CS626: Speech, NLP and the Web

Penn TAG Set, HMM and Viterbi Decoding, Other Graphical Models for NLP, SVM Pushpak Bhattacharyya
Computer Science and Engineering Department
IIT Bombay
Week of $24^{\text {th }}$ August, 2020

Task vs. Technique Matrix

Task (row) vs. Technique (col) Matrix	Rules Based/Kn owledgeBased	Classical ML				Deep Learning		
		Perceptron	Logistic Regression	SVM	Graphical Models (HMM, MEMM, CRF)	Dense FF with BP and softmax	$\begin{aligned} & \text { RNN- } \\ & \text { LSTM } \end{aligned}$	CNN
Morphology								
POS								
Chunking								
Parsing								
NER, MWE								
Coref								
WSD								
Machine Translation								
Semantic Role Labeling								
Sentiment								
Question Answering								

Part of Speech Tagging

- Attach to each word a tag from Tag-Set
- Standard Tag-set : Penn Treebank (for English).

Penn POS TAG Set

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

CC
CD
DT
EX
FW

IN

JJ
JJR
JJS
LS
MD
NN
NNS
NNP
NNPS
PDT
POS
PRP
PRP\$
RB
RBR

Coordinating conjunction
Cardinal number
Determiner
Existential there
Foreign word
Preposition or subordinating conjun

Adjective
Adjective, comparative
Adjective, superlative
List item marker
Modal
Noun, singular or mass
Noun, plural
Proper noun, singular
Proper noun, plural
Predeterminer
Possessive ending
Personal pronoun
Possessive pronoun
Adverb
Adverb, comparative

Penn POS TAG Set (cntd)

22.	RBS
23.	RP
24.	SYM
25.	TO
26.	UH
27.	VB
28.	VBD
29.	VBG
30.	VBP
31.	VBZ
32.	WDT
33.	WP
34.	WP\$
35.	WRB
36.	

Adverb, superlative
Particle
Symbol
to
Interjection
Verb, base form
Verb, past tense
Verb, gerund or present participle

Verb, past participle
Verb, non-3rd person singular present

Verb, 3rd person singular present

Wh-determiner
Wh-pronoun
Possessive wh-pronoun
Wh-adverb

A dialogue text POS tagged from Treebank

[SpeakerB1/SYM]
[SpeakerA2/SYM] ./.
So/UH how/WRB many/JJ ,/, um/UH ,/,
[credit/NN cards/NNS] do/VBP
[you/PRP] have/VB ?/.
./.
[Um/UH]
,/,
[I/PRP]
think/VBP
[I/PRP]
'm/VBP down/IN to/IN
[one/CD]
https://catalog.Idc.upenn.edu/debc/addenda/LDC99T42 .pos.txt

Redirafapg8ดpak

Mathematics of POS tagging

Noisy Channel Model

$$
\left(w_{n}, w_{n-1}, \ldots, w_{1}\right)
$$

$\left(t_{m}, t_{m-1}, \ldots, t_{1}\right)$

Sequence W is transformed into sequence T

$$
\begin{aligned}
& \mathrm{T}^{*}=\underset{\mathrm{T}}{\operatorname{argmax}}(\mathrm{P}(\mathrm{~T} \mid \mathrm{W})) \\
& \mathrm{W}^{*}=\underset{\mathrm{W}}{\operatorname{argmax}}(\mathrm{P}(\mathrm{~W} \mid \mathrm{T}))
\end{aligned}
$$

Argmax computation (1/2)

Best tag sequence
$=\mathrm{T}^{*}$
$=\operatorname{argmax} \mathrm{P}(\mathrm{T} \mid \mathrm{W})$
$=\operatorname{argmax} \mathrm{P}(\mathrm{T}) \mathrm{P}(\mathrm{W} \mid \mathrm{T})$
(by Baye's Theorem)
$P(T)=P\left(t_{0}=\wedge t_{1} t_{2} \ldots t_{n+1}=.\right)$
$=P\left(t_{0}\right) P\left(t_{1} \mid t_{0}\right) P\left(t_{2} \mid t_{1} t_{0}\right) P\left(t_{3} \mid t_{2} t_{1} t_{0}\right) \ldots$ $P\left(t_{n} \mid t_{n-1} t_{n-2} \ldots t_{0}\right) P\left(t_{n+1} \mid t_{n} t_{n-1} \ldots t_{0}\right)$
$=P\left(t_{0}\right) P\left(t_{1} \mid t_{0}\right) P\left(t_{2} \mid t_{1}\right) \ldots P\left(t_{n} \mid t_{n-1}\right) P\left(t_{n+1} \mid t_{n}\right)$
$\mathrm{N}+1$
$\overline{\bar{i}=0} \prod_{0}\left(\mathbf{t}_{\mathbf{i}} \mid \mathbf{t}_{\mathrm{i}-1}\right)$
Bigram Assumption

Argmax computation (2/2)

$P(W \mid T)=P\left(w_{0} \mid t_{0}-t_{n+1}\right) P\left(w_{1} \mid w_{0} t_{0}-t_{n+1}\right) P\left(w_{2} \mid w_{1} w_{0} t_{0}-t_{n+1}\right) \ldots$

$$
P\left(w_{n} \mid w_{0}-w_{n-1} t_{0}-t_{n+1}\right) P\left(w_{n+1} \mid w_{0}-w_{n} t_{0}-t_{n+1}\right)
$$

Assumption: A word is determined completely by its tag. This is inspired by speech recognition

$$
\begin{aligned}
& =P\left(w_{0} \mid t_{0}\right) P\left(w_{1} \mid t_{1}\right) \ldots P\left(w_{n+1} \mid t_{n+1}\right) \\
& =\prod_{i=0}^{n+1} P\left(w_{i} \mid t_{i}\right) \\
& =\prod_{i=1}^{n+1} P\left(w_{i} \mid t_{i}\right) \quad \text { (Lexical Probability Assumption) }
\end{aligned}
$$

Generative Model

This model is called Generative model.
Here words are observed from tags as states.
This is similar to HMM.

Lawrence R. Rabiner:a tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, 1989, pages 257-286
https://web.ece.ucsb.edu/Faculty/Rabiner/ece259/Re prints/tutorial\%20on\%20hmm\%20and\%20application s.pdf

Definition of HMM and URN example

- An HMM is defined by
<S, V, A, B, ா>

Here:

$$
-\mathrm{S}=\{\mathrm{U} 1, \mathrm{U} 2, \mathrm{U} 3\}
$$

$$
-V=\{R, G, B\}
$$

For observation sequence:

$$
\mathrm{O}=\left[\mathrm{O}_{1} \ldots \mathrm{O}_{n}\right]
$$

and State sequence

$$
Q=\left[S_{1} \ldots S_{n}\right]
$$

URN Example

Colored Ball choosing

Urn 3 \# of Red $=60$ \# of Green =10 $\#$ of Blue $=30$

Viterbi Decoding to find state sequence

- Observation : RRGGBRGR
- Find best possible state sequence

Noting probabilities again

$A=$| | U_{1} | U_{2} | U_{3} |
| :--- | :--- | :--- | :--- |
| U_{1} | 0.1 | 0.4 | 0.5 |
| U_{2} | 0.6 | 0.2 | 0.2 |
| U_{3} | 0.3 | 0.4 | 0.3 |

$B=$| | R | G | B |
| :--- | :--- | :--- | :--- |
| U_{1} | 0.3 | 0.5 | 0.2 |
| U_{2} | 0.1 | 0.4 | 0.5 |
| U_{3} | 0.6 | 0.1 | 0.3 |

$$
\pi_{i}=P\left(q_{1}=U_{i}\right)
$$

Diagrammatic representation (1/2)

Diagrammatic representation (2/2)

Observations and states

$$
\begin{array}{rlllllll}
O_{1} & O_{2} & O_{3} & O_{4} & O_{5} & O_{6} & O_{7} & O_{8}^{8} \\
\text { OBS: } R & R & G & G & B & R & G & R \\
& & & & & & & \\
\text { State: } S_{1} S_{2} & S_{3} & S_{4} & S_{5} & S_{6} & S_{7} & S_{8}
\end{array}
$$

S* = "best" possible state (urn) sequence
Goal: Maximize $\mathrm{P}\left(\mathrm{S}^{*} \mid \mathrm{O}\right)$ by choosing "best" S

Goal

- Maximize $\mathrm{P}(\mathrm{S} \mid \mathrm{O})$ where S is the State Sequence and O is the Observation Sequence

$$
S^{*}=\arg \max _{S}(P(S \mid O))
$$

False Start

	O_{1}	O_{2}	O_{3}	O_{4}	O_{5}	O_{6}	O_{7}	O_{8}
OBS:	R	R	G	G	B	R	G	R
State:	S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$	$\mathrm{~S}_{5}$	$\mathrm{~S}_{6}$	$\mathrm{~S}_{7}$	$\mathrm{~S}_{8}$
$P(S \mid O)=$	$P\left(S_{1-8} \mid O_{1-8}\right)$							
$P(S \mid O)=$	$P\left(S_{1} \mid O\right) . P\left(S_{2} \mid S_{1}, O\right) . P\left(S_{3} \mid S_{1-2, O}, \ldots\right) . . P\left(S_{8} \mid S_{1-7}, O\right)$							

By Markov Assumption (a state depends only on the previous state)

$$
P(S \mid O)=P\left(S_{1} \mid O\right) \cdot P\left(S_{2} \mid S_{1}, O\right) \cdot P\left(S_{3} \mid S_{2}, O\right) \ldots P\left(S_{8} \mid S_{7}, O\right)
$$

Bayes Theorem

$$
P(A \mid B)=P(A) \cdot P(B \mid A) / P(B)
$$

$\mathrm{P}(\mathrm{A})$-: Prior
$P(B \mid A)$-: Likelihood

$$
{\arg \max _{S} P(S \mid O)=\arg \max _{S} P(S) \cdot P(O \mid S), ~}_{\text {S }}
$$

State Transitions Probability

$$
\begin{aligned}
& P(S)=P\left(S_{1-8}\right) \\
& P(S)=P\left(S_{1}\right) \cdot P\left(S_{2} \mid S_{1}\right) \cdot P\left(S_{3} \mid S_{1-2}\right) \cdot P\left(S_{4} \mid S_{1-3}\right) \ldots P\left(S_{8} \mid S_{1-7}\right)
\end{aligned}
$$

By Markov Assumption (k=1)

$$
P(S)=P\left(S_{1}\right) \cdot P\left(S_{2} \mid S_{1}\right) \cdot P\left(S_{3} \mid S_{2}\right) \cdot P\left(S_{4} \mid S_{3}\right) \ldots P\left(S_{8} \mid S_{7}\right)
$$

Observation Sequence probability

$P(O \mid S)=P\left(O_{1} \mid S_{1-8}\right) \cdot P\left(O_{2} \mid O_{1}, S_{1-8}\right) \cdot P\left(O_{3} \mid O_{1-2}, S_{1-8}\right) . . . P\left(O_{8} \mid O_{1-7, S} S_{1-8}\right)$
Assumption that ball drawn depends only on the Urn chosen
$P(O \mid S)=P\left(O_{1} \mid S_{1}\right) \cdot P\left(O_{2} \mid S_{2}\right) \cdot P\left(O_{3} \mid S_{3}\right) \ldots P\left(O_{8} \mid S_{8}\right)$
$P(S \mid O)=P(S) \cdot P(O \mid S)$
$P(S \mid O)=P\left(S_{1}\right) \cdot P\left(S_{2} \mid S_{1}\right) \cdot P\left(S_{3} \mid S_{2}\right) \cdot P\left(S_{4} \mid S_{3}\right) \ldots P\left(S_{8} \mid S_{7}\right)$.
$P\left(O_{1} \mid S_{1}\right) . P\left(O_{2} \mid S_{2}\right) . P\left(O_{3} \mid S_{3}\right) \ldots P\left(O_{8} \mid S_{8}\right)$

Grouping terms

O_{0}	O_{1}	O_{2}	O_{3}	O_{4}	O_{5}	O_{6}	O_{7}	O_{8}	
Obs: ε	R	R	G	G	B	R	G	R	
State: S_{0}	$\mathrm{~S}_{1}$	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$	$\mathrm{~S}_{5}$	$\mathrm{~S}_{6}$	$\mathrm{~S}_{7}$	$\mathrm{~S}_{8}$	$\mathrm{~S}_{9}$

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~S}) \cdot \mathrm{P}\left(\mathrm{O}^{\mid S}\right) \\
&= {\left[\mathrm{P}\left(\mathrm{O}_{0} \mid \mathrm{S}_{0}\right) \cdot \mathrm{P}\left(\mathrm{~S}_{1} \mid \mathrm{S}_{0}\right)\right] . } \\
& {\left[\mathrm{P}\left(\mathrm{O}_{1} \mid \mathrm{S}_{1}\right) \cdot\right.} \\
&\left.\mathrm{P}\left(\mathrm{~S}_{2} \mid \mathrm{S}_{1}\right)\right] . \\
& {\left[\mathrm{P}\left(\mathrm{O}_{2} \mid \mathrm{S}_{2}\right) \cdot \quad \mathrm{P}\left(\mathrm{~S}_{3} \mid \mathrm{S}_{2}\right)\right] . } \\
& {\left[\mathrm{P}\left(\mathrm{O}_{3} \mid \mathrm{S}_{3}\right) \cdot \mathrm{P}\left(\mathrm{~S}_{4} \mid \mathrm{S}_{3}\right)\right] . } \\
& {\left[\mathrm{P}\left(\mathrm{O}_{4} \mathrm{~S}_{4}\right) \cdot \mathrm{P}\left(\mathrm{~S}_{5} \mathrm{~S}_{4}\right)\right] . } \\
& {\left[\mathrm{P}\left(\mathrm{O}_{5} \mid \mathrm{S}_{5}\right) \cdot \mathrm{P}\left(\mathrm{~S}_{6} \mid \mathrm{S}_{5}\right)\right] . } \\
& {\left[\mathrm{P}\left(\mathrm{O}_{6} \mid \mathrm{S}_{6}\right) \cdot \mathrm{P}\left(\mathrm{~S}_{7} \mathrm{~S}_{6}\right)\right] . } \\
& {\left[\mathrm{P}\left(\mathrm{O}_{7} \mid \mathrm{S}_{7}\right) \cdot \mathrm{P}\left(\mathrm{~S}_{8} \mid \mathrm{S}_{7}\right)\right] . } \\
& {\left[\mathrm{P}\left(\mathrm{O}_{8} \mid \mathrm{S}_{8}\right) \cdot \mathrm{P}\left(\mathrm{~S}_{9} \mid \mathrm{S}_{8}\right)\right] . }
\end{aligned}
$$

We introduce the states S_{0} and S_{9} as initial and final states respectively.
After S_{8} the next state is S_{9} with probability 1 , i.e., $P\left(S_{9} \mid S_{8}\right)=1$
O_{0} is ε-transition

Introducing useful notation

O_{0}	O_{1}	O_{2}	O_{3}	O_{4}	O_{5}	O_{6}	O_{7}	O_{8}	
Obs: ε	R	R	G	G	B	R	G	R	
State: S_{0}	$\mathrm{~S}_{1}$	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$	$\mathrm{~S}_{5}$	$\mathrm{~S}_{6}$	$\mathrm{~S}_{7}$	$\mathrm{~S}_{8}$	$\mathrm{~S}_{9}$

Recall

Probability of a path (e.g. Top most path) $=P(\mathrm{~T}){ }^{*} P(\mathrm{~W} \mid \mathrm{T})$ $P\left({ }^{\wedge}\right) \cdot P(N N / \wedge) . P(N N S / N N) . P(V B D / N N S) . P(N N / V B D)$. $P(D T / N N) . P(N N / D T) . P(. \mid N N) . P($.
$P(\wedge / \wedge) . P(b r o w n / N N) . P(f o x e s / N N S) . P(j u m p e d / V B D)$. P(over/NN) . P(the/DT) . P(fence/NN) . P(...)

Viterbi Decoding

Probabilistic FSM

The question here is:
"what is the most likely state sequence given the output sequence seen"

Developing the tree

Tree structure contd...

The problem being addressed by this tree is $S^{*}=\arg \max P\left(S \mid a_{1}-a_{2}-a_{1}-a_{2, \mu}\right)$ $\mathrm{a} 1-\mathrm{a} 2-\mathrm{a} 1-\mathrm{a} 2$ is the output sequence and μ the model or the machine

Path found:
(working backward)

Problem statement: Find the best possible sequence

$$
S^{*}=\arg \max P(S \mid O, \mu)
$$

where, $S \rightarrow$ State Seq, $O \rightarrow$ Output Seq, $\mu \rightarrow$ Model or Machine

T is defined as $P\left(S_{i} \xrightarrow{a_{k}} S_{j}\right) \quad \forall_{i, j, k}$

Tabular representation of the tree

Latest symbol observed	$€$	a_{1}	a_{2}	a_{1}	a_{2}
Ending state					

Note: Every cell records the winning probability ending in that state
Final winner
The bold faced values in each cell shows the sequence probability ending in that state. Going backward from final winner sequence which ends in state S_{2} (indicated By the $2^{\text {nd }}$ tuple), we recover the sequence.

Algorithm

(following James Alan, Natural Language Understanding (2nd edition), Benjamin Cummins (pub.), 1995

Given:

1. The HMM, which means:
a. Start State: S_{1}
b. Alphabet: $A=\left\{a_{1}, a_{2}, \ldots a_{p}\right\}$
c. Set of States: $S=\left\{S_{1}, S_{2}, \ldots S_{n}\right\}$
d. Transition probability which is equal to

$$
P\left(S_{i} \xrightarrow{a_{k}} S_{j}\right) \quad \forall_{i, j, k}
$$

2. The output string $\mathrm{o}_{1} \mathrm{O}_{2} \ldots \mathrm{o}_{\mathrm{T}}$

$$
P\left(S_{j}, a_{k} \mid S_{i}\right)
$$

To find:
The most likely sequence of states $\mathrm{C}_{1} \mathrm{C}_{2} \ldots \mathrm{C}_{\mathrm{T}}$ which produces the given output sequence, i.e., $\mathrm{S}_{1} \mathrm{~S}_{2} \ldots \mathrm{~S}_{\mathrm{T}}=\quad \underset{c}{\arg \max \left[P\left(S \mid o 1, o_{2}, \ldots o r, \mu\right]\right.}$

```
\(\operatorname{SEQSCORE}(1,1)=1.0\)
BACKPTR(1,1)=0
For(i=2 to N) do
    SEQSCORE(i,1)=0.0
[expressing the fact that first state is \(\mathrm{S}_{1}\) ]
```


2. Iteration

```
For( \(\mathrm{t}=2\) to T ) do
    For( \(\mathrm{i}=1\) to N ) do
        \(\operatorname{SEQSCORE}(\mathrm{i}, \mathrm{t})=\operatorname{Max}_{(\mathrm{j}=1, \mathrm{~N})}\)
```

 \(\left[\operatorname{SEQSCORE}(j,(t-1)) * P\left(S j \xrightarrow{a_{k}} S i\right)\right]\)
 \(\operatorname{BACKPTR}(I, \mathrm{t})=\) index \(j\) that gives the MAX above

3. Seq. Identification

$\mathrm{S}(\mathrm{T})=\mathrm{i}$ that maximizes $\operatorname{SEQSCORE}(\mathrm{i}, \mathrm{T})$
For ifrom (T-1) to 1 do

$$
S(i)=\operatorname{BACKPTR}[S(i+1),(i+1)]
$$

Optimizations possible:

1. BACKPTR can be $1^{*} \top$
2. SEQSCORE can be T*2

Homework:- Compare this with A*, Beam Search [Homework]
Reason for this comparison:
Both of them work for finding and recovering sequence

Back to POS tag problem

Viterbi for POS Tagging

- E.g.
-T: Tags
- W: Words
- Two special symbol: ‘^’ and ‘’'

Find out number of paths in the tree given word sequence.

Exponential w.r.t. number of words in the sentence of length L

Number of path $=$ Number of leaves in the tree.

$$
O\left(T^{L}\right)
$$

We do not need exponential work!

- Suppose our tags are - DT, NN, VB, JJ, RB and OT

\wedge	The	black	dog	barks	.
\wedge	DT	DT	DT	DT	
	NN	NN	NN	NN	
	VB	VB	VB	VB	
	JJ	JJ	JJ	JJ	
	RB	RB	RB	RB	
	OT	OT	OT	OT	

DT- determiner
NN- Noun
VB- Verb
JJ- Adjective
RB- Adverb
OT- others
Possible tags

So, 6^{4} possible path

dog: 6^{3}
barks: 6^{4}
Total 6^{4} paths

Consider the paths that end in NN after seeing input "The black"

\wedge	The	black	
\wedge	DT	NN	$\begin{aligned} & P(\mathrm{~T}) \cdot P(\mathrm{~W} \mid \mathrm{T})=P(\mathrm{DT} \mid \wedge) \cdot P(\mathrm{NN} \mid \mathrm{DT}) \cdot P(\text { The } \mid \mathrm{DT}) . \\ & P(\mathrm{Black} \mid \mathrm{NN}) \end{aligned}$
\wedge	NN	NN	$P(\mathrm{~T}) \cdot P(\mathrm{~W} \mid \mathrm{T})=P(\mathrm{NN} \mid \wedge) \cdot P(\mathrm{NN} \mid \mathrm{NN}) . P($ The $\mid \mathrm{NN})$ P (Black\|NN)
\wedge	VB	NN	$\begin{aligned} & P(\mathrm{~T}) \cdot P(\mathrm{~W} \mid \mathrm{T})=P(\mathrm{VB} \mid \wedge) \cdot P(\mathrm{NN} \mid \mathrm{VB}) \cdot P(\text { The } \mid \mathrm{VB}) . \\ & P(\mathrm{Black} \mid \mathrm{NN}) \end{aligned}$
\wedge	JJ	NN	$\boldsymbol{P}(\mathrm{T}) \cdot \boldsymbol{P}(\mathrm{W} \mid \mathrm{T})=P(\mathrm{JJ} \mid \wedge) \cdot P(\mathrm{NN} \mid \mathrm{JJ}) \cdot P(\mathrm{The} \mid \mathrm{JJ})$. P (Black\|NN)
\wedge	RB	NN	$P(\mathrm{~T}) \cdot P(\mathrm{~W} \mid \mathrm{T})=P\left(\left.\mathrm{RB}\right\|^{\wedge}\right) \cdot P(\mathrm{NN} \mid \mathrm{RB}) . P($ The $\mid \mathrm{RB})$. P (Black\|NN)
\wedge	OT	NN	$\begin{aligned} & P(\mathrm{~T}) \cdot P(\mathrm{~W} \mid \mathrm{T})=P(\mathrm{OT} \mid \wedge) \cdot P(\mathrm{NN} \mid \mathrm{OT}) \cdot P(\mathrm{The} \mid \mathrm{OT}) . \\ & P(\text { Black } \mid \mathrm{NN}) \end{aligned}$

Complexity $=L * T^{2} \begin{aligned} & \text { For each tag, only path with highest probability } \\ & \text { value are retained, others are discarded. }\end{aligned}$

Probability of a path (e.g. Top most path) $=P(\mathrm{~T}){ }^{*} P(\mathrm{~W} \mid \mathrm{T})$ $P\left({ }^{\wedge}\right) \cdot P(N N / \wedge) . P(N N S / N N) . P(V B D / N N S) . P(N N / V B D)$. $P(D T / N N) . P(N N / D T) . P(. \mid N N) . P($.
$P(\wedge / \wedge) . P(b r o w n / N N) . P(f o x e s / N N S) . P(j u m p e d / V B D)$. P(over/NN) . P(the/DT) . P(fence/NN) . P(...)

Decoding Summary

- On every word compute the partial path probability
- Out of all partial paths ending in a particular state, choose the one with highest path probability
- Advance only that leaf
- In case of tie, choose any one arbitrarily

Assignment Discussion

Brown Corpus

- $1,014,312$ words of running text of edited English prose printed in the United States
- 500 samples of 2000+ words each
- Facilitate automatic or semi-automatic syntactic analysis

Universal POS Tag Set

 (https://universaldependencies.org/ u/pos/)| Open class words | Closed class words | Other |
| :---: | :---: | :---: |
| ADJ (The car is green.) | ADP | PUNCT |
| ADV (arguably wrong) | AUX | SYM |
| $\frac{\mathrm{INTJ}}{\text { etc.) }} \text { (yes, no, uhuh, }$ | CCONJ | \underline{X} |
| NOUN (tree, man) | DET | |
| PROPN | NUM | |
| VERB | PART | |
| | PRON | |
| | SCONJ | |

Noun (1/2)

Definition

- Nouns are a part of speech typically denoting a person, place, thing, animal or idea.
- The NOUN tag is intended for common nouns only. See PROPN for proper nouns and PRON for pronouns.
- Note that some verb forms such as gerunds and infinitives may share properties and usage of nouns and verbs. Depending on language and context, they may be classified as either VERB or NOUN.
Swimming_noun is a good exercise; He is swimmina verb

Noun (2/2)

Examples

- girl
- cat
- tree
- air
- beauty

References

- Loos, Eugene E., et al. 2003. Glossary of linguistic terms: What is a noun?
- Wikipedia

Annotation matter

Tag repository and probability

-Where do tags come from?

- Tag set
- How to get probability values i.e. $P($.$) ?$
- Annotated corpora

After modeling of the problem, emphasis should be on the corpus

Computing $\mathrm{P}($.$) values$

Let us suppose annotated corpus has the following sentence

I	have	a	brown	bag
PRN	VB	DT	JJ	NN

$$
P(N N \mid J J)=\frac{\text { Number_of_times_}_{-} J J_{-} \text {followed_by_} N N}{N u m b e r_{-} \text {of_times_JJ_appeared }}
$$

$$
P(B r o w n \mid J J)=\frac{\text { Number_of_times_Brown_tagged_as_JJ }_{\text {Number_of_times_JJ_appeared }}}{\text { Nut }}
$$

Why Ratios?

- This way of computing parameter probabilities: is this correct?
-What does "correct" mean?
- Is this principled?
- We are using Maximum Likelihood Estimate (MLE)
- Assumption: underlying distribution is multinomial

Explanation with coin tossing

- A coin is tossed 100 times, Head appears 40 times
- $P(H)=0.4$
- Why?
- Because of maximum likelihood

N tosses, K Heads, parameter $P(H)=p$

- Construct Maximum Likelihood Expression
- Take log likelihood and take derivative
- Equate to 0 and Get p

$$
\begin{aligned}
& L=p^{K}(1-p)^{N-K} \\
& \Rightarrow L L=\log (L)=K \log p+(N-K) \log (1-p) \\
& \Rightarrow \frac{d(L L)}{d p}=\frac{K}{p}-\frac{N-K}{1-p} \\
& \Rightarrow \frac{d(L L)}{d p}=0 \text { gives } p=\frac{K}{N}
\end{aligned}
$$

Exercise

- Following the process for finding the probability of Head from N tosses of coin yielding K Heads, prove that the transition probabilities can be found from MLE
- Most important: get the likelihood expression
- Use chapter 2 of the book
- Pushpak Bhattacharyya: Machine translation, CRC Press, Taylor \& Francis Group, Boca Raton, USA, 2015, ISBN: 978-1-4398-9718-8

Appendix

Appendages to tags in Penn Tag Set

S = plural
\$ = possessive

R = comparative

T = superlative

O = objective case of pronoun

D = past tense
$Z=3 r d$ singular verb

N = past participle
$G=$ present participle or gerund

Machine Translation v/s POS

 tagging!- Similarity
- POS
- Every word in a sentence has one corresponding tag.
- MT
- Every word in a sentence has one (or more) corresponding translated word.
- Difference
- Order: Order of translated word may change.
- Fertility: One word corresponds to many. Many to one also possible.

Complexity

- POS and HMM
- Linear time complexity
- MT and Bean search
- Exponential time complexity
- Permutation of words produces exponential searc space
- However, for related languages, MT is like POS tagging

Properties of related languages

1. Order preserving

2. Fertility ~ 1

3. Morphology preserving

Hindi	Jaaunga
Bengali	Jaabo
English	Will go

Hindi \& Bengali \uparrow Hindi \& English \downarrow

Properties of related languages

4. Syncretism: Suffix features should be similarly loaded

Hindi	Main jaaunga	Hum jaayenge
Bengali	Ami jaabo	Aamra jaabo

5. Idiomaticity: Literal translation should be high

Hindi	Aap Kaise Ho?
Bengali	Aapni Kemon Achen?
English	How do you do?

Hindi \& Bengali \uparrow
Hindi \& English \downarrow

Points to ponder wrt HMM and Viterbi

Viterbi Algorithm

- Start with the start state.
- Keep advancing sequences that are "maximum" amongst all those ending in the same state

Viterbi Algorithm

Tree for the sentence: "^ People laugh ."

Claim: We do not need to draw all the subtrees in the algorithm

Viterbi phenomenon (Markov process)

LAUGH

Next step all the probabilities will be multiplied by identical probability (lexical and transition). So children of N2 will have probability less than the children of N 1 .

What does $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$ mean?

- $P(A \mid B)=P(B \mid A)$ If $P(A)=P(B)$
- $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$ means??
- Causality?? B causes A??
- Sequentiality?? A follows B?

Classic problems with respect to

 HMM1.Given the observation sequence, find the possible state sequences- Viterbi
2. Given the observation sequence, find its probability- forward/backward algorithm
3. Given the observation sequence find the HMM prameters.- Baum-Welch algorithm

Illustration of Viterbi

- The "start" and "end" are important in a sequence.
- Subtrees get eliminated due to the Markov Assumption.

POS Tagset

- N (noun), V (verb), O(other) [simplified]
- ^ (start), . (end) [start $\&$ end states]

Illustration of Viterbi
Lexicon
people: N, V
laugh: N, V

Corpora for Training
\qquad ${ }^{\wedge} \mathrm{w}_{11-} \mathrm{t}_{11} \mathrm{w}_{12-} \mathrm{t}_{12} \mathrm{w}_{13-} \mathrm{t}_{13}$ \qquad $\mathrm{w}_{1 \mathrm{k} _1-} \mathrm{t}_{1 \mathrm{k} _1}$.
${ }^{\wedge} W_{21-} t_{21} W_{22-} t_{22} W_{23-} t_{23}$ \qquad $W_{2 k _2-} t_{2 k _2}$.
${ }^{\wedge} W_{n 1-} t_{n 1} W_{n 2-} t_{n 2} W_{n 3-} t_{n 3}$ \qquad . $W_{n k _n-} t_{n k _n}$.

Inference

Partial sequence graph

	\wedge	N	V	O	.
\wedge	0	0.6	0.2	0.2	0
N	0	0.1	0.4	0.3	0.2
V	0	0.3	0.1	0.3	0.3
0	0	0.3	0.2	0.3	0.2
.	1	0	0	0	0

This transition table will change from language to language due to language divergences.

Lexical Probability Table

	ϵ	people	laugh	\ldots	\ldots
\wedge	1	0	0	\ldots	0
N	0	1×10^{-3}	1×10^{-5}	\ldots	\ldots
V	0	1×10^{-6}	1×10^{-3}	\ldots	\ldots
0	0	0	0	\ldots	\ldots
.	1	0	0	0	0

Size of this table = \# pos tags in tagset X vocabulary size
vocabulary size = \# unique words in corpus

Inference

New Sentence:
people laugh .

$\mathrm{p}\left({ }^{\wedge} \mathrm{N} N .\left.\right|^{\wedge}\right.$ people laugh .)
$=(0.6 \times 0.1) \times\left(0.1 \times 1 \times 10^{-3}\right) \times\left(0.2 \times 1 \times 10^{-5}\right)$

Computational Complexity

- If we have to get the probability of each sequence and then find maximum among them, we would run into exponential number of computations.
- If $|\mathrm{s}|=$ \#states (tags $+^{\wedge}+$.) and $|\mathrm{o}|=$ length of sentence (words $+^{\wedge}+$.) Then, \#sequences $=s^{|0|-2}$
- But, a large number of partial computations can be reused using Dynamic Programming.

Dynamic Programming

Computational Complexity

- Retain only those N / V / O nodes which ends in the highest sequence probability.
- Now, complexity reduces from $|s|^{|0|}$ to $|s| .|0|$
- Here, we followed the Markov assumption of order 1.

Reeledhrafapg8:paa

Points to ponder wrt HMM and Viterbi

Viterbi Algorithm

- Start with the start state.
- Keep advancing sequences that are "maximum" amongst all those ending in the same state

Viterbi Algorithm

Tree for the sentence: "^ People laugh ."

Claim: We do not need to draw all the subtrees in the algorithm

Viterbi phenomenon (Markov process)

LAUGH

Next step all the probabilities will be multiplied by identical probability (lexical and transition). So children of N2 will have probability less than the children of N 1 .

What does $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$ mean?

- $P(A \mid B)=P(B \mid A)$ If $P(A)=P(B)$
- $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$ means??
- Causality?? B causes A??
- Sequentiality?? A follows B?

Reading List

- https://www.nltk.org/book/ch05.html
- TnT (http://www.aclweb.org/anthology-new/A/A00/A001031.pdf)
- Hindi POS Tagger built by IIT Bombay (http://www.cse.iitb.ac.in/pb/papers/ACL-2006-Hindi-POS-Tagging.pdf)

