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Agenda for the week 

• Delving deeper into 

Feedforward N/W an 

Backpropagation

• Applications of FFNN-BP

• Start of Sequence Processing

• Recurrent N/W



Application of FFNN-BP



An example SMS complaint

• I have purchased a 80 litre Videocon 

fridge about 4 months ago when the 

freeze go to sleep that time 

compressor give a sound (khat khat

khat khat ....) what is possible fault 

over it is normal I can't understand 

please help me give me a suitable 

answer.
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Significant words (in red): after stop 

word removal

• I have purchased a 80 litre Videocon 

fridge about 4 months ago when the 

freeze go to sleep that time 

compressor give a sound (khat khat

khat khat ....) what is possible fault

over it is normal I can't understand 

please help me give me a suitable 

answer.
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SMS classification

Action complaint

Hidden 

neurons

Emergency

x1 x2
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SMS feature vector: input neurons



Sequence Processing v/s Whole-

Text processing

• Preemptive actions: possible in 

sequence processing
– E.g., Surveillance

• Micro-information: better handled in 

seq processing

• Global information: better handled in 

whole text processing

• Chat-bot: inherently seq processing
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An application in Medical Domain



Expert System for Skin Diseases 

Diagnosis

• Bumpiness and scaliness of skin

• Mostly for symptom gathering and for 

developing diagnosis skills

• Not replacing doctor’s diagnosis



Architecture of the FF NN

• 96-20-10

• 96 input neurons, 20 hidden layer neurons, 10 
output neurons

• Inputs: skin disease symptoms and their 
parameters
– Location, distribution, shape, arrangement, pattern, 

number of lesions, presence of an active norder, 
amount of scale, elevation of papuls, color, altered 
pigmentation, itching, pustules, lymphadenopathy, 
palmer thickening, results of microscopic 
examination, presence of herald pathc, result of 
dermatology test called KOH



Output

• 10 neurons indicative of the diseases:
– psoriasis, pityriasis rubra pilaris, lichen 

planus, pityriasis rosea, tinea versicolor, 

dermatophytosis, cutaneous T-cell lymphoma, 

secondery syphilis, chronic contact dermatitis, 

soberrheic dermatitis



Figure : Explanation of dermatophytosis diagnosis using the DESKNET expert system.
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Training data

• Input specs of 10 model diseases 

from 250 patients

• 0.5 is some specific symptom value is 

not known

• Trained using standard error 

backpropagation algorithm



Testing

• Previously unused symptom and disease data of 99 
patients

• Result:

• Correct diagnosis achieved for 70% of papulosquamous 
group skin diseases

• Success rate above 80% for the remaining diseases 
except for psoriasis

• psoriasis diagnosed correctly only in 30% of the cases

• Psoriasis resembles other diseases within the 
papulosquamous group of diseases, and is somewhat 
difficult even for specialists to recognise.



Explanation capability

• Rule based systems reveal the explicit 
path of reasoning through the textual 
statements

• Connectionist expert systems reach 
conclusions through complex, non linear 
and simultaneous interaction of many units

• Analysing the effect of a single input or a 
single group of inputs would be difficult 
and would yield incorrect results



Explanation contd.

• The hidden layer re-represents the 

data

• Outputs of hidden neurons are neither 

symtoms nor decisions



Discussion

• Symptoms and parameters 

contributing to the diagnosis found 

from the n/w 

• Standard deviation, mean and other 

tests of significance used to arrive at 

the importance of contributing 

parameters

• The n/w acts as apprentice to the 

expert



Hardmax v/s Softmax

• V-verb, N-noun, J-adjective, R-

adverb, O-others

• Hardmax
– Given an input, if the output is 0 or 1.

<V, N, J, R, O>  <0, 1, 0, 0, 0>

• Softmax
– Given an input, if it belongs to multiple 

label/class, then the output is maximum of 

all labels/classes. 

<V, N, J, R, O>  <0.1, 0.8, 0.05, 0.02, 0.03>
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Feedforward Network and 

Backpropagation



Example - XOR 

w2=1w1=1
θ = 0.5

x1x2 x1x2

-1

x1 x2

-1
1.5

1.5

1 1



Alternative network for XOR

Θ =1.5

x1 x2

w1 = 1 w2 = 1

-1 1

-1 1

● XOR: not possible using a single 

perceptron

● Hidden layer gives more 

computational capability

● Deep neural network: With multiple 

hidden layers

● Kolmogorov’s theorem of 

equivalence proves equivalence of 

multiple layer neural network to a 

single layer neural network, and 

each neuron have to correspond to 

an appropriate functions.
0.5

-1.5

X1+X2

H1H 2 (AND) 
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Exercise: Back-propagation 

● Implement back-propagation for XOR 

network

● Observe

○ Check if it converges (error falls below a 

limit)

○ What is being done at the hidden layer
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What a neural network can represent 

in NLP: Indicative diagram
● Each layer of the neural network possibly represents 

different NLP stages!!
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25



Batch learning versus Incremental 

learning
● Batch learning is updating the parameters after ONE 

PASS over the whole dataset

● Incremental learning updates parameters after seeing 

each PATTERN

● An epoch is ONE PASS over the entire dataset

○ Take XOR: data set is V1=(<0,0>, 0), V2=(<0,1>, 1), 

V3=(<1,0>, 1), V4=(<1,1>, 0)

○ If the weight values are changed after each of Vi, then

this is incremental learning

○ If the weight values are changed after one pass over 

all Vis, then it is bathc learning
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Can we use PTA for training FFN?

1, 0, 0 0

-1, 0, 1 1

-1, 1, 0 1

1, -1, -1 0

0, 0 0

0, 1 1

1, 0 1

1, 1 0

-1, 0, 0 0

-1, 0, 1 1

-1, 1, 0 1

-1, 1, 1 0

No, else the individual neurons are solving XOR, which is impossible.

Also, for the hidden layer neurons we do nothave the i/o behaviour.

x1
x2 -1

θ1

θ2

θ3



Gradient Descent Technique

• Let E be the error at the output layer

• ti = target output; oi = observed output

• i is the index going over n neurons in the 

outermost layer

• j is the index going over the p patterns (1 to p)

• Ex: XOR:– p=4 and n=1


 


p

j

n

i

jii otE
1 1

2)(
2

1



Weights in a FF NN

• wmn is the weight of the 

connection from the nth neuron 

to the mth neuron

• E vs surface is a complex 

surface in the space defined by 

the weights wij

• gives the direction in which 

a movement of the operating 

point in the wmn co-ordinate 

space will result in maximum 

decrease in error
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Step function v/s Sigmoid function
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Loss function

Total sum squared error

● Ti is the target output

● Oi is the observed output 

● i and j are indices over  n neurons 

and p patterns respectively

Cross-entropy

Cross-entropy is used more in NLP than total sum squared error

● yi is the target output

● is the observed output

● N is number of training samples



Backpropagation algorithm

• Fully connected feed forward network

• Pure FF network (no jumping of 
connections over layers)

Hidden layers

Input layer            

(n i/p neurons)

Output layer    

(m o/p neurons)
j

i

wji

….

….

….

….



Gradient Descent Equations
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Backpropagation – for outermost 

layer
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Backpropagation for hidden layers

Hidden layers

Input layer            

(n i/p neurons)

Output layer    

(m o/p neurons)

j

i

….

….

….

….

k

k is propagated backwards to find value of j



Backpropagation – for hidden 

layers
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This recursion can

give rise to vanishing

and exploding

Gradient problem



Back-propagation- for hidden layers: 

Impact on net input on a neuron

j

k

● Oj affects the net 

input coming to all 

the neurons in 

next layer



General Backpropagation Rule
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• General weight updating rule:

• Where 

for outermost layer

for hidden layers

41



How does it work?

• Input propagation forward and error 

propagation backward (e.g. XOR)

w2=1w1=1
θ = 0.5

x1x2 x1x2

-1

x1 x2

-1
1.5

1.5

1 1
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Can Linear Neurons Work?



Note: The whole structure shown in earlier slide is reducible 

to a single neuron with given behavior

Claim: A neuron with linear I-O behavior can’t compute X-

OR.

Proof: Considering all possible cases:

[assuming 0.1 and 0.9 as the lower and upper thresholds]

For (0,0), Zero class:

For (0,1), One class:

32211 kxkxkOut 
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For (1,0), One class:

For (1,1), Zero class:

These equations are inconsistent. Hence X-OR can’t be computed.

Observations:

1. A linear neuron can’t compute X-OR.

2. A multilayer FFN with linear neurons is collapsible to a 

single linear neuron, hence no a additional power due 

to hidden layer.

3. Non-linearity is essential for power.
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Local Minima

Due to the Greedy 

nature of BP, it can 

get stuck in local 

minimum m and will 

never be able to 

reach the global 

minimum g as the 

error can only 

decrease by weight 

change.



Momentum factor

1. Introduce momentum factor.

 Accelerates the movement out of the trough.

 Dampens oscillation inside the trough.

 Choosing  β : If β is large, we may jump over 

the minimum.

iterationthnjiijiterationnthji wOw   )1()()( 



Vanishing/Exploding Gradient
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Vanishing/Exploding Gradient
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Vanishing/Exploding Gradient
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Symmetry breaking

• If mapping demands different weights, but we start with 
the same weights everywhere, then BP will  never 
converge.

w2=1w1=1
θ = 0.5

x1x2 x1x2

-1

x1 x2

-1
1.5

1.5

1 1

XOR n/w: if we s

started with identical

weight everywhere, BP

will not converge



Symmetry breaking: understanding 

with proper diagram

w32

x1x2 x1x2

w12
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About

The red
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Exercise

• Find the weakest condition for 

symmetry breaking. It is not the case 

that only when ALL weights are 

equal, the network faces the 

symmetry problem.



Backpropagation Application in 

NLP

Depenency Parsing



Dependency parsing

● Process

○ Determine all parts of speech tags (Identify verbs, 

nouns etc.)

○ If there are multiple verbs, identify main verb

○ Root arrow: Main verb

○ Recursively identify heads and modifiers in the 

subparts of clauses and phrases of the sentence

● Transition based dependency parsing

○ Find heads and modifiers from a sentence as a 

classification problem

■ At every position identify if it is a head or a modifier

■ If modifier, which head it is associated with



Exercise: Dependency parsing using 

FFNN
● Implement feed forward neural network for 

dependency parsing.

○ Each step in dependency parsing is a 

classification problem.

■ First classification decision is with 

respect to finding the main verb.

■ Then at every step we decide if a word 

is a head or a modifier; if modifier, 

then modifier for which word.



Recurrent Neural Network

Acknowledgement:
1. http://www.wildml.com/2015/09/recurrent-neural-

networks-tutorial-part-1-introduction-to-rnns/

By Denny Britz

2. Introduction to RNN by Jeffrey Hinton

http://www.cs.toronto.edu/~hinton/csc2535/lectures.ht

ml
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Sequence processing m/c
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E.g. POS Tagging
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Purchased Videocon machine

VBD NNP NN
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Decision on a piece of text

E.g. Sentiment Analysis
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Back to RNN model

65



Notation: input and state

• xt is the input at time step t. For example, could 

be a one-hot vector corresponding to the second 

word of a sentence. 

• st is the hidden state at time step t. It is the 

“memory” of the network.

• st= f(U.xt+Wst-1) U and W matrices are learnt

• f  is a function of the input and the previous state

• Usually tanh or ReLU (approximated by softplus)
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Tanh, ReLU (rectifier linear unit) 

and Softplus
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Notation: output

• ot is the output at step t

• For example, if we wanted to 

predict the next word in a sentence 

it would be a vector of probabilities 

across our vocabulary

• ot=softmax(V.st)
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Operation of RNN

• RNN shares the same parameters 

(U, V, W) across all steps

• Only the input changes

• Sometimes the output at each time 

step is not needed: e.g., in 

sentiment analysis

• Main point: the hidden states !!
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The equivalence between feedforward nets and recurrent 

nets

w1 w4

w2 w3

w1  w2  W3     W4

time=0

time=2

time=1

time=3

Assume that there is a time 

delay of 1 in using each 

connection.

The recurrent net is just a 

layered net that keeps 

reusing the same weights.

w1  w2  W3     W4

w1  w2  W3     W4
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