# CS626: Speech, NLP and the Web

Penn TAG Set, HMM and Viterbi Decoding, Other Graphical Models for NLP, SVM Pushpak Bhattacharyya Computer Science and Engineering Department IIT Bombay Week of 24<sup>th</sup> August, 2020

### Task vs. Technique Matrix

| Task (row) vs.<br>Technique (col) Matrix | Rules<br>Based/Kn | Classical ML | Deep Learning          |     |                                         |                                 |              |     |
|------------------------------------------|-------------------|--------------|------------------------|-----|-----------------------------------------|---------------------------------|--------------|-----|
|                                          | Based             |              |                        |     |                                         |                                 |              |     |
|                                          |                   |              |                        |     |                                         |                                 |              |     |
|                                          |                   | Perceptron   | Logistic<br>Regression | SVM | Graphical Models<br>(HMM, MEMM,<br>CRF) | Dense FF with<br>BP and softmax | RNN-<br>LSTM | CNN |
| Morphology                               |                   |              |                        |     |                                         |                                 |              |     |
| POS                                      |                   |              |                        |     |                                         |                                 |              |     |
| Chunking                                 |                   |              |                        |     |                                         |                                 |              |     |
| Parsing                                  |                   |              |                        |     |                                         |                                 |              |     |
| NER, MWE                                 |                   |              |                        |     |                                         |                                 |              |     |
| Coref                                    |                   |              |                        |     |                                         |                                 |              |     |
| WSD                                      |                   |              |                        |     |                                         |                                 |              |     |
| Machine Translation                      |                   |              |                        |     |                                         |                                 |              |     |
| Semantic Role<br>Labeling                |                   |              |                        |     |                                         |                                 |              |     |
| Sentiment                                |                   |              |                        |     |                                         |                                 |              |     |
| Question Answering                       |                   |              |                        |     |                                         |                                 |              |     |

886286effir2147apg28bpak

### Part of Speech Tagging

Attach to each word a tag from
 Tag-Set

 Standard Tag-set : Penn Treebank (for English).

### Penn POS TAG Set

| 1.  | CC    | Coordinating conjunction           |
|-----|-------|------------------------------------|
| 2.  | CD    | Cardinal number                    |
| 3.  | DT    | Determiner                         |
| 4.  | EX    | Existential there                  |
| 5.  | FW    | Foreign word                       |
| 6.  | IN    | Preposition or subordinating conju |
| 7.  | JJ    | Adjective                          |
| 8.  | JJR   | Adjective, comparative             |
| 9.  | JJS   | Adjective, superlative             |
| 10. | LS    | List item marker                   |
| 11. | MD    | Modal                              |
| 12. | NN    | Noun, singular or mass             |
| 13. | NNS   | Noun, plural                       |
| 14. | NNP   | Proper noun, singular              |
| 15. | NNPS  | Proper noun, plural                |
| 16. | PDT   | Predeterminer                      |
| 17. | POS   | Possessive ending                  |
| 18. | PRP   | Personal pronoun                   |
| 19. | PRP\$ | Possessive pronoun                 |
| 20. | RB    | Adverb                             |
| 21. | RBR   | Adverb, comparative                |
|     |       |                                    |

### Penn POS TAG Set (cntd)

| 22. | RBS  | Adverb, superlative                   |
|-----|------|---------------------------------------|
| 23. | RP   | Particle                              |
| 24. | SYM  | Symbol                                |
| 25. | ТО   | to                                    |
| 26. | UH   | Interjection                          |
| 27. | VB   | Verb, base form                       |
| 28. | VBD  | Verb, past tense                      |
| 29. | VBG  | Verb, gerund or present participle    |
| 30. | VBN  | Verb, past participle                 |
| 31. | VBP  | Verb, non-3rd person singular present |
| 32. | VBZ  | Verb, 3rd person singular<br>present  |
| 33. | WDT  | Wh-determiner                         |
| 34. | WP   | Wh-pronoun                            |
| 35. | WP\$ | Possessive wh-pronoun                 |
| 36. | WRB  | Wh-adverb                             |

A dialogue text POS tagged from Treebank [SpeakerA2/SYM] [SpeakerB1/SYM] ./. [ Um/UH ] So/UH how/WRB ,/, many/JJ ,/, um/UH ,/, [ I/PRP ] [ credit/NN cards/NNS ] think/VBP do/VBP [ I/PRP ] [you/PRP] 'm/VBP down/IN to/IN have/VB ?/. [one/CD]

https://catalog.ldc.upenn.edu/desc/addenda/LDC99T42 .pos.txt 7886286effir2147apg26bpak

### Mathematics of POS tagging

### **Noisy Channel Model**



## Sequence *W* is transformed into sequence *T*



Øsselectifienderapg20pak

### Argmax computation (1/2)

Best tag sequence = T\*

```
= \operatorname{argmax} P(T|W)
```

 $= \operatorname{argmax} P(T)P(W|T)$  (by Baye's Theorem)

```
\begin{aligned} \mathsf{P}(\mathsf{T}) &= \mathsf{P}(t_0 = {}^{\mathsf{h}} t_1 t_2 \dots t_{n+1} = .) \\ &= \mathsf{P}(t_0) \mathsf{P}(t_1 | t_0) \mathsf{P}(t_2 | t_1 t_0) \mathsf{P}(t_3 | t_2 t_1 t_0) \dots \\ &\qquad \mathsf{P}(t_n | t_{n-1} t_{n-2} \dots t_0) \mathsf{P}(t_{n+1} | t_n t_{n-1} \dots t_0) \\ &= \mathsf{P}(t_0) \mathsf{P}(t_1 | t_0) \mathsf{P}(t_2 | t_1) \dots \mathsf{P}(t_n | t_{n-1}) \mathsf{P}(t_{n+1} | t_n) \\ &\qquad \mathsf{N}_{+1} \\ &= \prod_{i=0}^{\mathsf{h}} \mathsf{P}(t_i | t_{i-1}) \end{aligned} Bigram Assumption
```

decedenting the post of the po

### Argmax computation (2/2)

 $P(W|T) = P(w_0|t_0-t_{n+1})P(w_1|w_0t_0-t_{n+1})P(w_2|w_1w_0t_0-t_{n+1}) \dots P(w_n|w_0-w_{n-1}t_0-t_{n+1})P(w_{n+1}|w_0-w_nt_0-t_{n+1})$ 

Assumption: A word is determined completely by its tag. This is inspired by speech recognition

=  $P(w_o|t_o)P(w_1|t_1) \dots P(w_{n+1}|t_{n+1})$ =  $\prod_{i=0}^{n+1} P(w_i|t_i)$ =  $\prod_{i=1}^{n+1} P(w_i|t_i)$  (Lexical Probability Assumption) defeeted in 12 Ampgebpak

### **Generative Model**



This model is called Generative model. Here words are observed from tags as states. This is similar to HMM. defective for the second secon



Lawrence R. Rabiner:a tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, 1989, pages 257–286

https://web.ece.ucsb.edu/Faculty/Rabiner/ece259/Re prints/tutorial%20on%20hmm%20and%20application s.pdf

### **Definition of HMM and URN example**

An HMM is defined by 
 <S, V, A, B, π>

Here :

- $-S = \{U1, U2, U3\}$
- $-V = \{ R,G,B \}$ For observation sequence:  $O = [O_1 \dots O_n]$ and State sequence  $Q = [S_1 \dots S_n]$

telebene state a state

### **URN Example**

Colored Ball choosing



# of Red = 30 # of Green = 50 # of Blue = 20  $\frac{\text{Urn 2}}{\text{# of Red} = 10}$   $\frac{\text{# of Green} = 40}{\text{# of Blue} = 50}$ 

<u>Urn 3</u> <u># of Red =60</u> <u># of Green =10</u> <u># of Blue = 30</u> Viterbi Decoding to find state sequence

Observation : RRGGBRGR

• Find best possible state sequence

### Noting probabilities again

|     |                | $U_1$ | U <sub>2</sub> | U <sub>3</sub> |
|-----|----------------|-------|----------------|----------------|
|     | $U_1$          | 0.1   | 0.4            | 0.5            |
| A = | U <sub>2</sub> | 0.6   | 0.2            | 0.2            |
|     | U <sub>3</sub> | 0.3   | 0.4            | 0.3            |

|    |                | R   | G   | В   |
|----|----------------|-----|-----|-----|
|    | $U_1$          | 0.3 | 0.5 | 0.2 |
| D_ | U <sub>2</sub> | 0.1 | 0.4 | 0.5 |
| D= | U <sub>3</sub> | 0.6 | 0.1 | 0.3 |

$$\pi_i = P(q_1 = U_i)$$

dzezecki ranapgzopak

### Diagrammatic representation (1/2)



ter the second s

### Diagrammatic representation (2/2)



1862661fr247apg20pak

### **Observations and states**

O1 O2 O3 O4 O5 O6 O7 O8

OBS: R R G G B R G R

### State: $S_1 S_2 S_3 S_4 S_5 S_6 S_7 S_8$

S\* = "best" possible state (urn) sequence Goal: Maximize P(S\*|O) by choosing "best" S 266266thr247apg26pak

### Goal

 Maximize P(S|O) where S is the State Sequence and O is the Observation Sequence

$$S^* = \arg\max_{S} (P(S \mid O))$$

### False Start

 $O_1$  $O_2$  $O_3$  $O_4$  $O_5$  $O_6$  $O_8$  $O_7$ R G G B R **OBS**: R G R  $S_3$ S<sub>4</sub>  $S_6$  $S_2$  $S_5$  $S_7$  $S_8$ State: S₁

 $P(S \mid O) = P(S_{1-8} \mid O_{1-8})$  $P(S \mid O) = P(S_1 \mid O) \cdot P(S_2 \mid S_1, O) \cdot P(S_3 \mid S_{1-2}, O) \cdot \dots \cdot P(S_8 \mid S_{1-7}, O)$ 

## By Markov Assumption (a state depends only on the previous state)

 $P(S \mid O) = P(S_1 \mid O).P(S_2 \mid S_1, O).P(S_3 \mid S_2, O)...P(S_8 \mid S_7, O)$ 

226246eth+247apg20pak

### **Bayes Theorem**

### $P(A \mid B) = P(A).P(B \mid A) / P(B)$

### P(A) -: Prior P(B|A) -: Likelihood

 $\operatorname{arg\,max}_{S} P(S \mid O) = \operatorname{arg\,max}_{S} P(S) \cdot P(O \mid S)$ 

### **State Transitions Probability**

$$P(S) = P(S_{1-8})$$
  

$$P(S) = P(S_1).P(S_2 | S_1).P(S_3 | S_{1-2}).P(S_4 | S_{1-3})...P(S_8 | S_{1-7})$$

### By Markov Assumption (k=1)

 $P(S) = P(S_1).P(S_2 | S_1).P(S_3 | S_2).P(S_4 | S_3)...P(S_8 | S_7)$ 

### **Observation Sequence probability**

 $P(O | S) = P(O_1 | S_{1-8}) \cdot P(O_2 | O_1, S_{1-8}) \cdot P(O_3 | O_{1-2}, S_{1-8}) \cdot \cdot \cdot P(O_8 | O_{1-7}, S_{1-8})$ 

Assumption that ball drawn depends only on the Urn chosen

 $P(O | S) = P(O_1 | S_1) . P(O_2 | S_2) . P(O_3 | S_3) ... P(O_8 | S_8)$ 

 $P(S \mid O) = P(S).P(O \mid S)$ 

 $P(S | O) = P(S_1).P(S_2 | S_1).P(S_3 | S_2).P(S_4 | S_3)...P(S_8 | S_7).$ 

 $P(O_1 | S_1).P(O_2 | S_2).P(O_3 | S_3)...P(O_8 | S_8)$ 

256266thr247apg26pak

### Grouping terms

| <b>O</b> <sub>0</sub> | O <sub>1</sub> | O <sub>2</sub> | O <sub>3</sub> | O <sub>4</sub> | O <sub>5</sub>        | $O_6$ | O <sub>7</sub> | O <sub>8</sub> |                |
|-----------------------|----------------|----------------|----------------|----------------|-----------------------|-------|----------------|----------------|----------------|
| Obs: E                | R              | R              | G              | G              | В                     | R     | G              | R              |                |
| State: $S_0$          | S <sub>1</sub> | S <sub>2</sub> | S <sub>3</sub> | S <sub>4</sub> | <b>S</b> <sub>5</sub> | $S_6$ | S <sub>7</sub> | $S_8$          | S <sub>9</sub> |

P(S).P(O|S)

 $= [P(O_0|S_0).P(S_1|S_0)].$   $[P(O_1|S_1). P(S_2|S_1)].$   $[P(O_2|S_2). P(S_3|S_2)].$   $[P(O_3|S_3).P(S_4|S_3)].$   $[P(O_4|S_4).P(S_5|S_4)].$   $[P(O_5|S_5).P(S_6|S_5)].$   $[P(O_6|S_6).P(S_7|S_6)].$   $[P(O_7|S_7).P(S_8|S_7)].$  $[P(O_8|S_8).P(S_9|S_8)].$  We introduce the states  $S_0$  and  $S_9$  as initial and final states respectively.

- After  $S_8$  the next state is S<sub>9</sub> with probability 1, i.e., P(S<sub>9</sub>|S<sub>8</sub>)=1
- $O_0$  is  $\epsilon$ -transition

266246chi+2147apg20pak

### Introducing useful notation





### Recall

| <b>W</b> : | ^ | Brown | foxes | jumped | over | the | fence | - |
|------------|---|-------|-------|--------|------|-----|-------|---|
| T:         | ^ | JJ    | NNS   | VBD    | NN   | DT  | NN    | • |
|            |   | NN    | VBS   | JJ     | IN   |     | VB    |   |
|            |   |       |       |        | JJ   |     |       |   |
|            |   |       |       |        | RB   |     |       |   |



Λ



Probability of a path (e.g. Top most path) = P(T) \* P(W|T)

P(^) . P(NN|^) . P(NNS|NN) . P(VBD|NNS) . P(NN|VBD) . P(DT|NN) . P(NN|DT) . P(.|NN) . P(.)

P(^|^) . P(brown|NN) . P(foxes|NNS) . P(jumped|VBD) . P(over|NN) . P(the|DT) . P(fence|NN) . P(.|.)

### Viterbi Decoding

#### 8462K6chir247apg20pak

### **Probabilistic FSM**



The question here is:

"what is the most likely state sequence given the output sequence seen"

8862K6chir24rapg20pak

### Developing the tree



886266thra4apg20pak

### Tree structure contd...



The problem being addressed by this tree is  $S^* = \arg \max_{s} P(S \mid a_1 - a_2 - a_1 - a_2, \mu)$ a1-a2-a1-a2 is the output sequence and  $\mu$  the model or the machine 8462K6chir2Arapg20pak



**Problem statement:** Find the best possible sequence  $S^* = \arg \max P(S \mid O, \mu)$ S where,  $S \rightarrow$  State Seq,  $O \rightarrow$  Output Seq,  $\mu \rightarrow$  Model or Machine Model or Machine =  $\{S_0, S, A, T\}$ Start symbol State collection Alphabet Transitions set T is defined as  $P(S_i \xrightarrow{a_k} S_j) \quad \forall_{i, j, k}$ 

### Tabular representation of the tree

| Latest symbol<br>observed<br>Ending state | €   | a <sub>1</sub>                           | a <sub>2</sub>          | a <sub>1</sub>         | a <sub>2</sub>              |
|-------------------------------------------|-----|------------------------------------------|-------------------------|------------------------|-----------------------------|
| S <sub>1</sub>                            | 1.0 | (1.0*0.1,0.0*0.2)<br>=( <b>0.1</b> ,0.0) | (0.02,<br><b>0.09</b> ) | (0.009, <b>0.012</b> ) | (0.0024,<br><b>0.0081</b> ) |
| S <sub>2</sub>                            | 0.0 | (1.0*0.3,0.0*0.3)<br>=( <b>0.3</b> ,0.0) | (0.04, <b>0.06</b><br>) | ( <b>0.027</b> ,0.018) | (0.0048,0.005<br>4)         |

**Note:** Every cell records the winning probability ending in that state Final winner

The bold faced values in each cell shows the sequence probability ending in that state. Going backward from final winner sequence which ends in state  $S_2$  (indicated By the 2<sup>nd</sup> tuple), we recover the sequence.

### Algorithm

(following James Alan, Natural Language Understanding (2<sup>nd</sup> edition), Benjamin Cummins (pub.), 1995

Given:

- 1. The HMM, which means:
  - a. Start State: S<sub>1</sub>
  - b. Alphabet:  $A = \{a_1, a_2, ..., a_p\}$
  - c. Set of States:  $S = \{S_1, S_2, \dots, S_n\}$
  - d. Transition probability which is equal to  $P(S_i \xrightarrow{a_k} S_j) \quad \forall_{i, j, k}$   $P(S_j, a_k \mid S_i)$
- 2. The output string  $o_1 o_2 \dots o_T$

### To find:

The most likely sequence of states  $C_1C_2...C_T$  which produces the given output sequence, *i.e.*,  $S_1S_2...S_T = \arg \max_{\alpha} [P(S | o_1, o_2, ... o_T, \mu]]$
#### 1. Initialization

```
SEQSCORE(1,1)=1.0
BACKPTR(1,1)=0
For(i=2 to N) do
SEQSCORE(i,1)=0.0
[expressing the fact that first state is S<sub>1</sub>]
```

#### 2. Iteration

For(t=2 to T) do For(i=1 to N) do SEQSCORE(i,t) = Max<sub>(j=1,N)</sub>

 $[SEQSCORE(j,(t-1)) * P(Sj \xrightarrow{a_k} Si)]$ 

BACKPTR(I,t) = index *j* that gives the MAX above

886266thr847apg86pak

#### 3. Seq. Identification

```
S(T) = i that maximizes SEQSCORE(i,T)
For i from (T-1) to 1 do
S(i) = BACKPTR[S(i+1),(i+1)]
```

#### **Optimizations possible:**

- 1. BACKPTR can be 1\*T
- 2. SEQSCORE can be T\*2

**Homework**:- Compare this with A\*, Beam Search [Homework] Reason for this comparison:

Both of them work for finding and recovering sequence

#### Back to POS tag problem

# Viterbi for POS Tagging

- E.g.
  - -T: Tags
  - -W: Words
  - Two special symbol: '^' and '.'
    Find out number of paths in the tree given word sequence.

# Exponential *w.r.t.* number of words in the sentence of length *L*

Number of path = Number of leaves in the tree.

 $O(T^L)$ 



#### We do not need exponential work!

 Suppose our tags are – DT, NN, VB, JJ, RB and OT

• F a



| <b>L</b> .9. |     |       |     |       |   |               |
|--------------|-----|-------|-----|-------|---|---------------|
| ٨            | The | black | dog | barks | • | OI- others    |
| ^            | DT  | DT    | DT  | DT    |   |               |
|              | NN  | NN    | NN  | NN    |   |               |
|              | VB  | VB    | VB  | VB    |   | Possible tags |
|              | JJ  | JJ    | JJ  | JJ    |   |               |
|              | RB  | RB    | RB  | RB    |   |               |
|              | ОТ  | ОТ    | ОТ  | ОТ    |   |               |

So, 6<sup>4</sup> possible path



dog: 6<sup>3</sup>

barks: 64

.: 64

#### Total 6<sup>4</sup> paths

# Consider the paths that end in NN after seeing input "The black"

| ۸ | The | black |                                                                            |
|---|-----|-------|----------------------------------------------------------------------------|
| ^ | DT  | NN    | <pre>P(T).P(W T) = P(DT ^) . P(NN DT) . P(The DT) . P(Black NN)</pre>      |
| ^ | NN  | NN    | <pre>P(T).P(W T) = P(NN ^) . P(NN NN) . P(The NN) . P(Black NN)</pre>      |
| ^ | VB  | NN    | <pre>P(T).P(W T) = P(VB ^) . P(NN VB) . P(The VB) . P(Black NN)</pre>      |
| ^ | JJ  | NN    | <pre>P(T).P(W T) = P(JJ ^) . P(NN JJ) . P(The JJ) . P(Black NN)</pre>      |
| ^ | RB  | NN    | P(T).P(W T) = P(RB ^) . P(NN RB) . P(The RB) . P(Black NN)                 |
| ^ | ОТ  | NN    | $P(T).P(W T) = P(OT ^{)} \cdot P(NN OT) \cdot P(The OT) \cdot P(Black NN)$ |

 $Complexity = L * T^2$  For each tag, only path with highest probability value are retained, others are discarded.

| <b>W</b> : | ^ | Brown | foxes | jumped | over | the | fence | - |
|------------|---|-------|-------|--------|------|-----|-------|---|
| T:         | ^ | JJ    | NNS   | VBD    | NN   | DT  | NN    | • |
|            |   | NN    | VBS   | JJ     | IN   |     | VB    |   |
|            |   |       |       |        | JJ   |     |       |   |
|            |   |       |       |        | RB   |     |       |   |



Λ



Probability of a path (e.g. Top most path) = P(T) \* P(W|T)

P(^) . P(NN|^) . P(NNS|NN) . P(VBD|NNS) . P(NN|VBD) . P(DT|NN) . P(NN|DT) . P(.|NN) . P(.)

P(^|^) . P(brown|NN) . P(foxes|NNS) . P(jumped|VBD) . P(over|NN) . P(the|DT) . P(fence|NN) . P(.|.)

# **Decoding Summary**

- On every word compute the partial path probability
- Out of all partial paths ending in a particular state, choose the one with highest path probability
- Advance only that leaf
- In case of tie, choose any one arbitrarily

#### **Assignment Discussion**

## **Brown Corpus**

- 1,014,312 words of running text of edited English prose printed in the United States
- 500 samples of 2000+ words each
- Facilitate automatic or semi-automatic syntactic analysis

#### Universal POS Tag Set (https://universaldependencies.org/ u/pos/)

| Open class words                       | Closed class words |  |  |
|----------------------------------------|--------------------|--|--|
| <u>ADJ</u> (The car is <b>green</b> .) | ADP                |  |  |
| <u>ADV</u> ( <i>arguably</i> wrong)    | <u>AUX</u>         |  |  |
| INTJ (yes, no, uhuh, etc.)             | <u>CCONJ</u>       |  |  |
| NOUN (tree, man)                       | DET                |  |  |
| <u>PROPN</u>                           | <u>NUM</u>         |  |  |
| VERB                                   | PART               |  |  |
|                                        | PRON               |  |  |

SCONJ

Other <u>PUNCT</u> <u>SYM</u>

X

# Noun (1/2)

#### **Definition**

- Nouns are a part of speech typically denoting a person, place, thing, animal or idea.
- The NOUN tag is intended for common nouns only. See <u>PROPN</u> for proper nouns and <u>PRON</u> for pronouns.
- Note that some verb forms such as gerunds and infinitives may share properties and usage of nouns and verbs. Depending on language and context, they may be classified as either <u>VERB</u> or NOUN.

Swimming\_noun is a good exercise; He is swimming\_verb

## Noun (2/2)

#### **Examples**

- girl
- cat
- tree
- air
- beauty

#### References

- Loos, Eugene E., et al. 2003. Glossary of linguistic terms: What is a noun?
- <u>Wikipedia</u>

#### Annotation matter

#### Tag repository and probability

- Where do tags come from?
   Tag set
- How to get probability values i.e. P(.)?
   Annotated corpora

After modeling of the problem, emphasis should be on the corpus

# Computing P(.) values

Let us suppose annotated corpus has the following sentence

|     | have | а  | brown | bag |
|-----|------|----|-------|-----|
| PRN | VB   | DT | JJ    | NN  |

$$P(NN \mid JJ) = \frac{Number\_of\_times\_JJ\_followed\_by\_NN}{Number\_of\_times\_JJ\_appeared}$$

 $P(Brown | JJ) = \frac{Number\_of\_times\_Brown\_tagged\_as\_JJ}{Number\_of\_times\_JJ\_appeared}$ 

## Why Ratios?

- This way of computing parameter probabilities: is this <u>correct</u>?
- What does "correct" mean?
- Is this principled?
- We are using Maximum Likelihood Estimate (<u>MLE</u>)
- Assumption: underlying distribution is multinomial

## Explanation with coin tossing

- A coin is tossed 100 times, Head appears 40 times
- P(H)= 0.4
- Why?
- Because of maximum likelihood

#### N tosses, K Heads, parameter P(H)=p

- Construct Maximum Likelihood Expression
- Take log likelihood and take derivative
- Equate to 0 and Get p

$$L = p^{K} (1 - p)^{N - K}$$
  

$$\Rightarrow LL = \log(L) = K \log p + (N - K) \log(1 - p)$$
  

$$\Rightarrow \frac{d(LL)}{dp} = \frac{K}{p} - \frac{N - K}{1 - p}$$
  

$$\Rightarrow \frac{d(LL)}{dp} = 0 \quad gives \quad p = \frac{K}{N}$$

### Exercise

- Following the process for finding the probability of Head from N tosses of coin yielding K Heads, prove that the transition probabilities can be found from MLE
- Most important: get the likelihood expression
- Use chapter 2 of the book

 Pushpak Bhattacharyya: Machine translation, CRC Press, Taylor & Francis Group, Boca Raton, USA, 2015, ISBN: 978-1-4398-9718-8

## Appendix

## Appendages to tags in Penn Tag Set

- S = plural D = past tense
- \$ = possessive Z = 3rd singular verb
- R = comparative N = past participle
- T = superlative G =
- **G** = present participle or gerund
- **O** = objective case of pronoun

# Machine Translation v/s POS tagging!

- Similarity
  - POS
    - Every word in a sentence has one corresponding tag.
  - $\mathsf{MT}$ 
    - Every word in a sentence has one (or more) corresponding translated word.
- Difference
  - Order: Order of translated word may change.
  - Fertility: One word corresponds to many. Many to one also possible.

## Complexity

- POS and HMM
  - Linear time complexity
- MT and Bean search
  - Exponential time complexity
  - Permutation of words produces exponential searc space
  - However, for related languages, MT is like POS tagging

#### Properties of related languages

1. Order preserving

2. Fertility ~ 1

#### 3. Morphology preserving

| Hindi   | Jaaunga | Hindi & Bengali |
|---------|---------|-----------------|
| Bengali | Jaabo   |                 |
| English | Will go | Hindi & English |

## Properties of related languages

4. Syncretism: Suffix features should be similarly loaded

| Hindi   | Main <i>jaaunga</i> | Hum <i>jaayenge</i> | Hindi & Bengali |
|---------|---------------------|---------------------|-----------------|
| Bengali | Ami <i>jaabo</i>    | Aamra <i>jaabo</i>  |                 |

#### 5. Idiomaticity: Literal translation should be high

| Hindi   | Aap Kaise Ho?      | Hindi & Bengal  |
|---------|--------------------|-----------------|
| Bengali | Aapni Kemon Achen? |                 |
| English | How do you do?     | Hindi & English |

656266thr247apg20pak

#### Points to ponder wrt HMM and Viterbi

666266thr247apg26pak

## Viterbi Algorithm

- Start with the start state.
- Keep advancing sequences that are "maximum" amongst all those ending in the same state

6262K6chir24rapg26pak

#### Viterbi Algorithm



Claim: We do not need to draw all the subtrees in the algorithm

#### Viterbi phenomenon (Markov process)



Next step all the probabilities will be multiplied by identical probability (lexical and transition). So children of N2 will have probability less than the children of N1.

686266thr247apg26pak

## What does P(A|B) mean?

- P(A|B)=P(B|A)If P(A)=P(B)
- P(A|B) means??
  - Causality?? B causes A??
  - Sequentiality?? A follows B?

#### Classic problems with respect to HMM

 Given the observation sequence, find the possible state sequences- Viterbi
 Given the observation sequence, find its probability- forward/backward algorithm
 Given the observation sequence find the HMM prameters.- Baum-Welch algorithm

#### **Illustration of Viterbi**

- The "start" and "end" are important in a sequence.
- Subtrees get eliminated due to the Markov Assumption.

#### POS Tagset

- N(noun), V(verb), O(other) [simplified]
- ^ (start), . (end) [start & end states]

#### **Illustration of Viterbi**

#### **Lexicon**

people: N, V laugh: N, V

- •
- •
- •

#### **Corpora for Training**

$$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$$
#### Inference



Partial sequence graph

|   | ^ | N   | V   | 0   | •   |
|---|---|-----|-----|-----|-----|
| ٨ | 0 | 0.6 | 0.2 | 0.2 | 0   |
| N | 0 | 0.1 | 0.4 | 0.3 | 0.2 |
| V | 0 | 0.3 | 0.1 | 0.3 | 0.3 |
| 0 | 0 | 0.3 | 0.2 | 0.3 | 0.2 |
| • | 1 | 0   | 0   | 0   | 0   |

This transition table will change from language to language due to language divergences.

## **Lexical Probability Table**

|   | E | people             | laugh              | ••• |     |
|---|---|--------------------|--------------------|-----|-----|
| ٨ | 1 | 0                  | 0                  | ••• | 0   |
| Ν | 0 | 1x10 <sup>-3</sup> | 1x10 <sup>-5</sup> | ••• | ••• |
| V | 0 | 1x10 <sup>-6</sup> | 1x10 <sup>-3</sup> | ••• | ••• |
| 0 | 0 | 0                  | 0                  | ••• | ••• |
| • | 1 | 0                  | 0                  | 0   | 0   |

Size of this table = # pos tags in tagset X vocabulary size

vocabulary size = # unique words in corpus

### Inference

#### New Sentence:



p( ^ N N . | ^ people laugh .) = (0.6 x 0.1) x (0.1 x 1 x 10<sup>-3</sup>) x (0.2 x 1 x 10<sup>-5</sup>)

### **Computational Complexity**

- If we have to get the probability of each sequence and then find maximum among them, we would run into exponential number of computations.
- If |s| = #states (tags + ^ + . ) and |o| = length of sentence (words + ^ + . ) Then, #sequences = s<sup>|o|-2</sup>
- But, a large number of partial computations can be reused using Dynamic Programming.

### **Dynamic Programming**



## **Computational Complexity**

- Retain only those N / V / O nodes which ends in the highest sequence probability.
- Now, complexity reduces from |s|<sup>|o|</sup> to |s|.|o|
- Here, we followed the Markov assumption of order 1.

786266fir247apg20pak

## Points to ponder wrt HMM and Viterbi

886266thr247apg26pak

# Viterbi Algorithm

- Start with the start state.
- Keep advancing sequences that are "maximum" amongst all those ending in the same state

#### 8462K6chir24rapg20pak

## Viterbi Algorithm



Claim: We do not need to draw all the subtrees in the algorithm

## Viterbi phenomenon (Markov process)



Next step all the probabilities will be multiplied by identical probability (lexical and transition). So children of N2 will have probability less than the children of N1.

886266thr247apg26pak

## What does P(A|B) mean?

- P(A|B)=P(B|A)If P(A)=P(B)
- P(A|B) means??
  - Causality?? B causes A??
  - Sequentiality?? A follows B?

8462K6chir2Arapg20pak

# **Reading List**

https://www.nltk.org/book/ch05.html

• **TNT** (<u>http://www.aclweb.org/anthology-new/A/A00/A00-1031.pdf</u>)

 Hindi POS Tagger built by IIT
Bombay (<u>http://www.cse.iitb.ac.in/pb/papers/ACL-2006-</u> Hindi-POS-Tagging.pdf)