓

𝑆
2, … , 𝑓𝑆𝑚𝑆

No. words on English side in 𝑠𝑡ℎ sentence : 𝑙𝑠

No. words on French side in 𝑠𝑡ℎ sentence : 𝑚𝑠

𝑖𝑛𝑑𝑒𝑥𝐸 𝑒𝑠𝑝 =Index of English word 𝑒𝑠𝑝in English vocabulary/dictionary

𝑖𝑛𝑑𝑒𝑥𝐹 𝑓𝑠𝑞 =Index of French word 𝑓𝑠𝑞in French vocabulary/dictionary

(Thanks to Sachin Pawar for helping with the maths formulae processing)

6 Jan, 2014isi: ml for mt:pushpak42

Hidden variables and parameters

Hidden Variables (Z) :

Total no. of hidden variables = σ𝑠=1
𝑆 𝑙𝑠 𝑚𝑠 where each hidden variable is

as follows:

𝑧𝑝𝑞
𝑠 = 1 , if in 𝑠𝑡ℎ sentence, 𝑝𝑡ℎ English word is mapped to 𝑞𝑡ℎ French

word.

𝑧𝑝𝑞
𝑠 = 0 , otherwise

Parameters (Θ) :

Total no. of parameters = 𝑉𝐸 × 𝑉𝐹 , where each parameter is as

follows:

𝑃𝑖,𝑗 = Probability that 𝑖𝑡ℎ word in English vocabulary is mapped to 𝑗𝑡ℎ word

in French vocabulary

6 Jan, 2014isi: ml for mt:pushpak43

Likelihoods
Data Likelihood L(D; Θ) :

Data Log-Likelihood LL(D; Θ) :

Expected value of Data Log-Likelihood E(LL(D; Θ)) :

6 Jan, 2014isi: ml for mt:pushpak44

Constraint and Lagrangian

෍

𝑗=1

𝑉𝐹

𝑃𝑖,𝑗 = 1 , ∀𝑖

6 Jan, 2014isi: ml for mt:pushpak45

Differentiating wrt Pij

6 Jan, 2014isi: ml for mt:pushpak46

Final E and M steps

M-step

E-step

6 Jan, 2014isi: ml for mt:pushpak47

Recurrent Neural Network

Acknowledgement:
1. http://www.wildml.com/2015/09/recurrent-neural-

networks-tutorial-part-1-introduction-to-rnns/

By Denny Britz

2. Introduction to RNN by Jeffrey Hinton

http://www.cs.toronto.edu/~hinton/csc2535/lectures.ht

ml

48

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://www.cs.toronto.edu/~hinton/csc2535/lectures.html

Sequence processing m/c

49

E.g. POS Tagging

50

Purchased Videocon machine

VBD NNP NN

I

h0 h1

o1 o2
o3 o4

c1

a11 a12 a13

a14

Decision on a piece of text

E.g. Sentiment Analysis
51

I

h0 h1

o1 o2
o3 o4

c2

a21
a22

a23

a24

like

h2

52

I

h0 h1

o1 o2
o3 o4

c3

a31 a32 a33

a34

like the

h3
h2

53

I

h0 h1

o1 o2
o3 o4

c4

a41

a42
a43

a44

like the

h3
h2

camera

h4

54

I

h0 h1

o1 o2
o3 o4

c5

a51

a52
a53

a54

like the

h3
h2

camer

a

<EOS

>

h4 h5

Positive

sentiment

55

Back to RNN model

56

Notation: input and state

• xt is the input at time step t. For example, could

be a one-hot vector corresponding to the second

word of a sentence.

• st is the hidden state at time step t. It is the

“memory” of the network.

• st= f(U.xt+Wst-1) U and W matrices are learnt

• f is a function of the input and the previous state

• Usually tanh or ReLU (approximated by softplus)

57

Tanh, ReLU (rectifier linear unit)

and Softplus

58

tanh

ee
ee

xx

xx








tanh

),0max()(xxf 

)1ln()(e
x

xg 

Notation: output

• ot is the output at step t

• For example, if we wanted to

predict the next word in a sentence

it would be a vector of probabilities

across our vocabulary

• ot=softmax(V.st)

59

Operation of RNN

• RNN shares the same parameters

(U, V, W) across all steps

• Only the input changes

• Sometimes the output at each time

step is not needed: e.g., in

sentiment analysis

• Main point: the hidden states !!

60

Illustration of operation

RNN Sequence Processing Example

H

Input Sequence: 1 0 0 0 1 0

O : y = x

S =

1/(1+e-x)

X

V=1

U=1

W=1
H

0.73

X = 1

0 0.73

T = 1

RNN Sequence Processing Example

Input Sequence: 1 0 0 0 1 0

H

0.67

X = 0

0.73
0.67

T = 2

H

0.73

X = 1

0

0.73

RNN Sequence Processing Example

Input Sequence: 1 0 0 0 1 0

H

0.66

X = 0

0.67
0.66

T = 3

H

0.67

X = 0

0

0.67

RNN Sequence Processing Example

Input Sequence: 1 0 0 0 1 0

H

0.65

X = 0

0.66
0.65

T = 4

H

0.66

X = 0

0
0.6

6

RNN Sequence Processing Example

Input Sequence: 1 0 0 0 1 0

H

0.83

X = 1

0.65
0.83

T = 5

H

0.65

X = 0

0
0.65

RNN Sequence Processing Example

Input Sequence: 1 0 0 0 1 0

H

0.69

X = 0

0.83
0.69

T = 6

H

0.83

X = 1

0
0.83

Final o/p seq: 0.73 0.67 0.66 0.65 0.83 0.69

XOR N/W acting on a bit-string: 2

bits at a time

XOR RNN unit

𝛳=-0.5

𝛳=1.5

𝛳=-1.5

INPUT-1 INPUT-2

W12 = -1
W22 = -1

W11 = 1

W21 = 1

W3 = 1
W4 = 1

W5 = 1W6 = 1

W7 = 1

O/P

XOR RNN unit (all feedback wt= 1);

values adjacent to connections are o/p coming from

the source neurons

𝛳= 0.5

𝛳=1.5

𝛳=-1.5

INPUT-1 INPUT-2

W12 = -1
W22 = -1

W11 = 1

W21 = 1

W3 = 1
W4 = 1

W5 = 1W6 = 1

W7 = 1

𝛳= 0.5

𝛳=1.5

𝛳=-1.5

[0 0]

0
0 0

0

1

0

0

0 0

O/P =0

INPUT-->

XOR RNN unit; (all feedback wt= 1);

values adjacent to connections are o/p

coming from the source neurons

𝛳= 0.5

𝛳=1.5

𝛳=-1.5

[0 1]

0 -1 0 -1

10

0

0

0 1

O/P =0

𝛳= 0.5

𝛳=1.5

𝛳=-1.5

[0 0]

0 0 0 0

10

0

0

0 0

O/P =0

INPUT-->

XOR RNN unit; (all feedback wt= 1);

values adjacent to connections are o/p coming from the

source neurons

𝛳= 0.5

𝛳=1.5

𝛳=-1.5

[1 0]

1 0 -1 0

1

0

0 1

O/P =1

𝛳= 0.5

𝛳=1.5

𝛳=-1.5

[0 1]

0 -1 0 -1

10

0

0

0 1

O/P =

1

INPUT-->

XOR RNN unit; (all feedback wt= 1);

values adjacent to connections are o/p coming

from the source neurons

𝛳= 0.5

𝛳=1.5

𝛳=-1.5

[1 1]

1 1 -1 -1

1

1

1 1

O/P =1

1

𝛳= 0.5

𝛳=1.5

𝛳=-1.5

[1 0]

1 0 -1 0

1

0

0 1

O/P = 1

1

INPUT-->

The equivalence between feedforward nets and recurrent

nets

w1 w4

w2 w3

w1 w2 W3 W4

time=0

time=2

time=1

time=3

Assume that there is a time

delay of 1 in using each

connection.

The recurrent net is just a

layered net that keeps

reusing the same weights.

w1 w2 W3 W4

w1 w2 W3 W4

74

BPTT- BP through time- Backpropagation

with weight constraints

• Linear constraints
between the weights.

• Compute the gradients as
usual

• Then modify the
gradients so that they
satisfy the constraints.

• So if the weights started
off satisfying the
constraints, they will
continue to satisfy them.

21
21

21

21

21

:

:

:

wandwfor
w

E

w

E
use

w

E
and

w

E
compute

wwneedwe

wwconstrainTo






















Example

16 Aug, 201775cs561:rnn:pushpak

Convolutional Neural Network
(CNN)

16 jun, 2017lgsoft:nlp:ending:pushpak76

CNN= feedforward + recurrent!

• Whatever we learnt so far in FF-BP is useful

to understand CNN

• So also is the case with RNN (and LSTM)

• Input divided into regions and fed forward

• Window slides over the input: input changes,

but ‘filter’ parameters remain same

• That is RNN

16 jun, 2017lgsoft:nlp:ending:pushpak77

Genesis: Neocognitron (Fukusima,

1980)

16 jun, 201778lgsoft:nlp:ending:pushpak

Convolution
16 jun, 2017lgsoft:nlp:ending:pushpak79

3

2

4

3

2

4

3 4

 Matrix on the left represents an

black and white image.

 Each entry corresponds to one

pixel, 0 for black and 1 for white

(typically it’s between 0 and 255

for grayscale images).

 The sliding window is called

a kernel, filter, or feature detector.

 Here we use a 3×3 filter, multiply

its values element-wise with the

original matrix, then sum them up.

 To get the full convolution we do

this for each element by sliding the

filter over the whole matrix.

1 0 1

0 1 0

1 0 1

kernel

CNN architecture

• Several layers of convolution with tanh or ReLU

applied to the results

• In a traditional feedforward neural network we

connect each input neuron to each output neuron in

the next layer. That’s also called a fully connected

layer, or affine layer.

• In CNNs we use convolutions over the input layer to

compute the output.

• This results in local connections, where each region

of the input is connected to a neuron in the output

16 jun, 2017lgsoft:nlp:ending:pushpak80

Learning in CNN

• Automatically learns the

values of its filters

• For example, in Image

Classification learn to
– detect edges from raw pixels in the first layer,

– then use the edges to detect simple shapes in the

second layer,

– and then use these shapes to deter higher-level

features, such as facial shapes in higher layers.

– The last layer is then a classifier that uses

these high-level features.

16 jun, 2017lgsoft:nlp:ending:pushpak81

What about NLP and CNN?

• Natural Match!

• NLP happens in

layers

16 jun, 2017lgsoft:nlp:ending:pushpak82

NLP: multilayered,

multidimensional

Morphology

POS tagging

Chunking

Parsing

Semantics

Discourse and Coreference

Increased

Complexity

Of

Processing

Algorithm

Problem

Language

Hindi

Marathi

English

French
Morph

Analysis

Part of Speech

Tagging

Parsing

Semantics

CRF

HMM

MEMM

NLP

Trinity

16 jun, 2017lgsoft:nlp:ending:pushpak83

NLP layers and CNN

• Morph layer 

• POS layer 

• Parse layer 

• Semantics layer

16 jun, 2017lgsoft:nlp:ending:pushpak84

16 jun, 201785lgsoft:nlp:ending:pushpak

16 jun, 2017lgsoft:nlp:ending:pushpak86

http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/

Pooling

• Gives invariance in translation,

rotation and scaling

• Important for image recognition

• Role in NLP?

16 jun, 2017lgsoft:nlp:ending:pushpak87

Input matrix for CNN: NLP
16 jun, 2017lgsoft:nlp:ending:pushpak88

“image” for NLP  word

vectors

in the rows

For a 10 word sentence using a

100-dimensional Embedding,

we would have a 10×100 matrix

as our input

3

2

4

3

2

4

3 4

16 jun, 2017lgsoft:nlp:ending:pushpak89

Credit: Denny Britz

CNN for NLP

CNN Hyper parameters

• Narrow width vs. wide width

• Stride size

• Pooling layers

• Channels

16 jun, 2017lgsoft:nlp:ending:pushpak90

Abhijit Mishra, Kuntal Dey and Pushpak Bhattacharyya, Learning Cognitive Features

from Gaze Data for Sentiment and Sarcasm Classification Using Convolutional Neural

Network, ACL 2017, Vancouver, Canada, July 30-August 4, 2017.

16 jun, 2017lgsoft:nlp:ending:pushpak91

https://www.cse.iitb.ac.in/~pb/papers/acl17-cogfeatures.pdf

Learning Cognitive Features from Gaze

Data for Sentiment and Sarcasm

Classification
• In complex classification tasks like

sentiment analysis and sarcasm

detection, even the extraction and

choice of features should be

delegated to the learning system

• CNN learns features from both gaze

and text and uses them to classify the

input text

16 jun, 2017lgsoft:nlp:ending:pushpak92

Backup Slides

Problem 1: Bit Reverse

Bit Reverse

● Problem definition:

○ Reverse the bit if the current i/p and previous o/p are

same.

● E.g.Input

sequence

1 1 0 0 1 0 0 0 1 1

Output

sequence

1 0 1 0 1 0 1 0 1 0

Prepare Data

Let

Sequence length

: 10

Dimension of each element of I/p sequence (X) : 1 bit

Dimension of each element of O/p sequence (O) :

1 bit

Network Architecture

Number of I/P neurons : 1

Number of O/P neurons : 1

Sequence length : 10

O
0

O
1

O
2

W WW

U U U

X
0

X
1

X
2

O
t

Ot

-1

U

X
t

O-

1
O1

0

W

U

X1

0

….

Implementation using Keras

1/8

1. Import necessary libraries
import numpy

Numpy for mathematical ops

import keras

Keras main library

from keras.models import Sequential # Model type

from keras.layers import SimpleRNN # Recurrent layer

dimInUnits = numInNeurons = 1

dimOutUnits = numOutNeurons = 1

numUnits = seqLen = 10

numInstances = 4

Implementation using Keras

2/8

2. Design network

model = Sequential() # Instantiate

sequential network

Add a single layer of RNN layer.

input_shape is required only for the first layer of the network.

return_sequences should be True, if we require o/p at each time step. It will be

False, if we require single o/p for the entire sequence.

model.add(SimpleRNN(numOutNeurons, input_shape=(seqLen, numInNeurons),

return_sequences=True, activation='sigmoid'))

If we need to add more layers we have to call model.add() again. Next time

input_shape() is not required.

Implementation using Keras

3/8

3. Compile the network
model.compile(optimizer='sgd', loss='mse')

Validate the network. If any issues (dimension mismatch etc.) are found, they

will be reported.

Optimization algorithm is stochastic gradient descent

Loss is mean squared error

At this point network is ready for training

Implementation using Keras

4/8

4. Print the the network summary
model.summary() # Print summary of the network

Layer (type) Output Shape Param #

===

simple_rnn_1 (SimpleRNN) (None, 10, 1) 3

===

Total params: 3.0

Trainable params: 3

Non-trainable params: 0.0

I/p to layer[0] weight

: 1

Layer[0] (t-1) to layer[0] (t)

weight : 1

I/p bias weight

: 1

Implementation using Keras

5/8

5. Load training data
X = np.loadtxt(open(‘x.txt’,’r’)) # load sequence i/p file

O = np.loadtxt(open(‘o.txt’,’r’)) # load sequence o/p file

6. Reshape data w.r.t. the network
X = X.reshape(numInstances, numUnits, dimInUnits)

Input file has ‘numInstances’, each instance has ‘numUnits’ and each unit has

dimension ‘dimInUnits’.

O = O.reshape(numInstances, numUnits, dimOutUnits)

Output file has ‘numInstances’, each instance has ‘numUnits’ and each unit has

dimension ‘dimOutUnits’.

Implementation using Keras

6/8

7. Train the network
model.fit(X, O, epochs=5) # Train the network for 5

epochs

Epoch 1/5

4/4 [==============================] - 0s - loss: 0.0987

Epoch 2/5

4/4 [==============================] - 0s - loss: 0.0987

Epoch 3/5

4/4 [==============================] - 0s - loss: 0.0986

Epoch 4/5

4/4 [==============================] - 0s - loss: 0.0986

Epoch 5/5

4/4 [==============================] - 0s - loss: 0.0985

Implementation using Keras

7/8

8. Print final weights
print (model.layers[0].get_weights()) # Print weights of first layer

[

array([[-0.4387919]], dtype=float32), # Input to layer[0]

array([[0.99820316]], dtype=float32), # layer[0](t-1) to layer[0](t)

array([-0.00290805], dtype=float32) # Input bias

]

Implementation using Keras

8/8

9. Evaluate the network

a. Prepare the test data

test = np.random.randint(2, size=10) # Sequence of 1 & 0 of len

10

a. Predict o/p
prediction = model.predict_classes(test) # predict o/p

sequence

a. Print test and its prediction

print (‘Input seq:’, test)

print (‘Output seq:’, prediction)

Input seq: 1 1 0 0 1 0 0 0 1 1

Output seq: 1 0 0 0 1 1 1 1 1 0

Import libraries

import numpy

import keras

from keras.models import Sequential

from keras.layers import SimpleRNN

dimInUnits = numInNeurons = 1

dimOutUnits = numOutNeurons = 1

numUnits = seqLen = 10

numInstances = 4

Design network

model = Sequential()

model.add(SimpleRNN(numOutNeurons, input_shape=(seqLen, numInNeurons), return_sequences=True, activation='sigmoid'))

model.compile(optimizer='sgd', loss='mse')

model.summary()

Prepare data

X = np.loadtxt(open(‘’,’r’))

O = np.loadtxt(open(‘’,’r’))

X = X.reshape(numInstances, numUnits, dimInUnits)

Y = Y.reshape(numInstances, numUnits, dimOutUnits)

Training

model.fit(X, O, epochs=5)

print (model.layers[0].get_weights())

Evaluation

test = np.random.randint(2, size=10)

prediction = model.predict_classes(test)

print (‘Input seq:’, test)

print (‘Output seq:’, prediction)

Implementation using Keras

Backpropagation through time

(BPTT algorithm)

• The forward pass at each time
step.

•

• The backward pass computes the
error derivatives at each time step.

• After the backward pass we add
together the derivatives at all the
different times for each weight.

16 Aug, 2017107cs561:rnn:pushpak

Binary addition using recurrent

network (Jeffrey Hinton’s lecture)
• Feed forward n/w

• But problem of variable

length input

00100110 10100110

11001100

hidden units

16 Aug, 2017108cs561:rnn:pushpak

The algorithm for binary addition

no carry

print 1

carry

print 1

no carry

print 0

carry

print 0

1

1

1

0

1

0

1

0

1

0

0

1

0

1

0

1

0

1

0

0

0

0

0

0

0

0
1

1

1

1

This is a finite state automaton. It decides what transition to make by looking at the next

column. It prints after making the transition. It moves from right to left over the two input

numbers.

1

1

16 Aug, 2017109cs561:rnn:pushpak

A recurrent net for binary addition

• Two input units and one output
unit.

• Given two input digits at each
time step.

• The desired output at each time
step is the output for the column
that was provided as input two
time steps ago.

– It takes one time step to
update the hidden units
based on the two input digits.

– It takes another time step for
the hidden units to cause the
output.

0 0 1 1 0 1 0 0

0 1 0 0 1 1 0 1

1 0 0 0 0 0 0 1

time

16 Aug, 2017110cs561:rnn:pushpak

The connectivity of the network

• The input units have
feed forward
connections

• Allow them to vote
for the next hidden
activity pattern.

3 fully interconnected hidden units

16 Aug, 2017111cs561:rnn:pushpak

What the network learns

• Learns four distinct patterns of activity for the
3 hidden units.

• Patterns correspond to the nodes in the finite
state automaton

• Nodes in FSM are like activity vectors

• The automaton is restricted to be in exactly
one state at each time

• The hidden units are restricted to have exactly
one vector of activity at each time.

16 Aug, 2017112cs561:rnn:pushpak

The backward pass is linear

• The backward pass, is

completely linear. If you

double the error derivatives at

the final layer, all the error

derivatives will double.

• The forward pass determines

the slope of the linear function

used for backpropagating

through each neuron.

16 Aug, 2017113cs561:rnn:pushpak

Recall: Backpropagation Rule

ijj

k

kkj ooow)1()(
layernext

 




)1()(jjjjj ooot 

iji jow 
• General weight updating rule:

• Where

for outermost layer

for hidden layers

16 Aug, 2017 114cs561:rnn:pushpak

The problem of exploding or

vanishing gradients (1/2)

– If the weights are small, the gradients shrink
exponentially

– If the weights are big the gradients grow
exponentially.

• Typical feed-forward neural nets can cope with
these exponential effects because they only
have a few hidden layers.

16 Aug, 2017115cs561:rnn:pushpak

The problem of exploding or

vanishing gradients (2/2)

• In an RNN trained on long sequences (e.g.
sentence with 20 words) the gradients can
easily explode or vanish.
– We can avoid this by initializing the weights very

carefully.

• Even with good initial weights, its very hard
to detect that the current target output
depends on an input from many time-steps
ago.
– So RNNs have difficulty dealing with long-range

dependencies.

16 Aug, 2017116cs561:rnn:pushpak

Vanishing/Exploding gradient:

solution

• LSTM

• Error becomes “trapped” in the

memory portion of the block

• This is referred to as an "error

carousel“

• Continuously feeds error back to each

of the gates until they become trained

to cut off the value

• (to be expanded)

16 Aug, 2017cs561:rnn:pushpak117

Attention: DL-POS
Acknowledgement: Anoop Kunchukuttan, IIT Bombay

16 jun, 2017118lgsoft:nlp:ending:pushpak

So far we are seen POS tagging as a sequence labelling task

For every element, predict the tag/label (using

function f)

I read the book

f f f f

PRP VB DT NN

● Length of output

sequence is same as

input sequence

● Prediction of tag at time

t can use only the words

seen till time t

16 jun, 2017119lgsoft:nlp:ending:pushpak

I read the book

PRP VB DT NN

F

We can also look at POS tagging as a sequence to sequence transformation

problem

Read the entire sequence and predict the output sequence (using

function F)
● Length of output

sequence need not be

the same as input

sequence

● Prediction at any time

step t has access to the

entire input

● A more general

framework than

sequence labelling

16 jun, 2017120lgsoft:nlp:ending:pushpak

Sequence to Sequence transformation is a more general framework than

sequence labelling

● Many other problems can be expressed as sequence to sequence

transformation

○ e.g. machine translation, summarization, question answering, dialog

● Adds more capabilities which can be useful for problems like MT:

○ many → many mappings: insertion/deletion to words, one-one

mappings

○ non-monotone mappings: reordering of words

● For POS tagging, these capabilites are not required

How does a sequence to sequence model work? Let’s see two paradigms

16 jun, 2017121lgsoft:nlp:ending:pushpak

Encode - Decode Paradigm

Use two RNN networks: the encoder and

the decoder

PR

P
DTVB

N

N

I read the book

s1 s1 s3s0

s4

h0 h1 h2
h3

(1) Encoder

processes one

sequences at a

time

(4) Decoder

generates one

element at a

time

(2) A representation

of the sentence is

generated

(3) This is used

to initialize the

decoder state

Encoding

Decodi

ng

<EO

S>

h4

(5)… continue till

end of sequence

tag is generated

16 jun, 2017122lgsoft:nlp:ending:pushpak

This approach reduces the entire sentence representation to a

single vector

Two problems with this design choice:

● This is not sufficient to represent to capture all the syntactic and

semantic complexities of a sentence

○ Solution: Use a richer representation for the sentences

● Problem of capturing long term dependencies: The decoder RNN will not

be able to able to make use of source sentence representation after a

few time steps

○ Solution: Make source sentence information when making the next

prediction

○ Even better, make RELEVANT source sentence information

available

These solutions motivate the next paradigm

16 jun, 2017123lgsoft:nlp:ending:pushpak

Encode - Attend - Decode Paradigm

I read the book

s1

s2

s3s0

s4

Annotation

vectors

Represent the source

sentence by the set of

output vectors from the

encoder

Each output vector at time t

is a contextual

representation of the input

at time t

Let’s call these encoder

output vectors annotation

vectors

16 jun, 2017124lgsoft:nlp:ending:pushpak

How should the decoder use the set of annotation vectors while predicting

the next character?

Key Insight:

(1)Not all annotation vectors are equally important for prediction of the next

element

(2)The annotation vector to use next depends on what has been generated so

far by the decoder

eg. To generate the 3rd POS tag, the 3rd annotation vector (hence 3rd word) is

most important

One way to achieve this:

Take a weighted average of the annotation vectors, with more weight to

annotation vectors which need more focus or attention

This averaged context vector is an input to the decoder

For generation of ith output character:

ci : context vector

aij : annotation weight for the jth annotation

vector

oj: j
th annotation vector

16 jun, 2017125lgsoft:nlp:ending:pushpak

PRP

h0 h1

o1 o2
o3 o4

c1

a11 a12 a13

a14

Let’s see an example of how the attention

mechanism works

16 jun, 2017126lgsoft:nlp:ending:pushpak

PRP

h0 h1

o1 o2
o3 o4

c2

a21
a22

a23

a24

VB

h2

16 jun, 2017127lgsoft:nlp:ending:pushpak

PRP

h0 h1

o1 o2
o3 o4

c3

a31 a32 a33

a34

VB DT

h3
h2

16 jun, 2017128lgsoft:nlp:ending:pushpak

PRP

h0 h1

o1 o2
o3 o4

c4

a41

a42
a43

a44

VB DT

h3
h2

NN

h4

16 jun, 2017129lgsoft:nlp:ending:pushpak

PRP

h0 h1

o1 o2
o3 o4

c5

a51

a52
a53

a54

VB DT

h3
h2

NN
<EOS

>

h4 h5

16 jun, 2017130lgsoft:nlp:ending:pushpak

But we do not know the attention weights?

How do we find them?

Let the training data help you decide!!

Idea: Pick the attention weights that maximize the POS

tagging accuracy

(more precisely, decrease training data loss)

Have an attention function that predicts the attention weights:

aij = A(oj,hi;o)

A could be implemented as a feedforward network which is a component of the

overall network

Then training the attention network with the rest of the network ensures that the

attention weights are learnt to minimize the translation loss

16 jun, 2017131lgsoft:nlp:ending:pushpak

OK, but do the attention weights actually show focus on

certain parts?

Here is an example of how attention weights represent a soft alignment for

machine translation

16 jun, 2017132lgsoft:nlp:ending:pushpak

Let’s go back to the encoder. What type of encoder cell should we use there?

● Basic RNN: models sequence history by maintaining state information

○ But, cannot model long range dependencies

● LSTM: can model history and is better at handling long range dependencies

The RNN units model only the sequence seen so far, cannot see the sequence

ahead

● Can use a bidirectional RNN/LSTM

● This is just 2 LSTM encoders run from opposite ends of the sequence and

resulting output vectors are composed

Both types of RNN units process the sequence sequentially, hence parallelism is

limited

Alternatively, we can use a CNN

● Can operate on a sequence in parallel

● However, cannot model entire sequence history

● Model only a short local context. This may be sufficient for some

applications or deep CNN layers can overcome the problem

16 jun, 2017133lgsoft:nlp:ending:pushpak

Other applications of Attention

16 jun, 2017lgsoft:nlp:ending:pushpak134

Teaching Machines to Read and Comprehend

Karl Moritz Hermann, Tomáš Kočiský, Edward

Grefenstette, Lasse Espeholt, Will Kay, Mustafa

Suleyman, Phil Blunsom, arxiv, 2015

16 jun, 2017lgsoft:nlp:ending:pushpak135

Used RNN to read a

text, read a

(synthetically

generated) question,

and then produce an

answer.

By visualizing the

attention matrix we

can see where the

networks “looks” while

it tries to find the

answer to the

question

https://arxiv.org/find/cs/1/au:+Hermann_K/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Kocisky_T/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Grefenstette_E/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Espeholt_L/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Kay_W/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Suleyman_M/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Blunsom_P/0/1/0/all/0/1

Show, Attend and Tell: Neural Image Caption Generation with

Visual Attention

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville,

Ruslan Salakhutdinov, Richard Zemel, Yoshua Bengio

16 jun, 2017lgsoft:nlp:ending:pushpak136

Use a Convolutional Neural

Network to “encode” the

image, and a Recurrent

Neural Network with

attention mechanisms to

generate a description.

By visualizing the attention

weights, we interpret what

the model is looking at

while generating a word

https://arxiv.org/find/cs/1/au:+Xu_K/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Ba_J/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Kiros_R/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Cho_K/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Courville_A/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Salakhutdinov_R/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Zemel_R/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Bengio_Y/0/1/0/all/0/1

The counts in IBM Model 1

Works by maximizing P(f|e) over the entire corpus

For IBM Model 1, we get the following relationship:

c (w f |w e ; f ,e) =
t (w f |w e)

t (w f |w
e

0) +… + t (w f |w
e
l)

.

c (w f |w e ; f ,e) is the fractional count of the alignment of w f

 with w e in f and e

t (w f |w e) is the probability of w f being the translation of w e

 is the count of w f in f

 is the count of w e in e

6 Jan, 2014isi: ml for mt:pushpak137

A PAN Indian SMT Study

PAN Indian SMT

6 Jan, 2014isi: ml for mt:pushpak138

Pan-Indian Language SMT
http://www.cfilt.iitb.ac.in/indic-translator

• SMT systems between 11 languages
– 7 Indo-Aryan: Hindi, Gujarati, Bengali, Oriya, Punjabi,

Marathi, Konkani

– 3 Dravidian languages: Malayalam, Tamil, Telugu

– English

• Corpus
– Indian Language Corpora Initiative (ILCI) Corpus

– Tourism and Health Domains

– 50,000 parallel sentences

• Evaluation with BLEU
– METEOR scores also show high correlation with BLEU

6 Jan, 2014isi: ml for mt:pushpak139

SMT Systems Trained

• Phrase-based (PBSMT) baseline
system (S1)

• E-IL PBSMT with Source side
reordering rules (Ramanathan et al.,
2008) (S2)

• E-IL PBSMT with Source side
reordering rules (Patel et al., 2013) (S3)

• IL-IL PBSMT with transliteration post-
editing (S4)

6 Jan, 2014isi: ml for mt:pushpak140

Natural Partitioning of SMT systems

• Clear partitioning of translation pairs by language family pairs, based on

translation accuracy.

– Shared characteristics within language families make translation simpler

– Divergences among language families make translation difficult

Baseline PBSMT - % BLEU scores (S1)

6 Jan, 2014isi: ml for mt:pushpak141

The Challenge of Morphology
Morphological complexity vs
BLEU

Training Corpus size vs
BLEU

Vocabulary size is a proxy for morphological complexity

*Note: For Tamil, a smaller corpus was used for computing vocab

size

• Translation accuracy decreases with increasing morphology

• Even if training corpus is increased, commensurate improvement in translation

accuracy is not seen for morphologically rich languages

• Handling morphology in SMT is critical

6 Jan, 2014isi: ml for mt:pushpak142

Common Divergences, Shared Solutions

• All Indian languages have similar word order

• The same structural divergence between English and
Indian languages SOV<->SVO, etc.

• Common source side reordering rules improve E-IL
translation by 11.4% (generic) and 18.6% (Hindi-adapted)

• Common divergences can be handled in a common
framework in SMT systems (This idea has been used
for knowledge based MT systems e.g. Anglabharati)

Comparison of source reordering methods for E-IL SMT - % BLEU scores

(S1,S2,S3)

6 Jan, 2014isi: ml for mt:pushpak143

Harnessing Shared

Characteristics

• Out of Vocabulary words are transliterated in a post-editing step

• Done using a simple transliteration scheme which harnesses the common
phonetic organization of Indic scripts

• Accuracy Improvements of 0.5 BLEU points with this simple approach

• Harnessing common characteristics can improve SMT output

PBSMT+ transliteration post-editing for E-IL SMT - % BLEU scores (S4)

6 Jan, 2014isi: ml for mt:pushpak144

Pubs: http://ww.cse.iitb.ac.in/~pb

Resources and tools:

http://www.cfilt.iitb.ac.in

6 Jan, 2014isi: ml for mt:pushpak145

