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Agenda

• Rule Based POS Tagging

• Statistical ML based POS Tagging 

(Hidden Markov Model, Support 

Vector Machine)

• Neural (Deep Learning) based POS 

Tagging



NLP: multilayered, 

multidimensional
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Multilayer neural net

• NLP pipeline  NN layers

• Discover bigger structures bottom up, 
starting from character?

• Words, POS, Parse, Sentence, 
Discourse?

Hidden layers

Input layer            

(n i/p neurons)

Output layer    

(m o/p neurons)
j

i

wji

….

….

….

….
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Subwords (for “jaauMgaa”, जाऊंगा)

• Characters: “j+aa+u+M+g+aa”

• Morphemes: “jaa”+”uMgaa”

• Syllables: “jaa”+”uM”+”gaa”

• Orthographic syllables: “jaau”+”Mgaa”

• BPE (depends on corpora, 

statistically frequent patterns): both 

“jaa” and “uMgaa” are likely



NLP Layer
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What a gripping movie was Three_Idiots!

What/WP a/DT gripping/JJ movie/NN was/VBD Three_Idiots/NNP !/!

Parse

(ROOT 

(FRAG 

(SBAR 

(WHNP 

(WP What)) 

(S 

(NP 

(DT a) 

(JJ gripping) 

(NN movie)

) 

(VP 

(VBD was) 

(NP 

(NNP Three_idiots))))) 

(. !)

)

) 

Universal dependencies

dobj(Three_Idiots-6, What-1) 

det(movie-4, a-2) 

amod(movie-4, gripping-3) 

nsubj(Dangal-6, movie-4) 

cop(Dangal-6, was-5) 

root(ROOT-0, Three_idiots-6)



Part of Speech Tagging

• Attach to each word a tag from 

Tag-Set

• Standard Tag-set : Penn Treebank 

(for English).
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POS ambiguity instances
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best ADJ ADV NP V 

better ADJ ADV V DET 

close ADV ADJ V N (running close to the 
competitor, close escape, close the door, 
towards the close of the play)

cut V N VN VD 

even ADV DET ADJ V 

grant NP N V –

hit V VD VN N 

lay ADJ V NP VD 

left VD ADJ N VN 

like CNJ V ADJ P –

near P ADV ADJ DET 

open ADJ V N ADV 

past N ADJ DET P 

present ADJ ADV V N 

read V VN VD NP 

right ADJ N DET ADV 

second NUM ADV DET N 

set VN V VD N –

that CNJ V WH DET



POS Ambiguity

• E.g. 

1. What a gripping movie was Abhiman!

2. He is gripping it firm.

Adjective

Verb



Linguistic fundamentals

• A word can have two roles
– Grammatical role (Dictionary POS tag)

– Functional role (Contextual POS tag)

– E.g. Golf stick

• POS tag of “Golf”
– Grammatical: Noun

– Functional: Adjective (+ al)



The “al” rule!

• If a word has different functional POS 

tag than its grammatical pos then add 

“al” to the functional POS tag

• E.g. Golf stick

Adjective + al

Adjectival

Noun + al = Nominal

Verb + al = Verbal

Adjective + al = Adjectival

Adverb + al = Adverbial



Dictionary meaning of “Golf”
noun
• a game in which clubs with wooden or metal heads are 

used to hit a small, white ball into a number of holes, 

usually 9 or 18, in succession, 

• situated at various distances over a course having 

natural or artificial obstacles, the object being to get the 

ball into each hole in as few strokes as possible.

• a word used in communications to represent the 

letter G.

Golf stick

verb
(used without object)  to play golf.

We golfed the whole day in the weekend



The “al” rule cntd.

• Examples:

– Nominal

• Many don’t 

understand the 

problem of hungry.

– Adverbial

• Come quick.

– Verbal ? 

adjective, hun·gri·er, hun·gri·est.

having a desire, craving, or need for food; 

feeling hunger. indicating, characteristic of, or 

characterized by hunger:

He approached the table with a hungry 

look.

strongly or eagerly desirous.

lacking needful or desirable elements; not 

fertile; poor:

hungry land.

marked by a scarcity of food:

The depression years were hungry 

times.

https://www.dictionary.com/browse/hunger


Learning POS Tags

• Question
– Is one instance of example enough for ML?

– E.g. common example of “people”

People   Noun

– But it can be verb as well

People  Verb (to populate)

• Answer
– We need at least as many instances as number 

of different labels #POS tags-1 to make decision.

POS Ambiguity



Disambiguation of POS tag

• If no ambiguity, learn a table of words 

and its corresponding tags.

• If ambiguity, then look for the 

contextual information i.e. look-back 

or look-ahead.



Data for “present”

He gifted me the/a/this/that 

present_NN.

They present_VB innovative ideas.

He was present_JJ in the class.



Rules for disambiguating “present”

• For Present_NN (look-back)

– If present is preceded by determiner (the/a) or 

demonstrative (this/that), then POS tag will be 

noun.

• Does this rule guarantee 100% precision 

and 100% recall?
– False positive:

• The present_ADJ case is not convincing.

– False negative:

• Present foretells the future.

Adjective preceded by “the”

Noun but not preceded by “the”



Rules for disambiguating “present”

• For Present_NN (look-back and look ahead)

– If present is preceded by determiner (the/a) or 

demonstrative (this/that) or followed by a verb, 

then POS tag will be noun.

– E.g. 

• Present_NN will tell the future.

• Present_NN fortells the future.

• Does this rule guarantee 100% precision 

and 100% recall?



Need for ML in POS tagging

• Rules are challenged by new data

• Need a robust system.

• Machine learning based POS tagging: 
– HMM (Accuracy increased by 10-20% against 

rule based systems) 

– Jelinek’s work inspired from ASR



Noisy Channel Model

W T

(wn, wn-1, … , w1) (tm, tm-1, … , t1)

Noisy Channel

Sequence W is transformed into 

sequence T

T*=argmax(P(T|W))

T

W*=argmax(P(W|T))

W21



Mathematics of POS tagging
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Argmax computation (1/2)

Best tag sequence

= T*

= argmax P(T|W)

= argmax P(T)P(W|T) (by Baye’s Theorem)

P(T) = P(t0=^ t1t2 … tn+1=.)

= P(t0)P(t1|t0)P(t2|t1t0)P(t3|t2t1t0) …

P(tn|tn-1tn-2…t0)P(tn+1|tntn-1…t0)

= P(t0)P(t1|t0)P(t2|t1) … P(tn|tn-1)P(tn+1|tn)

=    P(ti|ti-1) Bigram Assumption∏
N+1

i = 0
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Argmax computation (2/2)

P(W|T) = P(w0|t0-tn+1)P(w1|w0t0-tn+1)P(w2|w1w0t0-tn+1) …

P(wn|w0-wn-1t0-tn+1)P(wn+1|w0-wnt0-tn+1)

Assumption: A word is determined completely by its tag. This is inspired by 
speech recognition

= P(wo|to)P(w1|t1) … P(wn+1|tn+1)

=    P(wi|ti)

=    P(wi|ti) (Lexical Probability Assumption)

∏
n+1

i = 0

∏
n+1

i = 1
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Generative Model

^_^ People_N Jump_V High_R ._.

^ N

V

V

N

A

N

.

Lexical 

Probabilities

Bigram

Probabilities

This model is called Generative model. 

Here words are observed from tags as states.

This is similar to HMM.
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Typical POS tag steps

• Implementation of Viterbi – Unigram, 

Bigram.

• Five Fold Evaluation. 

• Per POS Accuracy.

• Confusion Matrix.
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Screen shot of typical Confusion 

Matrix
AJ0

AJ0-

AV0
AJ0-

NN1

AJ0-

VVD

AJ0-

VVG

AJ0-

VVN AJC AJS AT0 AV0

AV0-

AJ0 AVP

AJ0 2899 20 32 1 3 3 0 0 18 35 27 1

AJ0-

AV0 31 18 2 0 0 0 0 0 0 1 15 0

AJ0-

NN1 161 0 116 0 0 0 0 0 0 0 1 0

AJ0-

VVD 7 0 0 0 0 0 0 0 0 0 0 0

AJ0-

VVG 8 0 0 0 2 0 0 0 1 0 0 0

AJ0-

VVN 8 0 0 3 0 2 0 0 1 0 0 0

AJC 2 0 0 0 0 0 69 0 0 11 0 0

AJS 6 0 0 0 0 0 0 38 0 2 0 0

AT0 192 0 0 0 0 0 0 0 7000 13 0 0

AV0 120 8 2 0 0 0 15 2 24 2444 29 11

AV0-

AJ0 10 7 0 0 0 0 0 0 0 16 33 0

AVP 24 0 0 0 0 0 0 0 1 11 0 737
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Computation of POS tags

DECODING
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W: ^ Brown foxes jumped over the fence .

T: ^ JJ NNS VBD NN DT NN .

NN VBS JJ IN VB

JJ

RB

NN

JJ

Brown

^

^

NNS

VBS

NNS

VBS

foxes

VBD

JJ

jumped

DT

DT

DT

DT

the

NN

VB

fence

.

.

.

NN

IN

JJ

RB

over



NN

JJ

Brown

^

^

NNS

VBS

NNS

VBS

foxes

VBD

JJ

jumped

DT

DT

DT

DT

the

NN

VB

fence

.

.

.

NN

IN

JJ

RB

over

Probability of a path (e.g. Top most path) = P(T) * P(W|T)

P(^) . P(NN|^) . P(NNS|NN) . P(VBD|NNS) . P(NN|VBD) . 

P(DT|NN) . P(NN|DT) . P(.|NN) . P(.) 

*

P(^|^) . P(brown|NN) . P(foxes|NNS) . P(jumped|VBD) . 

P(over|NN) . P(the|DT) . P(fence|NN) . P(.|.)



Questions?

• Where do tags come from?
– Tag set

• How to get probability values i.e. P(.)?
– Annotated corpora

After modeling of the problem, 

emphasis should be on the corpus



Computing P(.) values

Let us suppose annotated corpus has the following 

sentence
I have a brown bag .

PRN VB DT JJ NN .

appearedJJtimesofNumber

NNbyfollowedJJtimesofNumber
JJNNP

____

______
)|( 

appearedJJtimesofNumber

JJastaggedBrowntimesofNumber
JJBrownP

____

______
)|( 



Why Ratios?

• This way of computing parameter 

probabilities: is this correct?

• What does “correct” mean?

• Is this principled?

• We are using Maximum Likelihood 

Estimate (MLE)

• Assumption: underlying distribution is 

multinomial 



Explanation with coin tossing

• A coin is tossed 100 times, Head 

appears 40 times

• P(H)= 0.4

• Why?

• Because of maximum likelihood



N tosses, K Heads, parameter P(H)=p

• Construct Maximum Likelihood Expression

• Take log likelihood and take derivative

• Equate to 0 and Get p

N

K
pgives

dp

LLd

p

KN

p

K

dp

LLd

pKNpKLLL

ppL KNK










 

0
)(

1

)(

)1log()(log)log(

)1(



Exercise
• Following the process for finding the 

probability of Head from N tosses of coin 

yielding K Heads, prove that the 

transition probabilities can be found from 

MLE

• Most important: get the likelihood 

expression

• Use chapter 2 of the book
– Pushpak Bhattacharyya: Machine translation, 

CRC Press, Taylor & Francis Group, Boca Raton, 

USA, 2015, ISBN: 978-1-4398-9718-8



Next question?

• How to decode efficiently?

• E.g. 
– T:  Tags

– W: Words

– Two special symbol: ‘^’ and ‘.’

Find out number of paths in the tree given word 

sequence.

Number of path = Number of leaves in the tree.

)( nTO

Exponential w.r.t. number of words

How to avoid it?



We do not need exponential work!

• Suppose our tags are
– DT, NN, VB, JJ, RB and OT

• E.g. 
^ The black dog barks .

^ DT DT DT DT .

NN NN NN NN

VB VB VB VB

JJ JJ JJ JJ

RB RB RB RB

OT OT OT OT

Possible tags

So, 64 possible path

DT- determiner

NN- Noun

VB- Verb

JJ- Adjective

RB- Adverb

OT- others 



^

DT NN VB JJ RB OT

DT NN VB JJ RB OT

The: 61

black: 62

dog: 63

barks: 64

.: 64

Total 64 paths



• Now consider the paths that end in 

NN after seeing input “The black”
^ The black

^ DT NN P(T).P(W|T) = P(DT|^) . P(NN|DT) . P(The|DT) . 

P(Black|NN) 

^ NN NN P(T).P(W|T) = P(NN|^) . P(NN|NN) . P(The|NN) . 

P(Black|NN) 

^ VB NN P(T).P(W|T) = P(VB|^) . P(NN|VB) . P(The|VB) . 

P(Black|NN) 

^ JJ NN P(T).P(W|T) = P(JJ|^) . P(NN|JJ) . P(The|JJ) . 

P(Black|NN) 

^ RB NN P(T).P(W|T) = P(RB|^) . P(NN|RB) . P(The|RB) . 

P(Black|NN) 

^ OT NN P(T).P(W|T) = P(OT|^) . P(NN|OT) . P(The|OT) . 

P(Black|NN) 

For each tag, only path with highest probability

value are retained, others are simply discarded. 
TWComplexity n *



Machine Translation v/s POS 

tagging!

• Similarity
– POS

• Every word in a sentence has one corresponding tag.

– MT
• Every word in a sentence has one (or more) 

corresponding translated word.

• Difference
– Order: Order of translated word may change.

– Fertility: One word corresponds to many. Many to 
one also possible.



Complexity

• POS and HMM
– Linear time complexity

• MT and Bean search
– Exponential time complexity

– Permutation of words produces exponential 
searc space 

– However, for related languages, MT is like 
POS tagging



Properties of related languages

1. Order preserving

2. Fertility ~ 1

3. Morphology preserving
Hindi Jaaunga

Bengali Jaabo

English Will go

Hindi & Bengali

Hindi & English



Properties of related languages

4. Syncretism: Suffix features should be similarly 

loaded

5. Idiomaticity: Literal translation should be high

Hindi Aap Kaise Ho?

Bengali Aapni Kemon Achen?

English How do you do?

Hindi & Bengali

Hindi & English

Hindi Main jaaunga Hum jaayenge

Bengali Ami jaabo Aamra jaabo

Hindi & 

Bengali



HMM

Algorithm

Problem

Language

Hindi

Marathi

English

French
Morph

Analysis

Part of Speech

Tagging

Parsing

Semantics

CRF

HMM

MEMM

NLP

Trinity
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A Motivating Example

Urn 1

# of Red = 30

# of Green = 50 

# of Blue = 20 

Urn 3

# of Red =60

# of Green =10  

# of Blue =  30

Urn 2

# of Red = 10

# of Green = 40 

# of Blue = 50

Colored Ball choosing
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Example (contd.)

U1 U2 U3

U1 0.1 0.4 0.5

U2 0.6 0.2 0.2

U3 0.3 0.4 0.3

Given :

Observation : RRGGBRGR

State Sequence : ??

Not so Easily Computable.

and

R G B

U1 0.3 0.5 0.2

U2 0.1 0.4 0.5

U3 0.6 0.1 0.3
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Emission probability tableTransition probability table



Diagrammatic representation (1/2)

U1

U2

U3

0.1

0.2

0.4

0.6

0.4

0.5

0.3

0.2

0.3

R, 0.6

G, 0.1

B, 0.3

R, 0.1

B, 0.5

G, 0.4

B, 0.2

R, 0.3 G, 0.5
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Diagrammatic representation (2/2)

U1

U2

U3

R,0.02

G,0.08

B,0.10

R,0.24

G,0.04

B,0.12

R,0.06

G,0.24

B,0.30
R, 0.08

G, 0.20

B, 0.12

R,0.15

G,0.25

B,0.10

R,0.18

G,0.03

B,0.09

R,0.18

G,0.03

B,0.09

R,0.02

G,0.0

8

B,0.10

R,0.03

G,0.05

B,0.02
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Classic problems with respect to 

HMM

1.Given the observation sequence, find the 

possible state sequences- Viterbi

2.Given the observation sequence, find its 

probability- forward/backward algorithm

3.Given the observation sequence find the 

HMM prameters.- Baum-Welch algorithm
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Illustration of Viterbi

● The “start” and “end” are important in a 

sequence.

● Subtrees get eliminated due to the Markov 

Assumption.

POS Tagset

● N(noun), V(verb), O(other)    [simplified]

● ^ (start), . (end)           [start & end states] 



Illustration of Viterbi

Lexicon

people: N, V

laugh: N, V

.

.

.

Corpora for Training

^ w11_t11 w12_t12 w13_t13 ……………….w1k_1_t1k_1 .

^ w21_t21 w22_t22 w23_t23 ……………….w2k_2_t2k_2 .

.

.

^ wn1_tn1 wn2_tn2 wn3_tn3 ……………….wnk_n_tnk_n .



Inference

^

NN

NV

.

^ N V O .

^ 0 0.6 0.2 0.2 0

N 0 0.1 0.4 0.3 0.2

V 0 0.3 0.1 0.3 0.3

O 0 0.3 0.2 0.3 0.2

. 1 0 0 0 0

This 

transition 

table will 

change from 

language to 

language 

due to 

language 

divergences.

Partial sequence graph



Lexical Probability Table

Size of this table = # pos tags in tagset X vocabulary size

vocabulary size = # unique words in corpus

Є people laugh ... …

^ 1 0 0 ... 0

N 0 1x10-3 1x10-5 ... ...

V 0 1x10-6 1x10-3 ... ...

O 0 0 0 ... ...

. 1 0 0 0 0



Inference

New Sentence:  

^                people        laugh    .

p( ^ N N . | ^ people laugh .)

= (0.6 x 0.1) x (0.1 x 1 x 10-3) x (0.2 x 1 x 10-5)

^

NN

NV

.

Є

Є



Computational Complexity

● If we have to get the probability of each 

sequence and then find maximum among 

them, we would run into exponential number 

of computations.

● If |s| = #states (tags + ^ + . )

and |o| = length of sentence ( words + ^ + . )

Then, #sequences = s|o|-2

● But, a large number of partial computations 

can be reused using Dynamic Programming.



Dynamic Programming

^

N V O

.3O2V1N .OVN5
.OVN4

.OVN .OVN

Є

people

laugh

0.6 x 1.0 = 

0.6
0.

2

0.2

0.6 x 0.1 x 

10-3 = 6 x 

10-5

1 0.6 x 0.4 x 

10-3 = 2.4 x 

10-4

2   0.6 x 0.3 x 

10-3 = 1.8 x 

10-4

3   0.6 x 0.2 x 

10-3 = 1.2 x 

10-4

No need to expand N4

and N5 because they 

will never be a part of 

the winning sequence.



Computational Complexity

● Retain only those N / V / O nodes which ends 

in the highest sequence probability.

● Now, complexity reduces from |s||o| to 

|s|.|o|

● Here, we followed the Markov assumption of 

order 1.



Points to ponder wrt HMM and 

Viterbi
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Viterbi Algorithm

• Start with the start state.

• Keep advancing sequences that are 

“maximum” amongst all those ending 

in the same state
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Viterbi Algorithm

^

N V O

N V O N V O N V O

(0.6) (0.2) (0.2)

(0.06*10^-3) (0.24*10^-3)

(0.18*10^-3)

(0.06*10^-6)

(0.02*10^-6)

(0.06*10^-6)

(0) (0) (0)

Claim: We do not need to draw all the subtrees in the algorithm

Tree for the sentence:  “^ People laugh .”  

Ԑ

People
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Viterbi phenomenon (Markov process)

N1 N2

N V O N V O

(6*10^-5) (6*10^-8)

LAUGH

Next step all the probabilities will be multiplied by identical probability 

(lexical and transition). So  children of N2 will have probability less than 

the children of N1.
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What does P(A|B) mean?

• P(A|B)= P(B|A)
If P(A)=P(B)

• P(A|B) means??
– Causality?? B causes A??

– Sequentiality?? A follows B?
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Back to the Urn Example

• Here : 

– S = {U1, U2, U3}

– V = { R,G,B}

• For observation:

– O ={o1… on}

• And State sequence

– Q  ={q1… qn}

• π is 

U1 U2 U3

U1 0.1 0.4 0.5

U2 0.6 0.2 0.2

U3 0.3 0.4 0.3

R G B

U1 0.3 0.5 0.2

U2 0.1 0.4 0.5

U3 0.6 0.1 0.3

A =

B=

)( 1 ii UqP 

64



Observations and states

O1 O2 O3 O4 O5 O6 O7 O8

OBS: R R G  G B  R   G  

R

State: S1 S2 S3 S4 S5 S6 S7 S8

Si = U1/U2/U3; A particular state

S: State sequence

O: Observation sequence

S* = “best” possible state (urn) sequence

Goal: Maximize P(S*|O) by choosing “best” S
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Goal

• Maximize P(S|O) where S is the State 

Sequence and O is the Observation  

Sequence

))|((maxarg* OSPS S
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False Start

),|()...,|().,|().|()|(

)|()|(

718213121

8181

OSSPOSSPOSSPOSPOSP

OSPOSP









By Markov Assumption (a state 

depends only on the previous state) 

),|()...,|().,|().|()|( 7823121 OSSPOSSPOSSPOSPOSP 

O1 O2 O3 O4 O5 O6 O7 O8

OBS: R R G  G B  R   G  R

State:     S1 S2 S3 S4 S5 S6 S7 S8
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Baye’s Theorem

)(/)|().()|( BPABPAPBAP 

P(A) -: Prior

P(B|A) -: Likelihood

)|().(maxarg)|(maxarg SOPSPOSP SS 
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State Transitions Probability

)|()...|().|().|().()(

)()(

718314213121

81









SSPSSPSSPSSPSPSP

SPSP

By Markov Assumption (k=1)

)|()...|().|().|().()( 783423121 SSPSSPSSPSSPSPSP 
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Observation Sequence probability

),|()...,|().,|().|()|( 81718812138112811  SOOPSOOPSOOPSOPSOP

Assumption that ball drawn depends only 

on the Urn chosen

)|()...|().|().|()|( 88332211 SOPSOPSOPSOPSOP 

)|()...|().|().|(

).|()...|().|().|().()|(

)|().()|(

88332211

783423121

SOPSOPSOPSOP

SSPSSPSSPSSPSPOSP

SOPSPOSP
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Grouping terms

P(S).P(O|S)

= [P(O0|S0).P(S1|S0)].

[P(O1|S1). P(S2|S1)].

[P(O2|S2). P(S3|S2)]. 

[P(O3|S3).P(S4|S3)]. 

[P(O4|S4).P(S5|S4)]. 

[P(O5|S5).P(S6|S5)]. 

[P(O6|S6).P(S7|S6)]. 

[P(O7|S7).P(S8|S7)].

[P(O8|S8).P(S9|S8)].

We introduce the states

S0 and S9 as initial 

and final states 

respectively.

After S8 the next state is 

S9 with probability 1, 

i.e., P(S9|S8)=1

O0 is ε-transition

O0 O1 O2 O3 O4 O5 O6 O7 O8

Obs: ε R R G  G B  R   G  R

State: S0 S1 S2 S3 S4 S5 S6 S7 S8 S9
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Introducing useful notation

S0 S1

S8

S7

S9

S2
S3

S4 S5 S6

O0 O1 O2 O3 O4 O5 O6 O7 O8

Obs: ε R R G  G B  R   G  R

State: S0 S1 S2 S3 S4 S5 S6 S7 S8 S9

ε RR
G G B R

G

R

P(Ok|Sk).P(Sk+1|Sk)=P(SkSk+1)
Ok
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Probabilistic FSM

(a1:0.3)

(a2:0.4)

(a1:0.2)

(a2:0.3)

(a1:0.1)

(a2:0.2)

(a1:0.3)

(a2:0.2)

The question here is:
“what is the most likely state sequence given the output sequence
seen”

S1 S2

week-of-17aug20cs626-pos:pushpak73



Developing the tree

Start

S1 S2

S1 S2 S1 S2

S1 S2 S1 S2

1.0 0.0

0.1 0.3 0.2 0.3

1*0.1=0.1 0.3 0.0 0.0

0.1*0.2=0.02 0.1*0.4=0.04 0.3*0.3=0.09 0.3*0.2=0.06

. .

. .

€

a1

a2

Choose  the  winning 
sequence per state
per iteration

0.2 0.4 0.3 0.2
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Tree structure contd…

S1 S2

S1 S2 S1 S2

0.1 0.3 0.2 0.3

0.027 0.012
..

0.09 0.06

0.09*0.1=0.009 0.018

S1

0.3

0.0081

S2

0.2

0.0054

S2

0.4

0.0048

S1

0.2

0.0024

.

a1

a2

The problem being addressed by this tree is )|(maxarg* ,2121 aaaaSPS
s



a1-a2-a1-a2 is the output sequence and μ the model or the machine 
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Path found: 

(working backward)

S1 S2 S1 S2 S1

a2a1a1 a2

Problem statement: Find the best possible sequence 

),|(maxarg* OSPS
s



Machineor  Model Seq,Output  Seq, State,  OSwhere

},,,{Machineor  Model 0 TASS

Start symbol State collection Alphabet 
set

Transitions

T is defined as kjij
k

i SaSP ,,      )( 
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Tabular representation of the tree

€ a1 a2 a1 a2

S1
1.0 (1.0*0.1,0.0*0.2)

=(0.1,0.0)

(0.02, 

0.09)

(0.009, 0.012) (0.0024, 

0.0081)

S2
0.0 (1.0*0.3,0.0*0.3)

=(0.3,0.0)

(0.04,0.06

)

(0.027,0.018) (0.0048,0.005

4)

Ending state

Latest symbol 
observed

Note: Every cell records the winning probability ending in that state

Final winner

The bold faced values in each cell shows the sequence probability ending in that 

state. Going backward from final winner sequence which ends in state S2 (indicated 

By the 2nd tuple), we recover the sequence.

week-of-17aug20cs626-pos:pushpak77



Algorithm
(following James Alan, Natural Language Understanding 

(2nd edition), Benjamin Cummins (pub.), 1995

Given: 

1. The HMM, which means:

a. Start State: S1

b. Alphabet: A = {a1, a2, … ap}

c. Set of States: S = {S1, S2, … Sn}

d. Transition probability

which is equal to 

2. The output string a1a2…aT

To find: 

The most likely sequence of states C1C2…CT which produces the 

given output sequence, i.e., C1C2…CT = 

kjij
k

i SaSP ,,      )( 

)|,( ikj SaSP

],,...,|([maxarg 21 T

C

aaaCP
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1. Initialization

SEQSCORE(1,1)=1.0

BACKPTR(1,1)=0

For(i=2 to N) do

SEQSCORE(i,1)=0.0

[expressing the fact that first state is S1]

2. Iteration

For(t=2 to T) do

For(i=1 to N) do

SEQSCORE(i,t) = Max(j=1,N)

BACKPTR(I,t) = index j that gives the MAX above

)](*))1(,([ SiaSjPtjSEQSCORE k
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3. Seq. Identification

C(T) = i that maximizes SEQSCORE(i,T)

For i from (T-1) to 1 do

C(i) = BACKPTR[C(i+1),(i+1)]

Optimizations possible:
1. BACKPTR can be 1*T

2. SEQSCORE can be T*2

Homework:- Compare this with A*, Beam Search [Homework]
Reason for this comparison: 

Both of them work for finding and recovering sequence
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Reading List

• https://www.nltk.org/book/ch05.html

• TnT (http://www.aclweb.org/anthology-new/A/A00/A00-

1031.pdf)

• Hindi POS Tagger built by IIT 

Bombay (http://www.cse.iitb.ac.in/pb/papers/ACL-2006-

Hindi-POS-Tagging.pdf)
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Assignment Discussion



Build a POS Tagger (due date: 5th

September, 2020)

• Using
– HMM

– SVM

– Bi-LSTM

• Training corpora (Brown Copus)
– http://www.nltk.org/nltk_data/

http://www.nltk.org/nltk_data/


Project Discussion



Different Areas of NLP



Questions from Mohith
1. You mentioned about "ellipsis" during the lecture. In NLP, 

does "ellipsis" refer to the computational problem that arises 

due to

skipping a few words in a sentence, or the whole act of 

skipping words is itself termed as ellipsis?

- Ans: whole act; “where do you live?”- “Delhi” and “your 

friend?ellipsis”- “Mumbai”

2. You mentioned about shallow/deep parsing. Was this in the 

context of dependency/constituency parsing? That is, can I say 

that dependency parser does shallow parsing and 

constituency parser does deep parsing, or some other similar 

relations exist between them?

• - both constituency and dependency are “deep” parsing 

tasks; pos tagging, chunking [(the_DT blue_JJ sky_NN)chunk

was (vast_JJ and_CONJ deep_JJ)chunk]



Questions from Mohith

3. In the Learning POS Tags slide, it is mentioned, "We need 

at least as many instances as number of different labels 

#POS tags-1 to make decision". That means, corresponding 

to every tag(except one) we are giving one example to the 

learning algorithm. If the algorithm encounters a previously 

unseen example, give it the last tag. I just wanted to know if 

my understanding is correct here.

-Ans: Correct; give the remaining tag if none of the tags from 

the training data is applicable



Mohith

Besides my doubts, I have also solved the first homework 

question that you had provided in the class. Could you please 

let me know if my answers are correct?

• Question 1: Example of Verbal, Answer: "Could you please 

google this topic?". Here "google" is a noun, but in this 

context it is being used as a verb. Therefore "google" would 

be tagged as a "Verbal“

-Ans: No, dictionary definition of “google” includes verb also

I haven't got an example for the second question of finding 

false positive/negative for rules of "present"

-Ans: The rule is “If present is preceded by determiner 

(the/a) or demonstrative (this/that) or followed by a verb, 

then POS tag will be noun.” Still fails for “The present 

situation is comfortable”


