
CS626: Speech, NLP and the

Web

POS Tagging

Pushpak Bhattacharyya

Computer Science and Engineering
Department

IIT Bombay

Week of 17th August, 2020

Part of Speech Tagging

week-of-17aug20cs626-pos:pushpak2

Agenda

• Rule Based POS Tagging

• Statistical ML based POS Tagging

(Hidden Markov Model, Support

Vector Machine)

• Neural (Deep Learning) based POS

Tagging

NLP: multilayered,

multidimensional

Morphology

POS tagging

Chunking

Parsing

Semantics

Discourse and Coreference

Increased

Complexity

Of

Processing

Algorithm

Problem

Language

Hindi

Marathi

English

French
Morph

Analysis

Part of Speech

Tagging

Parsing

Semantics

CRF

HMM

MEMM

NLP

Trinity

week-of-17aug20cs626-pos:pushpak4

Multilayer neural net

• NLP pipeline NN layers

• Discover bigger structures bottom up,
starting from character?

• Words, POS, Parse, Sentence,
Discourse?

Hidden layers

Input layer

(n i/p neurons)

Output layer

(m o/p neurons)
j

i

wji

….

….

….

….

week-of-17aug20cs626-pos:pushpak5

Subwords (for “jaauMgaa”, जाऊंगा)

• Characters: “j+aa+u+M+g+aa”

• Morphemes: “jaa”+”uMgaa”

• Syllables: “jaa”+”uM”+”gaa”

• Orthographic syllables: “jaau”+”Mgaa”

• BPE (depends on corpora,

statistically frequent patterns): both

“jaa” and “uMgaa” are likely

NLP Layer
week-of-17aug20cs626-pos:pushpak7

What a gripping movie was Three_Idiots!

What/WP a/DT gripping/JJ movie/NN was/VBD Three_Idiots/NNP !/!

Parse

(ROOT

(FRAG

(SBAR

(WHNP

(WP What))

(S

(NP

(DT a)

(JJ gripping)

(NN movie)

)

(VP

(VBD was)

(NP

(NNP Three_idiots)))))

(. !)

)

)

Universal dependencies

dobj(Three_Idiots-6, What-1)

det(movie-4, a-2)

amod(movie-4, gripping-3)

nsubj(Dangal-6, movie-4)

cop(Dangal-6, was-5)

root(ROOT-0, Three_idiots-6)

Part of Speech Tagging

• Attach to each word a tag from

Tag-Set

• Standard Tag-set : Penn Treebank

(for English).

week-of-17aug20cs626-pos:pushpak8

POS ambiguity instances

week-of-17aug20cs626-pos:pushpak9

best ADJ ADV NP V

better ADJ ADV V DET

close ADV ADJ V N (running close to the
competitor, close escape, close the door,
towards the close of the play)

cut V N VN VD

even ADV DET ADJ V

grant NP N V –

hit V VD VN N

lay ADJ V NP VD

left VD ADJ N VN

like CNJ V ADJ P –

near P ADV ADJ DET

open ADJ V N ADV

past N ADJ DET P

present ADJ ADV V N

read V VN VD NP

right ADJ N DET ADV

second NUM ADV DET N

set VN V VD N –

that CNJ V WH DET

POS Ambiguity

• E.g.

1. What a gripping movie was Abhiman!

2. He is gripping it firm.

Adjective

Verb

Linguistic fundamentals

• A word can have two roles
– Grammatical role (Dictionary POS tag)

– Functional role (Contextual POS tag)

– E.g. Golf stick

• POS tag of “Golf”
– Grammatical: Noun

– Functional: Adjective (+ al)

The “al” rule!

• If a word has different functional POS

tag than its grammatical pos then add

“al” to the functional POS tag

• E.g. Golf stick

Adjective + al

Adjectival

Noun + al = Nominal

Verb + al = Verbal

Adjective + al = Adjectival

Adverb + al = Adverbial

Dictionary meaning of “Golf”
noun
• a game in which clubs with wooden or metal heads are

used to hit a small, white ball into a number of holes,

usually 9 or 18, in succession,

• situated at various distances over a course having

natural or artificial obstacles, the object being to get the

ball into each hole in as few strokes as possible.

• a word used in communications to represent the

letter G.

Golf stick

verb
(used without object) to play golf.

We golfed the whole day in the weekend

The “al” rule cntd.

• Examples:

– Nominal

• Many don’t

understand the

problem of hungry.

– Adverbial

• Come quick.

– Verbal ?

adjective, hun·gri·er, hun·gri·est.

having a desire, craving, or need for food;

feeling hunger. indicating, characteristic of, or

characterized by hunger:

He approached the table with a hungry

look.

strongly or eagerly desirous.

lacking needful or desirable elements; not

fertile; poor:

hungry land.

marked by a scarcity of food:

The depression years were hungry

times.

https://www.dictionary.com/browse/hunger

Learning POS Tags

• Question
– Is one instance of example enough for ML?

– E.g. common example of “people”

People Noun

– But it can be verb as well

People Verb (to populate)

• Answer
– We need at least as many instances as number

of different labels #POS tags-1 to make decision.

POS Ambiguity

Disambiguation of POS tag

• If no ambiguity, learn a table of words

and its corresponding tags.

• If ambiguity, then look for the

contextual information i.e. look-back

or look-ahead.

Data for “present”

He gifted me the/a/this/that

present_NN.

They present_VB innovative ideas.

He was present_JJ in the class.

Rules for disambiguating “present”

• For Present_NN (look-back)

– If present is preceded by determiner (the/a) or

demonstrative (this/that), then POS tag will be

noun.

• Does this rule guarantee 100% precision

and 100% recall?
– False positive:

• The present_ADJ case is not convincing.

– False negative:

• Present foretells the future.

Adjective preceded by “the”

Noun but not preceded by “the”

Rules for disambiguating “present”

• For Present_NN (look-back and look ahead)

– If present is preceded by determiner (the/a) or

demonstrative (this/that) or followed by a verb,

then POS tag will be noun.

– E.g.

• Present_NN will tell the future.

• Present_NN fortells the future.

• Does this rule guarantee 100% precision

and 100% recall?

Need for ML in POS tagging

• Rules are challenged by new data

• Need a robust system.

• Machine learning based POS tagging:
– HMM (Accuracy increased by 10-20% against

rule based systems)

– Jelinek’s work inspired from ASR

Noisy Channel Model

W T

(wn, wn-1, … , w1) (tm, tm-1, … , t1)

Noisy Channel

Sequence W is transformed into

sequence T

T*=argmax(P(T|W))

T

W*=argmax(P(W|T))

W21

Mathematics of POS tagging

week-of-17aug20cs626-pos:pushpak22

Argmax computation (1/2)

Best tag sequence

= T*

= argmax P(T|W)

= argmax P(T)P(W|T) (by Baye’s Theorem)

P(T) = P(t0=^ t1t2 … tn+1=.)

= P(t0)P(t1|t0)P(t2|t1t0)P(t3|t2t1t0) …

P(tn|tn-1tn-2…t0)P(tn+1|tntn-1…t0)

= P(t0)P(t1|t0)P(t2|t1) … P(tn|tn-1)P(tn+1|tn)

= P(ti|ti-1) Bigram Assumption∏
N+1

i = 0

week-of-17aug20cs626-pos:pushpak23

Argmax computation (2/2)

P(W|T) = P(w0|t0-tn+1)P(w1|w0t0-tn+1)P(w2|w1w0t0-tn+1) …

P(wn|w0-wn-1t0-tn+1)P(wn+1|w0-wnt0-tn+1)

Assumption: A word is determined completely by its tag. This is inspired by
speech recognition

= P(wo|to)P(w1|t1) … P(wn+1|tn+1)

= P(wi|ti)

= P(wi|ti) (Lexical Probability Assumption)

∏
n+1

i = 0

∏
n+1

i = 1

week-of-17aug20cs626-pos:pushpak24

Generative Model

^_^ People_N Jump_V High_R ._.

^ N

V

V

N

A

N

.

Lexical

Probabilities

Bigram

Probabilities

This model is called Generative model.

Here words are observed from tags as states.

This is similar to HMM.

week-of-17aug20cs626-pos:pushpak25

Typical POS tag steps

• Implementation of Viterbi – Unigram,

Bigram.

• Five Fold Evaluation.

• Per POS Accuracy.

• Confusion Matrix.

week-of-17aug20cs626-pos:pushpak26

Screen shot of typical Confusion

Matrix
AJ0

AJ0-

AV0
AJ0-

NN1

AJ0-

VVD

AJ0-

VVG

AJ0-

VVN AJC AJS AT0 AV0

AV0-

AJ0 AVP

AJ0 2899 20 32 1 3 3 0 0 18 35 27 1

AJ0-

AV0 31 18 2 0 0 0 0 0 0 1 15 0

AJ0-

NN1 161 0 116 0 0 0 0 0 0 0 1 0

AJ0-

VVD 7 0 0 0 0 0 0 0 0 0 0 0

AJ0-

VVG 8 0 0 0 2 0 0 0 1 0 0 0

AJ0-

VVN 8 0 0 3 0 2 0 0 1 0 0 0

AJC 2 0 0 0 0 0 69 0 0 11 0 0

AJS 6 0 0 0 0 0 0 38 0 2 0 0

AT0 192 0 0 0 0 0 0 0 7000 13 0 0

AV0 120 8 2 0 0 0 15 2 24 2444 29 11

AV0-

AJ0 10 7 0 0 0 0 0 0 0 16 33 0

AVP 24 0 0 0 0 0 0 0 1 11 0 737

week-of-17aug20cs626-pos:pushpak27

Computation of POS tags

DECODING

week-of-17aug20cs626-pos:pushpak28

W: ^ Brown foxes jumped over the fence .

T: ^ JJ NNS VBD NN DT NN .

NN VBS JJ IN VB

JJ

RB

NN

JJ

Brown

^

^

NNS

VBS

NNS

VBS

foxes

VBD

JJ

jumped

DT

DT

DT

DT

the

NN

VB

fence

.

.

.

NN

IN

JJ

RB

over

NN

JJ

Brown

^

^

NNS

VBS

NNS

VBS

foxes

VBD

JJ

jumped

DT

DT

DT

DT

the

NN

VB

fence

.

.

.

NN

IN

JJ

RB

over

Probability of a path (e.g. Top most path) = P(T) * P(W|T)

P(^) . P(NN|^) . P(NNS|NN) . P(VBD|NNS) . P(NN|VBD) .

P(DT|NN) . P(NN|DT) . P(.|NN) . P(.)

*

P(^|^) . P(brown|NN) . P(foxes|NNS) . P(jumped|VBD) .

P(over|NN) . P(the|DT) . P(fence|NN) . P(.|.)

Questions?

• Where do tags come from?
– Tag set

• How to get probability values i.e. P(.)?
– Annotated corpora

After modeling of the problem,

emphasis should be on the corpus

Computing P(.) values

Let us suppose annotated corpus has the following

sentence
I have a brown bag .

PRN VB DT JJ NN .

appearedJJtimesofNumber

NNbyfollowedJJtimesofNumber
JJNNP

)|(

appearedJJtimesofNumber

JJastaggedBrowntimesofNumber
JJBrownP

)|(

Why Ratios?

• This way of computing parameter

probabilities: is this correct?

• What does “correct” mean?

• Is this principled?

• We are using Maximum Likelihood

Estimate (MLE)

• Assumption: underlying distribution is

multinomial

Explanation with coin tossing

• A coin is tossed 100 times, Head

appears 40 times

• P(H)= 0.4

• Why?

• Because of maximum likelihood

N tosses, K Heads, parameter P(H)=p

• Construct Maximum Likelihood Expression

• Take log likelihood and take derivative

• Equate to 0 and Get p

N

K
pgives

dp

LLd

p

KN

p

K

dp

LLd

pKNpKLLL

ppL KNK

0
)(

1

)(

)1log()(log)log(

)1(

Exercise
• Following the process for finding the

probability of Head from N tosses of coin

yielding K Heads, prove that the

transition probabilities can be found from

MLE

• Most important: get the likelihood

expression

• Use chapter 2 of the book
– Pushpak Bhattacharyya: Machine translation,

CRC Press, Taylor & Francis Group, Boca Raton,

USA, 2015, ISBN: 978-1-4398-9718-8

Next question?

• How to decode efficiently?

• E.g.
– T: Tags

– W: Words

– Two special symbol: ‘^’ and ‘.’

Find out number of paths in the tree given word

sequence.

Number of path = Number of leaves in the tree.

)(nTO

Exponential w.r.t. number of words

How to avoid it?

We do not need exponential work!

• Suppose our tags are
– DT, NN, VB, JJ, RB and OT

• E.g.
^ The black dog barks .

^ DT DT DT DT .

NN NN NN NN

VB VB VB VB

JJ JJ JJ JJ

RB RB RB RB

OT OT OT OT

Possible tags

So, 64 possible path

DT- determiner

NN- Noun

VB- Verb

JJ- Adjective

RB- Adverb

OT- others

^

DT NN VB JJ RB OT

DT NN VB JJ RB OT

The: 61

black: 62

dog: 63

barks: 64

.: 64

Total 64 paths

• Now consider the paths that end in

NN after seeing input “The black”
^ The black

^ DT NN P(T).P(W|T) = P(DT|^) . P(NN|DT) . P(The|DT) .

P(Black|NN)

^ NN NN P(T).P(W|T) = P(NN|^) . P(NN|NN) . P(The|NN) .

P(Black|NN)

^ VB NN P(T).P(W|T) = P(VB|^) . P(NN|VB) . P(The|VB) .

P(Black|NN)

^ JJ NN P(T).P(W|T) = P(JJ|^) . P(NN|JJ) . P(The|JJ) .

P(Black|NN)

^ RB NN P(T).P(W|T) = P(RB|^) . P(NN|RB) . P(The|RB) .

P(Black|NN)

^ OT NN P(T).P(W|T) = P(OT|^) . P(NN|OT) . P(The|OT) .

P(Black|NN)

For each tag, only path with highest probability

value are retained, others are simply discarded.
TWComplexity n *

Machine Translation v/s POS

tagging!

• Similarity
– POS

• Every word in a sentence has one corresponding tag.

– MT
• Every word in a sentence has one (or more)

corresponding translated word.

• Difference
– Order: Order of translated word may change.

– Fertility: One word corresponds to many. Many to
one also possible.

Complexity

• POS and HMM
– Linear time complexity

• MT and Bean search
– Exponential time complexity

– Permutation of words produces exponential
searc space

– However, for related languages, MT is like
POS tagging

Properties of related languages

1. Order preserving

2. Fertility ~ 1

3. Morphology preserving
Hindi Jaaunga

Bengali Jaabo

English Will go

Hindi & Bengali

Hindi & English

Properties of related languages

4. Syncretism: Suffix features should be similarly

loaded

5. Idiomaticity: Literal translation should be high

Hindi Aap Kaise Ho?

Bengali Aapni Kemon Achen?

English How do you do?

Hindi & Bengali

Hindi & English

Hindi Main jaaunga Hum jaayenge

Bengali Ami jaabo Aamra jaabo

Hindi &

Bengali

HMM

Algorithm

Problem

Language

Hindi

Marathi

English

French
Morph

Analysis

Part of Speech

Tagging

Parsing

Semantics

CRF

HMM

MEMM

NLP

Trinity

week-of-17aug20cs626-pos:pushpak45

A Motivating Example

Urn 1

of Red = 30

of Green = 50

of Blue = 20

Urn 3

of Red =60

of Green =10

of Blue = 30

Urn 2

of Red = 10

of Green = 40

of Blue = 50

Colored Ball choosing

week-of-17aug20cs626-pos:pushpak46

Example (contd.)

U1 U2 U3

U1 0.1 0.4 0.5

U2 0.6 0.2 0.2

U3 0.3 0.4 0.3

Given :

Observation : RRGGBRGR

State Sequence : ??

Not so Easily Computable.

and

R G B

U1 0.3 0.5 0.2

U2 0.1 0.4 0.5

U3 0.6 0.1 0.3

week-of-17aug20cs626-pos:pushpak47

Emission probability tableTransition probability table

Diagrammatic representation (1/2)

U1

U2

U3

0.1

0.2

0.4

0.6

0.4

0.5

0.3

0.2

0.3

R, 0.6

G, 0.1

B, 0.3

R, 0.1

B, 0.5

G, 0.4

B, 0.2

R, 0.3 G, 0.5

week-of-17aug20cs626-pos:pushpak48

Diagrammatic representation (2/2)

U1

U2

U3

R,0.02

G,0.08

B,0.10

R,0.24

G,0.04

B,0.12

R,0.06

G,0.24

B,0.30
R, 0.08

G, 0.20

B, 0.12

R,0.15

G,0.25

B,0.10

R,0.18

G,0.03

B,0.09

R,0.18

G,0.03

B,0.09

R,0.02

G,0.0

8

B,0.10

R,0.03

G,0.05

B,0.02

week-of-17aug20cs626-pos:pushpak49

Classic problems with respect to

HMM

1.Given the observation sequence, find the

possible state sequences- Viterbi

2.Given the observation sequence, find its

probability- forward/backward algorithm

3.Given the observation sequence find the

HMM prameters.- Baum-Welch algorithm

week-of-17aug20cs626-pos:pushpak50

Illustration of Viterbi

● The “start” and “end” are important in a

sequence.

● Subtrees get eliminated due to the Markov

Assumption.

POS Tagset

● N(noun), V(verb), O(other) [simplified]

● ^ (start), . (end) [start & end states]

Illustration of Viterbi

Lexicon

people: N, V

laugh: N, V

.

.

.

Corpora for Training

^ w11_t11 w12_t12 w13_t13 ……………….w1k_1_t1k_1 .

^ w21_t21 w22_t22 w23_t23 ……………….w2k_2_t2k_2 .

.

.

^ wn1_tn1 wn2_tn2 wn3_tn3 ……………….wnk_n_tnk_n .

Inference

^

NN

NV

.

^ N V O .

^ 0 0.6 0.2 0.2 0

N 0 0.1 0.4 0.3 0.2

V 0 0.3 0.1 0.3 0.3

O 0 0.3 0.2 0.3 0.2

. 1 0 0 0 0

This

transition

table will

change from

language to

language

due to

language

divergences.

Partial sequence graph

Lexical Probability Table

Size of this table = # pos tags in tagset X vocabulary size

vocabulary size = # unique words in corpus

Є people laugh ... …

^ 1 0 0 ... 0

N 0 1x10-3 1x10-5

V 0 1x10-6 1x10-3

O 0 0 0

. 1 0 0 0 0

Inference

New Sentence:

^ people laugh .

p(^ N N . | ^ people laugh .)

= (0.6 x 0.1) x (0.1 x 1 x 10-3) x (0.2 x 1 x 10-5)

^

NN

NV

.

Є

Є

Computational Complexity

● If we have to get the probability of each

sequence and then find maximum among

them, we would run into exponential number

of computations.

● If |s| = #states (tags + ^ + .)

and |o| = length of sentence (words + ^ + .)

Then, #sequences = s|o|-2

● But, a large number of partial computations

can be reused using Dynamic Programming.

Dynamic Programming

^

N V O

.3O2V1N .OVN5
.OVN4

.OVN .OVN

Є

people

laugh

0.6 x 1.0 =

0.6
0.

2

0.2

0.6 x 0.1 x

10-3 = 6 x

10-5

1 0.6 x 0.4 x

10-3 = 2.4 x

10-4

2 0.6 x 0.3 x

10-3 = 1.8 x

10-4

3 0.6 x 0.2 x

10-3 = 1.2 x

10-4

No need to expand N4

and N5 because they

will never be a part of

the winning sequence.

Computational Complexity

● Retain only those N / V / O nodes which ends

in the highest sequence probability.

● Now, complexity reduces from |s||o| to

|s|.|o|

● Here, we followed the Markov assumption of

order 1.

Points to ponder wrt HMM and

Viterbi

week-of-17aug20cs626-pos:pushpak59

Viterbi Algorithm

• Start with the start state.

• Keep advancing sequences that are

“maximum” amongst all those ending

in the same state

week-of-17aug20cs626-pos:pushpak60

Viterbi Algorithm

^

N V O

N V O N V O N V O

(0.6) (0.2) (0.2)

(0.06*10^-3) (0.24*10^-3)

(0.18*10^-3)

(0.06*10^-6)

(0.02*10^-6)

(0.06*10^-6)

(0) (0) (0)

Claim: We do not need to draw all the subtrees in the algorithm

Tree for the sentence: “^ People laugh .”

Ԑ

People

week-of-17aug20cs626-pos:pushpak61

Viterbi phenomenon (Markov process)

N1 N2

N V O N V O

(6*10^-5) (6*10^-8)

LAUGH

Next step all the probabilities will be multiplied by identical probability

(lexical and transition). So children of N2 will have probability less than

the children of N1.

week-of-17aug20cs626-pos:pushpak62

What does P(A|B) mean?

• P(A|B)= P(B|A)
If P(A)=P(B)

• P(A|B) means??
– Causality?? B causes A??

– Sequentiality?? A follows B?

week-of-17aug20cs626-pos:pushpak63

Back to the Urn Example

• Here :

– S = {U1, U2, U3}

– V = { R,G,B}

• For observation:

– O ={o1… on}

• And State sequence

– Q ={q1… qn}

• π is

U1 U2 U3

U1 0.1 0.4 0.5

U2 0.6 0.2 0.2

U3 0.3 0.4 0.3

R G B

U1 0.3 0.5 0.2

U2 0.1 0.4 0.5

U3 0.6 0.1 0.3

A =

B=

)(1 ii UqP

64

Observations and states

O1 O2 O3 O4 O5 O6 O7 O8

OBS: R R G G B R G

R

State: S1 S2 S3 S4 S5 S6 S7 S8

Si = U1/U2/U3; A particular state

S: State sequence

O: Observation sequence

S* = “best” possible state (urn) sequence

Goal: Maximize P(S*|O) by choosing “best” S

week-of-17aug20cs626-pos:pushpak65

Goal

• Maximize P(S|O) where S is the State

Sequence and O is the Observation

Sequence

))|((maxarg* OSPS S

week-of-17aug20cs626-pos:pushpak66

False Start

),|()...,|().,|().|()|(

)|()|(

718213121

8181

OSSPOSSPOSSPOSPOSP

OSPOSP

By Markov Assumption (a state

depends only on the previous state)

),|()...,|().,|().|()|(7823121 OSSPOSSPOSSPOSPOSP

O1 O2 O3 O4 O5 O6 O7 O8

OBS: R R G G B R G R

State: S1 S2 S3 S4 S5 S6 S7 S8

week-of-17aug20cs626-pos:pushpak67

Baye’s Theorem

)(/)|().()|(BPABPAPBAP

P(A) -: Prior

P(B|A) -: Likelihood

)|().(maxarg)|(maxarg SOPSPOSP SS

week-of-17aug20cs626-pos:pushpak68

State Transitions Probability

)|()...|().|().|().()(

)()(

718314213121

81

SSPSSPSSPSSPSPSP

SPSP

By Markov Assumption (k=1)

)|()...|().|().|().()(783423121 SSPSSPSSPSSPSPSP

week-of-17aug20cs626-pos:pushpak69

Observation Sequence probability

),|()...,|().,|().|()|(81718812138112811 SOOPSOOPSOOPSOPSOP

Assumption that ball drawn depends only

on the Urn chosen

)|()...|().|().|()|(88332211 SOPSOPSOPSOPSOP

)|()...|().|().|(

).|()...|().|().|().()|(

)|().()|(

88332211

783423121

SOPSOPSOPSOP

SSPSSPSSPSSPSPOSP

SOPSPOSP

week-of-17aug20cs626-pos:pushpak70

Grouping terms

P(S).P(O|S)

= [P(O0|S0).P(S1|S0)].

[P(O1|S1). P(S2|S1)].

[P(O2|S2). P(S3|S2)].

[P(O3|S3).P(S4|S3)].

[P(O4|S4).P(S5|S4)].

[P(O5|S5).P(S6|S5)].

[P(O6|S6).P(S7|S6)].

[P(O7|S7).P(S8|S7)].

[P(O8|S8).P(S9|S8)].

We introduce the states

S0 and S9 as initial

and final states

respectively.

After S8 the next state is

S9 with probability 1,

i.e., P(S9|S8)=1

O0 is ε-transition

O0 O1 O2 O3 O4 O5 O6 O7 O8

Obs: ε R R G G B R G R

State: S0 S1 S2 S3 S4 S5 S6 S7 S8 S9

week-of-17aug20cs626-pos:pushpak71

Introducing useful notation

S0 S1

S8

S7

S9

S2
S3

S4 S5 S6

O0 O1 O2 O3 O4 O5 O6 O7 O8

Obs: ε R R G G B R G R

State: S0 S1 S2 S3 S4 S5 S6 S7 S8 S9

ε RR
G G B R

G

R

P(Ok|Sk).P(Sk+1|Sk)=P(SkSk+1)
Ok

week-of-17aug20cs626-pos:pushpak72

Probabilistic FSM

(a1:0.3)

(a2:0.4)

(a1:0.2)

(a2:0.3)

(a1:0.1)

(a2:0.2)

(a1:0.3)

(a2:0.2)

The question here is:
“what is the most likely state sequence given the output sequence
seen”

S1 S2

week-of-17aug20cs626-pos:pushpak73

Developing the tree

Start

S1 S2

S1 S2 S1 S2

S1 S2 S1 S2

1.0 0.0

0.1 0.3 0.2 0.3

1*0.1=0.1 0.3 0.0 0.0

0.1*0.2=0.02 0.1*0.4=0.04 0.3*0.3=0.09 0.3*0.2=0.06

. .

. .

€

a1

a2

Choose the winning
sequence per state
per iteration

0.2 0.4 0.3 0.2

week-of-17aug20cs626-pos:pushpak74

Tree structure contd…

S1 S2

S1 S2 S1 S2

0.1 0.3 0.2 0.3

0.027 0.012
..

0.09 0.06

0.09*0.1=0.009 0.018

S1

0.3

0.0081

S2

0.2

0.0054

S2

0.4

0.0048

S1

0.2

0.0024

.

a1

a2

The problem being addressed by this tree is)|(maxarg* ,2121 aaaaSPS
s

a1-a2-a1-a2 is the output sequence and μ the model or the machine

week-of-17aug20cs626-pos:pushpak75

Path found:

(working backward)

S1 S2 S1 S2 S1

a2a1a1 a2

Problem statement: Find the best possible sequence

),|(maxarg* OSPS
s

Machineor Model Seq,Output Seq, State, OSwhere

},,,{Machineor Model 0 TASS

Start symbol State collection Alphabet
set

Transitions

T is defined as kjij
k

i SaSP ,,)(

week-of-17aug20cs626-pos:pushpak76

Tabular representation of the tree

€ a1 a2 a1 a2

S1
1.0 (1.0*0.1,0.0*0.2)

=(0.1,0.0)

(0.02,

0.09)

(0.009, 0.012) (0.0024,

0.0081)

S2
0.0 (1.0*0.3,0.0*0.3)

=(0.3,0.0)

(0.04,0.06

)

(0.027,0.018) (0.0048,0.005

4)

Ending state

Latest symbol
observed

Note: Every cell records the winning probability ending in that state

Final winner

The bold faced values in each cell shows the sequence probability ending in that

state. Going backward from final winner sequence which ends in state S2 (indicated

By the 2nd tuple), we recover the sequence.

week-of-17aug20cs626-pos:pushpak77

Algorithm
(following James Alan, Natural Language Understanding

(2nd edition), Benjamin Cummins (pub.), 1995

Given:

1. The HMM, which means:

a. Start State: S1

b. Alphabet: A = {a1, a2, … ap}

c. Set of States: S = {S1, S2, … Sn}

d. Transition probability

which is equal to

2. The output string a1a2…aT

To find:

The most likely sequence of states C1C2…CT which produces the

given output sequence, i.e., C1C2…CT =

kjij
k

i SaSP ,,)(

)|,(ikj SaSP

],,...,|([maxarg 21 T

C

aaaCP

week-of-17aug20cs626-pos:pushpak78

1. Initialization

SEQSCORE(1,1)=1.0

BACKPTR(1,1)=0

For(i=2 to N) do

SEQSCORE(i,1)=0.0

[expressing the fact that first state is S1]

2. Iteration

For(t=2 to T) do

For(i=1 to N) do

SEQSCORE(i,t) = Max(j=1,N)

BACKPTR(I,t) = index j that gives the MAX above

)](*))1(,([SiaSjPtjSEQSCORE k

week-of-17aug20cs626-pos:pushpak79

3. Seq. Identification

C(T) = i that maximizes SEQSCORE(i,T)

For i from (T-1) to 1 do

C(i) = BACKPTR[C(i+1),(i+1)]

Optimizations possible:
1. BACKPTR can be 1*T

2. SEQSCORE can be T*2

Homework:- Compare this with A*, Beam Search [Homework]
Reason for this comparison:

Both of them work for finding and recovering sequence

week-of-17aug20cs626-pos:pushpak80

Reading List

• https://www.nltk.org/book/ch05.html

• TnT (http://www.aclweb.org/anthology-new/A/A00/A00-

1031.pdf)

• Hindi POS Tagger built by IIT

Bombay (http://www.cse.iitb.ac.in/pb/papers/ACL-2006-

Hindi-POS-Tagging.pdf)

week-of-17aug20cs626-pos:pushpak81

https://www.nltk.org/book/ch05.html
http://www.aclweb.org/anthology-new/A/A00/A00-1031.pdf
http://www.cse.iitb.ac.in/pb/papers/ACL-2006-Hindi-POS-Tagging.pdf

Assignment Discussion

Build a POS Tagger (due date: 5th

September, 2020)

• Using
– HMM

– SVM

– Bi-LSTM

• Training corpora (Brown Copus)
– http://www.nltk.org/nltk_data/

http://www.nltk.org/nltk_data/

Project Discussion

Different Areas of NLP

Questions from Mohith
1. You mentioned about "ellipsis" during the lecture. In NLP,

does "ellipsis" refer to the computational problem that arises

due to

skipping a few words in a sentence, or the whole act of

skipping words is itself termed as ellipsis?

- Ans: whole act; “where do you live?”- “Delhi” and “your

friend?ellipsis”- “Mumbai”

2. You mentioned about shallow/deep parsing. Was this in the

context of dependency/constituency parsing? That is, can I say

that dependency parser does shallow parsing and

constituency parser does deep parsing, or some other similar

relations exist between them?

• - both constituency and dependency are “deep” parsing

tasks; pos tagging, chunking [(the_DT blue_JJ sky_NN)chunk

was (vast_JJ and_CONJ deep_JJ)chunk]

Questions from Mohith

3. In the Learning POS Tags slide, it is mentioned, "We need

at least as many instances as number of different labels

#POS tags-1 to make decision". That means, corresponding

to every tag(except one) we are giving one example to the

learning algorithm. If the algorithm encounters a previously

unseen example, give it the last tag. I just wanted to know if

my understanding is correct here.

-Ans: Correct; give the remaining tag if none of the tags from

the training data is applicable

Mohith

Besides my doubts, I have also solved the first homework

question that you had provided in the class. Could you please

let me know if my answers are correct?

• Question 1: Example of Verbal, Answer: "Could you please

google this topic?". Here "google" is a noun, but in this

context it is being used as a verb. Therefore "google" would

be tagged as a "Verbal“

-Ans: No, dictionary definition of “google” includes verb also

I haven't got an example for the second question of finding

false positive/negative for rules of "present"

-Ans: The rule is “If present is preceded by determiner

(the/a) or demonstrative (this/that) or followed by a verb,

then POS tag will be noun.” Still fails for “The present

situation is comfortable”

