CS626: Speech, NLP and the Web

Going deeper into Deep Parsing with Constituency, **Dependency Parsing introduced** Pushpak Bhattacharyya **Computer Science and Engineering** Department **IIT Bombay** Week of 21st September, 2020

Agenda for the week

- Deeper look into parsing
 - -Constituency
 - -Dependency
- Developing Probabilistic parsing
- Introduce Neural Parsing

Example

"The cameraman shot the batsman when he was near the minister."

S→NP VP: apply on the core "The cameraman shot the batsman"

	-VP
NP	• VBD
• <i>DT</i>	-"shot"
-"the"	• <i>NP</i>
• NN	-DT
–"cameraman"	» the
	-NN
	» batsman

"...when he was near the minister"

- NP ("The cameraman")
- NP \rightarrow DT NN
- "The cameraman"
 - DT
 - The
 - NN
 - caemraman

- VP (""shot the batsman when he was near the minister")
 - $VP \rightarrow VBD NP SBAR$
 - VBD
 - Shot
 - NP
 - The batsman
 - SBAR

$SBAR \rightarrow WHADVP S$

- WHAADVP – "when"
- NP - "he"

S →NP VP

- VP→ VBD PP
 VBD
 - "was"

- PP • P -"near"
 - NP→ DT NN ("the minister")

If cameraman was near the minister...

- S – NP
 - -VP
 - VBD
 - "shot"
 - NP
 - "the batsman"
 - SBAR
 - "when he was near the minister"

If the batsman was near the minister...

Coreference resolution

- Coreference resolution concerns
 - Finding different linguistic expressions that refers to same entity
- Eg:
 - Binding a pronoun with corresponding noun: Anaphora Resolution
- The cameraman shot the batsman when he was near the minister.
 - Ambiguity:
 - "He" refers to "The cameraman", or
 - "He" refers to "batsman"

Types of adverbs

Category of adverb	Meaning	Examples		
Adverbs of manner	In what manner, something is being done	quickly, softly		
Adverbs of time	When the verb took place	recently, weekly		
Adverbs of place	Where the verb took place	walking near the house, here, there		
Adverbs of frequency	How often the verb occurs	How often the verb occurs		
Adverbs of degree Intensity of the verb		almost		

Parsing challenge- PP ambiguity: "I saw the boy with a telescope"

Constituency Parse Tree -2

Resolving PP attachment ambiguity

- The attachment of PP (Prepositional phrase) is determined based on the rule of proximity
- Rule of proximity
 - The lesser path length will represent the attachment point
 - Path length: the number of edges between two nodes

Resolving PP attachment ambiguity: Example

- I saw a boy with a telescope
- **PP** attachment ambiguity
 - with a telescope
 - boy (noun)
 - saw (verb)
- Path length between boy and PP = 4
- Path length between saw and PP = 3
- PP "with a telescope" is attached to "saw"
- Meaning: I used the telescope to see a boy

"Attachment" is the crux of the matter

- PP attachment
 - "I saw the boy with a telescope"
 - PP- "with the telescope"
- Clause attachment
 - "The cameraman shot the batsman when he was near the minister"
 - Clause- "when he was near the minister"

Difference between SBAR and S

- Contribution of Generative Grammar (Noam Chomsky)
- SBAR is used in complex sentences

 Complex sentences: have clauses
 Should start with "wh"-word
- S is used for "normal" sentences

"The cameraman shot the batsman when he was near the minister"

- S:
 - "The cameraman shot the batsman when he was near the minister"
- SBAR
 - "when he was near the minister"
- S
 - "he was near the minister"

"I know the boy who lives in Delhi"

P » VBZ: "lives" » PP » P: "in" » NNP: "Delhi"

Types of sentences

• Simple

- "The cameraman shot the batsman"

- Complex
 - "The cameraman shot the batsman when he was near the minister"
- Compound
 - "The cameraman shot the batsman and he was happy"

Two kinds of parse representations: Constituency Vs. Dependency

Example: raw sentence

The strongest rain shut down the financial hub of Mumbai

(from: Stanford parser https://nlp.stanford.edu/software/lexparser.shtml)

Example: POS Tagged sentence

The/DT strongest/JJS rain/NN shut/VBD down/RP the/DT financial/JJ hub/NN of/IN Mumbai/NNP

Constituency parse

(S (NP (DT The) (JJS strongest) (NN rain)))

. . .

(VP (VP (VBD shut) (PRT (RP down)) (NP (NP (DT the) (JJ financial) (NN hub)) (PP (IN of) (NP (NNP Mumbai))))

Dependency Parse

root(ROOT-0, shut-4) **nsubj**(shut-4, rain-3) prt(shut-4, down-5) det(rain-3, the-1) amod(rain-3, strongest-2)

dobj(shut-4, hub-8) det(hub-8, the-6) amod(hub-8, financial-7) prep(hub-8, of-9) pobj(of-9, Mumbai-10)

"I saw the boy with a telescope": Dependency Parse Tree - 1

Dependency Parse Tree - 2

Probabilistic parsing

Example of Sentence labeling: Parsing [_{S1}[_S[_S[_{VP}[_{VB}Come][_{NP}[_{NNP}July]]]] [,] [_{cc} and] $[_{S}[_{NP}[_{DT} the]] [_{II} IIT] [_{NN} campus]]$ [_{VP} [_{AUX} is] [ADJP [JJ abuzz] [_{PP}[_{IN} with] [_{NP}[_{ADJP} [_{JJ} new] [_{CC} and] [_{VBG} returning]] [_{NNS} students]]]]] [.]]]

Noisy Channel Modeling

Constituency Parse Tree -2

Formal Definition of PCFG

- A PCFG consists of
 - A set of terminals {w_k}, k = 1,...,V

 $\{w_k\} = \{ child, teddy, bear, played... \}$

- A set of non-terminals {Nⁱ}, i = 1,...,n {N_i} = { NP, VP, DT...}
- A designated start symbol N¹
- A set of rules $\{N^i \rightarrow \zeta^j\}$, where ζ^j is a sequence of terminals & non-terminals NP \rightarrow DT NN
- A corresponding set of rule probabilities

Rule Probabilities

• Rule probabilities are such that $\forall i \sum_{i} P(N^{i} \rightarrow \zeta^{j}) = 1$

E.g., P(NP \rightarrow DT NN) = 0.2 P(NP \rightarrow NN) = 0.5 P(NP \rightarrow NP PP) = 0.3

• P(NP \rightarrow DT NN) = 0.2

Means 20 % of the training data parses use the rule NP \rightarrow DT NN

β**á**rsing:pushpak

Probabilistic Context Free Grammars

1.0

- $S \rightarrow NP VP$ 1.0
- NP \rightarrow DT NN 0.5
- NP \rightarrow NNS 0.3
- NP \rightarrow NP PP 0.2
- $PP \rightarrow P NP$
- $VP \rightarrow VP PP$ 0.6
- $VP \rightarrow VBD NP 0.4$

- $DT \rightarrow the$ 1.0
 - NN \rightarrow gunman 0.5
 - NN \rightarrow building 0.5
 - VBD \rightarrow sprayed 1.0
 - NNS \rightarrow bullets 1.0

βārsing:pushpak

Example Parse t₁

β@irsing:pushpak

Another Parse t₂

Probability of a sentence

• Probability of a sentence = $P(w_{1m})$

 $P(w_{1m}) = \sum_{t} P(w_{1m}, t) \longrightarrow \text{Where t is a parse}$ $= \sum_{t} P(t)P(w_{1m} \mid t)$ $= \sum_{t: yield(t) = w_{1m}} P(t) \qquad \because P(w_{1m} \mid t) = 1 \quad \text{If t is a parse tree}$ for the sentence w_{1m}, this will be 1 !

ßårsing:pushpak

Assumptions of the PCFG model

- Place invariance : $P(NP \rightarrow DT NN)$ is same in locations 1 and 2
- Context-free :
 P(NP → DT NN | anything outside "The child")
 = P(NP → DT NN)
- Ancestor free : At 2, $P(NP \rightarrow DT NN|its ancestor is VP) NP VP$ $= P(NP \rightarrow DT NN)$

child

NP

ne

Probability of a parse tree (cont.)

(Using Chain Rule, Context Freeness and Ancestor Freeness)

Why probability in Parsing

Domination

- A sentence is dominated by the symbol S through domination of segments by phrases
- Examples
 - The capital of a country dominates the whole country.
 - The capital of a state dominates the whole state.
 - The district headquarter dominates the district.
 - IIT Bombay is dominated by the administration of IIT Bombay.
 - Administration dominates Heads of Depts
 - The department is dominated by head of the department.

Ambiguity in determining domination

I saw a boy with a telescope.

- "saw" dominated by VP
- "a boy" dominated by NP
- "with a telescope" dominated by PP
- Yield of first NP is "a telescope"

- "saw" dominated by VP
- "with a telescope" dominated by PP
- "a boy with a telescope" dominated by NP
- Yield of NP is a "a boy with a telescope"

Need of Probabilistic Parsing

- Main Intuition
 - Resolving the uncertainty
 - which non-terminal dominates how much territory in the sentence.
- The ambiguity in determining

 The yield of NP
 Will the NP dominate "a boy" or "a boy with a telescope"

#4rsing:pushpak

Interesting Probabilities

þārsing:pushpak

Parse tree for the given sentence using probabilistic CYK parsing

 $_0$ The $_1$ gunman $_2$ sprayed $_3$ the $_4$ building $_5$ with $_6$ bullets $_7$

•Two parse trees are possible because the sentence has attachment ambiguity .

• Total 16 multiplications are required to make both the parse trees using probabilistic CYK.

•Number of multiplications is less in comparison to a probabilistic parsing which prepares the two parse trees independently with 28 multiplication.

	The 1	gunman 2	Sprayed 3	the 4	Building 5	with 6	Bullets 7
0	β _{DT} (0-1) =1.0	β _{NP} (0-2) =0.25					$\beta_{\rm S}(0-7) = 0.006$
1		β _{NN} (1-2) =0.5					
2			β _{VBD} (2-3) =1.0		β _{VP} (2-5) =0.1		β _{VP} (2-7) =0.024
3				β _{DT} (3-4) =1.0	β _{NP} (3-5) =0.25		β _{NP} (3-7) =0.015
4					β _{NN} (4-5) =0.5		
5						β _P (5-6) =1.0	β _{PP} (5-7) =0.3
6							$\beta_{\text{NP/NNS}}(6-7)$ =1.0

<u>Calculation of values for each non terminal occuring in the CYK</u> table β_{DT} (0-1) =1.0 (From Grammar rules) β_{NN} (1-2) =0.5 (From Grammar rules) $\beta_{NP}(0-2) = P(\text{the gunman} \mid NP_{0-2}, G)$ $= P(NP \rightarrow DT NN)^* \beta_{DT} (0-1)^* \beta_{NN} (1-2)$ = 0.5 * 1.0 * 0.5=0.25 $\beta_{VBD}(2-3) = 1.0$ (From Grammar rules) $\beta_{DT}(3-4) = 1.0$ (From Grammar rules) β_{NN} (4-5) =0.5 (From Grammar rules)

$$\begin{split} \beta_{NP} (3\text{-}5) &= P(\text{the building} \mid NP_{3\text{-}5} \ , \ G) \\ &= P(NP\text{-}\text{>}DT \ NN)^* \beta_{DT} (3\text{-}4) \ ^* \beta_{NN} (4\text{-}5) \\ &= 0.5 \ ^* 1.0 \ ^* 0.5 \\ &= 0.25 \end{split}$$

$$\begin{split} \beta_{VP}(2-5) &= P(VP->VBD NP)^* \beta_{VBD} (2-3) * \beta_{NN} (3-5) \\ &= 0.4 * 1 * 0.25 \\ &= 0.1 \\ \beta_{P}(5-6) &= 1.0 \ (From \ Grammar \ rules) \\ \beta_{NP/NNS}(6-7) &= 1.0 \ (From \ Grammar \ rules) \\ \beta_{PP}(5-7) &= P(PP->P \ NP) * \beta_{P}(5-6) * \beta_{NP/NNS}(6-7) \\ &= 1.0 * 1.0 * 0.3 \\ &= 0.3 \\ \beta_{NP}(3-7) &= P(NP->NP \ PP) * \beta_{NP}(3-5) * \beta_{PP}(5-7) \\ &= 0.2 * 0.25 * 0.3 \\ &= 0.015 \\ \beta_{VP}(2-7) &= (P(VP->VBD \ NP) * \beta_{VBD} \ (2-3) * \beta_{NP} \ (3-7) + P(VP->VP \ PP) * \beta_{VP} \ (2-5) * \beta_{PP} \ (5-7)) \\ &= 0.4 * 1 * 0.015 + 0.6 * 0.1 * 0.3 \\ &= 0.024 \\ \beta_{S}(0-7) &= P(S->NP \ VP) * \beta_{NP} \ (0-2) * \beta_{VP} \ (2-7) \\ &= 1 * 0.25 * 0.024 \\ &= 0.006 \end{split}$$

#8rsing:pushpak

A very difficult parsing situation!

Repeated Word handling

Sentence on Buffaloes!

Buffaloe buffaloes Buffaloe buffaloes buffaloe buffaloe Buffaloe buffaloes

Charniak

Collins

Stanford

þårsing:pushpak

RASP

Correct parse

Another sentence of same structure

parsing:pushpak

Observation

- Collins and Charniak come close to producing the correct parse.
- RASP tags all the words as nouns.

Another phenomenon: Garden pathing

e.g. The old man the boat.

Another example: The horse raced past the garden fell.